JP2013159524A - Single crystal growing apparatus - Google Patents

Single crystal growing apparatus Download PDF

Info

Publication number
JP2013159524A
JP2013159524A JP2012023190A JP2012023190A JP2013159524A JP 2013159524 A JP2013159524 A JP 2013159524A JP 2012023190 A JP2012023190 A JP 2012023190A JP 2012023190 A JP2012023190 A JP 2012023190A JP 2013159524 A JP2013159524 A JP 2013159524A
Authority
JP
Japan
Prior art keywords
mirror
single crystal
ellipsoidal mirror
focal point
ellipsoidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012023190A
Other languages
Japanese (ja)
Other versions
JP5955575B2 (en
Inventor
Shunji Noguchi
俊司 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2012023190A priority Critical patent/JP5955575B2/en
Publication of JP2013159524A publication Critical patent/JP2013159524A/en
Application granted granted Critical
Publication of JP5955575B2 publication Critical patent/JP5955575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal growing apparatus capable of reducing energy loss of light (heating source) and efficiently melting a sample.SOLUTION: A single crystal growing apparatus includes a pair of reflection mirrors 1 and 2 each provided with a pair of focuses F0 and F1, F0 and F2 and arranged such that the one focus F0 matches, and heating sources 3 and 4 arranged at the other focuses F1 and F2 of the reflection mirrors 1 and 2, and grows a single crystal by irradiating a sample S arranged at one focus F0 of the reflection mirrors 1 and 2 with radiation heat of the heating sources 3 and 4 directly or through reflection by the reflection mirrors 1 and 2. The respective reflection mirrors 1 and 2 comprise a first ellipsoidal mirror 21, a second ellipsoidal mirror 22 disposed on the outer diameter side of the first ellipsoidal mirror 21, and a spherical mirror 23 disposed between the first ellipsoidal mirror 21 and the second ellipsoidal mirror 22.

Description

本発明は、単結晶育成装置に関するものである。   The present invention relates to a single crystal growing apparatus.

単結晶を育成する場合、フローティングゾーン式の単結晶育成装置を用いることは従来から知られている(特許文献1および特許文献2)。このような単結晶育成装置50は、図5及び図6に示すように、対称形の2つの楕円面鏡51、52を有し、各々の一方の焦点F0、F0(図6参照)が一致するように対向結合させて加熱炉を構成する。この回転楕円面鏡51、52の内面、すなわち反射面は、赤外線を高反射率で反射させるために金めっき処理が施されている。各回転楕円面鏡51、52の他方の焦点F1、F2付近には、加熱源、例えば、ハロゲンランプ等の赤外線ランプ53、54が固定配置してある。各回転楕円面鏡51、52の一致した焦点F0には被加熱部55が位置し、上方から鉛直方向に延びる上結晶駆動軸56の下端に固定した原料棒57と、下方から鉛直方向に延びる下結晶駆動軸58の上端に固定された種結晶棒59とを突き合わせてある。前記上結晶駆動軸56および下結晶駆動軸58は、図示するように、保持部材60、61によって気密に保持され、図示しないサーボモータ等の駆動モータで回転自在、かつ、同期または相対速度を有して昇降自在に保持されている。   In the case of growing a single crystal, it is conventionally known to use a floating zone type single crystal growing apparatus (Patent Document 1 and Patent Document 2). As shown in FIGS. 5 and 6, such a single crystal growing apparatus 50 has two symmetrical elliptical mirrors 51 and 52, and the respective ones of the focal points F0 and F0 (see FIG. 6) coincide with each other. Thus, the heating furnace is configured by opposing coupling. The inner surfaces of the spheroid mirrors 51 and 52, that is, the reflection surfaces are subjected to gold plating in order to reflect infrared rays with high reflectivity. Near the other focal points F1 and F2 of the spheroid mirrors 51 and 52, heating sources, for example, infrared lamps 53 and 54 such as halogen lamps are fixedly arranged. A heated portion 55 is located at the coincident focal point F0 of each spheroid mirror 51, 52, and a raw material rod 57 fixed to the lower end of the upper crystal drive shaft 56 extending in the vertical direction from above, and extending in the vertical direction from below. A seed crystal rod 59 fixed to the upper end of the lower crystal drive shaft 58 is abutted. The upper crystal drive shaft 56 and the lower crystal drive shaft 58 are hermetically held by holding members 60 and 61 as shown in the figure, can be rotated by a drive motor such as a servo motor (not shown), and have a synchronous or relative speed. It is held up and down freely.

前記原料棒57および種結晶棒59が配置された空間m1を、赤外線ランプ53、54が配置された空間m2と区画して、単結晶育成室62を形成する透明な石英管63を設けて、上記単結晶育成室62に結晶育成に対して好適な不活性ガス等を充満させる。   A space m1 in which the raw material rod 57 and the seed crystal rod 59 are disposed is partitioned from a space m2 in which the infrared lamps 53 and 54 are disposed, and a transparent quartz tube 63 that forms a single crystal growth chamber 62 is provided. The single crystal growth chamber 62 is filled with an inert gas suitable for crystal growth.

前記単結晶育成装置50によれば、回転楕円面鏡51、52の第1、第2の焦点F1、F2に配置された赤外線ランプ53、54から照射される赤外線を、上記回転楕円面鏡51、52で反射させ、共通の焦点F0に位置する被加熱部55に集光させて赤外線加熱する。この赤外線加熱による輻射エネルギーにより、被加熱部55の原料棒57の下端および種結晶棒59の上端を加熱溶融させながら、円滑に接触させることにより、図7に示すように、原料棒57と種結晶棒59間の被加熱部55に溶融帯64を形成させる。   According to the single crystal growing apparatus 50, infrared rays emitted from the infrared lamps 53 and 54 arranged at the first and second focal points F 1 and F 2 of the spheroid mirrors 51 and 52 are converted into the spheroid mirror 51. , 52, and condensed by the heated portion 55 located at the common focal point F 0 and heated by infrared rays. By making the lower end of the raw material rod 57 and the upper end of the seed crystal rod 59 of the heated portion 55 to be heated and melted smoothly by the radiant energy by the infrared heating, as shown in FIG. A melt zone 64 is formed in the heated portion 55 between the crystal rods 59.

そして、下端に原料棒57を固定した上結晶駆動軸56と上端に種結晶棒59を固定した下結晶駆動軸58とを共に回転させ、かつ、同期または相対速度を有してゆっくり下方に向かって移動させることによって、原料棒57と種結晶棒59間の溶融帯64が次第に原料棒57側に移動していって、結晶が成長していき単結晶が育成される。なお、図7にける57aは原料棒57側の固液界面を示し、59aは種結晶棒59側の固液界面を示している。   Then, the upper crystal drive shaft 56 with the raw material rod 57 fixed at the lower end and the lower crystal drive shaft 58 with the seed crystal rod 59 fixed at the upper end are rotated together, and slowly moved downward with synchronization or relative speed. As a result, the melting zone 64 between the raw material rod 57 and the seed crystal rod 59 is gradually moved toward the raw material rod 57, and the crystal grows to grow a single crystal. In FIG. 7, 57a indicates a solid-liquid interface on the raw material rod 57 side, and 59a indicates a solid-liquid interface on the seed crystal rod 59 side.

しかしながら、図5および図6等に示す単結晶育成装置50における回転楕円面鏡51、52では、お互いの焦点を共有する配置となるため、全楕円の形状とはなりえない。このため、楕円を外れた光は原料棒57および種結晶棒59が配置された焦点に集まらずに、回転楕円面鏡51、52内で反射しているだけである。   However, the spheroid mirrors 51 and 52 in the single crystal growth apparatus 50 shown in FIGS. 5 and 6 and the like are arranged so as to share the focal points of each other, and thus cannot have a shape of a full ellipse. For this reason, the light deviating from the ellipse is not reflected at the focal point where the raw material rod 57 and the seed crystal rod 59 are disposed, but is merely reflected within the spheroid mirrors 51 and 52.

例えば、一方の赤外線ランプ53(又は54)が配置されていない他方の回転楕円面鏡52(又は51)側に直接到達して反射される光(放射熱)は、試料(原料棒57および種結晶棒59)の溶融に使用されることが少なく、溶融を望まない部位はもとより、回転楕円面鏡等の試料以外を加熱するエネルギーとなるため、効率良く加熱されると言えない。これは、加熱源と試料溶融部の間の距離、つまり、回転楕円面鏡の焦点間距離が近いため、楕円形の半分程度の反射領域した溶融に利用できないからである。   For example, the light (radiant heat) that directly reaches and is reflected by the other spheroid mirror 52 (or 51) side where the one infrared lamp 53 (or 54) is not disposed is reflected on the sample (the raw material rod 57 and the seed). It is rarely used for melting the crystal rod 59), and it cannot be said that it is heated efficiently because it becomes energy for heating other than a sample such as a spheroid mirror as well as a portion where melting is not desired. This is because the distance between the heating source and the sample melting portion, that is, the distance between the focal points of the spheroid mirrors is short, so that it cannot be used for melting a reflection region of about half of the ellipse.

そこで、このような単結晶育成装置の回転楕円面鏡に、特許文献3に記載のような効率よく集束できる金属反射鏡を用いたり、特許文献4に記載のような反射効率のよい反射リフレクタを用いたり、特許文献4に記載のようなスポット光に色むらを生じないようにするスポットライトを用いたりすることを提案できる。   Therefore, a metal reflector that can be efficiently focused as described in Patent Document 3 is used as the spheroid mirror of such a single crystal growing apparatus, or a reflective reflector that has high reflection efficiency as described in Patent Document 4 is used. It can be proposed to use a spotlight such as that described in Patent Document 4 or a spotlight that does not cause color unevenness in the spotlight.

特許文献3に記載の金属反射鏡は、2つの回転楕円面を有するものであり、特許文献4に記載の反射リフレクタは、楕円反射面と円弧状部とを有するものであり、特許文献5に記載のスポットライトは、3つの楕円形反射鏡を有するものである。   The metal reflecting mirror described in Patent Document 3 has two spheroid surfaces, and the reflecting reflector described in Patent Document 4 has an elliptical reflecting surface and an arcuate portion. The described spotlight has three elliptical reflectors.

特公昭63−62873号公報Japanese Examined Patent Publication No. 63-62873 特開2005−247668号公報JP-A-2005-247668 米国特許5677983号明細書US Pat. No. 5,677,983 特開平9−166815号公報JP-A-9-166815 特開2010−274707号公報JP 2010-274707 A

前記特許文献3、特許文献4、および特許文献5では、これらの反射鏡を、単結晶育成装置に用いることの開示や示唆もない。すなわち、反射鏡自体効率よく反射させるものであっても、単結晶育成装置において、一方の反射鏡からの放射熱の他方の反射鏡への入射を少なくできるものはない。   In Patent Document 3, Patent Document 4, and Patent Document 5, there is no disclosure or suggestion that these reflecting mirrors are used in a single crystal growing apparatus. That is, even if the reflecting mirror itself reflects efficiently, there is no single crystal growing apparatus that can reduce the incidence of radiant heat from one reflecting mirror on the other reflecting mirror.

このため、たとえ、特許文献3や特許文献4に記載のものを単に単結晶育成装置に適用したとしても、光(加熱源)のエネルギーロスを小さくできるように設定できるものではない。   For this reason, even if what is described in Patent Document 3 and Patent Document 4 is simply applied to a single crystal growth apparatus, it cannot be set so that the energy loss of light (heating source) can be reduced.

そこで、本発明は斯かる実情に鑑み、光(加熱源)のエネルギーロスを小さくして、効率良く試料溶融することが可能な単結晶育成装置を提供するものである。   Therefore, in view of such circumstances, the present invention provides a single crystal growth apparatus that can reduce the energy loss of light (heating source) and efficiently melt the sample.

本発明の単結晶育成装置は、各々一対の焦点を有しかつ一方の焦点が一致するように配置される一対の反射鏡と、反射鏡の他方の焦点に配置された加熱源とを備え、前記加熱源の放射熱を直接的および反射鏡で反射して、反射鏡の一方の焦点に配置された試料に照射して単結晶を育成する単結晶育成装置において、各反射鏡は、第1楕円面鏡と、第1楕円面鏡の外径側に配設される第2楕円面鏡と、第1楕円面鏡と第2楕円面鏡との間に配設される球面鏡とで構成され、第1楕円面鏡の焦点と第2楕円面鏡の焦点とが共通であり、この焦点がこの反射鏡の焦点をなし、球面鏡の中心が前記加熱源が配置される焦点と一致して、球面鏡と第2楕円面鏡とが連続するとともに、第1楕円面鏡と球面鏡との間に段差部が形成され、一方の焦点に配置される試料を囲繞する囲繞管と第1楕円面鏡との間の最小隙間寸法を、囲繞管の外径寸法の8.0%〜120%としたものである。   The single crystal growth apparatus of the present invention comprises a pair of reflecting mirrors each having a pair of focal points and arranged so that one focal point coincides, and a heating source arranged at the other focal point of the reflecting mirrors, In the single crystal growing apparatus for directly and directly reflecting the radiant heat of the heating source with a reflecting mirror and irradiating a sample disposed at one focal point of the reflecting mirror to grow a single crystal, each reflecting mirror has a first An ellipsoidal mirror, a second ellipsoidal mirror disposed on the outer diameter side of the first ellipsoidal mirror, and a spherical mirror disposed between the first ellipsoidal mirror and the second ellipsoidal mirror. , The focal point of the first ellipsoidal mirror and the focal point of the second ellipsoidal mirror are the same, this focal point is the focal point of this reflecting mirror, the center of the spherical mirror coincides with the focal point where the heating source is disposed, The spherical mirror and the second ellipsoidal mirror are continuous, and a step is formed between the first ellipsoidal mirror and the spherical mirror. The minimum gap dimension between the surrounding tube and the first ellipsoidal mirror surrounding the sample to be, is obtained by 8.0% to 120% of the outside diameter of the surrounding tube.

本発明の単結晶育成装置によれば、囲繞管と第1楕円面鏡との間の最小隙間寸法を、囲繞管の外径寸法の8.0%〜120%としたことによって、一方の反射鏡の加熱源からの放射熱の他方の反射鏡への入射が少なくなって、試料溶融のための加熱源からの放射熱のエネルギーロスを少なくすることができる。   According to the single crystal growing apparatus of the present invention, the minimum gap dimension between the surrounding tube and the first ellipsoidal mirror is set to 8.0% to 120% of the outer diameter of the surrounding tube, so that one reflection The incidence of the radiant heat from the mirror heating source on the other reflecting mirror is reduced, and the energy loss of the radiant heat from the heating source for melting the sample can be reduced.

第1楕円面鏡において、その長径をa1とするとともに、短径をb1としたときに、b1/a1を0.4〜0.95とするのが好ましい。また、第1楕円面鏡において、その長径をa1とするとともに、短径をb1とし、第2楕円面鏡において、その長径をa2とするとともに、短径をb2としたときに、a1/a2を0.5〜1.0とし、b1/b2を0.3〜0.80とすることができる。さらには、一方の焦点と第1楕円面鏡の段差部側の端縁とを結ぶ直線の延長線上に第2楕円面鏡と球面鏡との連設部があるように設定できる。   In the first ellipsoidal mirror, when the major axis is a1 and the minor axis is b1, b1 / a1 is preferably 0.4 to 0.95. In the first ellipsoidal mirror, when the major axis is a1, the minor axis is b1, and in the second ellipsoidal mirror, the major axis is a2, and the minor axis is b2, a1 / a2 Can be set to 0.5 to 1.0, and b1 / b2 can be set to 0.3 to 0.80. Furthermore, it can be set so that the second ellipsoidal mirror and the spherical mirror are connected to each other on an extended line of a straight line connecting one focal point and the edge on the stepped portion side of the first ellipsoidal mirror.

本発明の単結晶育成装置では、試料溶融のための加熱源からの放射熱のエネルギーロスを少なくすることができ、効率よく試料を溶融することができる。このため、小さい能力の加熱源で、短時間に安定して溶融して単結晶を育成できる。   In the single crystal growing apparatus of the present invention, the energy loss of radiant heat from the heating source for melting the sample can be reduced, and the sample can be efficiently melted. For this reason, it is possible to grow a single crystal by stably melting in a short time with a heating source having a small capacity.

b1/a1を0.4〜0.95としたり、a1/a2を0.5〜1.0とするとともに、b1/b2を0.3〜0.80としたり、一方の焦点と第1楕円面鏡の段差部側の端縁とを結ぶ直線の延長線上に第2楕円面鏡と球面鏡との連設部があるように設定することによって、放射熱のエネルギーロスを少なくできる単結晶育成装置を安定して提供できる。   b1 / a1 is set to 0.4 to 0.95, a1 / a2 is set to 0.5 to 1.0, b1 / b2 is set to 0.3 to 0.80, one focal point and the first ellipse A single crystal growth apparatus that can reduce the energy loss of radiant heat by setting the second ellipsoidal mirror and the spherical mirror to be connected on the extended line of the straight line connecting the edge of the stepped portion of the surface mirror. Can be provided stably.

本発明の単結晶育成装置の簡略断面図である。It is a simplified sectional view of the single crystal growth device of the present invention. 前記図1の単結晶育成装置の簡略側面図である。FIG. 2 is a simplified side view of the single crystal growth apparatus of FIG. 1. 前記図1の単結晶育成装置のエネルギーロスを算出するための簡略断面平面図である。It is a simplified cross-sectional top view for calculating the energy loss of the single crystal growth apparatus of the said FIG. 前記図1の単結晶育成装置のエネルギーロスを算出するための簡略断面側面図である。FIG. 2 is a simplified cross-sectional side view for calculating energy loss of the single crystal growth apparatus of FIG. 1. 従来の単結晶育成装置の簡略断面図である。It is a simplified sectional view of a conventional single crystal growing apparatus. 前記図5のA−A線断面図である。It is AA sectional view taken on the line of FIG. 前記図5の単結晶育成装置における被加熱部の拡大図である。It is an enlarged view of the to-be-heated part in the single-crystal growth apparatus of the said FIG. 前記従来の単結晶育成装置のエネルギーロスを算出するための簡略断面平面図である。It is a simplified cross-sectional top view for calculating the energy loss of the conventional single crystal growing apparatus. 蒸着物吸着ジャケットを省略した従来の単結晶育成装置のエネルギーロスを算出するための簡略断面側面図である。It is a simplified cross-sectional side view for calculating the energy loss of the conventional single crystal growth apparatus which omitted the deposit adsorption jacket.

以下本発明の実施の形態を図1〜図4に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1と図2に本発明に係る単結晶育成装置を示し、この単結晶育成装置は、各々一対の焦点F0、F1、F0、F2を有しかつ一方の焦点F0が一致するように配置される一対の反射鏡1、2と、反射鏡1、2の他方の焦点F1、F2に配置された加熱源3、4とを備える。反射鏡1、2の内面で構成される反射面は、赤外線で高反射率で反射させるための金めっき処理等が施されている。   FIG. 1 and FIG. 2 show a single crystal growing apparatus according to the present invention, which has a pair of focal points F0, F1, F0, and F2, and is arranged so that one focal point F0 coincides. A pair of reflecting mirrors 1 and 2 and heating sources 3 and 4 disposed at the other focal points F1 and F2 of the reflecting mirrors 1 and 2 are provided. The reflecting surface constituted by the inner surfaces of the reflecting mirrors 1 and 2 is subjected to a gold plating process or the like for reflecting with high reflectance by infrared rays.

各反射鏡1、2の他方の焦点F1、F2付近には、加熱源3、4を構成する一例として、例えば、ハロゲンランプ等の赤外線ランプ3A、4Aが固定配置してある。各反射鏡1、2の一致した一方の焦点F0には被加熱部5に配置される試料S(後述する原料棒7と種結晶棒9との突合部である)とが位置し、この試料5を含むように石英管からなる囲繞管10が鉛直方向に設置されている。   In the vicinity of the other focal points F1 and F2 of the reflecting mirrors 1 and 2, infrared lamps 3A and 4A such as halogen lamps, for example, are fixedly arranged as an example constituting the heating sources 3 and 4. A sample S (which is an abutting portion between a raw material rod 7 and a seed crystal rod 9 to be described later) located in the heated portion 5 is located at one coincident focal point F0 of each of the reflecting mirrors 1 and 2, and this sample As shown in FIG. 5, a surrounding tube 10 made of a quartz tube is installed in the vertical direction.

この囲繞管10は、囲繞管10の内方部分m1をそれ以外の反射鏡1、2の内方部分m2と区分することによって、囲繞管10の内方部分m1を単結晶育成に適する雰囲気に置換し、かつ、その雰囲気状態を維持し易くするものである。一方で、各反射鏡1、2内の内方部分m2の加熱源3、4を、囲繞管10の内方部分m1内の被加熱部5に影響を与えることなく冷却するのに役立つ。   In this surrounding tube 10, the inner portion m1 of the surrounding tube 10 is divided from the inner portions m2 of the other reflecting mirrors 1 and 2 by dividing the inner portion m1 of the surrounding tube 10 into an atmosphere suitable for single crystal growth. It replaces and makes it easy to maintain the atmospheric state. On the other hand, it serves to cool the heating sources 3 and 4 of the inner part m2 in each of the reflecting mirrors 1 and 2 without affecting the heated part 5 in the inner part m1 of the surrounding tube 10.

各反射鏡1、2の一致した焦点F0に位置する被加熱部5では、上方から鉛直方向に延びる上結晶駆動軸6の下端に固定した原料棒7と、下方から鉛直方向に延びる下結晶駆動軸8の上端に固定された種結晶棒9とを突き合わせている。前記上結晶駆動軸6および下結晶駆動軸8は、図示省略の保持部材によって気密に保持され、図示省略サーボモータ等の駆動モータで回転自在、かつ、同期して、または相対速度を有して昇降自在に保持されている。   In the heated part 5 positioned at the coincident focal point F0 of each of the reflecting mirrors 1 and 2, the raw material rod 7 fixed to the lower end of the upper crystal driving shaft 6 extending in the vertical direction from above, and the lower crystal driving extending in the vertical direction from below. A seed crystal rod 9 fixed to the upper end of the shaft 8 is abutted. The upper crystal drive shaft 6 and the lower crystal drive shaft 8 are hermetically held by a holding member (not shown), are rotatable by a driving motor such as a servo motor (not shown), and are synchronous or have a relative speed. It is held up and down freely.

上記の単結晶育成装置において、囲繞管10内の原料棒7の周囲には、円筒状の蒸発物吸着ジャケット14が配置されている。前記蒸発物吸着ジャケット14は、耐食性の高いステンレス(例えば、SUS 304)などによって略2重円筒状に形成されており、内部に、冷却媒体が循環する冷却媒体通路16を有する。冷却媒体の循環によって、蒸発物吸着ジャケット14を効率良く冷却して、蒸発物質の吸着効果を高めるようにしている。なお、図例の実施形態では、蒸発物吸着ジャケットを原料棒7の周囲のみに配置しているが、種結晶棒9の周囲にも配置してもよい。   In the single crystal growing apparatus, a cylindrical evaporative material adsorption jacket 14 is disposed around the raw material rod 7 in the surrounding tube 10. The evaporative material adsorption jacket 14 is formed in a substantially double cylindrical shape by stainless steel (for example, SUS 304) having high corrosion resistance, and has a cooling medium passage 16 in which a cooling medium circulates. By evaporating the cooling medium, the evaporating substance adsorption jacket 14 is efficiently cooled to enhance the evaporating substance adsorption effect. In the illustrated embodiment, the evaporative material adsorption jacket is disposed only around the raw material rod 7, but may also be disposed around the seed crystal rod 9.

ところで、各反射鏡1、2は、第1楕円面鏡21と、第1楕円面鏡の外径側に配設される第2楕円面鏡22と、第1楕円面鏡21と第2楕円面鏡22との間に配設される球面鏡23とで形成される。このため、各反射鏡1、2は、複数個(この実施例では4個)のブロック体25、26、27、28にて構成される。すなわち、ブロック体25、26が第1楕円面鏡21を構成し、ブロック体28で第2楕円面鏡22を構成し、ブロック体27で球面鏡23を構成することになる。   By the way, each reflecting mirror 1, 2 includes a first ellipsoidal mirror 21, a second ellipsoidal mirror 22 disposed on the outer diameter side of the first ellipsoidal mirror, a first ellipsoidal mirror 21, and a second ellipse. It is formed with a spherical mirror 23 disposed between the surface mirror 22. Therefore, each of the reflecting mirrors 1 and 2 is composed of a plurality (four in this embodiment) of block bodies 25, 26, 27, and 28. That is, the block bodies 25 and 26 constitute the first ellipsoidal mirror 21, the block body 28 constitutes the second ellipsoidal mirror 22, and the block body 27 constitutes the spherical mirror 23.

ブロック体25、26は短筒体からなり、ブロック体25の内径面が第1楕円面鏡21の短径よりも一方の焦点F0側を構成し、ブロック体26の内径面が第1楕円面鏡21の短径よりも他方の焦点F1(F2)側を構成する。この場合、ブロック体25においては、第1楕円面鏡21を形成する第1楕円形の長径の一方の焦点F0側の端部を省略するものであって、ブロック体26においては、第1楕円面鏡21を形成する第1楕円形の長径の他方の焦点F1(F2)側の端部を省略するものである。   The block bodies 25 and 26 are short cylinders, the inner diameter surface of the block body 25 constitutes one focal point F0 side with respect to the shorter diameter of the first ellipsoidal mirror 21, and the inner diameter surface of the block body 26 is the first elliptical surface. The other focal point F1 (F2) side of the minor axis of the mirror 21 is formed. In this case, in the block body 25, the end portion on the one focal point F0 side of the major axis of the first ellipse forming the first ellipsoidal mirror 21 is omitted. In the block body 26, the first ellipse is omitted. The end part on the other focal point F1 (F2) side of the first elliptical major axis forming the surface mirror 21 is omitted.

ブロック体28は、第2楕円面鏡22を形成する第2楕円形の長径の端部側における円弧面が形成された円盤形状体にて構成される。また、ブロック体27は、内径面が球面鏡23を形成する球面を形成する円盤形状体にて構成される。   The block body 28 is configured by a disk-shaped body in which an arc surface on the end side of the long diameter of the second ellipse forming the second ellipsoidal mirror 22 is formed. Further, the block body 27 is configured by a disk-shaped body whose inner surface forms a spherical surface that forms the spherical mirror 23.

そして、この4つのブロック体25、26、27、28を、組み合わせることによって、各反射鏡1、2を形成することができる。このため、ブロック体25には他方の焦点F1側の端部に鍔部25aが設けられ、ブロック体26の両端部にてそれぞれ鍔部26a、26bが設けられ、ブロック体27には、ブロック体26の鍔部26aに対抗(対面)する端部に鍔部27bが設けられている。   The reflecting mirrors 1 and 2 can be formed by combining the four block bodies 25, 26, 27, and 28. For this reason, the block body 25 is provided with a flange portion 25a at the other focal point F1 side end, and both ends of the block body 26 are provided with flange portions 26a and 26b, respectively. A collar portion 27b is provided at an end portion that faces (faces) the collar portion 26a of 26.

ブロック体25の鍔部25aとブロック体26の鍔部26bとが重ね合わされて、ボルト部材30にてこれらが固着され、ブロック体26の鍔部26aとブロック体27の鍔部27bとが重ね合わされて、ボルト部材30にてこれらが固着される。この場合、ブロック体25の鍔部25aには貫通孔31が設けられ、ブロック体26の鍔部26bにねじ孔32が設けられ、ブロック体27の鍔部25bには貫通孔31が設けられ、ブロック体26の鍔部26aにねじ孔32が設けられている。   The flange portion 25a of the block body 25 and the flange portion 26b of the block body 26 are overlapped, and these are fixed by the bolt member 30, and the flange portion 26a of the block body 26 and the flange portion 27b of the block body 27 are overlapped. These are fixed by the bolt member 30. In this case, a through hole 31 is provided in the flange portion 25a of the block body 25, a screw hole 32 is provided in the flange portion 26b of the block body 26, and a through hole 31 is provided in the flange portion 25b of the block body 27. A screw hole 32 is provided in the flange portion 26 a of the block body 26.

また、ブロック体27の反鍔部側に端面38と、ブロック体28の内端面39とが重ね合わされ、ボルト部材33にてこれらが固着される。この場合、ブロック体28に貫通孔34が設けられ、ブロック体27の端面38にねじ孔35が設けられている。   In addition, the end surface 38 and the inner end surface 39 of the block body 28 are overlapped with each other on the side of the ridge portion of the block body 27, and these are fixed by the bolt member 33. In this case, a through hole 34 is provided in the block body 28, and a screw hole 35 is provided in the end surface 38 of the block body 27.

このため、第1楕円面鏡21の焦点F0、F1(F0、F2)と第2楕円面鏡22の焦点F0、F1(F0、F2)とが共通であり、この焦点F0、F1、F2がこの反射鏡の焦点をなし、球面鏡23の中心Oに前記加熱源が配置される焦点F1(F2)と一致する。また、球面鏡23と第2楕円面鏡22とが連続するとともに、第1楕円面鏡21と球面鏡23との間に段差部40が形成される。そして、一方の焦点に配置される試料S(原料棒7と種結晶棒9)を囲繞する囲繞管10と第1楕円面鏡21との間の最小隙間寸法を、囲繞管10の外径寸法の8.0%〜120%、より好ましくは8.3%〜116.7%とする。すなわち、図3に示すように、最小隙間寸法をtとし、囲繞管10の外径寸法をDとしたときに、t/Dを0.08〜1.2とする。   For this reason, the focal points F0, F1 (F0, F2) of the first ellipsoidal mirror 21 and the focal points F0, F1 (F0, F2) of the second ellipsoidal mirror 22 are common, and the focal points F0, F1, F2 are the same. This reflecting mirror is focused and coincides with a focal point F1 (F2) where the heating source is arranged at the center O of the spherical mirror 23. Further, the spherical mirror 23 and the second ellipsoidal mirror 22 are continuous, and a step portion 40 is formed between the first ellipsoidal mirror 21 and the spherical mirror 23. Then, the minimum clearance dimension between the surrounding tube 10 surrounding the sample S (the raw material rod 7 and the seed crystal rod 9) disposed at one focal point and the first ellipsoidal mirror 21 is defined as the outer diameter of the surrounding tube 10. 8.0% to 120%, more preferably 8.3% to 116.7%. That is, as shown in FIG. 3, when the minimum gap dimension is t and the outer diameter dimension of the surrounding tube 10 is D, t / D is 0.08 to 1.2.

この場合、第1楕円面鏡21において、その長径をa1とするとともに、短径をb1としたときに、b1/a1を0.4〜0.95、より好ましくは0.4〜0.92とし、第2楕円面鏡22において、その長径をa2とするとともに、短径をb2としたときに、b2/a2を0.4〜0.95、より好ましくは0.4〜0.92とする。また、b1/b2を0.3〜0.80、より好ましくは0.3〜0.73とする。さらに、a1/a2を0.5〜1.0、より好ましくは0.54〜1.0とし、球面鏡23の半径をrとしたときに、r=a1/2程度とする。   In this case, in the first ellipsoidal mirror 21, when the major axis is a1 and the minor axis is b1, b1 / a1 is 0.4 to 0.95, more preferably 0.4 to 0.92. In the second ellipsoidal mirror 22, when the major axis is a2 and the minor axis is b2, b2 / a2 is 0.4 to 0.95, more preferably 0.4 to 0.92. To do. Further, b1 / b2 is set to 0.3 to 0.80, more preferably 0.3 to 0.73. Furthermore, when a1 / a2 is 0.5 to 1.0, more preferably 0.54 to 1.0, and the radius of the spherical mirror 23 is r, r = a1 / 2.

図1に示すように、一方の焦点F0と第1楕円面鏡21の段差部40側の端縁41とを結ぶ直線Lの延長線上に第2楕円面鏡22と球面鏡23との連設部42がある。   As shown in FIG. 1, a continuous portion of a second elliptical mirror 22 and a spherical mirror 23 on an extended line of a straight line L connecting one focal point F <b> 0 and an edge 41 on the stepped portion 40 side of the first elliptical mirror 21. There are 42.

このように設定することによって、一方の反射鏡1(2)の加熱源3(4)からの放射熱の他方の反射鏡2(1)への入射が少なくなって、試料溶融のための加熱源3(4)からの放射熱のエネルギーロスを少なくすることができる。   By setting in this way, the incidence of the radiant heat from the heating source 3 (4) of one reflecting mirror 1 (2) to the other reflecting mirror 2 (1) is reduced, and heating for melting the sample is performed. Energy loss of radiant heat from the source 3 (4) can be reduced.

すなわち、図3において、一方の反射鏡1の加熱源3からの他方の反射鏡2(1)への入射範囲は、ハッチングで示す範囲である。この場合の入射範囲をθとした場合、エネルギーロスは、2θ/360°で演算することができる。例えば、θが10.294°であれば、エネルギーロスは、(2×10.294)÷360=0.057=5.7%となる。   That is, in FIG. 3, the incident range from the heating source 3 of the one reflecting mirror 1 to the other reflecting mirror 2 (1) is a range indicated by hatching. When the incident range in this case is θ, the energy loss can be calculated at 2θ / 360 °. For example, if θ is 10.294 °, the energy loss is (2 × 10.294) ÷ 360 = 0.057 = 5.7%.

図4において、一方の反射鏡1の加熱源3からの他方の反射鏡2(1)への入射範囲は、ハッチングで示す範囲である。この場合の入射範囲をθ1とした場合、エネルギーロスは、2θ1/360°で演算することができる。例えば、θ1が15°であれば、エネルギーロスは、(2×15)÷360=0.083=8.3%となる。   In FIG. 4, the incident range from the heating source 3 of the one reflecting mirror 1 to the other reflecting mirror 2 (1) is a range indicated by hatching. When the incident range in this case is θ1, the energy loss can be calculated at 2θ1 / 360 °. For example, if θ1 is 15 °, the energy loss is (2 × 15) ÷ 360 = 0.083 = 8.3%.

これに対して、図5と図6等に示す従来の単結晶育成装置では、一方の回転楕円面鏡51の加熱源53(54)からの放射熱の他方の回転楕円面鏡52(51)への入射が多く、試料溶融のための加熱源53(54)からの放射熱のエネルギーロスが大きくなっている。   On the other hand, in the conventional single crystal growing apparatus shown in FIGS. 5 and 6, etc., the other spheroid mirror 52 (51) of the radiant heat from the heating source 53 (54) of one spheroid mirror 51 is used. The energy loss of the radiant heat from the heating source 53 (54) for melting the sample is large.

すなわち、図8において、一方の反射鏡1の加熱源3からの他方の反射鏡2(1)への入射範囲は、ハッチングで示す範囲である。この場合の入射範囲をαとした場合、エネルギーロスは、2α/360°で演算することができる。例えば、αが41.134°であれば、エネルギーロスは、(2×41.134)÷360=0.229=22.9%となる。なお、図8においては、上結晶駆動軸56の周囲には蒸発物吸着ジャケット64が配置されている。   That is, in FIG. 8, the incident range from the heating source 3 of one reflecting mirror 1 to the other reflecting mirror 2 (1) is a range indicated by hatching. If the incident range in this case is α, the energy loss can be calculated at 2α / 360 °. For example, if α is 41.134 °, the energy loss is (2 × 41.134) ÷ 360 = 0.229 = 22.9%. In FIG. 8, an evaporant adsorption jacket 64 is disposed around the upper crystal drive shaft 56.

図9において、一方の反射鏡1の加熱源3からの他方の反射鏡2(1)への入射範囲は、ハッチングで示す範囲である。この場合の入射範囲をα1とした場合、例えば、α1が460°であれば、エネルギーロスは、(2×60)÷360=0.333=33.3%となる。   In FIG. 9, the incident range from the heating source 3 of the one reflecting mirror 1 to the other reflecting mirror 2 (1) is a range indicated by hatching. When the incident range in this case is α1, for example, if α1 is 460 °, the energy loss is (2 × 60) ÷ 360 = 0.333 = 33.3%.

本発明の単結晶育成装置では、試料溶融のための加熱源からの放射熱のエネルギーロスを少なくすることができ、効率よく試料を溶融することができる。このため、小さい能力の加熱源で、短時間に安定して溶融して単結晶を育成できる。   In the single crystal growing apparatus of the present invention, the energy loss of radiant heat from the heating source for melting the sample can be reduced, and the sample can be efficiently melted. For this reason, it is possible to grow a single crystal by stably melting in a short time with a heating source having a small capacity.

b1/a1を0.4〜0.95としたり、a1/a2を0.5〜1.0とするとともに、b1/b2を0.3〜0.80としたり、一方の焦点F0と第1楕円面鏡21の段差部40側の端縁41とを結ぶ直線Lの延長線上に第2楕円面鏡22と球面鏡23との連設部42があるように設定することによって、放射熱のエネルギーロスを少なくできる単結晶育成装置を安定して提供できる。   b1 / a1 is set to 0.4 to 0.95, a1 / a2 is set to 0.5 to 1.0, and b1 / b2 is set to 0.3 to 0.80. By setting so that the second elliptical mirror 22 and the spherical mirror 23 are connected to each other on the extended line of the straight line L connecting the edge 41 on the stepped portion 40 side of the elliptical mirror 21, the energy of the radiant heat is set. A single crystal growing apparatus capable of reducing loss can be stably provided.

前記実施形態のように、反射鏡1(2)を複数個のブロック体を構成することによって、第1楕円面鏡21と第2楕円面鏡22と球面鏡23とからなる反射鏡1(2)を精度よく安定して製造することができる。しかも、前記実施形態では、各ブロック体がボルト部材による締結であるので、分離・組立を簡単に行うことができる。このため、各ブロック体の交換やメンテナンスを行うことができ、長期にわたって安定して単結晶育成装置を提供できる。   As in the above-described embodiment, the reflecting mirror 1 (2) is formed of a plurality of block bodies, thereby forming the reflecting mirror 1 (2) including the first ellipsoidal mirror 21, the second ellipsoidal mirror 22, and the spherical mirror 23. Can be manufactured accurately and stably. In addition, in the above embodiment, each block body is fastened by a bolt member, so that separation and assembly can be easily performed. For this reason, each block body can be replaced and maintained, and a single crystal growing apparatus can be provided stably over a long period of time.

以上、本発明の実施形態につき説明したが、前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、蒸発物吸着ジャケット14を配置したものであったが、このようなジャケットを省略してもよい。省略する場合、いずれか一方であっても、両方であってもよい。また、反射鏡を構成する場合、前記実施形態では、4つのブロック体にて構成したが、用いるブロック体として4つに限るものではない。製造可能であれば、1つのブロック体にて構成してもよい。   As described above, the embodiment of the present invention has been described, but various modifications are possible without being limited to the embodiment. For example, in the embodiment, the evaporative material adsorption jacket 14 is arranged. Such a jacket may be omitted. If omitted, either one or both may be used. Further, in the case of configuring the reflecting mirror, in the above-described embodiment, it is configured by four block bodies, but the number of block bodies to be used is not limited to four. If manufacture is possible, you may comprise by one block body.

1、2 反射鏡
3、4 加熱源
10 囲繞管
21 楕円面鏡
22 楕円面鏡
23 球面鏡
40 段差部
42 連設部
50 単結晶育成装置
F0 焦点
F1、F2 焦点
DESCRIPTION OF SYMBOLS 1, 2 Reflecting mirror 3, 4 Heating source 10 Surrounding tube 21 Ellipsoidal mirror 22 Ellipsoidal mirror 23 Spherical mirror 40 Step part 42 Connection part 50 Single crystal growth apparatus F0 Focus F1, F2 Focus

Claims (4)

各々一対の焦点を有しかつ一方の焦点が一致するように配置される一対の反射鏡と、反射鏡の他方の焦点に配置された加熱源とを備え、前記加熱源の放射熱を直接的および反射鏡で反射して、反射鏡の一方の焦点に配置された試料に照射して単結晶を育成する単結晶育成装置において、
各反射鏡は、第1楕円面鏡と、第1楕円面鏡の外径側に配設される第2楕円面鏡と、第1楕円面鏡と第2楕円面鏡との間に配設される球面鏡とで構成され、第1楕円面鏡の焦点と第2楕円面鏡の焦点とが共通であり、この焦点がこの反射鏡の焦点をなし、球面鏡の中心が前記加熱源が配置される焦点と一致して、球面鏡と第2楕円面鏡とが連続するとともに、第1楕円面鏡と球面鏡との間に段差部が形成され、一方の焦点に配置される試料を囲繞する囲繞管と第1楕円面鏡との間の最小隙間寸法を、囲繞管の外径寸法の8.0%〜120%としたことを特徴とする単結晶育成装置。
A pair of reflecting mirrors each having a pair of focal points and arranged so that one focal point coincides, and a heating source disposed at the other focal point of the reflecting mirror, And a single crystal growing apparatus that grows a single crystal by irradiating a sample arranged at one focal point of the reflecting mirror with a reflecting mirror.
Each reflecting mirror is disposed between the first ellipsoidal mirror, the second ellipsoidal mirror disposed on the outer diameter side of the first ellipsoidal mirror, and the first ellipsoidal mirror and the second ellipsoidal mirror. The focal point of the first ellipsoidal mirror and the focal point of the second ellipsoidal mirror are the same, this focal point is the focal point of this reflecting mirror, and the center of the spherical mirror is disposed with the heating source. The spherical mirror and the second ellipsoidal mirror are continuous with each other, and a step portion is formed between the first ellipsoidal mirror and the spherical mirror to surround the sample placed at one focal point. A single crystal growing apparatus characterized in that the minimum gap dimension between the first ellipsoidal mirror and the outer diameter dimension of the surrounding tube is 8.0% to 120%.
第1楕円面鏡において、その長径をa1とするとともに、短径をb1としたときに、b1/a1を0.4〜0.95としたことを特徴とする請求項1に記載の単結晶育成装置。   2. The single crystal according to claim 1, wherein the first ellipsoidal mirror has a major axis of a1 and a minor axis of b1 and b1 / a1 of 0.4 to 0.95. Training device. 第1楕円面鏡において、その長径をa1とするとともに、短径をb1とし、第2楕円面鏡において、その長径をa2とするとともに、短径をb2としたときに、a1/a2を0.5〜1.0とし、b1/b2を0.3〜0.80としたことを特徴とする請求項1に記載の単結晶育成装置。   In the first ellipsoidal mirror, when the major axis is a1, the minor axis is b1, and in the second ellipsoidal mirror, the major axis is a2, and the minor axis is b2, and a1 / a2 is 0. The single crystal growth apparatus according to claim 1, wherein the single crystal growth apparatus is 0.5 to 1.0 and b1 / b2 is 0.3 to 0.80. 一方の焦点と第1楕円面鏡の段差部側の端縁とを結ぶ直線の延長線上に第2楕円面鏡と球面鏡との連設部があることを特徴とする請求項1〜請求項3のいずれか1項に記載の単結晶育成装置。   4. A connecting portion of a second ellipsoidal mirror and a spherical mirror is provided on an extension of a straight line connecting one focal point and an edge on the stepped portion side of the first ellipsoidal mirror. The single crystal growth apparatus of any one of these.
JP2012023190A 2012-02-06 2012-02-06 Single crystal growth equipment Active JP5955575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023190A JP5955575B2 (en) 2012-02-06 2012-02-06 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023190A JP5955575B2 (en) 2012-02-06 2012-02-06 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2013159524A true JP2013159524A (en) 2013-08-19
JP5955575B2 JP5955575B2 (en) 2016-07-20

Family

ID=49172089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023190A Active JP5955575B2 (en) 2012-02-06 2012-02-06 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP5955575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122193B1 (en) * 2016-08-08 2017-04-26 伸 阿久津 Single crystal manufacturing apparatus and single crystal manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388790A (en) * 1989-08-31 1991-04-15 Nichiden Mach Ltd Infrared-heated single crystal producing device
US5677983A (en) * 1995-01-11 1997-10-14 Nauchno-Proizvodstvennaya Firma "Adonis" Light beam heater with light source and reflector having two ellipsoidal sections and a truncated spherical surface there between
JP2001242543A (en) * 2000-02-28 2001-09-07 Ushio Inc Light source device
WO2005075713A1 (en) * 2004-02-05 2005-08-18 Nec Machinery Corporation Single crystal growing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388790A (en) * 1989-08-31 1991-04-15 Nichiden Mach Ltd Infrared-heated single crystal producing device
US5677983A (en) * 1995-01-11 1997-10-14 Nauchno-Proizvodstvennaya Firma "Adonis" Light beam heater with light source and reflector having two ellipsoidal sections and a truncated spherical surface there between
JP2001242543A (en) * 2000-02-28 2001-09-07 Ushio Inc Light source device
WO2005075713A1 (en) * 2004-02-05 2005-08-18 Nec Machinery Corporation Single crystal growing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122193B1 (en) * 2016-08-08 2017-04-26 伸 阿久津 Single crystal manufacturing apparatus and single crystal manufacturing method
WO2018030383A1 (en) * 2016-08-08 2018-02-15 伸 阿久津 Single crystal production apparatus and single crystal production method
US11028497B2 (en) 2016-08-08 2021-06-08 Shin AKUTSU Single crystal production apparatus and single crystal production method

Also Published As

Publication number Publication date
JP5955575B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN106583726B (en) Laser multiple beam cladding apparatus
TWI709803B (en) Process chamber for assembly, process chamber and method of processing a substrate
US20100037817A1 (en) Floating zone melting apparatus
JP5765750B2 (en) Condenser mirror heating furnace
JPH01310291A (en) Specular furnace
JP5181396B2 (en) Single crystal growth apparatus and single crystal growth method
TWI400368B (en) Floating band melting device
JP5955575B2 (en) Single crystal growth equipment
JP2013224237A (en) Multi-light source centralized heating apparatus
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
TW201819695A (en) Apparatus and method for crystal growth in floating zone process
RU2656331C1 (en) Device for growing monocrystals
JP4405320B2 (en) Infrared heating single crystal manufacturing equipment
JP2005247668A (en) Single crystal growing apparatus
JP6122193B1 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment
JP2019019046A (en) Single crystal growth equipment
JPH0388790A (en) Infrared-heated single crystal producing device
US20170114474A1 (en) Single crystal production apparatus and single crystal production method
JP2018024565A (en) Apparatus and method for manufacturing single crystal
JPH07315979A (en) Infrared-heated single crystal producing device
JPS6032126Y2 (en) Single crystal manufacturing equipment
JP2007145629A (en) Method and apparatus for growing single crystal
JP2016204225A (en) Single crystal growth apparatus
JPS63201087A (en) Device for producing single crystal by light and high-frequency induction heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5955575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250