JP2013158327A - Cesium transporter and cesium low-absorbent rice plant - Google Patents

Cesium transporter and cesium low-absorbent rice plant Download PDF

Info

Publication number
JP2013158327A
JP2013158327A JP2012024729A JP2012024729A JP2013158327A JP 2013158327 A JP2013158327 A JP 2013158327A JP 2012024729 A JP2012024729 A JP 2012024729A JP 2012024729 A JP2012024729 A JP 2012024729A JP 2013158327 A JP2013158327 A JP 2013158327A
Authority
JP
Japan
Prior art keywords
cesium
dna
seq
amino acid
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012024729A
Other languages
Japanese (ja)
Inventor
Takashi Akihiro
高志 秋廣
Tomoo Yamaki
智央 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2012024729A priority Critical patent/JP2013158327A/en
Publication of JP2013158327A publication Critical patent/JP2013158327A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cesium low-absorbent rice plant and a cesium transporter.SOLUTION: There is disclosed a cesium transporter having a specific amino acid sequence. There is also disclosed a gene encoding the protein, or a cesium low-absorbent rice plant in which a specific sequence of DNA is characteristically deleted or knocked out.

Description

本発明は、セシウムトランスポータおよびセシウム低吸収性イネに関する。   The present invention relates to a cesium transporter and a low cesium absorption rice.

福島原発事故以降、放射性元素のうち、飛散量が多く、かつ、半減期が長いものとして、セシウム(Cs)が問題視されている。特に、食品中に存在すると、体内被爆の原因となるので、原発隣接地域では出荷ができず、また、出荷制限地区に隣接等する特定地域ではサンプリング調査をおこない、基準値以下であることを確認して出荷されているのが現状である。   Since the Fukushima accident, cesium (Cs) has been regarded as a problem as a radioactive element with a large amount of scattering and a long half-life. In particular, if it is present in food, it may cause internal exposure, so it cannot be shipped in the area adjacent to the nuclear power plant, and a sampling survey is conducted in a specific area adjacent to the restricted area to confirm that it is below the standard value. Is currently being shipped.

食品のうち農産品は、土壌から栄養分を吸収するため、土着したCsの蓄積可能性が特に懸念される。加えて、Csは、植物の必須元素であるカリウムと同族であるため、上記可能性が一層懸念される。   Among food products, agricultural products absorb nutrients from the soil, so there is a particular concern about the possibility of accumulating indigenous Cs. In addition, since Cs is in the same family as potassium, which is an essential element of plants, the above possibility is further concerned.

農産品のうち、米は全国的に栽培され、また、栽培面積も他の農作物に比べて圧倒的に多い。そして、水稲は、基本的に上流からの水を引き込むので、栽培地だけでなく広範囲かつ長期間にわたる監視が必要となる。   Among agricultural products, rice is cultivated nationwide, and the cultivation area is overwhelmingly large compared to other crops. And since paddy rice basically draws water from the upstream, it is necessary to monitor not only the cultivated land but also a wide area for a long time.

一方で、Csを初めとする放射性元素ないしその同位体である安定同位元素の植物体内への吸収検討は、常時は必要とされないため、知見が少なく、米についても手探り的な状況であるのが実情である。   On the other hand, studies on absorption of Cs and other radioactive elements or their stable isotopes into plants are not always required, so there is little knowledge and the situation is fumbling about rice. It is a fact.

消費者心理の観点からも、現象論的な裏付けより科学的根拠を以てセシウムを取り込まないまたは取り込んでいない米が潜在的に求められている。   From the perspective of consumer sentiment, there is a potential demand for rice that does not or does not incorporate cesium with scientific evidence rather than phenomenological support.

ChoiY.H. et al. Journal of Environmental Radioactivity, 80, 45-58 (2005) 'Transferof 137Cs to rice plants from various paddy soils contaminatedunder flooded conditions at different growth stages'ChoiY.H. Et al. Journal of Environmental Radioactivity, 80, 45-58 (2005) 'Transferof 137Cs to rice plants from various paddy soils contaminatedunder flooded conditions at different growth stages'

本発明は、上記に鑑みて検討されたものであり、セシウムの吸収性が低いイネを提供し、また、今後の基礎研究に資するセシウムトランスポータ等を提供することを目的とする。   The present invention has been studied in view of the above, and an object of the present invention is to provide rice with low cesium absorbability and to provide a cesium transporter and the like that contribute to future basic research.

請求項1に記載の発明は、下記A1またはA2に示すタンパク質。
A1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
A2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
The invention according to claim 1 is a protein shown in A1 or A2 below.
A1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
A2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.

請求項2に記載の発明は、下記B1もしくはB2に示すタンパク質をコードするDNAまたは下記B3もしくはB4に示すDNA。
B1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
B2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
B3:配列番号33に記載のDNA。
B4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。
The invention according to claim 2 is a DNA encoding a protein shown in B1 or B2 below, or a DNA shown in B3 or B4 below.
B1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
B2: One or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
B3: DNA described in SEQ ID NO: 33.
B4: a DNA comprising the DNA of SEQ ID NO: 33 containing a substitution, deletion, insertion, addition or inversion in the sequence and translated into a protein having cesium transport activity in rice.

請求項3に記載の発明は、下記C1もしくはC2に示すタンパク質をコードするDNAを含有するベクターまたは下記C3もしくはC4に示すDNAを含有するベクター。
C1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
C2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
C3:配列番号33に記載のDNA。
C4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。
The invention according to claim 3 is a vector containing a DNA encoding a protein shown in C1 or C2 below, or a vector containing a DNA shown in C3 or C4 below.
C1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
C2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
C3: DNA described in SEQ ID NO: 33.
C4: DNA comprising a DNA having a substitution, deletion, insertion, addition, or inversion in the sequence described in SEQ ID NO: 33, and translated into a protein having cesium transport activity in rice.

請求項4に記載の発明は、下記D1もしくはD2に示すタンパク質をコードする遺伝子、または、D3もしくはD4に示すDNA、を欠損したまたは欠損させたことを特徴とするセシウム低吸収性イネ。
D1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
D2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
D3:配列番号33に記載のDNA。
D4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。
The invention according to claim 4 is a cesium-low-absorbing rice, wherein the gene encoding the protein shown in D1 or D2 below or the DNA shown in D3 or D4 is deleted or deleted.
D1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
D2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
D3: DNA set forth in SEQ ID NO: 33.
D4: DNA which is composed of a DNA having a substitution, deletion, insertion, addition or inversion in the sequence described in SEQ ID NO: 33 and which is translated into a protein having cesium transport activity in rice.

本発明によれば、セシウムの吸収性が低いイネを提供し、また、今後の基礎研究に資するセシウムトランスポータ、DNA、または、ベクターを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cesium transporter, DNA, or vector which provides rice with low cesium absorption property and contributes to future basic research can be provided.

トランスポータの候補遺伝子を示すアクセッション番号の一覧である。It is a list of accession numbers indicating transporter candidate genes. 入手した3種のプラスミドマップである。It is three types of obtained plasmid maps. pYES2プラスミドのマップである。It is a map of pYES2 plasmid. 液体培地におけるセシウムトランスポータを有する酵母の成長曲線を示した図である。It is the figure which showed the growth curve of the yeast which has a cesium transporter in a liquid medium. 各種濃度のセシウムを含む固体培地における、セシウムトランスポータを有する酵母の培養結果を示した写真である。It is the photograph which showed the culture result of the yeast which has a cesium transporter in the solid medium containing various concentrations of cesium. それぞれのセシウムトランスポータ遺伝子の発現部位をRT−PCRによって調査した実験結果である。It is the experimental result which investigated the expression site | part of each cesium transporter gene by RT-PCR. アクセッション番号AK241580の遺伝子を酵母に導入した際の酵母中のセシウム吸収量の経時変化を示した図である。It is the figure which showed the time-dependent change of the cesium absorption amount in yeast at the time of introduce | transducing the gene of accession number AK241580 into yeast.

本実施の形態では、農業機器を含めて管理技術が普及している稲作、すなわち、米に着目して、セシウムトランスポータを特定することを主眼とし、また、セシウムトランスポータを欠損させることにより、セシウム低吸収性イネを作出する態様を説明する。   In the present embodiment, rice cultivation in which management technology including agricultural equipment is widespread, i.e., focusing on rice, focusing on identifying cesium transporters, and by losing cesium transporters, An embodiment for producing cesium low-absorption rice will be described.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
<候補遺伝子の選択>
まず、酵母ライブラリを構築することとした。イネの完全長cDNAはおおよそ32000個単離されているが、このうち、栄養素等を輸送するタンパク質、すなわちトランスポータもしくはその候補はおよそ1300個程度存在する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Selection of candidate genes>
First, we decided to construct a yeast library. Approximately 32,000 rice full-length cDNAs have been isolated, and of these, there are approximately 1300 proteins that transport nutrients and the like, that is, transporters or candidates thereof.

そこで、これらに本発明者らによるこれまでの研究結果を加え、イネトランスポータ候補遺伝子(完全長cDNA)をイネゲノムリソースセンタ(独立行政法人農業生物資源研究所)から約1350取り寄せた。そのアクセッション番号の一覧を図1に示した。   Therefore, in addition to the previous research results by the present inventors, about 1350 rice candidate transporter genes (full-length cDNA) were obtained from the Rice Genome Resource Center (National Institute of Agrobiological Sciences). A list of accession numbers is shown in FIG.

これらの遺伝子は、原核生物である大腸菌で組換えタンパク質を発現するプラスミドの形態で分譲される。分譲されたプラスミドは3タイプあり、プラスミドマップをそれぞれ図2に示した。   These genes are distributed in the form of plasmids that express recombinant proteins in the prokaryotic E. coli. There are three types of plasmids distributed, and plasmid maps are shown in FIG.

<pYES2への候補遺伝子の組み換え>
酵母中で組換えタンパク質を発現させる目的で、酵母タンパク質発現ベクターpYES2プラスミド(Invitrogen社)へ遺伝子を組み込む作業をおこなうこととした。このプラスミドは、ウラシル合成遺伝子も有するため、ウラシルを合成しない酵母を用いることにより、導入された遺伝子発現の評価もこなうことができる。また、ガラクトース誘導性のGAL1プロモーターの下流に遺伝子が挿入されるため、酵母内での導入遺伝子の発現を制御することが可能である。このプラスミドマップを図3に示した。なお、相同組換えに用いた配列を配列番号34と35に示した。
<Recombination of candidate genes into pYES2>
For the purpose of expressing the recombinant protein in yeast, it was decided to perform the work of incorporating the gene into the yeast protein expression vector pYES2 plasmid (Invitrogen). Since this plasmid also has a uracil synthetic gene, the expression of the introduced gene can be evaluated by using a yeast that does not synthesize uracil. Further, since the gene is inserted downstream of the galactose-inducible GAL1 promoter, it is possible to control the expression of the transgene in yeast. This plasmid map is shown in FIG. The sequences used for homologous recombination are shown in SEQ ID NOs: 34 and 35.

<目的遺伝子の増幅>
pYES2に挿入するcDNAフラグメントは、イネゲノムリソースセンタから入手したプラスミドを鋳型とし、PCRにより目的の部分のみを増幅することにより作成した。プラスミドは上述の通り3種類あるが、挿入遺伝子近辺の配列は、pME18FL−3とpCMVSPORT6とが同じであるため、PCRにより遺伝子近辺の配列ごと増幅するようなプライマセットを2組設計した。pFLC1用のフォワードプライマとリバースプライマをそれぞれ配列番号36と37に示し、pME18FL−3およびpCMVSPORT6用のフォワードプライマとリバースプライマをそれぞれ配列番号38と39に示す。
<Amplification of target gene>
The cDNA fragment to be inserted into pYES2 was prepared by amplifying only the target portion by PCR using a plasmid obtained from the Rice Genome Resource Center as a template. Although there are three types of plasmids as described above, since two sequences near the inserted gene are the same in pME18FL-3 and pCMVSPORT6, two sets of primer sets were designed to amplify the entire sequence near the gene by PCR. The forward primer and reverse primer for pFLC1 are shown in SEQ ID NOs: 36 and 37, respectively, and the forward primer and reverse primer for pME18FL-3 and pCMVSPORT6 are shown in SEQ ID NOs: 38 and 39, respectively.

なお、PCRには、合成速度と正確性の高さを考慮しPrime Star Max(Takara)を使用した。5μlの反応系に2.5μlの2x Prime Star Maxバッファ、プライマを0.125μl(フォワードプライマとリバースプライマがそれぞれ10pmolになるように調製したもの)、MQを4.875μl加えた。鋳型DNAはチップの先をプラスミド溶液に浸し、チップの先端にわずかについたものを利用した。PCRは98℃2分間の変性を行った後、98℃10秒、55℃5秒、72℃30秒間を30サイクル行い、最後に72℃3分間反応させた。   In addition, Prime Star Max (Takara) was used for PCR in consideration of the synthesis speed and high accuracy. To the 5 μl reaction system, 2.5 μl of 2 × Prime Star Max buffer, 0.125 μl of primer (prepared so that the forward primer and the reverse primer were each 10 pmol), and 4.875 μl of MQ were added. The template DNA was obtained by immersing the tip of the chip in a plasmid solution and attaching it slightly to the tip of the chip. PCR was performed at 98 ° C. for 2 minutes, followed by 30 cycles of 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, 72 ° C. for 30 seconds, and finally reacted at 72 ° C. for 3 minutes.

<pYES2の準備>
pYES2は予め制限酵素XbaI、KpnI、HindIII(何れもTakara社)にて切断し、直鎖化した。切断反応はpYES2溶液72μl(10μg)に10×M Buffer 9μlと、XbaI、KpnI、HindIIIを3μlづつ加え、37℃で終夜反応させた。続いて、1%のアガロースゲル電気泳動にて分離した後、目的のバンドをゲルから切り出した。ゲルからのDNAの抽出は、Mag Extract(Toyobo社)を使用した。方法はマニュアルに従った。
<Preparation for pYES2>
pYES2 was previously cleaved with restriction enzymes XbaI, KpnI, and HindIII (all of Takara) and linearized. For the cleavage reaction, 9 μl of 10 × M Buffer and 3 μl of XbaI, KpnI, and HindIII were added to 72 μl (10 μg) of pYES2 solution and reacted at 37 ° C. overnight. Subsequently, after separation by 1% agarose gel electrophoresis, the target band was cut out from the gel. For extraction of DNA from the gel, Mag Extract (Toyobo) was used. The method followed the manual.

<PCR産物のpYES2への挿入>
サブクローニングに際しては、Gap−repair cloning法[Ma H, Kunes S, Schatz PJ, Botstein D (1987) “Plasmid construction
by homologous recombination in yeast” Gene; 58(2-3):201-16.]によった。先のPCRによって得られたDNA断片 100ng程度と、直鎖化したpYES2 5ng程度を同時に酵母(W303-1A株Genotype: MATa {leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15})に導入することにより目的のプラスミドを得た。
<Insertion of PCR product into pYES2>
For subcloning, the Gap-repair cloning method [Ma H, Kunes S, Schatz PJ, Botstein D (1987) “Plasmid construction
by homologous recombination in yeast ”Gene; 58 (2-3): 201-16.] About 100 ng of the DNA fragment obtained by the previous PCR and about 5 ng of linearized pYES2 were simultaneously added to the yeast (W303- 1A strain Genotype: MATa (leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15}) to obtain the desired plasmid.

<目的の遺伝子の挿入確認>
目的の遺伝子がプラスミドに正しく挿入されたことを確認するため、DNAシーケンサを用いて配列の確認を行った。まず、酵母からプラスミドを抽出し、得られたプラスミドを大腸菌に形質転換し、さらに大腸菌を培養しプラスミドを抽出した。
<Confirmation of insertion of target gene>
In order to confirm that the target gene was correctly inserted into the plasmid, the sequence was confirmed using a DNA sequencer. First, a plasmid was extracted from yeast, the resulting plasmid was transformed into E. coli, and E. coli was further cultured to extract the plasmid.

酵母からのプラスミドの抽出は以下の方法により行った。
抽出にはプラスミド抽出キットHiYield Plasmid Mini Kit(RBC社)を用いた。3mlのSC−ura液体培地で終夜培養した酵母を丸底2mlチューブ(eppendorf)に移し、3000rpm、3分間、室温で遠心して集菌した。PDA1を200μl加え、そこにZymolyaseを10μl加え37℃で一時間反応させた。PDA2を200μl加えよく攪拌したのち、PDA3を300μl加えよく攪拌した。15000rpmで10分間室温で遠心し、上清をフィルタカラムに移した。吸引により溶液を濾過した後、W1バッファを400μl加え吸引濾過した。続いて600μlのWashバッファを加えて吸引濾過した。フィルタカラムをエンプティカラムに移し、15000rpmで1分間室温で遠心した。フィルタカラムを新しい1.5mlマイクロチューブに移し、Elutionバッファを30μl加えて1分間静置した。15000rpmで1分間室温で遠心し濾液をプラスミド溶液とした。
Plasmid extraction from yeast was performed by the following method.
For extraction, a plasmid extraction kit HiYeld Plasmid Mini Kit (RBC) was used. Yeast cultured overnight in 3 ml of SC-ura liquid medium was transferred to a round bottom 2 ml tube (eppendorf) and collected by centrifugation at 3000 rpm for 3 minutes at room temperature. 200 μl of PDA1 was added, 10 μl of Zymolase was added thereto, and reacted at 37 ° C. for 1 hour. After adding 200 μl of PDA2 and stirring well, 300 μl of PDA3 was added and stirring well. After centrifugation at 15000 rpm for 10 minutes at room temperature, the supernatant was transferred to a filter column. After the solution was filtered by suction, 400 μl of W1 buffer was added and suction filtered. Subsequently, 600 μl of Wash buffer was added and suction filtered. The filter column was transferred to an empty column and centrifuged at 15000 rpm for 1 minute at room temperature. The filter column was transferred to a new 1.5 ml microtube, 30 μl of Elution buffer was added and allowed to stand for 1 minute. The solution was centrifuged at 15000 rpm for 1 minute at room temperature, and the filtrate was used as a plasmid solution.

得られたプラスミドを大腸菌DH5α株に形質転換した。
コンピテントセルの作成はHanahanらの方法で作成した[Hanahan, D (1983) “Studies on transformation of Escherichia coli
with plasmids” Journal of Molecular Biology 166 (4): 557-580]。形質転換はFreeze−though法を用いて行った。100μlのコンピテントセルが完全に溶けきる前に酵母から抽出したプラスミド溶液10μlを加え軽く撹拌し、30分間氷上に静置した。その後、42℃で45秒間反応させた後、氷上で3分間静置した。その後、37℃に保温しておいたSOC培地を800μl加え、軽く撹拌したのち37℃のインキュベータ内にて30分間静置した。静置後、5000rpm、2分間遠心し集菌した後、デカンテーションで上清を捨てた。37℃に保温しておいたLA培地に植菌し終夜培養した。
The resulting plasmid was transformed into E. coli DH5α strain.
Competent cells were created by the method of Hanahan et al. [Hanahan, D (1983) “Studies on transformation of Escherichia coli
with plasmids ”Journal of Molecular Biology 166 (4): 557-580]. Transformation was performed using the Freeze-Though method. 10 μl of a plasmid solution extracted from yeast before 100 μl of competent cells were completely dissolved. The mixture was lightly stirred and allowed to stand on ice for 30 minutes, followed by reaction at 42 ° C. for 45 seconds and then left on ice for 3 minutes, and then 800 μl of SOC medium kept at 37 ° C. was added. After stirring, the mixture was allowed to stand for 30 minutes in an incubator at 37 ° C. After standing, the cells were collected by centrifugation at 5000 rpm for 2 minutes, and then the supernatant was discarded by decantation. And inoculated overnight.

用いたLA培地の組成を表1に示す。

Figure 2013158327
NaOHによりpHは7.2〜7.5に調整する。
121℃20分間のオートクレーブ後、60℃程度まで培地温度が下がったところで
終わり濃度100ug/mlとなるようにアンピシリンナトリウム(Wako)を加
えた。 The composition of the LA medium used is shown in Table 1.
Figure 2013158327
The pH is adjusted to 7.2-7.5 with NaOH.
After autoclaving at 121 ° C. for 20 minutes, ampicillin sodium (Wako) was added to a final concentration of 100 ug / ml when the medium temperature dropped to about 60 ° C.

大腸菌からのプラスミド抽出にはプラスミド抽出キットHiYield Plasmid Mini Kit(RBC社)を用いた。3mlのLA液体培地で終夜培養した大腸菌を丸底2mlチューブ(eppendorf)に移し、3000rpm、3分間、室温で遠心して集菌した。PDA1を200μl加え完全に懸濁した。続いて、PDA2を200μl加え10回上下転倒した後、2分間静置した、PDA3を300μl加えよく攪拌した。15000rpmで10分間室温で遠心し、上清をフィルタカラムに移した。吸引により溶液を濾過した後、W1バッファを400μl加え吸引濾過した。続いて600μlのWashバッファを加えて吸引濾過した。フィルタカラムをエンプティカラムに移し、15000rpmで1分間室温で遠心した。フィルタカラムを新しい1.5mlマイクロチューブに移し、Elutionバッファを30μl加えて1分間静置した。15000rpmで1分間室温で遠心し濾液をプラスミド溶液とした。   For plasmid extraction from E. coli, a plasmid extraction kit HiYield Plasmid Mini Kit (RBC) was used. E. coli cultured overnight in 3 ml of LA liquid medium was transferred to a round bottom 2 ml tube (eppendorf) and collected by centrifugation at 3000 rpm for 3 minutes at room temperature. 200 μl of PDA1 was added and completely suspended. Subsequently, 200 μl of PDA2 was added and the mixture was tumbled 10 times, and then allowed to stand for 2 minutes. Then, 300 μl of PDA3 was added and stirred well. After centrifugation at 15000 rpm for 10 minutes at room temperature, the supernatant was transferred to a filter column. After the solution was filtered by suction, 400 μl of W1 buffer was added and suction filtered. Subsequently, 600 μl of Wash buffer was added and suction filtered. The filter column was transferred to an empty column and centrifuged at 15000 rpm for 1 minute at room temperature. The filter column was transferred to a new 1.5 ml microtube, 30 μl of Elution buffer was added and allowed to stand for 1 minute. The solution was centrifuged at 15000 rpm for 1 minute at room temperature, and the filtrate was used as a plasmid solution.

シーケンサはABI社の3130DNAシーケンサを用いた。PCR反応液は、プラスミドDNA溶液を2μl(200〜400ng)、BigDye(ABI社)を0.3μl、5×Sequence Buffer(ABI社)を4μl、Primer(12.5pmol/μl)を0.25μl、超純水を13.45μlとした。PCR反応は、サーマルサイクラ9700(ABI社)を用いて行った。PCRは96℃2分間の変性を行った後、96℃10秒、50℃5秒、60℃4分間を35サイクル行った。   The sequencer used was an ABI 3130 DNA sequencer. For the PCR reaction solution, 2 μl (200 to 400 ng) of plasmid DNA solution, 0.3 μl of BigDye (ABI), 4 μl of 5 × Sequence Buffer (ABI), 0.25 μl of Primer (12.5 pmol / μl), The amount of ultrapure water was 13.45 μl. The PCR reaction was performed using a thermal cycler 9700 (ABI). PCR was performed by denaturing at 96 ° C. for 2 minutes, followed by 35 cycles of 96 ° C. for 10 seconds, 50 ° C. for 5 seconds, and 60 ° C. for 4 minutes.

未反応のBigDyeの除去は、shephadex G−50(GEヘルスケア)を用いて行った。3gのshephadex G−50(Fine Grade)を50mlのファルコンチューブに入れ、超純粋を50ml加え一晩静置した。使用直前に、Shepadex溶液を良く混ぜマルチスクリーン(GEヘルスケア)に300μl加えた。マルチスクリーンをPCRプレート上に置き、1000rpm、室温で5分間遠心した。5分間遠心した後、プレートの中心側と外側を逆にして1000rpm、室温で5分間遠心した。ゲルの入ったマルチスクリーンを新たなPCRプレートに乗せかえ、ゲルの中央にシーケンス反応産物をアプライした。1000rpm、室温で5分間遠心した。濾液をシーケンサに供した。   Unreacted BigDye was removed using shephadex G-50 (GE Healthcare). 3 g of shephadex G-50 (Fine Grade) was placed in a 50 ml falcon tube, and 50 ml of ultrapure was added and allowed to stand overnight. Immediately before use, the Shepadex solution was mixed well and 300 μl was added to the multiscreen (GE Healthcare). The multiscreen was placed on a PCR plate and centrifuged at 1000 rpm at room temperature for 5 minutes. After centrifuging for 5 minutes, the center side and the outside of the plate were reversed and centrifuged at 1000 rpm at room temperature for 5 minutes. The multiscreen containing the gel was placed on a new PCR plate, and the sequence reaction product was applied to the center of the gel. Centrifugation was performed at 1000 rpm at room temperature for 5 minutes. The filtrate was subjected to a sequencer.

<目的の遺伝子が挿入されていることが確認できたプラスミドの酵母への導入>
酵母へのプラスミドの形質転換は、H Ito,Y Fukuda,K Murata, and A Kimura (1983) “Transformation of
intact yeast cells treated with alkali cations.” Journal of
bacteriology,163-168を一部改変して行った。
<Introduction of a plasmid in which the target gene has been inserted into yeast>
Plasmid transformation into yeast is described in H Ito, Y Fukuda, K Murata, and A Kimura (1983) “Transformation of
intact yeast cells treated with alkali cations. ”Journal of
bacteriology, 163-168 was partially modified.

まず、酵母(W303-1A株Genotype: MATa {leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15})を3mlのYPD培地にて30℃で終夜培養し前培養液とした。100mlのYPAD培地が入った300ml容量のコルベン(IWAKI)に前培養液3mlを加え、OD600=0.4〜0.6程度になるまで30℃、90rpmで回転培養した。OD600=0.4〜0.6程度になったところで2本の50mlのチューブ(Labcon)に移し、3000rpm、2分間、室温で遠心し集菌した。上清を捨てて25mlの滅菌水でリンスを一回行い、さらに集菌して上清を完全に除いた。2mlの0.1M酢酸リチウムをそれぞれ加えて懸濁し、3000rpm、2分間、室温で遠心して集菌した。
First, yeast (W303-1A strain Genotype: MATa (leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15}) was cultured overnight at 30 ° C. in 3 ml of YPD medium to obtain a preculture solution. 3 ml of the preculture solution was added to 300 ml of Kolben (IWAKI) containing 100 ml of YPAD medium, and rotationally cultured at 30 ° C. and 90 rpm until OD 600 = about 0.4 to 0.6. When OD 600 was about 0.4 to 0.6, the cells were transferred to two 50 ml tubes (Labcon), and centrifuged at 3000 rpm for 2 minutes at room temperature to collect bacteria. The supernatant was discarded, rinsed once with 25 ml of sterilized water, and further collected to remove the supernatant completely. 2 ml of 0.1 M lithium acetate was added and suspended, and the cells were collected by centrifugation at 3000 rpm for 2 minutes at room temperature.

上清を除いた後、50% PEG4000 6ml、1M酢酸リチウム 900μl、キャリアDNA(2.0mg/ml)625μl、ジメチルスルホキシド1ml、滅菌水1.25mlを加えてボルテックスした。2本を合して96穴プレートに200μlづつ分注し、それぞれにDNA溶液を加えた。もれのないようにシールし、その後30℃で30分間静置した。次に恒温機(TAITEC)により42℃で20分間ヒートショックを行った。ヒートショック中は3〜5分間おきに上下転倒により混合した。3000rpm、10min、室温で遠心し、上清を完全に除き、200μlのYPAD液体培地を加え懸濁し、30℃、1時間保温した。3000rpm、10min、室温で遠心し、上清を完全に除き20μlの滅菌水に懸濁し、SC−ura固体培地に総て植菌した。   After removing the supernatant, 6 ml of 50% PEG 4000, 900 μl of 1M lithium acetate, 625 μl of carrier DNA (2.0 mg / ml), 1 ml of dimethyl sulfoxide and 1.25 ml of sterilized water were added and vortexed. The two were combined and dispensed into a 96-well plate at 200 μl, and the DNA solution was added to each. Sealed to prevent leakage, and then allowed to stand at 30 ° C. for 30 minutes. Next, heat shock was performed at 42 ° C. for 20 minutes using a thermostatic device (TAITEC). During heat shock, mixing was performed by tumbling up and down every 3 to 5 minutes. The mixture was centrifuged at 3000 rpm for 10 minutes at room temperature, the supernatant was completely removed, 200 μl of YPAD liquid medium was added and suspended, and the mixture was kept at 30 ° C. for 1 hour. The mixture was centrifuged at 3000 rpm for 10 min at room temperature, the supernatant was completely removed, suspended in 20 μl of sterilized water, and all of the SC-ura solid medium was inoculated.

<ライブラリのスクリーニング>
・酵母の菌株および培養条件:
酵母(W303-1A株Genotype: MATa {leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15})はSC−ura培地にて培養を行った。液体培養時はシェーカ(NR−3,TAITEC)で180rpmの回転培養を行った。前培養時はSC−ura培地を用いて、本培養時にはSG−ura+Gal培地を用いた。いずれも30℃で培養を行った。
<Library screening>
Yeast strain and culture conditions:
Yeast (W303-1A strain Genotype: MATa (leu2-3,112 trp1-1 can1-100
ura3-1 ade2-1 his3-11,15}) were cultured in SC-ura medium. During liquid culture, rotary culture at 180 rpm was performed with a shaker (NR-3, TAITEC). SC-ura medium was used during preculture, and SG-ura + Gal medium was used during main culture. All were cultured at 30 ° C.

なお、SC−uraまたはSG−ura培地100 ml中の組成とおよび作成は次の通りである。
Yeast Nitrogen Base(日本BD社):0.67g
Drop out mix:0.182g
adenine(Wako):0.04g
saccinic acid buffer:5ml添加
これを脱イオン水で90mlとなるまで調製し、agarose(Wako)を2g添加して、121℃で20分間オートクレーブした。
SC−ura培地にはglucoseを2g添加
SG−ura培地にはgalactoseを2g添加
In addition, the composition and preparation in 100 ml of SC-ura or SG-ura medium are as follows.
Yeast Nitrogen Base (Japan BD): 0.67 g
Drop out mix: 0.182g
adenine (Wako): 0.04g
Succinic acid buffer: 5 ml added This was prepared with deionized water to 90 ml, 2 g of agarose (Wako) was added, and autoclaved at 121 ° C. for 20 minutes.
Add 2g of glucose to SC-ura medium Add 2g of galactose to SG-ura medium

・スクリーニング条件:
セシウムトランスポータのスクリーニングに際しては、塩化セシウム(Wako)を用いて評価をおこなった。
塩化セシウムを滅菌水に溶かして4Mセシウム溶液を作成し、オートクレーブ後にSG−ura培地またはSC−ura培地に添加することでセシウム含有培地を作成した。選択培地には培地中のpHを一定に揃えることを目的にコハク酸/Trisバッファを終濃度20mMになるように添加した。スクリーニング時、前培養は96穴マイクロタイタープレート(BM機器)で行った。各ウェルに100μlのSC−ura液体培地を分注し、酵母をピンレプリケータ(ワトソン)または楊枝を用いて植菌した後、恒温振とう機(タイテック社)を用い、180rpmで30℃、終夜培養した。続いて、1.5mlのディープウェルプレートの各ウェルに200μlのSC−ura培地を入れ、そこに前培養した酵母を20μl植菌し、30℃で4時間30分培養した。培養後、新しい96穴マイクロタイタープレートに100μl分注し、吸光度を測定した(Model680,BIO−RAD)。
・ Screening conditions:
In screening of the cesium transporter, evaluation was performed using cesium chloride (Wako).
Cesium chloride was dissolved in sterilized water to prepare a 4M cesium solution. After autoclaving, a cesium-containing medium was prepared by adding to SG-ura medium or SC-ura medium. To the selective medium, succinic acid / Tris buffer was added to a final concentration of 20 mM for the purpose of keeping the pH in the medium constant. At the time of screening, pre-culture was performed in a 96-well microtiter plate (BM instrument). Dispense 100 μl of SC-ura liquid medium into each well, inoculate the yeast using a pin replicator (Watson) or toothpick, and then culture at 30 ° C. overnight at 180 rpm using a constant temperature shaker (Tytec). did. Subsequently, 200 μl of SC-ura medium was put in each well of a 1.5 ml deep well plate, 20 μl of precultured yeast was inoculated there, and cultured at 30 ° C. for 4 hours 30 minutes. After culture, 100 μl was dispensed into a new 96-well microtiter plate, and the absorbance was measured (Model 680, BIO-RAD).

また、本培養液を10μl加えるとOD595が0.01となるように滅菌水を1.5mlのディープウェルプレートに加えた。この滅菌水に10μlの本培養液を加え総ての菌液の濁度を揃えた後、サージカルテープ(3M社)で蓋をして、3分間卓上ミキサーで良く攪拌した。懸濁液150μlを新しい96穴マイクロタイタープレートに分注した。この菌液を固体培地に植菌する際にはベル・ブロッター96穴リプリケーター(サンプラテック社)を使った。30℃で40〜48時間培養を行った。 Moreover, OD 595 The addition of the culture solution 10μl was added with sterile water so that 0.01 to deep well plates 1.5 ml. After 10 μl of the main culture solution was added to the sterilized water to make the turbidity of all the bacterial solutions uniform, the solution was covered with surgical tape (3M) and stirred well for 3 minutes with a desktop mixer. 150 μl of the suspension was dispensed into a new 96-well microtiter plate. When this bacterial solution was inoculated into a solid medium, a bell blotter 96-well replicator (Samplatech) was used. Culturing was performed at 30 ° C. for 40 to 48 hours.

セシウムは植物の生育に必要ではない。酵母においても同様で、酵母内のセシウム濃度が高まると、酵母増殖等が抑制される。液体培養による吸光度測定も、固体培地によるコロニー評価も、いずれも、ライブラリ中の17株にセシウム輸送活性があることが確認できた。図4は、液体培地におけるセシウムトランスポータを有する酵母の成長曲線を示した図である。図5は、各種濃度のセシウムを含む固体培地における、セシウムトランスポータを有する酵母の培養結果を示した写真である。
なお、ガラクトース誘導性とウラシル要求性も合わせて検討しており、これら17株のスクリーニングの適正を保証した。
Cesium is not necessary for plant growth. The same applies to yeast. When the concentration of cesium in yeast increases, yeast growth and the like are suppressed. In both the absorbance measurement by liquid culture and the colony evaluation by solid medium, it was confirmed that 17 strains in the library had cesium transport activity. FIG. 4 is a diagram showing a growth curve of yeast having a cesium transporter in a liquid medium. FIG. 5 is a photograph showing the results of culturing yeast having a cesium transporter in a solid medium containing various concentrations of cesium.
In addition, galactose-inducibility and uracil requirement were examined together, and the appropriateness of screening of these 17 strains was guaranteed.

以上の実験により、アクセッション番号AK107688,AK107078,AK111959,AK058856,AK066194,AK068574,AK102180,AK058673,AK059035,AK065891,AK071118,AK070844,AK100524,AK105088,AK105667,AK241580,AK120821の遺伝子は、セシウムトランスポータを形成する遺伝子であると確認できた。なお、それぞれのDNAを配列番号1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33に示した。また、AK120821(配列番号33)を除き、翻訳されるタンパク質をそれぞれ配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,32に示した。   Based on the above experiment, accession numbers AK107688, AK107088, AK111959, AK058856, AK066194, AK068574, AK102180, AK058673, AK059035, AK0658891, AK07118, AK070844, AK100504, AK10508, AK15687, It was confirmed that the gene In addition, each DNA was shown to sequence number 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33. Further, except for AK12021 (SEQ ID NO: 33), the proteins to be translated are SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, respectively. It was shown to.

<セシウムトランスポータの発現部位>
次に、イネにおける発現部位を半定量的RT−PCR法を用いて調査した。28℃16時間、24℃8時間の環境で栽培した3葉期のイネからRNeasy Plant Mini Kit(キアゲン社)を用いてtotal RNAを抽出した。抽出方法はキット付属のマニュアルに従った。ただ一点変更した点は以下である。Buffer RW1処理を行った後、10μlのDNaseI(ニッポンジーン社)と70μlのBuffer RDDの混合液をカラムに加え、15分間室温で放置し、DNAの分解を行った。
<Cesium transporter expression site>
Next, the expression site in rice was examined using a semi-quantitative RT-PCR method. Total RNA was extracted from rice at the 3 leaf stage cultivated in an environment of 28 ° C. for 16 hours and 24 ° C. for 8 hours using RNeasy Plant Mini Kit (Qiagen). The extraction method followed the manual attached to the kit. The only changes are as follows. After performing the Buffer RW1 treatment, 10 μl of DNase I (Nippon Gene) and 70 μl of Buffer RDD mixture were added to the column and left at room temperature for 15 minutes to decompose the DNA.

抽出したtotal RNA 5μgを鋳型として逆転写反応を行った。反応には、PrimeScript RT−PCR Kit(TaKaRa社)を用いた。方法は付属のマニュアルに従った。反応液60μlに240μlのTEを加えて5倍に希釈し、PCRまで−30度で保存した。PCRにはTaq DNA Polymerase(BioBasic社)を用いた。反応液の組成はマニュアルに従った。   Reverse transcription reaction was performed using 5 μg of extracted total RNA as a template. For the reaction, PrimeScript RT-PCR Kit (TaKaRa) was used. The method followed the attached manual. 240 μl of TE was added to 60 μl of the reaction solution to dilute 5 times, and stored at −30 degrees until PCR. Taq DNA Polymerase (BioBasic) was used for PCR. The composition of the reaction solution was in accordance with the manual.

合成オリゴはリストのものを利用した。PCR反応は、94℃で2分間反応させた後、94℃30秒、55℃30秒、72℃30秒のサイクルを24−29サイクル行った。PCR産物を1.5%のアガロース電気泳動により分離し、エチジウムブロマイドにより染色した後、デジタルカメラでバンドを撮影した。写真を図6に示す。これから、アクセッション番号AK107078とAK068574の株を除き、根にセシウムトランスポータが形成されることが確認できる。   The synthetic oligos listed were used. The PCR reaction was carried out at 94 ° C. for 2 minutes, followed by 24-29 cycles of 94 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 30 seconds. PCR products were separated by 1.5% agarose electrophoresis, stained with ethidium bromide, and then a band was photographed with a digital camera. A photograph is shown in FIG. From this, it can be confirmed that a cesium transporter is formed at the root, except for strains with accession numbers AK1007078 and AK068574.

なお、PCRに用いたプライマセットと配列番号との関係を表2に示す。

Figure 2013158327
Table 2 shows the relationship between the primer set used for PCR and the sequence number.
Figure 2013158327

<酵母における輸送活性>
次に、上記17株の酵母におけるセシウムトランスポータの輸送活性の測定をおこなった。3mlのSD−gal−Ura液体培地に酵母を植菌して、グロースチャンバーの温度を30℃、150rpmの振盪培養で終夜前培養を行った。翌朝に、3mlのSD−gal−Ura液体培地を前培菌液に追加し、全量を6mlとし、グロースチャンバーの温度を30℃、150rpmの振盪培養で3時間本培養した。135mlのSD−gal−Ura培地に、後に加える菌液を入れてCsCl濃度が30mMになるように4MのCsClを1050μl加えよく混ぜた。この培地を50mlのファルコンチューブに9mlずつ分注した。本培養菌液を1mlをファルコンチューブに入れた培地に植菌し、グロースチャンバーの温度を30℃、150rpmで30分〜5時間振盪培養した。
<Transport activity in yeast>
Next, the transport activity of the cesium transporter in the 17 strains of yeast was measured. Yeast was inoculated into 3 ml of SD-gal-Ura liquid medium, and pre-cultured overnight with shaking culture at a growth chamber temperature of 30 ° C. and 150 rpm. The next morning, 3 ml of SD-gal-Ura liquid medium was added to the pre-cultured liquid to make a total volume of 6 ml, and the main culture was carried out for 3 hours by shaking culture at a growth chamber temperature of 30 ° C. and 150 rpm. A 135 ml SD-gal-Ura medium was charged with a bacterial solution to be added later, and 1050 μl of 4M CsCl was added and mixed well so that the CsCl concentration became 30 mM. 9 ml of this medium was dispensed into 50 ml Falcon tubes. 1 ml of the main culture broth was inoculated into a medium in a falcon tube, and cultured with shaking at a growth chamber temperature of 30 ° C and 150 rpm for 30 minutes to 5 hours.

振盪中、20mMCaCl2を氷上に静置して冷やした。スイングローターで3500rpm、4℃で3分間遠心し、上清をデカンテーションで静かに除いた。以下テフロンチューブに菌液を移すまで氷上で作業を行った。上記の時間培養したチューブを氷上に置き、培養を止めた。スイングローターで3500rpm、4℃で3分間遠心した後、氷冷した20mM CaCl2を5ml加えてボルテックスで懸濁し、スイングローターで3500rpm、4℃で3分間遠心してリンスした。リンスは3回行った。最後のリンスの後、上清を少量だけ残し、ピペッティングでペレットを懸濁し、1.5mlエッペンチューブに移し、遠心機で10000rpm、4℃で1分間遠心し、上清を完全に除き、1mlのMQをそれぞれのエッペンチューブに加えた。   While shaking, 20 mM CaCl 2 was allowed to cool on ice. The mixture was centrifuged at 3500 rpm at 4 ° C. for 3 minutes with a swing rotor, and the supernatant was gently removed by decantation. Thereafter, the operation was performed on ice until the bacterial solution was transferred to a Teflon tube. The tube cultured for the above time was placed on ice to stop the culture. After centrifuging at 3500 rpm and 4 ° C. for 3 minutes with a swing rotor, 5 ml of ice-cooled 20 mM CaCl 2 was added and suspended by vortexing. The rinse was performed 3 times. After the final rinse, leave only a small amount of the supernatant, suspend the pellet by pipetting, transfer to a 1.5 ml Eppendorf tube, centrifuge at 10000 rpm, 4 ° C. for 1 minute, completely remove the supernatant, 1 ml Of MQ was added to each Eppendorf tube.

各エッペンチューブから10μlを取り、cell counterで細胞数を3反復数えその平均を取った。990μl残っている残りのチューブを遠心機で10000rpm、4℃で1分間遠心し、デカントで上清を除いた。ペレットをピペッティングで懸濁しテフロンチューブに菌液を移し、ヒートブロックで30分間、80℃で完全に乾燥させた。テフロンチューブに硝酸125μlを加えて120℃で2時間静置し酵母を酸分解した。分解後、過酸化水素水を50μl各テフロンチューブに加え、遠心機で10000rpm、4℃で1分間遠心して10分間室温で静置した。静置後、MQを2950μl各テフロンチューブに加え、3mlにメスアップした。テフロンチューブをチューブラックにセットした後、超音波洗浄機にて10分間懸濁した。懸濁液を新しい15mlチューブに移し、測定まで4℃で保存した。サンプル中のセシウム濃度は、原子吸光度計(日立社製)にて測定した。   10 μl was taken from each Eppendorf tube, and the number of cells was counted 3 times with a cell counter and the average was taken. The remaining tube of 990 μl was centrifuged with a centrifuge at 10,000 rpm at 4 ° C. for 1 minute, and the supernatant was removed by decantation. The pellet was suspended by pipetting, the bacterial solution was transferred to a Teflon tube, and completely dried at 80 ° C. for 30 minutes with a heat block. 125 μl of nitric acid was added to a Teflon tube and left at 120 ° C. for 2 hours to acid-decompose the yeast. After decomposition, 50 μl of hydrogen peroxide was added to each Teflon tube, centrifuged at 10000 rpm at 4 ° C. for 1 minute and allowed to stand at room temperature for 10 minutes. After standing, MQ was added to 2950 μl of each Teflon tube and made up to 3 ml. After setting the Teflon tube on the tube rack, it was suspended for 10 minutes by an ultrasonic cleaner. The suspension was transferred to a new 15 ml tube and stored at 4 ° C. until measurement. The concentration of cesium in the sample was measured with an atomic absorption meter (manufactured by Hitachi).

結果を図7に示す。ここでは、アクセッション番号AK241580の遺伝子を酵母に導入した際の酵母中のセシウム吸収量の経時変化を示しているが、他の16株も同様の傾向が見られた。実際に酵母にセシウムトランスポータが形成されていることが確認できる。   The results are shown in FIG. Here, the time-dependent change in the amount of cesium absorbed in the yeast when the gene of accession number AK241580 was introduced into the yeast was shown, but the same tendency was observed in the other 16 strains. It can be confirmed that cesium transporter is actually formed in yeast.

<セシウム低吸収性イネ>
セシウムトランスポータが欠失していれば、セシウムを植物体内に吸収しなくなるので、放射性セシウムが付着した土壌においても流通可能なイネの栽培が可能となる。すなわち、アクセッション番号AK107688,AK107078,AK111959,AK058856,AK066194,AK068574,AK102180,AK058673,AK059035,AK065891,AK071118,AK070844,AK100524,AK105088,AK105667,AK241580,またはAK120821の遺伝子を欠損したイネを用いることにより、または、当該遺伝子を欠損したイネを作出してこれを用いることにより、効率的にセシウム低吸収性イネを作出できる。なお、好ましくは、2つ以上の遺伝子を欠損させたイネであり、より好ましくは5以上欠損させたイネであり、さらに好ましくは10以上欠損させたイネであり、最も好ましくは17すなわち総ての遺伝子を欠損させたイネである。
<Cesium low absorption rice>
If the cesium transporter is lacking, cesium will not be absorbed into the plant body, so that rice that can be distributed even in soil with radioactive cesium attached can be grown. That is, accession numbers AK107688, AK107088, AK111959, AK058856, AK06664, AK068574, AK102180, AK058673, AK059035, AK065891, AK071181, AK070844, AK105084, AK105088, AK105167, AK2415 Alternatively, rice that is deficient in the gene can be produced and used to efficiently produce rice with low cesium absorption. Preferably, the rice is deficient in 2 or more genes, more preferably 5 or more deficient rice, more preferably 10 or more deficient rice, most preferably 17 or all of them. This is rice that has a defective gene.

イネの作出の例としては、γ線照射等の変異源を用いて、セシウムトランスポータを欠損させ、これを戻し交配し、選抜することにより、食味よく、かつ、セシウムを取り込まない、若しくは、取り込みにくいイネを作出できる。戻し交配や選抜手法については、汎用技術を用いることができる。   As an example of rice production, a cesium transporter is deleted using a mutation source such as γ-ray irradiation, and this is backcrossed and selected, so that it tastes good and does not take up cesium. Can produce difficult rice. General techniques can be used for backcrossing and selection methods.

本発明のセシウムトランスポータを利用し、その輸送活性を高め、イネ植物体全体または特定の部位にセシウムを備蓄・濃縮させ、田畑その他の地面の徐染をおこなうこともできる。備蓄・濃縮されたものは適宜、さらに後工程で濃縮し、環境から分離することができる。
By using the cesium transporter of the present invention, its transport activity can be enhanced, cesium can be stocked and concentrated in the whole rice plant or in a specific site, and gradual dyeing of fields and other grounds can be performed. Stocks and concentrates can be appropriately concentrated in a later step and separated from the environment.

Claims (4)

下記A1またはA2に示すタンパク質。
A1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
A2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
Protein shown in the following A1 or A2.
A1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
A2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
下記B1もしくはB2に示すタンパク質をコードするDNAまたは下記B3もしくはB4に示すDNA。
B1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
B2:配列番号1〜16のいずれか一つに記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
B3:配列番号33に記載のDNA。
B4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。
DNA encoding the protein shown in B1 or B2 below or DNA shown in B3 or B4 below.
B1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
B2: an amino acid sequence according to any one of SEQ ID NOs: 1 to 16, comprising an amino acid sequence including substitution, deletion, insertion, addition or inversion of one or several amino acids, and cesium transport activity A protein having
B3: DNA described in SEQ ID NO: 33.
B4: a DNA comprising the DNA of SEQ ID NO: 33 containing a substitution, deletion, insertion, addition or inversion in the sequence and translated into a protein having cesium transport activity in rice.
下記C1もしくはC2に示すタンパク質をコードするDNAを含有するベクターまたは下記C3もしくはC4に示すDNAを含有するベクター。
C1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
C2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
C3:配列番号33に記載のDNA。
C4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。
A vector containing a DNA encoding a protein shown in C1 or C2 below, or a vector containing a DNA shown in C3 or C4 below.
C1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
C2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
C3: DNA described in SEQ ID NO: 33.
C4: DNA comprising a DNA having a substitution, deletion, insertion, addition, or inversion in the sequence described in SEQ ID NO: 33, and translated into a protein having cesium transport activity in rice.
下記D1もしくはD2に示すタンパク質をコードする遺伝子、または、D3もしくはD4に示すDNA、を欠損したまたは欠損させたことを特徴とするセシウム低吸収性イネ。
D1:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列を有するセシウムトランスポータ。
D2:配列番号2、4,6,8,10,12,14,16,18,20,22,24,26,28,30,または,32に記載のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、付加、又は逆位を含むアミノ酸配列からなり、かつ、セシウム輸送活性を有するタンパク質。
D3:配列番号33に記載のDNA。
D4:配列番号33に記載のDNAにおいて、配列中に置換、欠失、挿入、付加、又は逆位を含むDNAからなり、かつ、イネ中でセシウム輸送活性を有するタンパク質に翻訳されるDNA。

A cesium-low-absorbing rice, wherein a gene encoding a protein shown in D1 or D2 below or a DNA shown in D3 or D4 is deleted or deleted.
D1: A cesium transporter having the amino acid sequence set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32.
D2: one or several amino acids in the amino acid sequence described in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, or 32 A protein having an amino acid sequence containing a substitution, deletion, insertion, addition or inversion, and having a cesium transport activity.
D3: DNA set forth in SEQ ID NO: 33.
D4: DNA which is composed of a DNA having a substitution, deletion, insertion, addition or inversion in the sequence described in SEQ ID NO: 33 and which is translated into a protein having cesium transport activity in rice.

JP2012024729A 2012-02-08 2012-02-08 Cesium transporter and cesium low-absorbent rice plant Pending JP2013158327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024729A JP2013158327A (en) 2012-02-08 2012-02-08 Cesium transporter and cesium low-absorbent rice plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024729A JP2013158327A (en) 2012-02-08 2012-02-08 Cesium transporter and cesium low-absorbent rice plant

Publications (1)

Publication Number Publication Date
JP2013158327A true JP2013158327A (en) 2013-08-19

Family

ID=49171097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024729A Pending JP2013158327A (en) 2012-02-08 2012-02-08 Cesium transporter and cesium low-absorbent rice plant

Country Status (1)

Country Link
JP (1) JP2013158327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624173A (en) * 2016-03-17 2016-06-01 南京农业大学 Unknown rice membrane protein gene OsMP1 and application thereof in anti-disease gene engineering
EP3885354A1 (en) 2020-03-23 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Low intake cesium and parthenocarpy plants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123343A1 (en) * 2000-04-19 2004-06-24 La Rosa Thomas J. Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
JP2005185101A (en) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences VEGETABLE FULL-LENGTH cDNA AND UTILIZATION THEREOF

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [ONLINE], ACCESSION NO.AK120821, ORYZA SATIVA JAPONICA GROUP CDNA CLONE:J023017F21,, JPN6015042891, ISSN: 0003182048 *
DATABASE GENBANK [ONLINE], ACCESSION NO.AK241580, ORYZA SATIVA JAPONICA GROUP CDNA, CLONE: J065181H0, JPN6015042893, ISSN: 0003182046 *
DATABASE UNIPROT [ONLINE], ACCESSION NO.Q5JK32, RECNAME: FULL=POTASSIUM TRANSPORTER 5, LAST UPDATED, JPN6015042894, ISSN: 0003182047 *
根の研究, 1999, VOL.8, P.134, JPN6015042896, ISSN: 0003182049 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624173A (en) * 2016-03-17 2016-06-01 南京农业大学 Unknown rice membrane protein gene OsMP1 and application thereof in anti-disease gene engineering
EP3885354A1 (en) 2020-03-23 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Low intake cesium and parthenocarpy plants
WO2021191109A1 (en) 2020-03-23 2021-09-30 Consejo Superior De Investigaciones Científicas (Csic) Low intake cesium and parthenocarpy plants

Similar Documents

Publication Publication Date Title
Vakulskas et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells
Slattery et al. An expanded plasmid-based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum
Liu et al. Metabolic engineering of probiotic Saccharomyces boulardii
Xiang et al. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity1
Rak et al. Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology
van der Giezen et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles
Ekman et al. A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis
Alcamo DNA technology: the awesome skill
Gravelat et al. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach
Garcia-Cuetos et al. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts
Domonkos et al. NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner
Koniali et al. Therapy development by genome editing of hematopoietic stem cells
Jung et al. Genetic manipulation of Cryptococcus neoformans
Olesen et al. The pYC plasmids, a series of cassette‐based yeast plasmid vectors providing means of counter‐selection
Cutolo et al. A phosphite dehydrogenase variant with promiscuous access to nicotinamide cofactor pools sustains fast phosphite-dependent growth of transplastomic Chlamydomonas reinhardtii
JP2013158327A (en) Cesium transporter and cesium low-absorbent rice plant
Freudenberg et al. The spermidine synthase gene SPD1: A novel auxotrophic marker for Chlamydomonas reinhardtii designed by enhanced CRISPR/Cas9 gene editing
Foster et al. An arabidopsis oxalyl-CoA decarboxylase, AtOXC, is important for oxalate catabolism in plants
Feng et al. GhNHX3D, a vacuolar-localized Na+/H+ antiporter, positively regulates salt response in upland cotton
US20230407318A1 (en) TEA PLANT CsVAAT3 GENE AND USE THEREOF
Su et al. mCherry-labeled Verticillium dahliae could be utilized to investigate its pathogenicity process in Nicotiana benthamiana
Kouprina et al. Selective isolation of mammalian genes by TAR cloning
Haveman et al. Diagnosing an opportunistic fungal pathogen on spaceflight-grown plants using the MinION sequencing platform
Dos Santos et al. The MSC-EV-microRNAome: a perspective on therapeutic mechanisms of action in sepsis and ARDS
Heinisch et al. A versatile toolset for genetic manipulation of the wine yeast Hanseniaspora uvarum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160419