JP2013159948A - Plate-like structure - Google Patents

Plate-like structure Download PDF

Info

Publication number
JP2013159948A
JP2013159948A JP2012022245A JP2012022245A JP2013159948A JP 2013159948 A JP2013159948 A JP 2013159948A JP 2012022245 A JP2012022245 A JP 2012022245A JP 2012022245 A JP2012022245 A JP 2012022245A JP 2013159948 A JP2013159948 A JP 2013159948A
Authority
JP
Japan
Prior art keywords
plate
reinforcing coating
concrete
coating film
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012022245A
Other languages
Japanese (ja)
Other versions
JP6468578B2 (en
Inventor
Kazumitsu Takanashi
和光 高梨
Yusaku Osaki
雄作 大崎
Shigeyuki Kono
重行 河野
Kazunao Ide
一直 井出
Mikio Shimizu
幹雄 清水
Tomonori Ono
友則 大野
Kazunori Fujikake
一典 藤掛
Toshimitsu Aso
利光 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Mitsui Chemicals Industrial Products Ltd
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Mitsui Chemicals Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp, Mitsui Chemicals Industrial Products Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP2012022245A priority Critical patent/JP6468578B2/en
Publication of JP2013159948A publication Critical patent/JP2013159948A/en
Application granted granted Critical
Publication of JP6468578B2 publication Critical patent/JP6468578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a plate shape even when repeatedly receiving a load, and to prevent dissipation of concrete pieces generated from a broken skeleton.SOLUTION: A floor slab 1 is provided which has a configuration where the surface of a concrete plate-like skeleton 2 whose plate surface is repeatedly subjected to the action of a load is coated with a resin reinforcing film 3, the reinforcing film 3 is made of a compound formed by chemical reaction between an isocyanate and a curing agent consisting of at least one of a polyol and an amine, and the reinforcing film 3 is provided on the upper surface 2a and lower surface 2b of the skeleton 2 repeatedly receiving a load.

Description

本発明は、コンクリート造からなる板状の躯体が補強された板状構造に関する。   The present invention relates to a plate-like structure in which a plate-like casing made of concrete is reinforced.

従来、繰り返し荷重が作用するコンクリート構造物として、自動車や列車などの車両用の床版や、地震などの揺れが作用する倉庫、工場等の建物の側壁および床スラブなどがある(例えば、特許文献1参照)。このようなコンクリート構造物では、鉄筋コンクリート造のものが多く、さらにコンクリートを鉄筋や鉄骨で補強して壁の剛性を高めているものもある。   Conventionally, concrete structures to which repeated loads are applied include floor slabs for vehicles such as automobiles and trains, warehouses to which shaking such as earthquakes acts, side walls and floor slabs of buildings such as factories (for example, patent documents) 1). Many of these concrete structures are reinforced concrete structures, and some concrete structures are reinforced with reinforcing bars or steel frames to increase the rigidity of the walls.

特開2004−360337号公報JP 2004-360337 A

しかしながら、上述した床版には自動車や列車の走行による繰り返し荷重がかかり、床版の躯体表面のコンクリートが剥がれ、このコンクリート片が散逸することとなる。例えば、道路において破壊されて飛び散ったコンクリートの破片が車両の走行の障害になったり、そのコンクリート片を跳ね飛ばしてしまうという問題があった。
また、コンクリート造の建物の場合には、大地震後に繰り返し来襲する余震によって側壁や床スラブにひび割れが発生し、その破壊によって生じるコンクリート片が落下するという問題があった。とくに側壁では、繰り返して余震が続くと、側壁自体の形状が保持できなくなり、側壁の自立性も失われて建物が倒壊するおそれがあることから、これら点で改善の余地があった。
However, the above-described floor slab is subjected to repeated loads due to traveling of an automobile or a train, and the concrete on the floor surface of the floor slab is peeled off, and this concrete piece is dissipated. For example, there is a problem that concrete fragments that have been destroyed and scattered on the road may interfere with vehicle travel or cause the concrete fragments to jump off.
In the case of a concrete building, the side walls and the floor slab are cracked by aftershocks that repeatedly occur after a large earthquake, and there is a problem that the concrete piece generated by the destruction falls. Especially on the side wall, if the aftershocks continue repeatedly, the shape of the side wall itself can no longer be maintained, and the independence of the side wall may be lost and the building may collapse, so there is room for improvement in these respects.

本発明は、上述する問題点に鑑みてなされたもので、繰り返し荷重を受けても板形状を保持することができ、破壊された躯体から生じるコンクリート片の散逸を防止することができる板状構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can retain a plate shape even when repeatedly subjected to a load, and can prevent a concrete piece from escaping from a destroyed casing. The purpose is to provide.

上記目的を達成するため、本発明に係る板状構造では、板面に繰り返し荷重が作用するコンクリート造からなる板状の躯体の表面に樹脂製の補強塗膜が被覆されてなり、補強塗膜は、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴としている。   In order to achieve the above object, in the plate-like structure according to the present invention, a resin-made reinforcing coating film is coated on the surface of a plate-shaped casing made of a concrete structure in which a load is repeatedly applied to the plate surface. Is characterized by comprising a compound formed by a chemical reaction between an isocyanate and a curing agent comprising at least one of a polyol and an amine.

本発明では、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなる補強塗膜が、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂であり、例えば10〜25MPa程度の高強度と例えば200%以上の大きな破断伸び(伸び変形性能)を有する。このため、躯体の変形が塑性域に達しても、補強塗膜が躯体の大変形に追従して伸び変形するので、補強塗膜によって躯体の変形に応じたエネルギー吸収性能が発揮される。したがって、繰り返し荷重に対応することが可能な板状構造を設けることができる。   In the present invention, a reinforcing coating film composed of a compound formed by a chemical reaction between isocyanate and at least one of a polyol and an amine has a high shear adhesion, a high bending tensile strength, and an elongation. It is a synthetic resin with high performance and excellent mechanical properties (strength, elongation), and has a high strength of, for example, about 10 to 25 MPa and a large breaking elongation (elongation deformation performance) of, for example, 200% or more. For this reason, even if the deformation of the housing reaches the plastic region, the reinforcing coating film stretches and deforms following the large deformation of the housing, so that the energy absorption performance according to the deformation of the housing is exhibited by the reinforcing coating film. Therefore, it is possible to provide a plate-like structure that can cope with repeated loads.

仮に、繰り返し荷重を受けることにより躯体の変形が塑性域に達してコンクリートが破壊されても、補強塗膜は伸びることはあっても破断せず、補強塗膜によって躯体の表面が被覆された状態が維持される。これにより、躯体のコンクリート片の散逸が防止され、また、躯体が転倒したり崩壊したりせずに自立した形状が保持される。例えば、躯体が床版の場合において、車両の走行荷重による繰り返し荷重を受けることによって破壊が生じたコンクリート片が床版上に散乱し、車両の走行を阻害したり、そのコンクリート片が周囲に飛散するといった被害の増大を防止することができる。
しかも、補強塗膜は変形抵抗を有しているので、板状の躯体に衝撃が加わって撓み変形したときに、補強塗膜の変形抵抗力によって躯体を元の形状に戻す力が働く。その結果、躯体は、一旦大きく撓み変形した後に若干戻され、最終的な変形量が小さく抑えられる。
Even if the deformation of the frame reaches the plastic zone due to repeated loads and the concrete is destroyed, the reinforcing coating does not break even if it extends, and the surface of the casing is covered with the reinforcing coating Is maintained. Thereby, dissipation of the concrete piece of a housing is prevented, and the self-supporting shape is hold | maintained, without a housing falling down or collapsing. For example, in the case where the frame is a floor slab, the concrete pieces that have been broken due to repeated loading due to the running load of the vehicle are scattered on the floor slab, which inhibits the vehicle from running or the concrete pieces are scattered around. It is possible to prevent an increase in damage.
In addition, since the reinforcing coating film has a deformation resistance, when the plate-like housing is subjected to an impact and is deformed by bending, a force is applied to return the housing to the original shape by the deformation resistance force of the reinforcing coating film. As a result, the housing is slightly returned after being largely bent and deformed, and the final amount of deformation can be suppressed small.

また、本発明の板状構造によれば、躯体に補強塗膜を吹き付けや塗布することによって形成されるので、鉄板やゴム材などで表面を補強する場合に比べて、容易に且つ安価に施工することができ、既設の躯体においても容易に施工できる。   In addition, according to the plate-like structure of the present invention, it is formed by spraying or applying a reinforcing coating film on the casing, so that it is easier and less expensive to construct than when reinforcing the surface with an iron plate or rubber material. And can be easily constructed even in an existing housing.

また、本発明に係る板状構造では、補強塗膜は、躯体のうち2面以上に設けられていることが好ましい。   Moreover, in the plate-shaped structure which concerns on this invention, it is preferable that the reinforcement coating film is provided in 2 or more surfaces among the housings.

これにより、躯体の2面以上が補強塗膜によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより効果的に発揮される。   Thereby, it will be in the state where 2 or more surfaces of the housing were wrapped with the reinforcement coating film, and the above-mentioned shape maintenance is more effectively exhibited by the effect (lapping effect).

また、本発明に係る板状構造では、補強塗膜は、少なくとも繰り返し荷重が作用する躯体の表面と、表面の反対側の裏面と、に設けられていることが好ましい。   Moreover, in the plate-shaped structure which concerns on this invention, it is preferable that the reinforcement coating film is provided in the surface of the housing | casing which a load acts repeatedly, and the back surface on the opposite side of a surface.

本発明では、繰り返し荷重による躯体の破壊が躯体の表面とその反対側の裏面とに生じる場合において、上記した形状保持が効果的に発揮される。   In the present invention, the above-described shape retention is effectively exhibited when the casing is destroyed by repeated loads on the front surface of the casing and the back surface on the opposite side.

また、本発明に係る板状構造では、補強塗膜は、躯体の表面全体に設けられていることが好ましい。   Moreover, in the plate-shaped structure which concerns on this invention, it is preferable that the reinforcement coating film is provided in the whole surface of the housing.

これにより、躯体の表面全体が補強塗膜によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより一層効果的に発揮される。   As a result, the entire surface of the casing is encased in the reinforcing coating film, and the above-described shape retention is more effectively exhibited by the effect (wrapping effect).

本発明の板状構造によれば、繰り返し荷重によって躯体が破壊されたとしても、その躯体のコンクリート片の散逸を防ぎ(局所破壊防止)、転倒したり崩壊したりせずに自立した形状を保持(全体破壊防止/形状保持)することができる。そのため、コンクリート片の散逸に伴う被害を抑えることができる。   According to the plate-like structure of the present invention, even if the case is destroyed by repeated loading, the concrete piece of the case is prevented from dissipating (preventing local destruction), and it maintains its self-supporting shape without falling or collapsing. (Preventing total destruction / holding shape). Therefore, damage caused by the dissipation of concrete pieces can be suppressed.

本発明の実施の形態による床版の概略構成を示す一部破断斜視図である。It is a partially broken perspective view which shows schematic structure of the floor slab by embodiment of this invention. 図1に示す床版の断面図である。It is sectional drawing of the floor slab shown in FIG. ポリウレア樹脂の力学的特性を示す図である。It is a figure which shows the mechanical characteristic of a polyurea resin. 変形例による床版の構成を示す断面図である。It is sectional drawing which shows the structure of the floor slab by a modification. 実施例1による試験結果を示す図である。It is a figure which shows the test result by Example 1. 実施例2による試験結果を示す図である。It is a figure which shows the test result by Example 2. 他の実施の形態による板状構造の構成を示す部分立面図である。It is a partial elevation which shows the structure of the plate-shaped structure by other embodiment.

以下、本発明の実施の形態による板状構造について、図面に基づいて説明する。   Hereinafter, a plate-like structure according to an embodiment of the present invention will be described with reference to the drawings.

図1および図2に示すように、本実施の形態による床版1(板状構造)は、上面に自動車や列車などの車両が走行する構造体であって、鉄筋コンクリート造の躯体2の表面に靭性の高い樹脂製の補強塗膜3を被覆することで補強された構造である。   As shown in FIGS. 1 and 2, a floor slab 1 (plate-like structure) according to the present embodiment is a structure in which a vehicle such as an automobile or a train travels on an upper surface, and is on the surface of a reinforced concrete frame 2. This is a structure reinforced by coating a reinforcing coating 3 made of a resin having high toughness.

躯体2は、鉄筋コンクリート製であり、所定の厚さ寸法を有する板状部材である。ここで、本実施の形態の躯体2は、車両の走行によって上面2a側に繰り返し荷重を受け、厚さ方向(上下方向)に圧縮力が作用する。   The casing 2 is a plate-shaped member made of reinforced concrete and having a predetermined thickness dimension. Here, the casing 2 of the present embodiment receives a load repeatedly on the upper surface 2a side as the vehicle travels, and a compressive force acts in the thickness direction (vertical direction).

躯体2に被覆される補強塗膜3は、上面2a(表面)および下面2b(裏面)の表面全体を所定の塗布厚(例えば図2に示す厚さ寸法Dは4mm)をもって被覆するように設けられている。   The reinforcing coating 3 to be coated on the housing 2 is provided so as to cover the entire upper surface 2a (front surface) and lower surface 2b (back surface) with a predetermined coating thickness (for example, the thickness dimension D shown in FIG. 2 is 4 mm). It has been.

上記した補強塗膜3は、躯体2の表面に吹き付けやローラーなどで塗布される樹脂製の塗膜であって、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤との化学反応により形成された化合物からなる。例えば、補強塗膜3としては、イソシアネートとアミンとの化学反応により形成された化合物であるポリウレア樹脂を用いることができる。   The above-described reinforcing coating film 3 is a resin coating film applied to the surface of the housing 2 by spraying or using a roller or the like, and by a chemical reaction between isocyanate and a curing agent made of at least one of polyol and amine. Consists of formed compounds. For example, as the reinforcing coating 3, a polyurea resin that is a compound formed by a chemical reaction between an isocyanate and an amine can be used.

具体的に補強塗膜3は、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂からなる。例えば、ポリウレア樹脂の場合には、図3に示すような力学的特性を有している。ここで、補強塗膜3を構成する合成樹脂としては、例えば引張強度が鉄筋の十分の一程度の20MPa程度(10〜25MPa)であって、破断伸びが200%以上の物性を有する樹脂からなり、例えば「スワエールAR−100(登録商標:三井化学産資株式会社製)」が用いられる。なお、補強塗膜3の厚さ寸法Dは、2mm以上であることが好ましい。   Specifically, the reinforcing coating film 3 is made of a synthetic resin having high mechanical properties (strength and elongation) with high shear adhesion, high bending tensile strength, and high elongation performance. For example, a polyurea resin has mechanical characteristics as shown in FIG. Here, the synthetic resin constituting the reinforcing coating 3 is made of, for example, a resin having a physical property of about 20 MPa (10 to 25 MPa) having a tensile strength of about one tenth of a reinforcing bar and having a breaking elongation of 200% or more. For example, “Swaer AR-100 (registered trademark: manufactured by Mitsui Chemicals, Inc.)” is used. In addition, it is preferable that the thickness dimension D of the reinforcement coating film 3 is 2 mm or more.

ここで、床版1の躯体2に補強塗膜3を被覆する施工方法としては、塗布するコンクリート表面を十分に清掃して塵等を取り除いた後、プライマーを塗布し、その後、ポリウレア樹脂を躯体2の上面2aおよび下面2bの全面にわたって所定厚さだけ塗布する。これにより、躯体2に層状の補強塗膜3が形成される。なお、プライマーの塗布は省略することも可能であり、或いは、補強塗膜3と躯体2との付着性を高めるために躯体2の表面を斫って凸凹に加工してもよい。   Here, as a construction method for covering the casing 2 of the floor slab 1 with the reinforcing coating 3, the concrete surface to be applied is sufficiently cleaned to remove dust and the like, then a primer is applied, and then the polyurea resin is casing. A predetermined thickness is applied over the entire upper surface 2a and lower surface 2b. Thereby, the layered reinforcing coating film 3 is formed on the housing 2. In addition, application | coating of a primer can also be abbreviate | omitted, or in order to improve the adhesiveness of the reinforcing coating 3 and the housing 2, you may process the surface of the housing 2 so that it may be uneven.

次に、上記した構成からなる床版1の作用について、具体的に説明する。
図1および図2に示すように、本実施の形態では、補強塗膜3が、せん断付着力が高く、曲げ引張強度が高く、かつ伸び性能が高い力学的特性(強度、伸び)に優れた合成樹脂であるため、躯体2の変形が塑性域に達しても、補強塗膜3が躯体2の大変形に追従して伸び変形するので、補強塗膜3によって躯体2の変形に応じたエネルギー吸収性能が発揮される。したがって、繰り返し荷重に対応することが可能な床版1を設けることができる。
Next, the operation of the floor slab 1 having the above-described configuration will be specifically described.
As shown in FIGS. 1 and 2, in the present embodiment, the reinforcing coating film 3 has excellent mechanical properties (strength and elongation) with high shear adhesion, high bending tensile strength, and high elongation performance. Since it is a synthetic resin, even if the deformation of the housing 2 reaches the plastic region, the reinforcing coating 3 stretches and deforms following the large deformation of the housing 2, so that the energy corresponding to the deformation of the housing 2 by the reinforcing coating 3 Absorption performance is demonstrated. Therefore, the floor slab 1 capable of handling repeated loads can be provided.

仮に、繰り返し荷重を受けることにより躯体2の変形が塑性域に達してコンクリートが破壊されても、補強塗膜3は伸びることはあっても破断せず、補強塗膜3によって躯体2の表面が被覆された状態が維持される。これにより、躯体2のコンクリート片の散逸が防止され、また、躯体2が転倒したり崩壊したりせずに自立した形状を保持される。例えば、躯体2が本実施の形態のように床版1の場合において、車両の走行荷重による繰り返し荷重を受けることによって破壊に生じたコンクリート片が床版1上に散乱し、車両の走行を阻害する原因となったり、そのコンクリート片が周囲に飛散するといった被害の増大を防止することができる。   Even if the deformation of the housing 2 reaches the plastic region due to repeated loads and the concrete is destroyed, the reinforcing coating 3 does not break even if it extends, and the surface of the housing 2 is not broken by the reinforcing coating 3. The coated state is maintained. Thereby, dissipation of the concrete piece of the housing 2 is prevented, and the self-standing shape is maintained without the housing 2 falling or collapsing. For example, in the case where the frame 2 is the floor slab 1 as in the present embodiment, the concrete pieces that are broken due to the repeated load due to the running load of the vehicle are scattered on the floor slab 1 and hinder the running of the vehicle. Or increase in damage such as the concrete pieces scattered around.

しかも、補強塗膜3は変形抵抗を有しているので、床版1に衝撃が加わって躯体2が撓み変形したときに、補強塗膜3の変形抵抗力によって躯体2を元の形状に戻す力が働く。その結果、躯体2は、一旦大きく撓み変形した後に若干戻され、最終的な変形量が小さく抑えられる。   Moreover, since the reinforcing coating 3 has deformation resistance, when the impact is applied to the floor slab 1 and the housing 2 is bent and deformed, the housing 2 is returned to its original shape by the deformation resistance force of the reinforcing coating 3. Power works. As a result, the housing 2 is slightly bent and deformed, and then slightly returned, so that the final deformation amount is suppressed to a small value.

また、躯体2に補強塗膜3を吹き付けや塗布することによって形成されるので、鉄板やゴム材などで床版表面を補強する場合に比べて、容易に且つ安価に施工することができ、既設の床版においても容易に施工できる。   Further, since it is formed by spraying or coating the reinforcing coating 3 on the casing 2, it can be easily and inexpensively constructed as compared with the case where the surface of the floor slab is reinforced with an iron plate or a rubber material. It can be easily constructed even for floor slabs.

また、床版1の補強塗膜3が躯体2のうち2面以上(ここでは2面)に設けられ、とくに補強塗膜3が繰り返し荷重を受ける躯体2の上面2aと、その反対側の下面2bとに設けられているので、躯体2の2面が補強塗膜3によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより効果的に発揮される。   Further, the reinforcing coating 3 of the floor slab 1 is provided on two or more surfaces (here, two surfaces) of the casing 2, and in particular, the upper surface 2a of the casing 2 to which the reinforcing coating 3 repeatedly receives a load, and the lower surface on the opposite side. 2b, the two surfaces of the casing 2 are encased by the reinforcing coating 3, and the above-described shape retention is more effectively exhibited by the effect (wrapping effect).

上述のように本実施の形態による板状構造(床版1)では、車両の走行による繰り返し荷重によって躯体2が破壊されたとしても、その躯体2のコンクリート片の散逸を防ぎ(局所破壊防止)、転倒したり崩壊したりせずに自立した形状を保持(全体破壊防止/形状保持)することができる。そのため、コンクリート片の散逸に伴う被害を抑えることができる。   As described above, in the plate-like structure (floor slab 1) according to the present embodiment, even if the frame 2 is broken due to repeated loads caused by traveling of the vehicle, the concrete pieces of the frame 2 are prevented from being dissipated (preventing local destruction). It is possible to hold a self-supporting shape without falling or collapsing (preventing overall destruction / holding shape). Therefore, damage caused by the dissipation of concrete pieces can be suppressed.

(変形例)
次に、上述した実施の形態の変形例について説明する。
すなわち、上記した実施の形態では、床版1の躯体2のうち上面2aおよび下面2bのみに補強塗膜3を設けているが、このような被覆範囲に制限されることはない。図4に示す変形例では、躯体2の表面全体、すなわち上面2a、下面2bおよび4つの側面2cの全表面にわたって補強塗膜3を被覆した構成となっている。
この場合、躯体2の表面全体が補強塗膜3によって包み込まれた状態となり、その効果(ラッピング効果)により、上記した形状保持がより一層効果的に発揮される。
(Modification)
Next, a modification of the above-described embodiment will be described.
That is, in the above-described embodiment, the reinforcing coating film 3 is provided only on the upper surface 2a and the lower surface 2b of the frame 2 of the floor slab 1, but it is not limited to such a covering range. In the modification shown in FIG. 4, the reinforcing coating 3 is covered over the entire surface of the housing 2, that is, the entire surfaces of the upper surface 2a, the lower surface 2b, and the four side surfaces 2c.
In this case, the entire surface of the casing 2 is encased by the reinforcing coating 3, and the shape retention described above is more effectively exhibited by the effect (wrapping effect).

次に、上述した実施の形態および変形例による床版1(板状構造)の効果を裏付けるために行った試験例(実施例1、2)について以下説明する。   Next, test examples (Examples 1 and 2) conducted to support the effect of the floor slab 1 (plate-like structure) according to the above-described embodiment and modification will be described below.

(実施例1)
実施例1では、矩形断面の鉄筋コンクリート製の梁材を試験体に使用し、その梁材の表面にポリウレア樹脂を塗布しない試験体1と、ポリウレア樹脂を塗布した試験体2、3、4とに対して載荷装置を使用した衝撃曲げ試験を行い、ポリウレア樹脂の塗布状況を変えた試験体1〜4の変形状態(亀裂や剥離)を確認した。
各試験体1〜4の梁材は、縦100mm×横120mmで長さ寸法が1200mmの6面を有する構造体であり、4週強度で25N/mmのコンクリートを使用している。さらに、試験体1〜3の内部にD13(芯被り35mm)、せん断補強筋D6を使用している。そして、載荷条件としては、試験体1〜4を長さ方向を水平方向に向けて配置し、試験体1〜4の長さ方向の中心部に対して30kNの荷重を準静的な0.0001m/sの速度で載荷を付与した。
Example 1
In Example 1, a beam member made of reinforced concrete having a rectangular cross section is used as a test body, and a test body 1 in which no polyurea resin is applied to the surface of the beam material, and test bodies 2, 3, and 4 in which a polyurea resin is applied. On the other hand, an impact bending test using a loading device was performed, and the deformation state (cracking or peeling) of the test bodies 1 to 4 in which the application state of the polyurea resin was changed was confirmed.
The beam material of each test body 1 to 4 is a structure having six faces of length 100 mm × width 120 mm and a length dimension of 1200 mm, and concrete of 4 weeks strength and 25 N / mm 2 is used. Furthermore, D13 (core cover 35 mm) and shear reinforcement D6 are used inside the test bodies 1 to 3. And as loading conditions, the test bodies 1-4 are arrange | positioned with the length direction turned to a horizontal direction, and the load of 30 kN is applied to the center part of the length direction of the test bodies 1-4 quasi-static. Loading was applied at a speed of 0001 m / s.

ここで、試験体1は梁材の6面に塗布厚4mmのポリウレア樹脂を塗布したものであり、試験体2は梁材の6面に塗布厚2mmのポリウレア樹脂を塗布したものであり、試験体3は梁材のうち長さ方向を水平方向に向けた状態で上面および下面の2面のみに塗布厚2mmのポリウレア樹脂を塗布したもの(4側面にポリウレア樹脂を塗布しない場合)であり、試験体4は鉄筋とポリウレア樹脂を施していないものである。   Here, the test body 1 is obtained by applying a polyurea resin having a coating thickness of 4 mm on the six surfaces of the beam material, and the test body 2 is obtained by applying a polyurea resin having a coating thickness of 2 mm on the six surfaces of the beam material. The body 3 is a beam material in which the length direction is oriented in the horizontal direction and a polyurea resin having a coating thickness of 2 mm is applied only to the upper and lower surfaces (when the polyurea resin is not applied to the four side surfaces). The test body 4 does not have a reinforcing bar and a polyurea resin.

図5は、上記試験体1〜4において、横軸を載荷点の変形量δ(mm)とし、縦軸を荷重P(kN)とした曲げ試験結果を示している。
図5に示すように、試験体1の場合には、変形量δが略40mmで破壊し、その破壊箇所においてコンクリート片が生じた。
上下2面にポリウレア樹脂2mmを塗布した試験体2の場合は、変形量δが略60mmで破壊しているが、ポリウレア樹脂を塗布しない試験体1の場合よりはじん性が高い、つまり拘束効果(ラッピング効果)を有し、一定の形状保持効果があることが確認された。
また、梁材の表面全周(6面)にポリウレア樹脂を塗布した試験体1、2においては、降伏後(図5の降伏点P1より右側)でも30kNの荷重が維持されていることが確認できることから、ラッピング効果が大きく、形状保持効果が高いことがわかる。
FIG. 5 shows the bending test results of the test bodies 1 to 4 in which the horizontal axis is the deformation amount δ (mm) of the loading point and the vertical axis is the load P (kN).
As shown in FIG. 5, in the case of the test body 1, the specimen was broken when the deformation amount δ was approximately 40 mm, and a concrete piece was generated at the broken portion.
In the case of the test body 2 in which 2 mm of polyurea resin is applied to the upper and lower surfaces, the deformation δ is broken at about 60 mm. (Wrapping effect) and a certain shape retention effect was confirmed.
Moreover, it was confirmed that the load of 30 kN was maintained even after yielding (right side from the yield point P1 in FIG. 5) in the test bodies 1 and 2 in which polyurea resin was applied to the entire surface of the beam (six sides). From this, it can be seen that the wrapping effect is large and the shape retention effect is high.

(実施例2)
次に、実施例2では、上記実施例1における梁材の6面に塗布厚2mmでポリウレア樹脂を塗布し、衝撃曲げ試験で載荷速度を変えた試験を行い、変形状態(亀裂や剥離)を確認した。
第1試験T1は4m/s(高速)の載荷速度とし、第2試験T2は0.5〜1m/s(中速)の載荷速度とし、第3試験T3は0.1〜0.5m/s(低速)の載荷速度とし、第4試験T4は0.0001m/s(準静的速度)の載荷速度とした。
(Example 2)
Next, in Example 2, a polyurea resin was applied to 6 surfaces of the beam material in Example 1 with a coating thickness of 2 mm, and a test in which the loading speed was changed by an impact bending test was performed, and the deformation state (cracking or peeling) was performed. confirmed.
The first test T1 has a loading speed of 4 m / s (high speed), the second test T2 has a loading speed of 0.5 to 1 m / s (medium speed), and the third test T3 has a loading speed of 0.1 to 0.5 m / s. The loading speed was s (low speed), and the fourth test T4 was a loading speed of 0.0001 m / s (quasi-static speed).

図6は、上記第1試験T1〜第4試験T4において、横軸を載荷点の変形量δ(mm)とし、縦軸を荷重P(kN)とした曲げ試験結果を示している。
図6に示すように、各試験T1〜T4ともに降伏後でも準静的最大荷重が維持されていることがわかる。このことから、ポリウレア樹脂を梁材の6面全体にわたって塗布する場合には、載荷速度にかかわらず、準静的最大荷重が維持されることを確認することができる。このとき、梁材の試験体は大きく変形し、約5度程度の角度で屈曲していたが、コンクリート片が生じることもなく、梁材としての形状が保持されていた。このように、ポリウレア樹脂を塗布した梁材は、衝撃や持続的な加力に対して有効であり、コンクリート片の発生を防ぐことができることが確認できた。
FIG. 6 shows the bending test results in the first test T1 to the fourth test T4 in which the horizontal axis is the deformation amount δ (mm) of the loading point and the vertical axis is the load P (kN).
As shown in FIG. 6, it can be seen that the quasi-static maximum load is maintained even after yielding in each of the tests T1 to T4. From this, when polyurea resin is applied over the entire six surfaces of the beam material, it can be confirmed that the quasi-static maximum load is maintained regardless of the loading speed. At this time, the specimen of the beam material was greatly deformed and bent at an angle of about 5 degrees. However, the concrete piece was not generated and the shape as the beam material was maintained. Thus, it was confirmed that the beam material coated with polyurea resin is effective against impact and continuous force and can prevent the generation of concrete pieces.

以上、本発明による板状構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では板状構造として床版1を適用対象としているが、これに限定されることはなく、他の形態の板状構造に適用することも可能である。
例えば、図7に示すように、例えば大規模地震後の余震による繰り返し荷重を受ける建物4(板状構造)に適用することも可能である。この場合、側壁41において外面41aと内面41bとが補強塗膜3で被覆され、床スラブ42において上面42aと下面42bとが補強塗膜3で被覆されている。
さらに、建物の側壁や床スラブのみではなく、繰り返し荷重を受ける梁や柱を補強塗膜の対象としても良い。
The embodiment of the plate-like structure according to the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the present invention.
For example, in the present embodiment, the floor slab 1 is applied as a plate-like structure, but is not limited to this, and can be applied to other forms of plate-like structures.
For example, as shown in FIG. 7, the present invention can be applied to a building 4 (plate-like structure) that receives repeated loads due to aftershocks after a large-scale earthquake, for example. In this case, the outer surface 41 a and the inner surface 41 b are covered with the reinforcing coating 3 on the side wall 41, and the upper surface 42 a and the lower surface 42 b are covered with the reinforcing coating 3 on the floor slab 42.
Furthermore, not only the side walls and floor slabs of buildings, but also beams and columns subjected to repeated loads may be the target of the reinforcing coating.

また、図7に示す上述の建物4の場合には、内部への漏水を防止する機能も求められているため、補強塗膜3を目地部を跨いで塗布させて目地部を被覆するように設けることが好ましい。これにより、目地部が破損し、目地部が一旦大きく開いたとしても、補強塗膜3の変形抵抗力によって戻る方向(すなわち、開かれた目地部を閉じる方向)の力が作用し、その結果、最終的な目地部の開き量が小さく抑えられるという効果を奏する。   Moreover, in the case of the above-mentioned building 4 shown in FIG. 7, since the function which prevents the water leakage to the inside is also calculated | required, it is made to apply | coat the reinforcement coating 3 across a joint part, and coat | cover a joint part. It is preferable to provide it. As a result, even if the joint portion is broken and the joint portion is once greatly opened, a force in a direction returning by the deformation resistance force of the reinforcing coating film 3 (that is, a direction in which the opened joint portion is closed) acts. The final opening amount of the joint portion can be suppressed to be small.

さらに、補強塗膜3において、例えばガラス片やガラス繊維、ガラスフリット等を分散させてなる不燃性を有する混入材を、ポリウレア樹脂に混入させることも可能である。あるいは混入材として、例えばコンクリート、煉瓦、瓦、石綿スレート、鉄鋼、アルミニウム、モルタル、漆喰等のガラス以外の不燃材料であっても良い。   Further, in the reinforcing coating 3, it is also possible to mix a nonflammable mixed material in which, for example, glass pieces, glass fibers, glass frit, etc. are dispersed, into the polyurea resin. Alternatively, the mixed material may be a nonflammable material other than glass, such as concrete, brick, tile, asbestos slate, steel, aluminum, mortar, or plaster.

また、上記した実施の形態では、補強塗膜3として、イソシアネートとアミンとの化学反応により形成された化合物からなるポリウレア樹脂が用いられているが、本発明は、イソシアネートとポリオールとの化学反応により形成された化合物からなるポリウレタン樹脂を補強塗膜として用いることも可能であり、また、イソシアネートとポリオールとアミンとの化学反応により形成された化合物からなる樹脂を補強塗膜として用いることも可能である。   In the above-described embodiment, a polyurea resin made of a compound formed by a chemical reaction between an isocyanate and an amine is used as the reinforcing coating film 3, but the present invention is based on a chemical reaction between an isocyanate and a polyol. It is also possible to use a polyurethane resin made of the formed compound as a reinforcing coating film, and it is also possible to use a resin made of a compound formed by a chemical reaction of isocyanate, polyol and amine as a reinforcing coating film. .

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。   In addition, it is possible to appropriately replace the components in the above-described embodiments with known components without departing from the spirit of the present invention.

1 床版(板状構造)
2 躯体
2a 上面(表面)
2b 下面(裏面)
3 補強塗膜
4 建物(板状構造)
41 側壁
42 床スラブ
1 Floor slab (plate structure)
2 Housing 2a Upper surface (surface)
2b Bottom (back)
3 Reinforcing coating 4 Building (plate-like structure)
41 Side wall 42 Floor slab

Claims (4)

板面に繰り返し荷重が作用するコンクリート造からなる板状の躯体の表面に樹脂製の補強塗膜が被覆されてなり、
前記補強塗膜は、イソシアネートと、ポリオール及びアミンのうちの少なくとも一方からなる硬化剤と、の化学反応により形成された化合物からなることを特徴とする板状構造。
The surface of the plate-shaped casing made of concrete, where the load acts repeatedly on the plate surface, is coated with a resin reinforcing coating,
The said reinforcing coating film consists of a compound formed by the chemical reaction of isocyanate and the hardening | curing agent which consists of at least one of a polyol and an amine, The plate-shaped structure characterized by the above-mentioned.
前記補強塗膜は、前記躯体のうち2面以上に設けられていることを特徴とする請求項1に記載の板状構造。   The plate-like structure according to claim 1, wherein the reinforcing coating film is provided on two or more surfaces of the casing. 前記補強塗膜は、少なくとも繰り返し荷重が作用する前記躯体の表面と、該表面の反対側の裏面と、に設けられていることを特徴とする請求項1に記載の板状構造。   2. The plate-like structure according to claim 1, wherein the reinforcing coating film is provided on at least a surface of the casing on which a repeated load acts and a back surface opposite to the surface. 前記補強塗膜は、前記躯体の表面全体に設けられていることを特徴とする請求項1に記載の板状構造。   The plate-like structure according to claim 1, wherein the reinforcing coating film is provided on the entire surface of the casing.
JP2012022245A 2012-02-03 2012-02-03 Plate structure Active JP6468578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022245A JP6468578B2 (en) 2012-02-03 2012-02-03 Plate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022245A JP6468578B2 (en) 2012-02-03 2012-02-03 Plate structure

Publications (2)

Publication Number Publication Date
JP2013159948A true JP2013159948A (en) 2013-08-19
JP6468578B2 JP6468578B2 (en) 2019-02-13

Family

ID=49172451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022245A Active JP6468578B2 (en) 2012-02-03 2012-02-03 Plate structure

Country Status (1)

Country Link
JP (1) JP6468578B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110896A (en) * 2013-10-31 2015-06-18 株式会社大昇 Shelter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013612A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Method for reinforcing concrete structure
JP2004011378A (en) * 2002-06-11 2004-01-15 Okumura Corp Scattering preventive structure for concrete pieces
JP2004060197A (en) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk Concrete peeling-off preventive method and concrete structure with reinforcing layer
JP2005213844A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete surface structure and its construction method
JP2007255129A (en) * 2006-03-24 2007-10-04 Iida Sangyo:Kk Building reinforcing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013612A (en) * 2001-07-03 2003-01-15 Toray Ind Inc Method for reinforcing concrete structure
JP2004011378A (en) * 2002-06-11 2004-01-15 Okumura Corp Scattering preventive structure for concrete pieces
JP2004060197A (en) * 2002-07-25 2004-02-26 Dyflex Holdings:Kk Concrete peeling-off preventive method and concrete structure with reinforcing layer
JP2005213844A (en) * 2004-01-29 2005-08-11 Mitsui Kagaku Sanshi Kk Concrete surface structure and its construction method
JP2007255129A (en) * 2006-03-24 2007-10-04 Iida Sangyo:Kk Building reinforcing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110896A (en) * 2013-10-31 2015-06-18 株式会社大昇 Shelter

Also Published As

Publication number Publication date
JP6468578B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
Chan et al. Evaluation of yielding shear panel device for passive energy dissipation
JP5972592B2 (en) Reinforced structure
KR101553205B1 (en) Repair and Reinforcing methods of Concrete Structures Seismic Upgrading
JP6134098B2 (en) Masonry structure
JP5990003B2 (en) Structure and reinforcing method thereof
JP6468578B2 (en) Plate structure
JP6108335B2 (en) Beam-column joint structure
KR102046573B1 (en) Reinforced structural system for secure seismic performance by reinforcing existing bricks walls
JP2013159361A (en) Liquid stopping bank, and structure
JP6065199B2 (en) Bridge
JP5936059B2 (en) Ready-made pile
Olawale et al. A comparative study on the flexural behaviour of waffle and solid slab models when subjected to point load
JP2008038559A (en) Vibration control wall
JP5498103B2 (en) Buckling restraint brace
JP6061473B2 (en) Cantilever structure and pier structure
JP2014047509A (en) Short column structure and short span beam structure
JP2014047510A (en) Structure
JP5967437B2 (en) Anchor bolt anchorage reinforcement structure
JP6383557B2 (en) Fall prevention wall
JP6445278B2 (en) Structure reinforcement structure and structure reinforcement method
JP3906414B2 (en) Cement composite structure with large deformation following performance
JP4120826B2 (en) Reinforcing wall structure
KR102599533B1 (en) Constructing method of reinforced concrete structure with improved seismic performance
KR102279831B1 (en) Multi-Directional Elastic Damper
JP2014047512A (en) Earthquake strengthening structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6468578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250