JP2013160110A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2013160110A
JP2013160110A JP2012021662A JP2012021662A JP2013160110A JP 2013160110 A JP2013160110 A JP 2013160110A JP 2012021662 A JP2012021662 A JP 2012021662A JP 2012021662 A JP2012021662 A JP 2012021662A JP 2013160110 A JP2013160110 A JP 2013160110A
Authority
JP
Japan
Prior art keywords
pressure
fuel
property
fuel injection
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012021662A
Other languages
Japanese (ja)
Other versions
JP5527338B2 (en
Inventor
Yukitoshi Minato
幸俊 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012021662A priority Critical patent/JP5527338B2/en
Priority to DE102013100687.6A priority patent/DE102013100687B4/en
Publication of JP2013160110A publication Critical patent/JP2013160110A/en
Application granted granted Critical
Publication of JP5527338B2 publication Critical patent/JP5527338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device capable of improving the determination accuracy of a fuel property.SOLUTION: To a common rail 12, a high pressure pump 13 which discharges fuel after increasing the pressure of the fuel is connected, and an injector 11 which injects the high pressure fuel in the common rail 12 to an engine is connected. Furthermore, a pressure reducing valve 18 is provided in the common rail 12. An ECU 30 implements fuel injection using the injector 11 on the basis of an engine operation state and opens the pressure reducing valve 18 on the basis of a pressure reducing request to the common rail 12. Moreover, particularly, the ECU 30 reduces pressure in the common rail 12 by opening the pressure reducing valve 18 after an engine stop, detects rail pressure while opening the pressure reducing valve 18, and determines a property of fuel to be used on the basis of a reduction amount of the detected rail pressure.

Description

本発明は、燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device.

内燃機関において使用燃料の性状が異なると、内燃機関での燃焼状態が相違する。そのため、使用燃料の性状が分かっていないと、所望とする機関出力が得られなかったり、燃焼状態の悪化に伴い構成部品が損傷する等の支障が生じたりすることが懸念される。そのため、燃料性状を判定するための技術が各種提案されている。   If the properties of the fuel used in the internal combustion engine are different, the combustion state in the internal combustion engine is different. For this reason, if the properties of the fuel used are not known, there is a concern that a desired engine output cannot be obtained, or that troubles such as damage to components due to deterioration of the combustion state may occur. For this reason, various techniques for determining fuel properties have been proposed.

例えば特許文献1の蓄圧式燃料噴射装置では、燃料噴射弁のシール部や燃料ポンプのシール部から燃料リークが生じることを利用し、燃料ポンプの吐出停止後において燃料リークに基づく燃料圧力の低下量に基づいて燃料性状を推定するようにしている。   For example, in the pressure-accumulation fuel injection device disclosed in Patent Document 1, the amount of decrease in fuel pressure based on fuel leak after the fuel pump discharge is stopped using the fact that fuel leak occurs from the seal portion of the fuel injection valve or the seal portion of the fuel pump. The fuel properties are estimated based on the above.

特開2003−239794号公報JP 2003-239794 A

しかしながら、上記先行技術において、燃料ポンプの吐出停止後における燃料圧力の低下は、各シール部における燃料リークに依存するものであり、都度の燃料圧力の状態等に応じて燃料リーク量にばらつきがあると、燃料性状の判定精度が低下することが懸念される。   However, in the above prior art, the decrease in the fuel pressure after stopping the discharge of the fuel pump depends on the fuel leak in each seal portion, and the amount of fuel leak varies depending on the state of the fuel pressure at each time. In this case, there is a concern that the accuracy of determining the fuel property is lowered.

本発明は、燃料性状の判定精度を高めることができる燃料噴射制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a fuel injection control device that can improve the accuracy of determination of fuel properties.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

請求項1に記載の発明は、燃料を高圧化して吐出する燃料ポンプ(13)と、該燃料ポンプで高圧化された燃料が導入される蓄圧部(12)と、該蓄圧部内の高圧燃料を内燃機関に噴射する燃料噴射弁(11)と、前記蓄圧部内の高圧燃料を排出して蓄圧部内を減圧する減圧弁(18)とを備える燃料噴射システムに適用され、前記内燃機関の運転状態に基づいて前記燃料噴射弁による燃料噴射を実施するとともに、前記蓄圧部の減圧要求に基づいて前記減圧弁を開放するものである。そして、前記内燃機関の停止後に、前記減圧弁を開放して前記蓄圧部内を減圧させる減圧制御手段と、前記減圧制御手段により前記減圧弁を開放した状態で前記蓄圧部内の燃料圧力を検出し、該検出した燃料圧力の低下量に基づいて、使用燃料の性状を判定する性状判定手段と、を備えることを特徴とする。   The invention described in claim 1 includes a fuel pump (13) that discharges fuel at a high pressure, a pressure accumulator (12) into which the fuel that has been pressurized by the fuel pump is introduced, and a high-pressure fuel in the pressure accumulator. The present invention is applied to a fuel injection system including a fuel injection valve (11) that injects into an internal combustion engine and a pressure reducing valve (18) that discharges high-pressure fuel in the pressure accumulator and depressurizes the pressure accumulator. Based on this, fuel injection by the fuel injection valve is performed, and the pressure reducing valve is opened based on a pressure reduction request of the pressure accumulating unit. And, after the internal combustion engine is stopped, the pressure reducing control means for opening the pressure reducing valve to reduce the pressure in the pressure accumulating portion, and detecting the fuel pressure in the pressure accumulating portion in the state where the pressure reducing valve is opened by the pressure reducing control means, And a property determining means for determining the property of the fuel used based on the detected decrease in fuel pressure.

上記構成では、内燃機関の停止後において減圧弁を開放し、強制的に蓄圧部内の燃料圧力を低下させるようにしており、その際、例えば使用燃料の粘度に応じて圧力低下の傾き(減圧速度)が相違することから、使用燃料の性状を判定できる。この場合特に、減圧弁の開放に伴い積極的に燃料圧力を低下させるようにした上記構成では、その圧力低下に関して如何なる圧力条件(圧力範囲)で圧力低下を生じさせるか等を適宜設定でき、実施の前提条件を把握した上で燃料性状を判定できる。そのため、燃料性状の判定精度を高めることができる。   In the above configuration, after the internal combustion engine is stopped, the pressure reducing valve is opened to forcibly reduce the fuel pressure in the pressure accumulating portion. At this time, for example, the slope of the pressure drop (pressure reducing speed) according to the viscosity of the fuel used. ) Are different, the properties of the fuel used can be determined. In this case, in particular, in the above-described configuration in which the fuel pressure is positively reduced as the pressure reducing valve is opened, it is possible to appropriately set under what pressure conditions (pressure range) the pressure reduction is caused with respect to the pressure reduction. The fuel properties can be determined after grasping the preconditions. Therefore, it is possible to improve the fuel property determination accuracy.

また、請求項2に記載の発明では、前記減圧制御手段は、前記内燃機関の停止後において、前記蓄圧部内の燃料圧力を所定圧力まで低下させるべく前記減圧弁を開放状態とする第1減圧処理を実施するとともに、その第1減圧処理の実施後に前記性状判定手段による性状判定を行うべく前記減圧弁を開放状態とする第2減圧処理を実施し、前記性状判定手段は、前記第1減圧処理により前記蓄圧部内の燃料圧力が前記所定圧力まで低下した後において、前記第2減圧処理により燃料圧力が低下する状態下で、前記検出した燃料圧力の低下量に基づいて使用燃料の性状を判定する。   According to a second aspect of the present invention, the pressure reducing control means opens the pressure reducing valve to reduce the fuel pressure in the pressure accumulating section to a predetermined pressure after the internal combustion engine is stopped. In addition, after the first decompression process is performed, a second decompression process is performed to open the decompression valve so as to perform a property determination by the property determination unit, and the property determination unit includes the first decompression process. After the fuel pressure in the pressure accumulating portion is reduced to the predetermined pressure, the property of the fuel to be used is determined based on the detected amount of decrease in the fuel pressure under the state where the fuel pressure is reduced by the second decompression process. .

上記構成によれば、蓄圧部内の燃料圧力が所定圧力に低下するのを待って使用燃料の性状判定が実施されるため、その性状判定を同じ圧力条件で実施できる。この場合、圧力条件が相違していると、使用燃料の性状が異なっていても燃料圧力の低下量が同じになることがあり得るが、上記構成では同じ圧力条件としているため、同じ基準で性状判定を実施でき、結果として燃料性状の判定精度を高めることができる。   According to the above configuration, the property determination of the used fuel is performed after the fuel pressure in the pressure accumulating portion is lowered to a predetermined pressure, and therefore the property determination can be performed under the same pressure condition. In this case, if the pressure conditions are different, the fuel pressure decrease amount may be the same even if the properties of the fuel used are different. The determination can be performed, and as a result, the determination accuracy of the fuel property can be improved.

コモンレール式燃料噴射システムの概要を示す構成図。The block diagram which shows the outline | summary of a common rail type fuel injection system. 燃料性状の判定処理を示すフローチャート。The flowchart which shows the determination process of a fuel property. 性状判定処理をより具体的に説明するためのタイムチャート。The time chart for demonstrating a property determination process more concretely. 燃料温度とレール圧低下量との関係を示す図。The figure which shows the relationship between fuel temperature and rail pressure fall amount.

以下、本発明を具体化した一実施形態を図面に従って説明する。本実施形態は、車両用の多気筒ディーゼルエンジンのコモンレール式燃料噴射システムとして本発明を具体化しており、その詳細な構成を以下に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment embodies the present invention as a common rail fuel injection system for a multi-cylinder diesel engine for a vehicle, and the detailed configuration thereof will be described below.

図1において、4気筒ディーゼルエンジン(以下、エンジンという)10には気筒ごとに電磁式のインジェクタ11が配設され、これらインジェクタ11は各気筒共通のコモンレール(蓄圧部)12に接続されている。コモンレール12には燃料ポンプとしての高圧ポンプ13が接続されており、高圧ポンプ13の駆動に伴い燃料が高圧化され、噴射圧相当の高圧燃料がコモンレール12に連続的に蓄圧される。高圧ポンプ13は、エンジン10の回転に伴い駆動され、エンジン回転に同期して燃料の吸入及び吐出が繰り返し行われる。高圧ポンプ13には、その燃料吸入部に電磁駆動式の吸入調量弁(SCV)13aが設けられており、フィードポンプ14によって燃料タンク15から汲み上げられた低圧燃料は吸入調量弁13aを介して当該ポンプ13の燃料室に吸入される。   In FIG. 1, a four-cylinder diesel engine (hereinafter referred to as an engine) 10 is provided with an electromagnetic injector 11 for each cylinder, and these injectors 11 are connected to a common rail (pressure accumulator) 12 common to each cylinder. A high pressure pump 13 as a fuel pump is connected to the common rail 12, the fuel is increased in pressure as the high pressure pump 13 is driven, and high pressure fuel corresponding to the injection pressure is continuously accumulated in the common rail 12. The high-pressure pump 13 is driven as the engine 10 rotates, and fuel is repeatedly sucked and discharged in synchronization with the engine rotation. The high-pressure pump 13 is provided with an electromagnetically driven suction metering valve (SCV) 13a at its fuel suction portion, and the low-pressure fuel pumped from the fuel tank 15 by the feed pump 14 passes through the suction metering valve 13a. And sucked into the fuel chamber of the pump 13.

コモンレール12には圧力センサ16と温度センサ17が設けられており、圧力センサ16によりコモンレール12内の燃料圧力(以下、レール圧とも言う)が逐次検出され、温度センサ17によりコモンレール12内の燃料温度が逐次検出される。また、コモンレール12には電磁駆動式の減圧弁18が設けられており、この減圧弁18が開放されることにより、コモンレール12内の高圧燃料が排出配管19を介して燃料タンク15に向けて排出されるようになっている。こうした高圧燃料の排出によりコモンレール12内の減圧が行われる。   The common rail 12 is provided with a pressure sensor 16 and a temperature sensor 17. The pressure sensor 16 sequentially detects the fuel pressure in the common rail 12 (hereinafter also referred to as rail pressure), and the temperature sensor 17 detects the fuel temperature in the common rail 12. Are sequentially detected. The common rail 12 is provided with an electromagnetically driven pressure reducing valve 18, and when the pressure reducing valve 18 is opened, the high pressure fuel in the common rail 12 is discharged toward the fuel tank 15 via the discharge pipe 19. It has come to be. The discharge of the high-pressure fuel causes the common rail 12 to be depressurized.

本実施形態では、燃料噴射システムの高圧側においてリークレス化が図られており、インジェクタ11に供給された高圧燃料について低圧側へのリークが生じない構成となっている。具体的には、インジェクタ11として、高圧燃料の低圧側へのリーク(漏れ)を無くしたリークレス構造のものを採用している。なお、インジェクタ11のリークレス構造としては、電磁ソレノイド(アクチュエータ)により弁体を直接動かす、いわゆる直動方式のインジェクタ構造や、弁体の摺動径を小さくしかつ摺動隙間を微小とした構造が想定される。また、ピエゾ素子を用いた直動式インジェクタを採用することも可能である。   In the present embodiment, leak-less operation is achieved on the high-pressure side of the fuel injection system, and the high-pressure fuel supplied to the injector 11 does not leak to the low-pressure side. Specifically, the injector 11 employs a leakless structure that eliminates leakage (leakage) of high pressure fuel to the low pressure side. The leakless structure of the injector 11 includes a so-called direct-acting injector structure in which the valve body is directly moved by an electromagnetic solenoid (actuator), and a structure in which the sliding diameter of the valve body is reduced and the sliding gap is made minute. is assumed. It is also possible to employ a direct-acting injector using a piezo element.

エンジン10のクランク軸21付近には、該クランク軸21の回転速度を検出するための回転速度センサ22が設けられている。回転速度センサ22は、例えば、クランク軸21に一体に設けられたタイミングロータの歯の通過を検出する電磁ピックアップ式センサであり、該センサ22の検出信号を波形整形することによりパルス状の回転速度信号(NEパルス)が生成されるようになっている。本実施形態では、NEパルスの角度間隔(パルス立ち上がりエッジ間の角度)が6°CAであり、6°CA周期で回転速度の検出が可能となっている。   A rotation speed sensor 22 for detecting the rotation speed of the crankshaft 21 is provided near the crankshaft 21 of the engine 10. The rotational speed sensor 22 is, for example, an electromagnetic pickup type sensor that detects the passage of teeth of a timing rotor provided integrally with the crankshaft 21, and a pulsed rotational speed is obtained by shaping the detection signal of the sensor 22. A signal (NE pulse) is generated. In the present embodiment, the NE pulse angle interval (angle between pulse rising edges) is 6 ° CA, and the rotation speed can be detected at a cycle of 6 ° CA.

ECU30は、CPU、ROM、RAM、EEPROM等からなる周知のマイクロコンピュータを備えた電子制御ユニットであり、ROM内に記憶されている制御プログラムにより各種制御を実施する。ECU30には、圧力センサ16や回転速度センサ22の検出信号の他、アクセル開度センサや車速センサなどの各種センサから検出信号が逐次入力される。そして、ECU30は、エンジン回転速度やアクセル開度等のエンジン運転情報に基づいて、燃料噴射態様として燃料噴射量及び噴射時期を決定し、それに応じた噴射制御信号をインジェクタ11に出力する。かかる燃料噴射制御により、各気筒においてインジェクタ11から燃焼室への燃料噴射が制御される。   The ECU 30 is an electronic control unit including a known microcomputer including a CPU, a ROM, a RAM, an EEPROM, and the like, and performs various controls according to a control program stored in the ROM. In addition to detection signals from the pressure sensor 16 and the rotation speed sensor 22, detection signals are sequentially input to the ECU 30 from various sensors such as an accelerator opening sensor and a vehicle speed sensor. Then, the ECU 30 determines the fuel injection amount and the injection timing as the fuel injection mode based on the engine operation information such as the engine rotation speed and the accelerator opening, and outputs an injection control signal corresponding to the fuel injection amount to the injector 11. By such fuel injection control, fuel injection from the injector 11 to the combustion chamber is controlled in each cylinder.

また、ECU30は、都度のエンジン運転状態に基づいてレール圧をフィードバック制御する。具体的には、エンジン運転状態に基づいて目標レール圧を算出し、圧力センサ16にて検出された実レール圧が目標レール圧となるように吸入調量弁13aの通電制御を実施する。この場合、レール圧は、あらかじめ定めた所定範囲内で調整され、本実施形態では30〜200MPaの範囲内でレール圧が調整されるようになっている。   Further, the ECU 30 feedback-controls the rail pressure based on each engine operating state. Specifically, the target rail pressure is calculated based on the engine operating state, and the energization control of the intake metering valve 13a is performed so that the actual rail pressure detected by the pressure sensor 16 becomes the target rail pressure. In this case, the rail pressure is adjusted within a predetermined range, and in this embodiment, the rail pressure is adjusted within a range of 30 to 200 MPa.

さらに、ECU30は、都度の減圧要求に基づいて減圧弁18を開放してレール圧を低減させる減圧制御機能を有している。例えば、コモンレール12において実レール圧>目標レール圧となる場合に減圧要求が生じ、ECU30から減圧弁18に開放指令が出される。そして、減圧弁18の開放に伴いレール圧が低下する。   Further, the ECU 30 has a pressure reduction control function for reducing the rail pressure by opening the pressure reducing valve 18 based on a request for pressure reduction. For example, when the actual rail pressure in the common rail 12 is greater than the target rail pressure, a pressure reduction request is generated, and an opening command is issued from the ECU 30 to the pressure reducing valve 18. As the pressure reducing valve 18 is opened, the rail pressure decreases.

また、本実施形態の燃料噴射システムでは、エンジン10の停止後において、減圧弁18を開放してレールを低下させ、その減圧弁18の開放状態でのレール圧の減少変化に基づいて使用燃料の性状を判定することとしており、以下、その詳細を説明する。   Further, in the fuel injection system of the present embodiment, after the engine 10 is stopped, the pressure reducing valve 18 is opened to lower the rail, and the amount of fuel used is reduced based on the change in the rail pressure when the pressure reducing valve 18 is open. The property is determined, and the details will be described below.

図2は、燃料性状の判定処理を示すフローチャートであり、本処理は、エンジン10の運転停止後においてECU30により例えば所定時間ごとに繰り返し実行される。   FIG. 2 is a flowchart showing the fuel property determination process. This process is repeatedly executed by the ECU 30 at predetermined time intervals, for example, after the operation of the engine 10 is stopped.

図2において、ステップS11では、今現在のレール圧Pcと燃料温度Tcとを取得する。続くステップS12では、エンジン停止後においてレール圧Pcが所定値P1まで低下したか否か(Pc≦P1か否か)を判定する。所定値P1は、例えばレール圧の調整範囲内における下限値(30MPa)である。そして、ステップS12がNOであればステップS13に進み、減圧弁18を開放状態とし(第1減圧処理に相当)、その後本処理を一旦終了する。すなわち、エンジン運転中においてはレール圧Pcは所定値P1以上に制御されており、エンジン停止直後にも同様にレール圧Pcは所定値P1以上になっている。この状態で減圧弁18が開放されることによりレール圧Pcが低下する。   In FIG. 2, in step S11, the current rail pressure Pc and fuel temperature Tc are acquired. In subsequent step S12, it is determined whether or not the rail pressure Pc has decreased to a predetermined value P1 after the engine is stopped (whether Pc ≦ P1). The predetermined value P1 is, for example, a lower limit value (30 MPa) within the rail pressure adjustment range. And if step S12 is NO, it will progress to step S13, will open the pressure-reduction valve 18 (equivalent to a 1st pressure reduction process), and will once complete | finish this process after that. That is, the rail pressure Pc is controlled to be equal to or higher than the predetermined value P1 during engine operation, and the rail pressure Pc is equal to or higher than the predetermined value P1 immediately after the engine is stopped. When the pressure reducing valve 18 is opened in this state, the rail pressure Pc decreases.

また、ステップS12がYESであればステップS14に進み、エンジン停止後において燃料温度Tcがあらかじめ定めた所定温度K1(例えば30℃)まで低下したか否か(Tc≦K1か否か)を判定する。そして、ステップS14がNOであればそのまま本処理を終了し、YESであれば後続のステップS15に進む。すなわち、ステップS14では、燃料温度Tcが所定温度K1まで低下するのを待つ待機処理が行われる。ステップS15では、減圧弁18を開放状態とする(第2減圧処理に相当)。   If YES in step S12, the process proceeds to step S14 to determine whether or not the fuel temperature Tc has decreased to a predetermined temperature K1 (for example, 30 ° C.) after engine stop (whether Tc ≦ K1). . And if step S14 is NO, this process will be complete | finished as it is, and if it is YES, it will progress to subsequent step S15. That is, in step S14, standby processing is performed to wait for the fuel temperature Tc to decrease to the predetermined temperature K1. In step S15, the pressure reducing valve 18 is opened (corresponding to the second pressure reducing process).

その後、ステップS16では、ステップS12,S14の各条件が共に成立するのに伴い減圧弁18が開放されてから所定時間αが経過したか否かを判定する。そして、YESであればステップS17に進み、所定時間αが経過する前後のレール圧の比較によりレール圧低下量ΔPcを算出する(ΔPc=P1−Pc)。なおここでは、α経過前のレール圧として所定値P1を用いているが、実測のレール圧(ステップS12&S14が共にYESとなる時のレール圧Pc)を用いることも可能である。   Thereafter, in step S16, it is determined whether or not a predetermined time α has elapsed since the pressure reducing valve 18 was opened as both conditions of steps S12 and S14 were established. And if it is YES, it will progress to step S17 and will calculate rail pressure fall amount (DELTA) Pc by the comparison of the rail pressure before and behind predetermined time (alpha) ((DELTA) Pc = P1-Pc). Here, the predetermined value P1 is used as the rail pressure before the passage of α, but it is also possible to use the actually measured rail pressure (the rail pressure Pc when both steps S12 & S14 are YES).

その後、ステップS18では、レール圧低下量ΔPcを標準低下量ΔP0と比較し、ΔPc>ΔP0であるか否かを判定する。標準低下量ΔP0は、あらかじめ定めた標準燃料を使用した場合におけるレール圧低下量であり、特に燃料温度Tc=K1とした条件下で適合された値となっている。そして、ΔPc>ΔP0である場合、ステップS19に進み、今現在の使用燃料が低粘度燃料であると判定する。   Thereafter, in step S18, the rail pressure decrease amount ΔPc is compared with the standard decrease amount ΔP0, and it is determined whether or not ΔPc> ΔP0. The standard decrease amount ΔP0 is a rail pressure decrease amount when a predetermined standard fuel is used, and is a value that is adapted particularly under the condition that the fuel temperature Tc = K1. If ΔPc> ΔP0, the process proceeds to step S19, where it is determined that the currently used fuel is a low-viscosity fuel.

なお、使用燃料が低粘度燃料であると判定された場合には、噴射系部品の保護のための処理が実施される。具体的には、次回のエンジン始動後においてエンジン回転速度、燃料圧力、噴射量の少なくともいずれか制限する制限運転が実施される。   When it is determined that the fuel used is a low-viscosity fuel, processing for protecting the injection system components is performed. Specifically, after the next engine start, a limited operation is performed to limit at least one of the engine rotation speed, the fuel pressure, and the injection amount.

図3は、上記の性状判定処理をより具体的に説明するためのタイムチャートである。なお、図3において、実線のレール圧変化は標準燃料でのレール圧変化を示し、一点鎖線のレール圧変化は低粘度燃料でのレール圧変化を示している。   FIG. 3 is a time chart for more specifically explaining the property determination process. In FIG. 3, a change in rail pressure indicated by a solid line indicates a change in rail pressure with standard fuel, and a change in rail pressure indicated by a one-dot chain line indicates a change in rail pressure with low-viscosity fuel.

さて図3では、タイミングt0でエンジン10が停止し、その際レール圧Pcが所定値P1以上になっているため、減圧弁18が開放される。そして、タイミングt1でレール圧Pcが所定値P1まで低下すると、減圧弁18が閉鎖される。なお、減圧弁18の閉鎖状態(タイミングt1〜t2)では、高圧側での燃料リークが生じることはなく、レール圧Pcは一定のまま保持される。   In FIG. 3, the engine 10 is stopped at the timing t <b> 0, and the rail pressure Pc is equal to or higher than the predetermined value P <b> 1 at that time. When the rail pressure Pc decreases to the predetermined value P1 at timing t1, the pressure reducing valve 18 is closed. In the closed state of the pressure reducing valve 18 (timing t1 to t2), no fuel leak occurs on the high pressure side, and the rail pressure Pc is kept constant.

その後、燃料温度が所定温度まで低下するのを待って、タイミングt2で減圧弁18が再び開放される。これにより、レール圧Pcが再び低下する。そして、タイミングt2から所定時間αが経過したタイミングt3では、レール圧低下量ΔPcが算出されるとともに、そのレール圧低下量ΔPcに基づいて燃料性状が判定される。このとき、使用燃料が低粘度燃料であれば、圧力低下の傾きが大きく(圧力低下率が大きく)、ΔPc>ΔP0となる。これにより、今現在の使用燃料が低粘度燃料であると判定できる。   Thereafter, the pressure reducing valve 18 is opened again at the timing t2 after waiting for the fuel temperature to fall to a predetermined temperature. As a result, the rail pressure Pc decreases again. Then, at the timing t3 when the predetermined time α has elapsed from the timing t2, the rail pressure decrease amount ΔPc is calculated, and the fuel property is determined based on the rail pressure decrease amount ΔPc. At this time, if the fuel used is a low-viscosity fuel, the slope of the pressure drop is large (the pressure drop rate is large), and ΔPc> ΔP0. Thereby, it can be determined that the currently used fuel is a low-viscosity fuel.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

エンジン停止後において、コモンレール12内を減圧させるべく減圧弁18を開放した状態で、レール圧Pcを検出し、該検出したレール圧Pcの低下量(ΔPc)に基づいて使用燃料の性状を判定する構成とした。この場合、減圧弁18を開放して強制的にレール圧Pcを低下させるようにしているため、レール圧Pcの低下に関して如何なる圧力条件(圧力範囲)で圧力低下を生じさせるか等を適宜設定でき、実施の前提条件を把握した上で燃料性状を判定できる。そのため、燃料性状の判定精度を高めることができる。   After the engine stops, the rail pressure Pc is detected in a state where the pressure reducing valve 18 is opened to reduce the pressure in the common rail 12, and the property of the fuel used is determined based on the detected decrease amount (ΔPc) of the rail pressure Pc. The configuration. In this case, since the pressure reducing valve 18 is opened to forcibly reduce the rail pressure Pc, it is possible to appropriately set under what pressure condition (pressure range) the pressure drop is caused with respect to the reduction of the rail pressure Pc. The fuel properties can be determined after understanding the preconditions for implementation. Therefore, it is possible to improve the fuel property determination accuracy.

エンジン停止後において、レール圧Pcを所定値P1まで低下させるべく減圧弁18を開放状態とする第1減圧処理を実施するとともに、その第1減圧処理の実施後に性状判定を行うべく減圧弁18を開放状態とする第2減圧処理を実施するようにした。そして、第1減圧処理によりレール圧Pcが所定値P1まで低下した後において、第2減圧処理によりレール圧Pcが低下する状態下でレール圧低下量ΔPcに基づいて使用燃料の性状を判定するようにした。上記構成によれば、レール圧Pcが所定値P1に低下するのを待って使用燃料の性状判定が実施されるため、その性状判定を同じ圧力条件で実施できる。この場合、圧力条件が相違していると、使用燃料の性状が異なっていてもレール圧低下量ΔPcが同じになることがあり得るが、上記構成では同じ圧力条件としているため、同じ基準で性状判定を実施でき、結果として燃料性状の判定精度を高めることができる。   After the engine is stopped, the first pressure reducing process for opening the pressure reducing valve 18 to reduce the rail pressure Pc to the predetermined value P1 is performed, and the pressure reducing valve 18 is set to perform the property determination after the first pressure reducing process is performed. The second decompression process for setting the open state was performed. Then, after the rail pressure Pc is reduced to the predetermined value P1 by the first pressure reduction process, the property of the fuel to be used is determined based on the rail pressure reduction amount ΔPc in a state where the rail pressure Pc is reduced by the second pressure reduction process. I made it. According to the above configuration, the property determination of the used fuel is performed after the rail pressure Pc decreases to the predetermined value P1, and therefore the property determination can be performed under the same pressure condition. In this case, if the pressure conditions are different, the rail pressure drop amount ΔPc may be the same even if the properties of the fuel used are different. However, since the above-mentioned configuration uses the same pressure conditions, the properties are based on the same criteria. The determination can be performed, and as a result, the determination accuracy of the fuel property can be improved.

燃料噴射システムにおいてインジェクタ11を含む高圧側部分をリークレス構造とした。そのため、減圧弁18の開閉状態とレール圧Pcの低下挙動とを一致させることができ、性状判定のための圧力条件を設定しやすいものとなる。また、燃料リーク量のばらつきに起因して燃料性状の判定精度が低下するといった不都合を抑制できる。   In the fuel injection system, the high pressure side portion including the injector 11 has a leakless structure. Therefore, the open / close state of the pressure reducing valve 18 and the lowering behavior of the rail pressure Pc can be matched, and the pressure condition for property determination can be easily set. Further, it is possible to suppress the disadvantage that the accuracy of determining the fuel property is lowered due to the variation in the fuel leak amount.

エンジン停止時におけるコモンレール12内の燃料温度Tcを取得し、レール圧低下量ΔPcと燃料温度Tcとに基づいて燃料性状を判定する構成とした。より具体的には、エンジン停止後において燃料温度Tcが所定温度K1まで低下したことを性状判定の実施条件とし、その燃料温度低下の状態でのレール圧低下量ΔPcに基づいて燃料性状を判定するようにした。燃料温度が相違すると、燃料の粘度が相違し、ひいてはコモンレール12からの燃料排出に伴いレール圧Pcが低下する傾き(減圧速度)が相違するが、上記のとおり燃料温度を加味しているため、燃料性状の判定精度を一層高めることができる。また、上記構成では、温度条件を一定にした状態下でレール圧Pcを低下させて性状判定を実施することができ、一定条件での性状判定によりその判定精度を高めることができる。また、複数の燃料温度ごとに標準低下量ΔP0(性状判定値)を用意しなくてもよく、その標準低下量ΔP0を求めるための適合やシミュレーションの手間を省くことができ、さらに、標準低下量ΔP0を記憶しておくためのメモリのデータ記憶容量の削減を図ることができる。   The fuel temperature Tc in the common rail 12 when the engine is stopped is acquired, and the fuel property is determined based on the rail pressure decrease amount ΔPc and the fuel temperature Tc. More specifically, the condition for determining the property is that the fuel temperature Tc has decreased to the predetermined temperature K1 after the engine is stopped, and the fuel property is determined based on the rail pressure decrease amount ΔPc when the fuel temperature is decreased. I did it. When the fuel temperature is different, the viscosity of the fuel is different. As a result, the slope (decompression speed) at which the rail pressure Pc decreases as the fuel is discharged from the common rail 12 is different, but because the fuel temperature is taken into account as described above, The determination accuracy of the fuel property can be further increased. Further, in the above configuration, the property determination can be performed by reducing the rail pressure Pc under a constant temperature condition, and the determination accuracy can be improved by the property determination under a certain condition. In addition, it is not necessary to prepare a standard decrease amount ΔP0 (property determination value) for each of a plurality of fuel temperatures, and it is possible to save time and trouble of adaptation and simulation for obtaining the standard decrease amount ΔP0. The data storage capacity of the memory for storing ΔP0 can be reduced.

(他の実施形態)
上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
You may change the said embodiment as follows, for example.

・上記実施形態では、燃料性状の判定処理として、レール圧低下量ΔPcを標準低下量ΔP0と比較して、使用燃料が低粘度燃料であるか否かを判定する構成としたが、これを変更してもよい。例えば、互いに粘度の異なる複数の燃料について各々、レール圧低下量の標準値を定めておき、エンジン停止後における実際のレール圧低下量がどの燃料の標準値に一致するか(又はどの燃料の標準値に最も近いか)により燃料性状を判定する構成としてもよい。   In the above embodiment, as the fuel property determination process, the rail pressure decrease amount ΔPc is compared with the standard decrease amount ΔP0 to determine whether or not the fuel used is a low-viscosity fuel. May be. For example, for each of a plurality of fuels having different viscosities, a standard value of the rail pressure decrease amount is determined for each fuel, and the actual rail pressure decrease amount after the engine stops matches which fuel standard value (or which fuel standard value) The fuel property may be determined based on whether it is closest to the value.

・エンジン停止後におけるレール圧Pcの低下量を、各々異なる燃料温度ごとに対応付けてそれを圧力低下量データとして、当該データをメモリ(ECU30内のROM)に記憶しておき、圧力低下量データに基づいて燃料性状を判定するようにしてもよい。具体的には、図4に示すように、標準燃料の圧力低下量データとして、異なる燃料温度ごとにレール圧低下量の基準値(図のa1,a2,a3)を定めておく。そして、都度の燃料温度に応じて基準値a1〜a3のいずれかを選択的に用いて性状判定を実施する。   The amount of decrease in the rail pressure Pc after the engine is stopped is associated with each different fuel temperature and stored as pressure decrease amount data in a memory (ROM in the ECU 30), and the pressure decrease amount data The fuel property may be determined based on the above. Specifically, as shown in FIG. 4, reference values (a1, a2, a3 in the figure) of rail pressure drop amounts are determined for different fuel temperatures as standard fuel pressure drop amount data. Then, the property determination is performed by selectively using any one of the reference values a1 to a3 according to the fuel temperature at each time.

上記構成によれば、圧力低下量データが燃料温度に対応付けられたものであるため、その圧力低下量データを用いることで高精度な性状判定を実施できる。   According to the above configuration, since the pressure drop amount data is associated with the fuel temperature, the highly accurate property determination can be performed by using the pressure drop amount data.

また、図4に示すように、標準燃料よりも低粘度の燃料についてもレール圧低下量の基準値を定めておくようにしてもよい。なお、図中の低粘度1、低粘度2は粘度が異なる燃料を示し、低粘度2の燃料の方が低粘度1の燃料よりも粘度が小さいものとなっている。この場合、低粘度1,2の各燃料の圧力低下量データとして、異なる燃料温度ごとにレール圧低下量の基準値(図のb1,b2,b3,c1,c2,c3)を定めておく。そして、都度の燃料温度に応じて基準値b1〜b3,c1〜c3のいずれかを選択的に用いて性状判定を実施する。   Further, as shown in FIG. 4, the reference value for the amount of rail pressure drop may be determined for a fuel having a viscosity lower than that of the standard fuel. In the drawing, low viscosity 1 and low viscosity 2 indicate fuels having different viscosities, and the low viscosity 2 fuel has a lower viscosity than the low viscosity 1 fuel. In this case, the reference value (b1, b2, b3, c1, c2, c3 in the figure) of the rail pressure drop amount is determined for each different fuel temperature as the pressure drop amount data of the low viscosity 1, 2 fuels. Then, the property determination is performed by selectively using any one of the reference values b1 to b3 and c1 to c3 according to the fuel temperature at each time.

・上記実施形態では、エンジン停止後における第1減圧処理としてレール圧Pcをレール圧調整範囲内の下限値(30MPa)まで低下させるようにしたが、これを変更し、第1減圧処理としてレール圧Pcをレール圧調整範囲内の下限値よりも低い圧力まで低下させるようにしてもよい。又は、第1減圧処理としてレール圧Pcをレール圧調整範囲内の中間圧力(例えば50MPa)まで低下させるようにしてもよい。また、第1減圧処理を実施せず、エンジン停止時点のレール圧Pcを開始圧力として、その開始圧力からのレール圧低下量ΔPcに基づいて性状判定する構成としてもよい。   In the above embodiment, the rail pressure Pc is reduced to the lower limit (30 MPa) within the rail pressure adjustment range as the first pressure reduction process after the engine is stopped, but this is changed and the rail pressure Pc is changed as the first pressure reduction process. Pc may be lowered to a pressure lower than the lower limit value in the rail pressure adjustment range. Alternatively, the rail pressure Pc may be decreased to an intermediate pressure (for example, 50 MPa) within the rail pressure adjustment range as the first pressure reduction process. Moreover, it is good also as a structure which does not implement a 1st pressure reduction process but uses the rail pressure Pc at the time of an engine stop as a starting pressure, and determines a property based on rail pressure fall amount (DELTA) Pc from the starting pressure.

・上記実施形態では、エンジン停止後における減圧弁18の開放状態において、所定時間内におけるレール圧低下量ΔPcに基づいて燃料性状を判定する構成としたが、これを変更してもよい。例えば、同じく減圧弁18の開放状態において、レール圧低下量ΔPcが所定値に達するのに要する所要時間に基づいて燃料性状を判定する構成としてもよい。この場合、レール圧低下量ΔPcが所定値に達するまでの所要時間が標準時間より短い場合に、低粘度燃料であると判定する。又は、その所要時間が短いほど、燃料の粘度が小さいと判定する。   In the above embodiment, the fuel property is determined based on the rail pressure decrease amount ΔPc within a predetermined time in the open state of the pressure reducing valve 18 after the engine is stopped. However, this may be changed. For example, the fuel property may be determined based on the time required for the rail pressure decrease amount ΔPc to reach a predetermined value when the pressure reducing valve 18 is open. In this case, when the time required for the rail pressure decrease amount ΔPc to reach a predetermined value is shorter than the standard time, it is determined that the fuel is low viscosity. Or it determines with the viscosity of a fuel being so small that the time required is short.

・減圧弁18として、開放状態と閉鎖状態とが切り替えられるもの以外に、開放状態での開度を可変に調整できるものを用いる構成であってもよい。この場合、減圧弁18の開度を調整することにより、レール圧Pcの低下の傾き(減圧速度)を任意に調整でき、所望の減圧速度とした上で性状判定を実施することが可能となる。   The pressure reducing valve 18 may be configured so that the opening degree in the open state can be variably adjusted in addition to the switch between the open state and the closed state. In this case, by adjusting the opening degree of the pressure reducing valve 18, the slope (pressure reduction speed) of the decrease in the rail pressure Pc can be arbitrarily adjusted, and the property determination can be performed after setting the desired pressure reduction speed. .

・上記実施形態では、燃料噴射システムにおいてインジェクタ11を含む高圧側部分をリークレス構造としたが、例えばインジェクタ11における燃料リークが生じるシステムにも適用可能である。この場合、摺動部分等での燃料リーク分を加味して性状判定値を定めておくとよい。   In the above embodiment, the high pressure side portion including the injector 11 in the fuel injection system has a leakless structure. However, for example, the present invention can be applied to a system in which fuel leakage occurs in the injector 11. In this case, the property determination value may be determined in consideration of the amount of fuel leak at the sliding portion or the like.

・使用燃料の性状判定として、バイオ燃料等の多種燃料であることを判定する構成としてもよい。この場合、例えば化石燃料(軽油)にバイオ燃料が混合されているか否か、どの種類のバイオ燃料が混合されているか、又はバイオ燃料の混合割合がどの程度であるかを判定するようにする。   -It is good also as a structure which determines that it is various fuels, such as biofuel, as a property determination of the use fuel. In this case, for example, it is determined whether or not biofuel is mixed with fossil fuel (light oil), what kind of biofuel is mixed, and what is the mixing ratio of biofuel.

・上記実施形態では、自己着火式のディーゼルエンジンについての実施例を説明したが、これに代えて火花点火式エンジン(ガソリンエンジン等)についての実施も可能である。この場合、蓄圧部としてのデリバリパイプに設けられた減圧弁を用いて減圧処理を行えばよい。   In the above-described embodiment, an example of a self-ignition type diesel engine has been described. However, a spark ignition type engine (a gasoline engine or the like) can be used instead. In this case, the pressure reducing process may be performed using a pressure reducing valve provided in a delivery pipe as a pressure accumulating unit.

10…エンジン(内燃機関)、11…インジェクタ(燃料噴射弁)、12…コモンレール(蓄圧部)、13…高圧ポンプ(燃料ポンプ)、18…減圧弁、30…ECU(燃料噴射制御装置、減圧制御手段、性状判定手段、温度取得手段)。   DESCRIPTION OF SYMBOLS 10 ... Engine (internal combustion engine), 11 ... Injector (fuel injection valve), 12 ... Common rail (pressure accumulation part), 13 ... High pressure pump (fuel pump), 18 ... Pressure reducing valve, 30 ... ECU (fuel injection control device, pressure reduction control) Means, property determination means, temperature acquisition means).

Claims (5)

燃料を高圧化して吐出する燃料ポンプ(13)と、該燃料ポンプで高圧化された燃料が導入される蓄圧部(12)と、該蓄圧部内の高圧燃料を内燃機関に噴射する燃料噴射弁(11)と、前記蓄圧部内の高圧燃料を排出して蓄圧部内を減圧する減圧弁(18)とを備える燃料噴射システムに適用され、
前記内燃機関の運転状態に基づいて前記燃料噴射弁による燃料噴射を実施するとともに、前記蓄圧部の減圧要求に基づいて前記減圧弁を開放する燃料噴射制御装置において、
前記内燃機関の停止後に、前記減圧弁を開放して前記蓄圧部内を減圧させる減圧制御手段と、
前記減圧制御手段により前記減圧弁を開放した状態で前記蓄圧部内の燃料圧力を検出し、該検出した燃料圧力の低下量に基づいて、使用燃料の性状を判定する性状判定手段と、
を備えることを特徴とする燃料噴射制御装置。
A fuel pump (13) that discharges the fuel at a high pressure, a pressure accumulator (12) into which the fuel increased in pressure by the fuel pump is introduced, and a fuel injection valve that injects the high-pressure fuel in the pressure accumulator into the internal combustion engine ( 11) and a pressure reducing valve (18) that discharges the high-pressure fuel in the pressure accumulator and depressurizes the pressure accumulator, and is applied to a fuel injection system.
In the fuel injection control device that performs fuel injection by the fuel injection valve based on the operating state of the internal combustion engine and opens the pressure reduction valve based on a pressure reduction request of the pressure accumulating unit,
A decompression control means for opening the decompression valve and decompressing the pressure accumulating section after the internal combustion engine is stopped;
A property determining means for detecting the fuel pressure in the pressure accumulating portion in a state where the pressure reducing valve is opened by the pressure reducing control means, and for determining the property of the fuel used based on the detected amount of decrease in the fuel pressure;
A fuel injection control device comprising:
前記減圧制御手段は、前記内燃機関の停止後において、前記蓄圧部内の燃料圧力を所定圧力まで低下させるべく前記減圧弁を開放状態とする第1減圧処理を実施するとともに、その第1減圧処理の実施後に前記性状判定手段による性状判定を行うべく前記減圧弁を開放状態とする第2減圧処理を実施し、
前記性状判定手段は、前記第1減圧処理により前記蓄圧部内の燃料圧力が前記所定圧力まで低下した後において、前記第2減圧処理により燃料圧力が低下する状態下で、前記燃料圧力の低下量に基づいて使用燃料の性状を判定する請求項1に記載の燃料噴射制御装置。
The decompression control means performs a first decompression process for opening the decompression valve to reduce the fuel pressure in the accumulator to a predetermined pressure after the internal combustion engine is stopped. Performing a second pressure reducing process for opening the pressure reducing valve in order to perform property determination by the property determining means after execution;
The property determination means sets the amount of decrease in the fuel pressure under a state in which the fuel pressure is reduced by the second pressure reduction process after the fuel pressure in the pressure accumulating portion is reduced to the predetermined pressure by the first pressure reduction process. The fuel injection control device according to claim 1, wherein the property of the used fuel is determined on the basis of the property.
前記内燃機関の停止時における前記蓄圧部内の燃料温度を取得する温度取得手段を備え、
前記性状判定手段は、前記減圧弁の開放状態で検出した燃料圧力の低下量と、前記温度取得手段により取得した燃料温度とに基づいて、使用燃料の性状を判定する請求項1又は2に記載の燃料噴射制御装置。
A temperature acquisition means for acquiring a fuel temperature in the pressure accumulator when the internal combustion engine is stopped;
3. The property determination unit according to claim 1, wherein the property determination unit determines the property of the fuel used based on a fuel pressure decrease amount detected in an open state of the pressure reducing valve and a fuel temperature acquired by the temperature acquisition unit. Fuel injection control device.
前記内燃機関の停止後における前記高圧燃料の圧力低下量を、各々異なる燃料温度ごとに対応付けてそれを圧力低下量データとし、当該データをメモリに記憶しておき、
前記性状判定手段は、前記圧力低下量データに基づいて燃料性状を判定する請求項3に記載の燃料噴射制御装置。
The pressure drop amount of the high-pressure fuel after the internal combustion engine is stopped is associated with each different fuel temperature as pressure drop amount data, and the data is stored in a memory,
The fuel injection control device according to claim 3, wherein the property determination unit determines a fuel property based on the pressure drop amount data.
前記性状判定手段は、前記内燃機関の停止後において前記蓄圧部内の燃料温度があらかじめ定めた所定温度に低下したことを性状判定の実施条件とし、その実施条件が成立した状態で前記燃料圧力の低下量に基づいて燃料性状を判定する請求項1乃至4のいずれか一項に記載の燃料噴射制御装置。   The property determination means uses the condition for determining the property that the fuel temperature in the pressure accumulating portion has decreased to a predetermined temperature after the internal combustion engine is stopped, and the fuel pressure decreases in a state where the condition is satisfied. The fuel injection control device according to any one of claims 1 to 4, wherein the fuel property is determined based on the amount.
JP2012021662A 2012-02-03 2012-02-03 Fuel injection control device Active JP5527338B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012021662A JP5527338B2 (en) 2012-02-03 2012-02-03 Fuel injection control device
DE102013100687.6A DE102013100687B4 (en) 2012-02-03 2013-01-24 Fuel injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021662A JP5527338B2 (en) 2012-02-03 2012-02-03 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2013160110A true JP2013160110A (en) 2013-08-19
JP5527338B2 JP5527338B2 (en) 2014-06-18

Family

ID=48794735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021662A Active JP5527338B2 (en) 2012-02-03 2012-02-03 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP5527338B2 (en)
DE (1) DE102013100687B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102071A1 (en) 2014-03-07 2015-09-10 Denso Corporation Fuel property detector
DE102015102069A1 (en) 2014-03-07 2015-09-10 Denso Corporation Fuel pump characteristic learning device
JP2016176408A (en) * 2015-03-20 2016-10-06 株式会社デンソー Fuel property acquisition device and fuel property acquisition method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019215482B4 (en) * 2019-10-09 2022-01-27 Vitesco Technologies GmbH Method and device for inferring a change in the type of fluid flowing through an actuator
DE102020206693A1 (en) 2020-05-28 2021-12-02 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a fuel injection system, control unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518924C2 (en) 2001-04-18 2002-12-03 Scania Cv Ab Method and apparatus for controlling fuel injection into an internal combustion engine and using the apparatus
JP2003239794A (en) 2001-12-11 2003-08-27 Denso Corp Accumulator type fuel injection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102071A1 (en) 2014-03-07 2015-09-10 Denso Corporation Fuel property detector
DE102015102069A1 (en) 2014-03-07 2015-09-10 Denso Corporation Fuel pump characteristic learning device
JP2016176408A (en) * 2015-03-20 2016-10-06 株式会社デンソー Fuel property acquisition device and fuel property acquisition method

Also Published As

Publication number Publication date
DE102013100687A1 (en) 2013-08-08
DE102013100687B4 (en) 2019-09-19
JP5527338B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
CN105569864B (en) Method for controlling combustion in an internal combustion engine and internal combustion engine
JP4775342B2 (en) Fuel injection control device and fuel injection system using the same
JP4428201B2 (en) Accumulated fuel injection system
US7891339B2 (en) Control apparatus capable of suitably controlling fuel injection apparatus regardless of variation in fuel pressure in accumulator
US7438052B2 (en) Abnormality-determining device and method for fuel supply system, and engine control unit
RU2717863C2 (en) Method (versions) and system for double fuel injection
US20060005816A1 (en) Fuel injection system
CN108869079B (en) Method of fuel injection control in a diesel engine
US7392789B2 (en) Method for synchronizing cylinders in terms of quantities of fuel injected in an internal combustion engine
JP5527338B2 (en) Fuel injection control device
JP5141723B2 (en) Fuel injection control device for internal combustion engine
US9284900B2 (en) Fuel injection control device for internal combustion engine
JP2008144749A (en) Fuel injection system and its adjusting method
JP2012062849A (en) Fuel injection waveform arithmetic unit
US7493887B2 (en) Method for detecting preinjection
JP4144375B2 (en) Accumulated fuel injection system
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP4375432B2 (en) Fuel injection characteristic detection device and engine control system
JP4269484B2 (en) Accumulated fuel injection system
JP4269913B2 (en) Accumulated fuel injection system
US20140202431A1 (en) Fuel injection apparatus
JP3807293B2 (en) Fuel injection control device for internal combustion engine
JP4214642B2 (en) Accumulated fuel injection system
JP4239331B2 (en) Accumulated fuel injection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5527338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250