JP2013159801A - Furnace bottom structure of converter, and tuyere replacement method - Google Patents

Furnace bottom structure of converter, and tuyere replacement method Download PDF

Info

Publication number
JP2013159801A
JP2013159801A JP2012021060A JP2012021060A JP2013159801A JP 2013159801 A JP2013159801 A JP 2013159801A JP 2012021060 A JP2012021060 A JP 2012021060A JP 2012021060 A JP2012021060 A JP 2012021060A JP 2013159801 A JP2013159801 A JP 2013159801A
Authority
JP
Japan
Prior art keywords
tuyere
furnace
converter
furnace bottom
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012021060A
Other languages
Japanese (ja)
Other versions
JP5527337B2 (en
Inventor
Tomohide Maikin
朋英 埋金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012021060A priority Critical patent/JP5527337B2/en
Publication of JP2013159801A publication Critical patent/JP2013159801A/en
Application granted granted Critical
Publication of JP5527337B2 publication Critical patent/JP5527337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain both productivity and cost in the operation of a converter having a bottom-blowing function.SOLUTION: A furnace bottom structure of a converter is configured to perform refining by blowing a gas into the converter through a plurality of tuyeres 2a-2d provided in a furnace bottom part. The plurality of tuyeres 2a-2d are disposed in such a manner that the distance between the tuyeres 2a-2d being used is 500 mm or more, and the distance between the tuyeres 2a-2d and a fixed furnace floor 3 is 250 mm or more, whereby a tuyere replacement system for inserting a new tuyere for tuyere replacement and a furnace bottom replacement system for replacing the furnace bottom part including the tuyeres can be executed. When a broken tuyere is replaced in an operation using N/2 or less of the tuyeres 2a-2d as operating tuyeres, a gas hole of the operating tuyere is blocked, and the remaining non-operating tuyere is used as a new operating tuyere. The furnace material cost can be reduced 30% or more, compared with in the past, and a stable tuyere wear damage rate can be attained through the service life of the converter.

Description

本発明は、溶銑ないし溶鋼中にガスを吹き込む羽口を炉底部に備えた転炉の炉底構造、及びこの炉底構造を有する転炉の羽口交換方法に関するものである。   The present invention relates to a furnace bottom structure of a converter provided with a tuyere for blowing gas into molten iron or molten steel at the furnace bottom, and a tuyere replacement method for a converter having the furnace bottom structure.

炉底部に設けられた羽口から炉内の溶銑ないし溶鋼にガスを吹き込む機能を有する転炉において、前記羽口(以下、本明細書において単に「底吹き羽口」ということがある。)の損耗は他の炉底部に比べて大きく、また、側壁の損耗よりはるかに大きいので、底吹き羽口が損耗した場合には交換することが一般的である。   In a converter having a function of blowing gas into hot metal or molten steel in a furnace from a tuyere provided at the bottom of the furnace, the tuyere (hereinafter sometimes simply referred to as “bottom-blown tuyere”). The wear is large compared to other furnace bottoms and is much greater than the wear on the side walls, so it is common to replace the bottom blow tuyere when worn.

この底吹き羽口の交換は、損耗した羽口を解体し、解体した位置に新たな羽口を挿入する、或いは、予め別の位置に設置した穿孔用煉瓦を穿孔してこの穿孔した孔に新たな羽口を挿入する羽口交換方式と、損耗した羽口を含む炉底部を交換する炉底交換方式がある。   This bottom-blown tuyere can be replaced by dismantling the worn tuyere and inserting a new tuyere at the dismantled position, or by drilling a perforating brick previously installed at another location. There are a tuyere replacement method for inserting a new tuyere and a furnace bottom exchanging method for exchanging a furnace bottom part including a worn tuyere.

このうち、羽口交換方式は、交換範囲が羽口のみと狭くて済む半面、炉の使用回数あるいは羽口の交換回数が増加する程羽口周辺の煉瓦残厚が薄くなって交換した羽口の寿命が短くなる。従って、頻繁に羽口の交換をせざるを得なくなり、非稼働時間の短縮には好ましくない。   Of these, the tuyere replacement method requires only a narrow tuyere replacement range, but the tuyere that has been replaced with a decrease in the remaining brick thickness around the tuyere as the number of times the furnace is used or the number of tuyere replacements increases. The life of the is shortened. Therefore, the tuyere must be frequently replaced, which is not preferable for shortening the non-operating time.

一方、炉底交換方式は、羽口以外の一般炉底部分も更新するため、炉の使用回数が増加しても交換した羽口の損耗が大きくなることは比較的少ない半面、更新範囲が広いために廃棄される煉瓦が多量となるので好ましくない。また、交換工事も大掛かりとなり、作業費も羽口交換方式と比べて高額となる。   On the other hand, the furnace bottom replacement method also updates the general furnace bottom part other than the tuyere, so even if the number of times the furnace is used increases, wear of the replaced tuyere is relatively small, but the renewal range is wide. Therefore, a large amount of bricks are discarded, which is not preferable. In addition, the replacement work becomes large and the work cost is higher than that of the tuyere replacement method.

このように、羽口交換方式と炉底交換方式は、共に一長一短があり、転炉操業の生産性とコストを両立させる羽口交換方法とはなっていない。   Thus, both the tuyere replacement method and the furnace bottom replacement method have advantages and disadvantages, and are not a tuyere replacement method that achieves both the productivity and cost of converter operation.

そこで、転炉の底吹き羽口の交換に関し、以下の技術が提案されている。
羽口交換方式では、例えば特許文献1,2等、種々の羽口交換方法が提案されている。
Therefore, the following techniques have been proposed for the replacement of the bottom blowing tuyeres of the converter.
In the tuyere exchange system, various tuyere exchange methods such as Patent Documents 1 and 2 have been proposed.

これら特許文献1,2で提案された技術は、羽口交換そのものによる羽口の寿命延長技術であるが、炉の使用回数が増加するにつれて羽口周辺の煉瓦残厚が薄くなり、交換した羽口の寿命もだんだん短命化するので、根本的な解決策とはなっていない。   The technologies proposed in these Patent Documents 1 and 2 are technologies for extending the life of tuyere by exchanging tuyere itself. However, as the number of times the furnace is used increases, the remaining brick thickness around the tuyere decreases and The life expectancy of the mouth is becoming shorter, so it is not a fundamental solution.

また、炉底交換方式では、例えば特許文献3に特定の炉底構造が提案されている。しかし、この特許文献3で提案された炉底構造も、羽口周辺部が溶損した場合に、全羽口を包含する区域の炉底部分を、別に準備した交換用炉底部と交換する方式であることに変わりはない。従って、羽口以外の煉瓦の溶損が軽微であっても交換せざるを得ず、廃棄される煉瓦が多量となってしまう等の難点がある。   In the furnace bottom replacement system, for example, Patent Document 3 proposes a specific furnace bottom structure. However, the furnace bottom structure proposed in Patent Document 3 also replaces the furnace bottom part of the area including all tuyere with a separately prepared furnace bottom part when the peripheral part of the tuyere is melted. It remains the same. Therefore, there is a problem that, even if the melting loss of bricks other than the tuyere is slight, it must be replaced, and a large amount of bricks are discarded.

特許第3424144号公報Japanese Patent No. 3424144 特開2004‐285475号公報JP 2004-285475 A 実開平1−58647号公報Japanese Utility Model Publication No. 1-58647

本発明が解決しようとする課題は、転炉の底吹き羽口の交換に際しては、羽口交換方式と炉底交換方式があり種々の提案がなされているが、何れの提案も転炉操業の生産性向上とコスト低減の両立の観点から改善を必要としているということである。   The problem to be solved by the present invention is that when replacing the bottom blower tuyeres of the converter, there are a tuyere replacement method and a furnace bottom replacement method, and various proposals have been made. It means that improvement is required from the viewpoint of both productivity improvement and cost reduction.

本発明は、前記した従来の問題点を解決するために、底吹き羽口およびその周辺の炉底の損耗状況に応じ、羽口交換と炉底交換を選択して実施することを可能とすべく、羽口交換と炉底交換の両方式による交換機能を有する炉底構造とすることを特徴としている。   In order to solve the above-described conventional problems, the present invention makes it possible to selectively perform tuyere replacement and furnace bottom replacement in accordance with the state of wear of the bottom blowing tuyere and the surrounding furnace bottom. Therefore, it is characterized by having a furnace bottom structure having an exchange function by both tuyere exchange and furnace bottom exchange.

そして、このような特徴を有する本発明により、転炉の側壁を含む内壁全体の築造完了時点からその内壁全体の再築造を必要とする時点(炉停止時点)までの一炉代を通した底吹き羽口寿命の安定が確保でき、転炉の生産性向上と炉材コストの低減の両立を図ることができる。   According to the present invention having such a feature, the bottom through one furnace cost from the completion of the construction of the entire inner wall including the side wall of the converter to the time when the entire inner wall needs to be reconstructed (at the time when the furnace is stopped). The stability of the blowing tuyere life can be ensured, and both improvement in converter productivity and reduction in furnace material costs can be achieved.

本発明の課題は、一炉代を通して交換した羽口の寿命低下を抑制し、転炉の非稼働時間を短縮して生産性を高めると共に、廃棄される煉瓦の量を少なくし、かつ、羽口の交換に伴う作業費等も抑制して転炉操業コストを低減することである。   The object of the present invention is to suppress the life reduction of tuyere exchanged through one furnace cost, shorten the non-operation time of the converter to increase productivity, reduce the amount of bricks to be discarded, and It is also to reduce the operating cost of the converter by suppressing the work costs associated with the replacement of the mouth.

このうち、まず、交換した羽口の寿命低下を抑制するためには、羽口のみならず、その周辺部の煉瓦残厚を確保することが必要である。図1(a)に羽口交換方式における羽口残厚推移を、図1(b)に炉底交換方式における羽口残厚推移を示す。   Among these, first, in order to suppress the life reduction of the replaced tuyere, it is necessary to secure not only the tuyere but also the remaining brick thickness at the periphery thereof. Fig. 1 (a) shows the change in the remaining tuyere thickness in the tuyere replacement method, and Fig. 1 (b) shows the change in the remaining tuyere thickness in the furnace bottom exchange method.

炉の使用回数が少なく、羽口周辺部の煉瓦の溶損が軽微な場合、羽口交換方式では、羽口の有効使用厚みが大きいために羽口寿命を長く確保することができ、また、交換範囲が羽口のみであるために炉材コストの低減を図ることができる。   If the number of times the furnace is used is small and the melting damage of the bricks around the tuyere is slight, the tuyere replacement system can ensure a long tuyere life because the effective usage thickness of the tuyere is large, Since the replacement range is only tuyere, the furnace material cost can be reduced.

一方、炉底交換方式では、羽口寿命を安定して長く確保することができるが、羽口以外の煉瓦残厚があるにも関わらずそれを含めて交換することになるため、過剰範囲の交換となる。   On the other hand, in the furnace bottom replacement method, the tuyere life can be secured stably and long, but even though there is a remaining brick thickness other than the tuyere, it will be exchanged including it, so there is an excess range. It becomes exchange.

炉の使用回数が増すと、羽口のみならず、羽口周辺部の煉瓦も溶損が進行することになる。このような場合に、羽口のみを交換する羽口交換方式では、交換する羽口煉瓦を長くするとそれが羽口周辺部の煉瓦より炉内側に突出し、突出した羽口煉瓦がスクラップや熱衝撃による折損を引き起こす。また、羽口周辺部の煉瓦と同等の長さの短い羽口煉瓦を挿入した場合は、羽口煉瓦の有効使用厚みが小さくなる。つまり、何れの場合も短寿命となり、このような状態で羽口交換を続けることは転炉の生産性を低下させると共に炉材コストの悪化を引き起こし、ひいては羽口残厚がネックとなってその転炉の使用を停止することになる。   When the number of times the furnace is used increases, the melting of not only the tuyere but also the brick around the tuyere progresses. In such a case, in the tuyere replacement method in which only the tuyere is replaced, if the tuyere brick to be replaced is lengthened, it protrudes to the inside of the furnace from the bricks around the tuyere, and the protruding tuyere bricks are scrap or thermal shock. Cause breakage. In addition, when a short tuyere brick having a length equivalent to that of the brick in the vicinity of the tuyere is inserted, the effective use thickness of the tuyere brick becomes small. That is, in any case, the service life is short, and continuing the tuyere replacement in such a state lowers the productivity of the converter and causes the deterioration of the furnace material cost. The use of the converter will be stopped.

一方、炉底交換方式では、溶損した羽口周辺の煉瓦も含めて交換するため、羽口煉瓦の有効使用厚みは羽口周辺煉瓦の溶損の影響を受けず、羽口寿命を長く確保することができる。
つまり、一炉代の全期間を通してそれぞれの交換方法は適切とは言えない。
On the other hand, in the furnace bottom replacement method, since the bricks around the melted tuyere are also exchanged, the effective usage thickness of the tuyere bricks is not affected by the melting of the bricks around the tuyere and ensures a long tuyere life. can do.
In other words, each replacement method is not appropriate throughout the entire period of one furnace.

そこで、発明者は、安定した羽口寿命の確保及び炉材コスト低減のためには、羽口周辺煉瓦の溶損が軽微な時は羽口交換方式を採用し、羽口周辺煉瓦の溶損が進行した時には炉底交換方式を採用する事が有効であると考え、両方式を具備した炉底構造として、適切な交換炉底範囲を検討した。   Therefore, in order to secure a stable tuyere life and reduce furnace material costs, the inventor adopted the tuyere replacement method when the melting damage of the bricks around the tuyere was minor, and the melting damage of the bricks around the tuyere We considered that it would be effective to adopt the bottom replacement method when the process progressed, and considered the appropriate bottom range for the bottom structure with both types.

炉底の交換範囲は極力狭い範囲であることが望ましいが、転炉内の溶銑ないし溶鋼の全体を攪拌する効果を考慮しつつ稼働羽口の選択も可能なように、最低4本の羽口を設置できる範囲とし、羽口間の距離が羽口の損耗に及ぼす影響と、羽口位置による炉底の交換範囲外の固定炉床部分の損耗の影響について、炉容80トン/チャージの上底吹き転炉を用いて調査した。   It is desirable that the exchange range of the furnace bottom be as narrow as possible, but at least four tuyere are available so that the operating tuyere can be selected while taking into account the effect of stirring the molten iron or the entire molten steel in the converter. The effect of the distance between tuyere on wear of tuyere and the effect of wear on the fixed hearth outside the range of furnace bottom replacement due to tuyere position is above 80 tons / charge. It investigated using the bottom blow converter.

炉底の交換範囲は、炉底ウエア煉瓦の上面における交換半径Rを650mmとし、羽口間の距離A〜Cを400〜860mmの間で、また、羽口と固定炉床間の距離Dを220〜330mmの間で変更した(図2(a)参照)。   The replacement range of the bottom of the furnace is that the replacement radius R on the top surface of the bottom ware brick is 650 mm, the distances A to C between the tuyere are between 400 to 860 mm, and the distance D between the tuyere and the fixed hearth is It changed between 220-330 mm (refer Fig.2 (a)).

その結果、羽口交換方式と炉底交換方式の併用において、使用に供する羽口間の距離を500mm以上、羽口と固定炉床間の距離を250mm以上とすることで、炉代を通して羽口の損耗速度を安定させ、炉材コストを低減できる炉底構造を見出した。   As a result, in the combined use of the tuyere exchange method and the furnace bottom exchange method, the distance between the tuyere to be used is 500 mm or more, and the distance between the tuyere and the fixed hearth is 250 mm or more. We have found a furnace bottom structure that can stabilize the wear rate and reduce the furnace material cost.

本発明の底吹き転炉の炉底構造は、
発明者の上記調査による知見に基づき、羽口交換と炉底交換の両方式の交換を可能とすべくなされたものであり、
炉底部に設けられた複数の羽口から炉内の溶銑ないし溶鋼にガスを吹き込んで精錬する転炉において、
使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように複数の羽口を配置することで、新たな羽口を挿入して羽口交換を行う羽口交換方式と羽口を含む炉底部を交換する炉底交換方式を共に実施可能としたことを最も主要な特徴としている。
The bottom structure of the bottom blow converter of the present invention is:
Based on the findings of the inventor's investigation above, it was made possible to enable both types of tuyere replacement and furnace bottom replacement,
In a converter for refining by blowing gas into hot metal or molten steel in the furnace from a plurality of tuyere provided at the bottom of the furnace,
By arranging multiple tuyere so that the distance between tuyere for use is 500 mm or more and the distance between tuyere and fixed hearth is 250 mm or more, a new tuyere is inserted and tuyere is replaced. The main feature is that both the tuyere exchanging system and the furnace bottom exchanging system for exchanging the bottom of the furnace including the tuyere can be implemented.

そして、上記本発明の炉底構造を有する底吹き転炉の操業においては、
使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように炉底部にN個(Nは整数)の羽口を配置した転炉の、前記羽口の内のN/2個以下を稼働羽口として操業し、操業により損耗した稼働羽口の交換時には当該稼働羽口のガス孔を詰め、残りの非稼働羽口を新たな稼働羽口とすることが好ましい。
And in the operation of the bottom blowing converter having the furnace bottom structure of the present invention,
The above mentioned feather of a converter in which N (N is an integer) tuyere are arranged at the bottom of the furnace so that the distance between the tuyere for use is 500 mm or more and the distance between the tuyere and the fixed hearth is 250 mm or more. N / 2 or less of the mouths are operated as operating tuyere, and when replacing a working tuyere that has been worn out by operation, the gas holes of the working tuyere are filled, and the remaining non-working tuyere is replaced with new working tuyere. It is preferable to do.

本発明では、羽口交換と炉底交換の両方式の交換が可能な炉底構造とすることで、炉材コストを従来比30%以上の削減が可能となり、一炉代を通して安定した羽口損耗速度を達成することが可能となる。   In the present invention, by adopting a furnace bottom structure that allows both tuyere replacement and furnace bottom replacement, it is possible to reduce the furnace material cost by 30% or more compared to the conventional, and stable tuyere through one furnace cost. It is possible to achieve a wear rate.

(a)は羽口交換方式における羽口の残厚推移を示した図、(b)は炉底交換方式における羽口の残厚推移を示した図である。(A) is the figure which showed the remaining thickness transition of the tuyere in a tuyere exchange system, (b) is the figure which showed the remaining thickness transition of the tuyere in a furnace bottom exchange system. 交換炉底のウエア煉瓦の模式図であり、(a)は上方から見た図、(b)は(a)図のA−A断面を拡大して示した図である。It is the schematic diagram of the wear brick of an exchange furnace bottom, (a) is the figure seen from upper direction, (b) is the figure which expanded and showed the AA cross section of (a) figure. 炉底の鉄皮構造の模式図であり、(a)は縦断面図、(b)は下方から見た図である。It is a schematic diagram of the iron skin structure of a furnace bottom, (a) is a longitudinal cross-sectional view, (b) is the figure seen from the downward direction. 本発明の炉底構造の比較例の問題点を説明する図2(b)と同様の図である。It is a figure similar to FIG.2 (b) explaining the problem of the comparative example of the furnace bottom structure of this invention.

本発明の転炉の炉底構造は、炉底部に設けられた複数の羽口から炉内の溶銑ないし溶鋼にガスを吹き込んで精錬する転炉において、新たな羽口を挿入して羽口交換を行う羽口交換方式と羽口を含む炉底部を交換する炉底交換方式を、共に実施可能とする。羽口交換方式と炉底交換方式とは、底吹き羽口およびその周辺の炉底の損耗状況に応じ、羽口交換と炉底交換を選択して実施する。一般的には、一炉代のうちの前半期など羽口周辺煉瓦の溶損が軽微な時は羽口交換方式を採用し、一炉代のうちの後半期など羽口周辺煉瓦の溶損が進行した時には炉底交換方式を採用することが好適である。   The furnace bottom structure of the converter according to the present invention is a converter for refining by blowing gas into molten iron or molten steel in the furnace from a plurality of tuyere provided at the bottom of the furnace. It is possible to implement both the tuyere exchanging method for performing the above and the furnace bottom exchanging method for exchanging the furnace bottom part including the tuyere. The tuyere replacement method and the furnace bottom replacement method are performed by selecting the tuyere replacement and the furnace bottom replacement according to the state of wear of the bottom blowing tuyere and the surrounding furnace bottom. Generally, the tuyere replacement method is used when the melting damage of the bricks around the tuyere is minor, such as in the first half of the furnace cost, and the melting of the bricks around the tuyere, such as in the latter half of the furnace cost. When the process proceeds, it is preferable to adopt the furnace bottom replacement method.

そして、その炉底構造は、使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように複数の羽口を配置することが必要である。
また、その羽口交換方法は、転炉の炉底部にN個(Nは整数)の羽口を配置し、それらの羽口の内のN/2個以下を稼働羽口として、その稼働羽口が損耗した際に当該稼働羽口のガス孔を詰め、残りの非稼働羽口を新たな稼働羽口とすることが好ましい。
In the furnace bottom structure, it is necessary to arrange a plurality of tuyere so that the distance between the tuyere used for use is 500 mm or more and the distance between the tuyere and the fixed hearth is 250 mm or more.
Further, the tuyere replacement method is such that N (N is an integer) tuyere are arranged at the bottom of the converter, and N / 2 or less of those tuyere are used as working tuyere. When the mouth is worn out, it is preferable to fill the gas holes of the working tuyere and use the remaining non-working tuyere as new working tuyere.

以下、本発明の実施例について説明する。
質量%で、C:3.2〜4.9%、Si:0.01〜0.80%、P:0.005〜0.090%の成分で、温度が1250〜1380℃の溶銑80トンを、炉容80トン/チャージの上底吹き転炉にて、質量%で、C:0.03〜0.95%、Si:0.01%以下、P:0.003〜0.030%の成分に精錬した。この精錬時の底吹きガス流量は溶鋼1トン当たり0.01〜0.06Nm3/minで、精錬終点の溶鋼温度は1680℃〜1710℃となるようにした。
Examples of the present invention will be described below.
80% ton of hot metal at a temperature of 1250 to 1380 ° C. with components of C: 3.2 to 4.9%, Si: 0.01 to 0.80%, P: 0.005 to 0.090% In an upper bottom blowing converter with a furnace capacity of 80 tons / charge, C: 0.03-0.95%, Si: 0.01% or less, P: 0.003-0.030% Refined to ingredients. The bottom blowing gas flow rate during refining was 0.01 to 0.06 Nm 3 / min per ton of molten steel, and the molten steel temperature at the end of refining was set to 1680 ° C to 1710 ° C.

下記表1に記載の試験No.1〜4は、本発明で規定する交換方式、使用に供する羽口間の最短距離(以下、最短羽口間距離という。)、羽口と固定炉床間距離Dの条件を全て満足する発明例である。一方、試験No.5〜10は、本発明で規定する交換方式、最短羽口間距離、羽口と固定炉床間距離Dの少なくとも1つの条件を満足しない比較例である。   Test Nos. 1 to 4 listed in Table 1 below are the exchange method defined in the present invention, the shortest distance between tuyere used (hereinafter referred to as the shortest tuyere distance), and between the tuyere and the fixed hearth. This is an example of the invention that satisfies all the conditions of the distance D. On the other hand, Test Nos. 5 to 10 are comparative examples that do not satisfy at least one of the replacement method, the shortest tuyere distance, and the tuyere-fixed hearth distance D defined in the present invention.

図2に交換炉底ウエア煉瓦の模式図、図3に炉底鉄皮構造の模式図を示す。なお、図2および図3中の2aa〜2daは羽口2a〜2dのノズル孔を、3は固定炉床を示す。また、図3中の1aは交換炉底1の鉄皮、4は羽口2a〜2dの交換鉄皮、5は羽口ノズル孔フランジ、6は交換炉底1と固定炉床3間の圧入孔、7は本体の鉄皮を示す。   FIG. 2 is a schematic diagram of a replacement furnace bottom wear brick, and FIG. 3 is a schematic diagram of a furnace bottom iron structure. In FIGS. 2 and 3, 2aa to 2da denote nozzle holes of tuyere 2a to 2d, and 3 denotes a fixed hearth. Further, in FIG. 3, 1 a is the iron core of the exchange furnace bottom 1, 4 is the exchange iron skin of the tuyere 2 a to 2 d, 5 is the tuyere nozzle hole flange, and 6 is press fit between the exchange furnace bottom 1 and the fixed hearth 3. A hole 7 indicates the iron skin of the main body.

また、下記表1に試験No.1〜10の諸条件の一覧を、下記表2に試験No.1〜10の結果の一覧を示す。なお、本試験は図2及び図3に示すように、炉底部の交換炉底1に4個の羽口2a〜2dを有するものについて行った。   In addition, Table 1 below shows a list of conditions of Test Nos. 1 to 10, and Table 2 below shows a list of results of Test Nos. 1 to 10. In addition, this test was done about what has four tuyere 2a-2d in the exchange furnace bottom 1 of a furnace bottom part, as shown in FIG.2 and FIG.3.

Figure 2013159801
Figure 2013159801

Figure 2013159801
Figure 2013159801

まず、交換方式は炉底交換のみの試験No.5(稼働羽口は2bと2c)において、最短羽口間距離は781mm、羽口2cと固定炉床3間の距離は259mmの炉底構造による羽口損耗速度は1チャージ当り0.55mmであり、この時の炉材コスト指数を100とした。ここで、炉材コスト指数は小さいほど低コストである。   First, in the test method No. 5 (only the operating tuyere is 2b and 2c), the shortest tuyere distance is 781mm, and the distance between the tuyere 2c and the fixed hearth 3 is 259mm. The tuyere wear rate due to is 0.55 mm per charge, and the furnace material cost index at this time was 100. Here, the smaller the furnace material cost index, the lower the cost.

また、交換方式は羽口交換のみの試験No.6(稼働羽口は2bと2c)において、最短羽口間距離は781mm、羽口2cと固定炉床3間の距離は259mmの炉底構造による羽口損耗速度は1チャージ当り0.68mmであり、炉材コスト指数は102であった。   In addition, in the test method No. 6 with only tuyere replacement (operating tuyere is 2b and 2c), the shortest tuyere distance is 781 mm, and the distance between tuyere 2c and fixed hearth 3 is 259 mm. The tuyere wear rate was 0.68 mm per charge and the furnace material cost index was 102.

羽口交換方式では、交換範囲が羽口のみであるため、コストは低減できるが、炉底交換方式のように周辺部の更新がないために焼付け補修による炉底保護を行ったので、コスト指数は炉底交換式と同等であった。   In the tuyere replacement method, the replacement range is only tuyere, so costs can be reduced. Was equivalent to the furnace bottom exchange type.

次に、試験No.7〜8(稼働羽口は共に2bと2c)は、炉底交換と羽口交換を併用した交換方式ではあるものの、羽口2cと固定炉床3間の距離Dが250mm未満の比較例である。   Next, although test Nos. 7 to 8 (both operating tuyere are 2b and 2c) are exchange methods using both furnace bottom exchange and tuyere exchange, the distance D between tuyere 2c and fixed hearth 3 is It is a comparative example of less than 250 mm.

試験No.7は、最短羽口間距離は820mmであったが、羽口2cと固定炉床3間の距離Dを240mmとした比較例である。羽口2cと固定炉床3間の距離が小さいため、固定炉床3のウエア煉瓦の損耗が進行し、炉底交換を行っても図4に示すような固定炉床3と交換炉底1の境界に段差ができた。そして、この段差を起点に交換炉底1のスポーリングが発生し、徐々にスポーリングが交換炉底1の内部まで派生して羽口2a〜2dまで損耗が進行した。この時の羽口損耗速度は1チャージ当り0.70mm、炉材コスト指数は104であった。   Test No. 7 is a comparative example in which the distance between the tuyere is 820 mm, but the distance D between the tuyere 2c and the fixed hearth 3 is 240 mm. Because the distance between the tuyere 2c and the fixed hearth 3 is small, the wear bricks of the fixed hearth 3 are worn out, and even if the hearth replacement is performed, the fixed hearth 3 and the replacement hearth 1 as shown in FIG. There was a step at the boundary. Then, the spalling of the exchange furnace bottom 1 occurred from this step, and the spalling gradually derived to the inside of the exchange furnace bottom 1 and the wear progressed to the tuyere 2a to 2d. The tuyere wear rate at this time was 0.70 mm per charge, and the furnace material cost index was 104.

試験No.8は、羽口2cと固定炉床3間の距離Dが220mmと試験No.7より更に小さくした炉底構造であるため、試験No.7と同様な現象が更に助長され、羽口損耗速度は1チャージ当り0.74mm、炉材コスト指数は108となり、試験No.7より悪化した。   Test No. 8 is a furnace bottom structure in which the distance D between the tuyere 2c and the fixed hearth 3 is 220 mm, which is smaller than that of Test No. 7, so that the same phenomenon as Test No. 7 is further promoted. The mouth wear rate was 0.74 mm per charge, and the furnace material cost index was 108, which was worse than Test No. 7.

最後に、試験No.9〜10(稼働羽口は共に2aと2b)は、炉底交換と羽口交換を併用した交換方式ではあるものの、最短羽口間距離が500mm未満の比較例である。   Finally, test Nos. 9 to 10 (both operating tuyere are 2a and 2b) are comparative examples in which the distance between the shortest tuyere is less than 500 mm, although it is an exchange method using both furnace bottom exchange and tuyere exchange. .

試験No.9は、最短羽口間距離が450mmで、羽口2aと固定炉床3間の距離Dを275mmとした比較例である。羽口2aと固定炉床3間の距離は250mm以上あるため固定炉床3の損耗は軽微であった。しかしながら、最短羽口間距離が450mmと小さいため、羽口の噴出口に生成するマッシュルームの形状にも依存するが、底吹きガス攪拌による羽口間煉瓦の露出が多く、羽口間煉瓦の保護がなされないので、羽口を含め、羽口煉瓦より炉底中心にかけてすり鉢状に損耗した。そのため、羽口損耗速度は1チャージ当り0.77mmと大きく、炉材コスト指数は110となった。   Test No. 9 is a comparative example in which the shortest tuyere distance is 450 mm and the distance D between the tuyere 2a and the fixed hearth 3 is 275 mm. Since the distance between the tuyere 2a and the fixed hearth 3 is 250 mm or more, the wear of the fixed hearth 3 was slight. However, since the shortest tuyere distance is as small as 450 mm, depending on the shape of the mushroom generated at the tuyere's spout, there is much exposure between the tuyere bricks due to bottom blowing gas agitation and protection between the tuyere bricks. However, it was worn like a mortar from the tuyere brick to the center of the furnace bottom. Therefore, the tuyere wear rate was as high as 0.77 mm per charge, and the furnace material cost index was 110.

試験No.10は、最短羽口間距離を400mmと、試験No.9より更に小さくした炉底構造であるため、試験No.9と同様な現象が更に助長され、羽口損耗速度は1チャージ当り0.85mm、炉材コスト指数は120となり、試験No.9より悪化した。   Test No. 10 has a furnace bottom structure with a minimum distance between the tuyere of 400 mm, which is smaller than that of Test No. 9, so the same phenomenon as Test No. 9 is further promoted, and the tuyere wear rate is 1 charge. It was 0.85 mm per unit and the furnace material cost index was 120, which was worse than Test No. 9.

これらに対し、試験No.1〜4は、炉底交換と羽口交換を併用した交換方式で、最短羽口間距離を500mm以上、羽口と固定炉床間の距離Dを250mm以上とした発明例である。なお、これら試験No.1〜4のうち、試験No.1は羽口2aと2bを一炉代の当初の稼働羽口とし、試験No.2,3は羽口2bと2cを一炉代の当初の稼働羽口とした。また、試験No.4は4個すべての羽口2a〜2dを一炉代の当初から稼働羽口とした。   On the other hand, Test Nos. 1 to 4 are exchange methods using both furnace bottom exchange and tuyere exchange. The shortest tuyere distance is 500 mm or more, and the distance D between the tuyere and the fixed hearth is 250 mm or more. It is an example of an invention. Of these test Nos. 1 to 4, test No. 1 uses tuyere 2a and 2b as the initial operating tuyere for one furnace, and test Nos. 2 and 3 use tuyere 2b and 2c for one furnace. This was the initial operational tuyere. In Test No. 4, all four tuyere 2a to 2d were used from the beginning of one furnace cost.

このようにすることで、前記試験No.5〜10の比較例と比べ、羽口損耗速度は1チャージ当り0.55〜0.62mmとなって、図1(b)に示す炉底交換方式と同様な残厚推移となり、炉材コスト指数は50〜70と大幅に低減できた。   By doing in this way, compared with the comparative example of the said test No. 5-10, a tuyere wear rate became 0.55-0.62 mm per charge, and the furnace bottom replacement system shown in FIG.1 (b) The furnace material cost index could be greatly reduced to 50-70.

試験No.1〜4の発明例のうち、試験No.3のように羽口と固定炉床間の距離Dが330mmと250mm以上よりもかなり大きい場合は、交換炉底の範囲を更に狭くすることで、炉材コスト指数を低減することが可能である。   Among the inventive examples of Test Nos. 1 to 4, if the distance D between the tuyere and the fixed hearth is considerably larger than 330 mm and 250 mm or more as in Test No. 3, the range of the exchange furnace bottom is further narrowed. Thus, it is possible to reduce the furnace material cost index.

また、試験No.1〜3のように羽口の半分を稼働羽口をとした場合は、羽口交換において、損耗した稼働羽口のガス孔を耐火物で詰め、残りの非稼働羽口を新たな稼働羽口とするように、稼働羽口を入替えることで、同じ稼働羽口数でも損耗速度及び炉材コストを更に低減することができる。   In addition, when half of the tuyere is used as the working tuyere as in Test Nos. 1 to 3, when replacing the tuyere, the gas holes of the worn working tuyere are filled with refractory, and the remaining non-working tuyere By replacing the operating tuyere so as to be a new working tuyere, the wear rate and furnace material cost can be further reduced even with the same working tuyere.

前記試験No.1〜10では、図2に示す炉底交換範囲内の羽口数が4本のものについて試験を行ったが、既定の範囲内での羽口数の増加や固定炉床に羽口交換式の羽口を設けることも可能である。   In the test Nos. 1 to 10, the test was performed on the number of tuyere in the furnace bottom replacement range shown in FIG. 2, but the number of tuyere increased within the predetermined range and the tuyere was fixed on the fixed hearth. It is also possible to provide a replaceable tuyere.

以上の結果から、本発明のように、使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように複数の羽口を配置することで、羽口交換と炉底交換の両方式の交換が可能となり、低位安定した羽口損耗速度と炉材コスト低減が可能となることが確認された。   From the above results, by arranging a plurality of tuyere such that the distance between tuyere used for use is 500 mm or more and the distance between tuyere and fixed hearth is 250 mm or more as in the present invention, It has been confirmed that both the mouth exchange and the furnace bottom exchange can be performed, and the stable tuyere wear rate and furnace material cost can be reduced.

また、本発明の炉底構造を有する底吹き転炉の操業においては、羽口の内の半分以下を稼働羽口として操業し、操業により損耗した稼働羽口の交換時には稼働羽口のガス孔を養生し、残りの非稼働羽口を稼働羽口とすることで、同じ稼働羽口数でも損耗速度及び炉材コストを更に低減できるようになる。   Further, in the operation of the bottom blown converter having the furnace bottom structure of the present invention, the operation tuyere is operated with half or less of the tuyere as the working tuyere, and the working tuyere gas hole is replaced when the working tuyere worn by the operation is replaced. By curing the remaining non-working tuyere, the wear rate and furnace material cost can be further reduced with the same number of working tuyere.

1 交換炉底
1a 交換炉底の鉄皮
2a〜2d 羽口
3 固定炉床
4 羽口の交換鉄皮
5 羽口ノズル孔フランジ
6 交換炉底と固定炉床間の圧入孔
7 本体鉄皮
DESCRIPTION OF SYMBOLS 1 Exchange furnace bottom 1a Exchange furnace bottom iron skin 2a-2d Tuyere 3 Fixed hearth 4 Tuyere exchange iron skin 5 Tuyere nozzle hole flange 6 Press-in hole between exchange furnace bottom and fixed hearth 7 Main body iron skin

Claims (2)

炉底部に設けられた複数の羽口から炉内の溶銑ないし溶鋼にガスを吹き込んで精錬する転炉において、
使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように複数の羽口を配置することで、新たな羽口を挿入して羽口交換を行う羽口交換方式と羽口を含む炉底部を交換する炉底交換方式を共に実施可能としたことを特徴とする転炉の炉底構造。
In a converter for refining by blowing gas into hot metal or molten steel in the furnace from a plurality of tuyere provided at the bottom of the furnace,
By arranging multiple tuyere so that the distance between tuyere for use is 500 mm or more and the distance between tuyere and fixed hearth is 250 mm or more, a new tuyere is inserted and tuyere is replaced. A bottom structure of a converter, characterized in that both a tuyere exchanging system and a furnace bottom exchanging system for exchanging the bottom of the furnace including the tuyere can be implemented.
使用に供する羽口間の距離が500mm以上、羽口と固定炉床間の距離が250mm以上となるように炉底部にN個(Nは整数)の羽口を配置した転炉の、前記羽口の内のN/2個以下を稼働羽口とした操業において、損耗した稼働羽口の交換時には当該稼働羽口のガス孔を詰め、残りの非稼働羽口を新たな稼働羽口とすることを特徴とする転炉の羽口交換方法。   The above mentioned feather of a converter in which N (N is an integer) tuyere are arranged at the bottom of the furnace so that the distance between the tuyere for use is 500 mm or more and the distance between the tuyere and the fixed hearth is 250 mm or more. In operation using N / 2 or less of the mouths as operating tuyere, when replacing a worn working tuyere, the gas hole of the working tuyere is filled, and the remaining non-working tuyere is used as new working tuyere. A converter tuyere replacement method characterized by the above.
JP2012021060A 2012-02-02 2012-02-02 Converter bottom structure and tuyere replacement method Expired - Fee Related JP5527337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021060A JP5527337B2 (en) 2012-02-02 2012-02-02 Converter bottom structure and tuyere replacement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021060A JP5527337B2 (en) 2012-02-02 2012-02-02 Converter bottom structure and tuyere replacement method

Publications (2)

Publication Number Publication Date
JP2013159801A true JP2013159801A (en) 2013-08-19
JP5527337B2 JP5527337B2 (en) 2014-06-18

Family

ID=49172322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021060A Expired - Fee Related JP5527337B2 (en) 2012-02-02 2012-02-02 Converter bottom structure and tuyere replacement method

Country Status (1)

Country Link
JP (1) JP5527337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064282A (en) * 2014-11-27 2016-06-08 주식회사 포스코 Method for control of furnace
CN110578033A (en) * 2019-09-24 2019-12-17 张家港宏昌钢板有限公司 Converter bottom blowing replacement method
KR20210157716A (en) 2020-06-22 2021-12-29 한상관 By storing a large amount of river water to create an artificial fish farm and at the same time to reduce the generation of fine dust, it improves the polluted air in the atmosphere, and at the same time, preferentially discharges clean water molecules with a heavy specific gravity so that the polluted river water is converted into clean river water. A nature-friendly water purification eco-friendly method that naturally purifies the water quality of reservoirs, lakes, dams, lagoons, rivers, and rivers while producing a large amount of electricity using a nature-friendly eco-friendly water storage system configured to purify

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739114A (en) * 1980-08-20 1982-03-04 Nippon Kokan Kk <Nkk> Converter for top and bottom blow refining
JPS61183950U (en) * 1985-05-09 1986-11-17
JPH04173915A (en) * 1990-11-06 1992-06-22 Kawasaki Refract Co Ltd Refining method with gas blowing nozzle of molten metal vessel
JPH0726692U (en) * 1993-10-14 1995-05-19 川崎炉材株式会社 Bottom-floor hearth structure of refining furnace
JP2009127087A (en) * 2007-11-22 2009-06-11 Nippon Steel Corp Member for closing opening-hole part of bottom-blowing tuyere in converter, and method for removing this member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739114A (en) * 1980-08-20 1982-03-04 Nippon Kokan Kk <Nkk> Converter for top and bottom blow refining
JPS61183950U (en) * 1985-05-09 1986-11-17
JPH04173915A (en) * 1990-11-06 1992-06-22 Kawasaki Refract Co Ltd Refining method with gas blowing nozzle of molten metal vessel
JPH0726692U (en) * 1993-10-14 1995-05-19 川崎炉材株式会社 Bottom-floor hearth structure of refining furnace
JP2009127087A (en) * 2007-11-22 2009-06-11 Nippon Steel Corp Member for closing opening-hole part of bottom-blowing tuyere in converter, and method for removing this member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160064282A (en) * 2014-11-27 2016-06-08 주식회사 포스코 Method for control of furnace
KR101676117B1 (en) 2014-11-27 2016-11-15 주식회사 포스코 Method for control of furnace
CN110578033A (en) * 2019-09-24 2019-12-17 张家港宏昌钢板有限公司 Converter bottom blowing replacement method
CN110578033B (en) * 2019-09-24 2021-11-23 张家港宏昌钢板有限公司 Converter bottom blowing replacement method
KR20210157716A (en) 2020-06-22 2021-12-29 한상관 By storing a large amount of river water to create an artificial fish farm and at the same time to reduce the generation of fine dust, it improves the polluted air in the atmosphere, and at the same time, preferentially discharges clean water molecules with a heavy specific gravity so that the polluted river water is converted into clean river water. A nature-friendly water purification eco-friendly method that naturally purifies the water quality of reservoirs, lakes, dams, lagoons, rivers, and rivers while producing a large amount of electricity using a nature-friendly eco-friendly water storage system configured to purify

Also Published As

Publication number Publication date
JP5527337B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5527337B2 (en) Converter bottom structure and tuyere replacement method
JP2009062601A (en) Molten pig iron tapping hole structure in melting furnace, and repairing method therefor
JP2012225568A (en) Structure for cooling firebrick of converter, and method for cooling the same
JP6476971B2 (en) How to operate an arc bottom electric furnace
JP5477274B2 (en) Smelting furnace
CN207987279U (en) A kind of converter spherical shape bottom construction
JP4555764B2 (en) Converter refining method
CN214115611U (en) Device capable of replacing gas supply protection system for converter bottom
JP6547815B2 (en) Operation method of converter type smelting furnace
JP5920026B2 (en) Hot installation method of converter bottom blowing tuyere
JP5087937B2 (en) Refractory coated lance and repair method thereof
JP5849562B2 (en) Refractory lining structure for steelmaking containers
CN206308387U (en) A kind of RH vacuum chambers bottom masonry construction
JP2015500146A (en) Method for maintaining and / or repairing the exit area of a metallurgical vessel
JP6888384B2 (en) Gas blowing nozzle and gas blowing method using it
JP5311614B2 (en) Arc furnace operation method
CN202639311U (en) Melted iron tank
CN202639314U (en) Long-life seating brick of steel ladle ventilation brick
JP5391810B2 (en) Structure of gas blowing part of molten metal container
JP5685974B2 (en) Blast furnace
CN210254211U (en) Combined multi-brick-core integral air brick
CN105755193A (en) Blast-furnace throat steel brick structure and construction method
JP2019135317A (en) Converter for copper smelting
JP6112176B1 (en) Immersion nozzle
KR101586931B1 (en) Ladle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5527337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees