JP2013157471A - Ink for photoelectric conversion element and photoelectric conversion element - Google Patents

Ink for photoelectric conversion element and photoelectric conversion element Download PDF

Info

Publication number
JP2013157471A
JP2013157471A JP2012017030A JP2012017030A JP2013157471A JP 2013157471 A JP2013157471 A JP 2013157471A JP 2012017030 A JP2012017030 A JP 2012017030A JP 2012017030 A JP2012017030 A JP 2012017030A JP 2013157471 A JP2013157471 A JP 2013157471A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
semiconductor compound
ink
inorganic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012017030A
Other languages
Japanese (ja)
Inventor
Kazuyuki Ito
和志 伊藤
Akinobu Hayakawa
明伸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012017030A priority Critical patent/JP2013157471A/en
Publication of JP2013157471A publication Critical patent/JP2013157471A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an ink for a photoelectric conversion element, which allows a photoelectric conversion element excellent in durability to be manufactured, and to provide a photoelectric conversion element manufactured using the ink for a photoelectric conversion element.SOLUTION: The ink for a photoelectric conversion element contains an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent. The inorganic semiconductor compound is metal oxide particles doped with an element having electrons in at least the 4s orbital.

Description

本発明は、耐久性に優れた光電変換素子を製造することのできる光電変換素子用インクに関する。また、本発明は、該光電変換素子用インクを用いて製造される光電変換素子に関する。 The present invention relates to a photoelectric conversion element ink capable of producing a photoelectric conversion element having excellent durability. Moreover, this invention relates to the photoelectric conversion element manufactured using this photoelectric conversion element ink.

従来から、有機半導体層と無機半導体層とを積層し、この積層体の両側に電極を設けた光電変換素子(太陽電池)が開発されている。このような構造の光電変換素子では、光励起により有機半導体層で光キャリア(電子−ホール対)が生成し、電子が無機半導体層を、ホールが有機半導体層を移動することで、電界が生じる。しかしながら、有機半導体層のうち、光キャリア生成に活性な領域は無機半導体層との接合界面付近の数十nm程度と非常に狭く、この活性な領域以外の有機半導体層は光キャリア生成に寄与できないため、光電変換効率が低くなってしまうという欠点があった。 Conventionally, a photoelectric conversion element (solar cell) in which an organic semiconductor layer and an inorganic semiconductor layer are stacked and electrodes are provided on both sides of the stacked body has been developed. In the photoelectric conversion element having such a structure, photocarriers (electron-hole pairs) are generated in the organic semiconductor layer by photoexcitation, and an electric field is generated by electrons moving through the inorganic semiconductor layer and holes moving through the organic semiconductor layer. However, in the organic semiconductor layer, the active region for generating photocarriers is very narrow, about several tens of nanometers near the junction interface with the inorganic semiconductor layer, and organic semiconductor layers other than this active region cannot contribute to the generation of photocarriers. For this reason, there is a drawback that the photoelectric conversion efficiency is lowered.

この問題を解決する目的で、有機半導体と、無機半導体とを混合して複合化した複合膜を用いることが検討されている。
例えば、特許文献1には、有機半導体と無機半導体を共蒸着によって複合化した共蒸着薄膜と、この薄膜を挟んでその両面に設けられ、この複合薄膜に内蔵電界を与えるための半導体もしくは金属、又はそれら双方からなる電極部とを備えた有機太陽電池が記載されている。特許文献1には、同文献に記載の有機・無機複合薄膜においては、pn接合(有機/無機半導体接合)が膜全体に張り巡らされた構造のため、膜全体が光キャリヤ生成に対して活性に働き、膜で吸収された光すべてがキャリア生成に寄与するため、大きな光電流が得られる効果がある旨が記載されている。
In order to solve this problem, it has been studied to use a composite film in which an organic semiconductor and an inorganic semiconductor are mixed to form a composite.
For example, Patent Document 1 discloses a co-deposited thin film in which an organic semiconductor and an inorganic semiconductor are combined by co-evaporation, and a semiconductor or metal for providing a built-in electric field to the composite thin film provided on both sides of the thin film, Or the organic solar cell provided with the electrode part which consists of both of them is described. In Patent Document 1, the organic / inorganic composite thin film described in the same document has a structure in which a pn junction (organic / inorganic semiconductor junction) is stretched over the entire film, so that the entire film is active against optical carrier generation. It is described that since all the light absorbed by the film contributes to carrier generation, a large photocurrent can be obtained.

また、有機半導体に対して無機半導体を分散又は充填させて、光電変換効率を向上させる試みもなされている。
例えば、特許文献2には、有機電子供与体と化合物半導体結晶とを含有する活性層を二つの電極の間に設けた有機太陽電池において、前記活性層は有機電子供与体と化合物半導体結晶とを混合して分散してなり、且つ、化合物半導体結晶が平均粒径が異なる二種類のロッド状の結晶を含み、この二種類のロッド状結晶の平均粒径及び含有比率を所定範囲内とする有機太陽電池が記載されている。特許文献2には、活性層中における化合物半導体結晶の充填率を増大することができ、これにより変換効率の高い太陽電池を得ることができる旨が記載されている。
Attempts have also been made to improve photoelectric conversion efficiency by dispersing or filling inorganic semiconductors with respect to organic semiconductors.
For example, in Patent Document 2, in an organic solar cell in which an active layer containing an organic electron donor and a compound semiconductor crystal is provided between two electrodes, the active layer includes an organic electron donor and a compound semiconductor crystal. An organic compound that is mixed and dispersed, and the compound semiconductor crystal includes two types of rod-shaped crystals having different average particle sizes, and the average particle size and content ratio of the two types of rod-shaped crystals are within a predetermined range. A solar cell is described. Patent Document 2 describes that the filling rate of the compound semiconductor crystal in the active layer can be increased, and thereby a solar cell with high conversion efficiency can be obtained.

しかしながら、特許文献1又は2に記載の有機太陽電池であっても未だ光電変換効率は不充分であり、耐久性が低いことも問題である。実用化に耐えうる光電変換素子の開発のためには、光電変換効率をより一層高めるとともに、劣化を防ぎ高い光電変換効率を維持することが求められる。 However, even with the organic solar cell described in Patent Document 1 or 2, the photoelectric conversion efficiency is still insufficient and the durability is low. In order to develop a photoelectric conversion element that can withstand practical use, it is required to further increase the photoelectric conversion efficiency and prevent deterioration and maintain high photoelectric conversion efficiency.

特許第3423280号公報Japanese Patent No. 3423280 特許第4120362号公報Japanese Patent No. 4120362

本発明は、耐久性に優れた光電変換素子を製造することのできる光電変換素子用インクを提供することを目的とする。また、本発明は、該光電変換素子用インクを用いて製造される光電変換素子を提供することを目的とする。 An object of this invention is to provide the ink for photoelectric conversion elements which can manufacture the photoelectric conversion element excellent in durability. Moreover, an object of this invention is to provide the photoelectric conversion element manufactured using this ink for photoelectric conversion elements.

本発明は、有機半導体化合物、無機半導体化合物、及び、有機溶媒を含有し、前記無機半導体化合物は、少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子である光電変換素子用インクである。
以下、本発明を詳述する。
The present invention relates to an ink for a photoelectric conversion element, comprising an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent, wherein the inorganic semiconductor compound is metal oxide particles doped with an element having an electron in at least 4S orbital. is there.
The present invention is described in detail below.

本発明者は、有機半導体化合物、無機半導体化合物、及び、有機溶媒を含有する、光電変換素子の活性層を形成するためのインクにおいて、無機半導体化合物として少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子を用いることにより、光電変換素子の耐久性を高めることができることを見出し、本発明を完成させるに至った。 The present inventor is an ink for forming an active layer of a photoelectric conversion element containing an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent, and is doped with an element having an electron in at least 4S orbit as the inorganic semiconductor compound. It was found that the durability of the photoelectric conversion element can be improved by using the metal oxide particles, and the present invention has been completed.

本発明の光電変換素子用インクは、有機半導体化合物、無機半導体化合物、及び、有機葉溶媒を含有する。
本発明の光電変換素子用インクを用いて形成される活性層においては、上記有機半導体化合物と上記無機半導体化合物とが良好に分散した状態にあり、上記有機半導体化合物と上記無機半導体化合物との接合界面の面積が大きく、光キャリア生成に対して活性な領域が大きい。即ち、本発明の光電変換素子用インクを用いることにより、光電変換効率の高い活性層を形成することができる。また、本発明の光電変換素子用インクを用いると、スピンコート法等の印刷法により安定的かつ簡便に活性層を形成することができ、活性層の形成コストを削減することができる。
The ink for photoelectric conversion elements of the present invention contains an organic semiconductor compound, an inorganic semiconductor compound, and an organic leaf solvent.
In the active layer formed using the photoelectric conversion element ink of the present invention, the organic semiconductor compound and the inorganic semiconductor compound are in a well dispersed state, and the organic semiconductor compound and the inorganic semiconductor compound are bonded to each other. The area of the interface is large, and the region active for photocarrier generation is large. That is, an active layer having high photoelectric conversion efficiency can be formed by using the photoelectric conversion element ink of the present invention. Moreover, when the photoelectric conversion element ink of the present invention is used, an active layer can be stably and easily formed by a printing method such as a spin coating method, and the formation cost of the active layer can be reduced.

上記有機半導体化合物は特に限定されず、例えば、ポリ(3−アルキルチオフェン)、ポリパラフェニレンビニレン誘導体、ポリビニルカルバゾール誘導体、ポリアニリン誘導体、ポリアセチレン誘導体等の導電性高分子、フタロシアニン誘導体、ナフタロシアニン誘導体、ペンタセン誘導体、ポルフィリン誘導体等が挙げられる。なかでも、ホール移動度の高い活性層を形成できることから、導電性高分子が好ましく、ポリ(3−アルキルチオフェン)がより好ましい。 The organic semiconductor compound is not particularly limited, and examples thereof include conductive polymers such as poly (3-alkylthiophene), polyparaphenylene vinylene derivatives, polyvinyl carbazole derivatives, polyaniline derivatives, and polyacetylene derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, and pentacene. Derivatives, porphyrin derivatives and the like. Especially, since an active layer with high hole mobility can be formed, a conductive polymer is preferable and poly (3-alkylthiophene) is more preferable.

上記無機半導体化合物は、少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子である。
上記無機半導体化合物がこのような金属酸化物粒子であることにより、本発明の光電変換素子用インクを用いて形成される活性層においては、紫外線による電子励起に起因する性能低下が抑制されることとなり、耐久性が高くなる。
本明細書中、少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子とは、金属酸化物を主成分とする粒子であって、少なくとも4S軌道に電子を有する、主成分とは異なる元素を、通常0.01〜40重量%程度含有する粒子を意味する。
The inorganic semiconductor compound is metal oxide particles doped with an element having electrons in at least 4S orbitals.
When the inorganic semiconductor compound is such a metal oxide particle, in the active layer formed using the photoelectric conversion element ink of the present invention, performance degradation due to electron excitation by ultraviolet rays is suppressed. And durability is increased.
In this specification, a metal oxide particle doped with an element having an electron in at least 4S orbital is a particle mainly composed of a metal oxide and is different from the main component having an electron in at least 4S orbital. It means a particle usually containing about 0.01 to 40% by weight of an element.

上記金属酸化物として、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化ガリウム、酸化アンチモン、酸化タングステン、酸化ケイ素、酸化アルミニウム、酸化バナジウム等が挙げられる。これらの金属酸化物は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、電子移動度の高い活性層を形成できることから、酸化亜鉛、酸化スズ、酸化インジウム、酸化アンチモンが好ましく、酸化亜鉛がより好ましい。 Examples of the metal oxide include titanium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, antimony oxide, tungsten oxide, silicon oxide, aluminum oxide, and vanadium oxide. These metal oxides may be used independently and 2 or more types may be used together. Among these, zinc oxide, tin oxide, indium oxide, and antimony oxide are preferable, and zinc oxide is more preferable because an active layer with high electron mobility can be formed.

上記少なくとも4S軌道に電子を有する元素は、少なくとも4S軌道に電子を有していれば特に限定されないが、周期表の第4周期及び第5周期に属する元素が好ましく、具体的には例えば、インジウム、ガリウム、スズ、カドミウム、銅、銀等が挙げられる。なかでも、光電変換素子の特性に与えるドーピングによる悪影響が比較的軽微であることから、インジウム、ガリウム、スズ、カドミウムが好ましい。 The element having electrons in at least 4S orbital is not particularly limited as long as it has electrons in at least 4S orbital, but elements belonging to the fourth period and the fifth period of the periodic table are preferable. , Gallium, tin, cadmium, copper, silver and the like. Among these, indium, gallium, tin, and cadmium are preferable because the adverse effect of doping on the characteristics of the photoelectric conversion element is relatively slight.

即ち、上記少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子は、インジウム、ガリウム、スズ又はカドミウムをドープした酸化亜鉛粒子であることが好ましい。 That is, the metal oxide particles doped with an element having an electron in at least the 4S orbital are preferably zinc oxide particles doped with indium, gallium, tin, or cadmium.

上記少なくとも4S軌道に電子を有する元素の含有量は、上述したように通常0.01〜 40重量%程度であるが、金属酸化物粒子中の好ましい下限が0.1重量%、好ましい上限が20重量%である。上記含有量が0.1重量%未満であると、耐久性改善効果がほとんど発現しないことがある。上記含有量が20重量%を超えると、無機半導体化合物の結晶構造の崩壊等により、光電変換素子の特性が著しく低下することがある。上記少なくとも4S軌道に電子を有する元素の含有量は、金属酸化物粒子中のより好ましい下限が1重量%、より好ましい上限が10重量%である。
なお、少なくとも4S軌道に電子を有する元素の含有量は、例えば、EDS(エネルギー分散型元素分析装置)等を用いて分析することができる。
The content of the element having electrons in at least the 4S orbital is usually about 0.01 to 40% by weight as described above, but the preferable lower limit in the metal oxide particles is 0.1% by weight, and the preferable upper limit is 20%. % By weight. When the content is less than 0.1% by weight, the durability improving effect may be hardly exhibited. When the content exceeds 20% by weight, the characteristics of the photoelectric conversion element may be significantly deteriorated due to the collapse of the crystal structure of the inorganic semiconductor compound. The content of the element having electrons in at least the 4S orbital is such that a more preferable lower limit in the metal oxide particles is 1% by weight, and a more preferable upper limit is 10% by weight.
The content of the element having electrons in at least the 4S orbit can be analyzed using, for example, an EDS (energy dispersive element analyzer).

上記無機半導体化合物の形状は特に限定されず、例えば、ロッド状、球状等が挙げられる。上記無機半導体化合物は、平均粒子径が1〜50nmであり、かつ、平均粒子径/平均結晶子径が1〜3であることが好ましい。上記無機半導体化合物がこのような平均粒子径及び平均粒子径/平均結晶子径を有することにより、光電変換素子用インクを用いて形成される活性層において、上記無機半導体化合物を電子が通過する際に、結晶粒界による移動の阻害が起こりにくく、電極への電子の捕集がスムーズに行われる。これにより、電子とホールの再結合が抑制されて、光電変換効率がより一層高まる。 The shape of the inorganic semiconductor compound is not particularly limited, and examples thereof include a rod shape and a spherical shape. The inorganic semiconductor compound preferably has an average particle size of 1 to 50 nm and an average particle size / average crystallite size of 1 to 3. When the inorganic semiconductor compound has such an average particle diameter and average particle diameter / average crystallite diameter, electrons pass through the inorganic semiconductor compound in the active layer formed using the ink for photoelectric conversion elements. In addition, the movement of the crystal grain boundary is hardly hindered, and the electrons are smoothly collected on the electrode. Thereby, recombination of electrons and holes is suppressed, and the photoelectric conversion efficiency is further increased.

上記平均粒子径が1nm未満であると、上記無機半導体化合物の粒子同士の粒界数が多くなり、電子移動の妨げが増すことがある。上記平均粒子径が50nmを超えると、上記有機半導体化合物で生成した光キャリアが効率良く上記無機半導体化合物との接合界面にまで伝達されないことがある。上記無機半導体化合物の平均粒子径のより好ましい下限は2nm、更に好ましい下限は3nmであり、より好ましい上限は30nm、更に好ましい上限は25nm、特に好ましい上限は20nmである。
本明細書中、平均粒子径は、例えば、動的光散乱解析装置(PSS−NICOMP社製、380DLS)を用いて測定することができる。
When the average particle diameter is less than 1 nm, the number of grain boundaries between the particles of the inorganic semiconductor compound increases, and the hindrance to electron movement may increase. When the average particle diameter exceeds 50 nm, photocarriers generated from the organic semiconductor compound may not be efficiently transmitted to the bonding interface with the inorganic semiconductor compound. The more preferable lower limit of the average particle diameter of the inorganic semiconductor compound is 2 nm, the still more preferable lower limit is 3 nm, the more preferable upper limit is 30 nm, the still more preferable upper limit is 25 nm, and the particularly preferable upper limit is 20 nm.
In the present specification, the average particle diameter can be measured using, for example, a dynamic light scattering analyzer (PSS-NICOMP, 380DLS).

上記平均粒子径/平均結晶子径が3を超えると、粒子内での結晶粒界が電子移動の妨げとなり、電子とホールが再結合しやすくなることがある。上記無機半導体化合物の平均粒子径/平均結晶子径のより好ましい上限は2.5である。 When the average particle diameter / average crystallite diameter exceeds 3, the crystal grain boundary in the particles may hinder electron movement, and electrons and holes may be easily recombined. A more preferable upper limit of the average particle size / average crystallite size of the inorganic semiconductor compound is 2.5.

上記無機半導体化合物は、平均結晶子径の好ましい下限が1nmである。上記平均結晶子径が1nm未満であると、粒子内での結晶粒界が電子移動の妨げとなり、電子とホールが再結合しやすくなる。
本明細書中、結晶子径とは、X線回折法におけるScherrerの方法によって算出される結晶子のサイズを意味する。また、平均結晶子径は、例えば、X線回折装置(リガク社製、RINT1000)を用いて測定することができる。
As for the said inorganic semiconductor compound, the minimum with a preferable average crystallite diameter is 1 nm. When the average crystallite diameter is less than 1 nm, the crystal grain boundary in the particles hinders electron movement, and electrons and holes are easily recombined.
In the present specification, the crystallite diameter means the crystallite size calculated by the Scherrer method in the X-ray diffraction method. Moreover, an average crystallite diameter can be measured, for example using an X-ray-diffraction apparatus (Rigaku company make, RINT1000).

上記無機半導体化合物を製造する方法として、例えば、スズがドープされた酸化亜鉛粒子を製造する場合には、有機溶剤に、亜鉛塩の添加と同時又は添加後にスズ塩を添加することにより、スズがドープされた酸化亜鉛粒子の分散液を得る方法等を用いることができる。なお、上記方法を用いる場合は、湯浴の温度を変更することにより、平均粒子径/平均結晶子径の範囲を調整することができる。
また、上記無機半導体化合物を製造する方法として、噴霧火炎熱分解法、CVD法、PVD法、粉砕法等の乾式法や、還元法、マイクロエマルション法、水熱反応法、ゾルゲル法等の湿式法等が適用可能である。
As a method for producing the inorganic semiconductor compound, for example, in the case of producing zinc oxide particles doped with tin, the tin salt is added to the organic solvent by adding the tin salt simultaneously with or after the addition of the zinc salt. A method of obtaining a dispersion of doped zinc oxide particles can be used. In addition, when using the said method, the range of an average particle diameter / average crystallite diameter can be adjusted by changing the temperature of a hot water bath.
Moreover, as a method for producing the inorganic semiconductor compound, a dry method such as a spray flame pyrolysis method, a CVD method, a PVD method, a pulverization method, a wet method such as a reduction method, a microemulsion method, a hydrothermal reaction method, a sol-gel method, etc. Etc. are applicable.

上記有機半導体化合物と上記無機半導体化合物の配合比は特に限定されないが、上記有機半導体化合物100重量部に対する上記無機半導体化合物の配合量の好ましい下限が50重量部、好ましい上限が1000重量部である。上記無機半導体化合物の配合量が50重量部未満であると、活性層において、電子が充分に伝達されないことがある。上記無機半導体化合物の配合量が1000重量部を超えると、活性層において、ホールが充分に伝達されないことがある。上記有機半導体化合物100重量部に対する上記無機半導体化合物の配合量のより好ましい下限は100重量部、より好ましい上限は500重量部である。 Although the compounding ratio of the organic semiconductor compound and the inorganic semiconductor compound is not particularly limited, the preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 50 parts by weight, and the preferable upper limit is 1000 parts by weight. When the amount of the inorganic semiconductor compound is less than 50 parts by weight, electrons may not be sufficiently transmitted in the active layer. If the amount of the inorganic semiconductor compound exceeds 1000 parts by weight, holes may not be sufficiently transmitted in the active layer. The more preferable lower limit of the compounding amount of the inorganic semiconductor compound with respect to 100 parts by weight of the organic semiconductor compound is 100 parts by weight, and the more preferable upper limit is 500 parts by weight.

本発明の光電変換素子用インクは、有機溶媒を含有する。
上記有機溶媒は特に限定されないが、クロロベンゼン、クロロホルム、メチルエチルケトン、トルエン、酢酸エチル、エタノール、キシレン等が好ましい。
The ink for photoelectric conversion elements of the present invention contains an organic solvent.
The organic solvent is not particularly limited, but chlorobenzene, chloroform, methyl ethyl ketone, toluene, ethyl acetate, ethanol, xylene and the like are preferable.

上記有機溶媒の配合量は特に限定されないが、上記有機半導体化合物1重量部に対する好ましい下限が20重量部、好ましい上限が1000重量部である。上記有機溶媒の配合量が20重量部未満であると、光電変換素子用インクの粘度が高すぎ、安定的かつ簡便に活性層を形成することができないことがある。上記有機溶媒の配合量が1000重量部を超えると、光電変換素子用インクの粘度が低すぎ、充分な厚みを有する活性層を形成することができないことがある。上記有機半導体化合物1重量部に対する上記有機溶媒の配合量のより好ましい下限は50重量部、より好ましい上限は500重量部である。 Although the compounding quantity of the said organic solvent is not specifically limited, The preferable minimum with respect to 1 weight part of said organic-semiconductor compounds is 20 weight part, and a preferable upper limit is 1000 weight part. When the blending amount of the organic solvent is less than 20 parts by weight, the viscosity of the photoelectric conversion element ink is too high, and the active layer may not be formed stably and simply. When the blending amount of the organic solvent exceeds 1000 parts by weight, the viscosity of the photoelectric conversion element ink may be too low to form an active layer having a sufficient thickness. The more preferable lower limit of the blending amount of the organic solvent with respect to 1 part by weight of the organic semiconductor compound is 50 parts by weight, and the more preferable upper limit is 500 parts by weight.

本発明の光電変換素子用インクは、更に、分散剤又は有機色素を含有してもよい。
上記分散剤又は有機色素は、上記無機半導体化合物の表面へ吸着して、上記有機半導体化合物と上記無機半導体化合物との接合界面における電子とホールの分離を阻害することなく分散性を確保する作用を有する。
The ink for a photoelectric conversion element of the present invention may further contain a dispersant or an organic dye.
The dispersant or the organic dye has an action of adsorbing to the surface of the inorganic semiconductor compound and ensuring dispersibility without inhibiting the separation of electrons and holes at the interface between the organic semiconductor compound and the inorganic semiconductor compound. Have.

上記分散剤又は有機色素として、例えば、カルボキシル基含有インドリン化合物、カルボキシル基含有オリゴチオフェン、カルボキシル基含有クマリン化合物、ルテニウム錯体系色素、インドリン系色素等が挙げられる。なかでも、カルボキシル基含有インドリン化合物、カルボキシル基含有オリゴチオフェンが好ましい。 Examples of the dispersant or the organic dye include a carboxyl group-containing indoline compound, a carboxyl group-containing oligothiophene, a carboxyl group-containing coumarin compound, a ruthenium complex dye, and an indoline dye. Of these, carboxyl group-containing indoline compounds and carboxyl group-containing oligothiophenes are preferred.

上記分散剤又は有機色素の市販品として、例えば、D−149、D−131(いずれも三菱製紙社製)、NK−2684、NK−2553(いずれも林原生物化学研究所社製)、カルボキシ基含有メタノフターレン(アルドリッチ社製)、C60 Pyrrolidine tris−acid(アルドリッチ社製)等が挙げられる。 Examples of commercially available dispersants or organic dyes include, for example, D-149, D-131 (all manufactured by Mitsubishi Paper Industries), NK-2684, NK-2553 (all manufactured by Hayashibara Biochemical Laboratories), carboxy group Examples thereof include methanophthalene (manufactured by Aldrich), C 60 pyrrolidine tris-acid (manufactured by Aldrich), and the like.

上記分散剤又は有機色素の配合量は特に限定されないが、上記無機半導体化合物100重量部に対する好ましい下限が1重量部、好ましい上限が30重量部である。上記分散剤又は有機色素の配合量が1重量部未満であると、上記分散剤又は有機色素を添加する効果が不充分となり、光電変換効率が低下することがある。上記分散剤又は有機色素の配合量が30重量部を超えると、過剰量の分散剤又は有機色素が電子又はホールの移動を阻害することがある。上記無機半導体化合物100重量部に対する上記分散剤又は有機色素の配合量のより好ましい下限は2重量部、より好ましい上限は20重量部である。 Although the compounding quantity of the said dispersing agent or organic pigment | dye is not specifically limited, The preferable minimum with respect to 100 weight part of said inorganic semiconductor compounds is 1 weight part, and a preferable upper limit is 30 weight part. When the blending amount of the dispersant or organic dye is less than 1 part by weight, the effect of adding the dispersant or organic dye becomes insufficient, and the photoelectric conversion efficiency may be lowered. If the blending amount of the dispersant or organic dye exceeds 30 parts by weight, an excessive amount of the dispersant or organic dye may inhibit the movement of electrons or holes. The more preferable lower limit of the blending amount of the dispersant or the organic dye with respect to 100 parts by weight of the inorganic semiconductor compound is 2 parts by weight, and the more preferable upper limit is 20 parts by weight.

上記有機半導体化合物、無機半導体化合物、有機溶媒、及び、必要に応じて配合される分散剤又は有機色素の組み合わせは特に限定されない。例えば、上記有機半導体化合物がポリ(3−アルキルチオフェン)である場合には、好ましい組合せとして、例えば、無機半導体化合物としてのスズがドープされた酸化亜鉛粒子と、有機溶媒としてのクロロホルムと、分散剤又は有機色素としてのD−149(三菱製紙社製)との組み合わせ等が挙げられる。 A combination of the organic semiconductor compound, the inorganic semiconductor compound, the organic solvent, and a dispersant or an organic dye blended as necessary is not particularly limited. For example, when the organic semiconductor compound is poly (3-alkylthiophene), as a preferable combination, for example, zinc oxide particles doped with tin as an inorganic semiconductor compound, chloroform as an organic solvent, and a dispersant Or the combination with D-149 (made by Mitsubishi Paper Industries) as an organic pigment | dye, etc. are mentioned.

本発明の光電変換素子用インクを製造する方法は特に限定されず、例えば、上記有機半導体化合物、上記無機半導体化合物、及び、必要に応じて配合される上記分散剤又は有機色素を、超音波分散機等を用いて上記有機溶媒に分散及び溶解させて、インクとする方法等が挙げられる。 The method for producing the photoelectric conversion element ink of the present invention is not particularly limited. For example, the organic semiconductor compound, the inorganic semiconductor compound, and the dispersant or the organic dye blended as necessary are ultrasonically dispersed. For example, a method of dispersing and dissolving in the organic solvent using a machine to obtain an ink can be used.

本発明の光電変換素子用インクを用いることにより、耐久性に優れた光電変換素子を製造することができる。本発明の光電変換素子用インクを用いて形成される活性層が、一組の電極間に挟持されている光電変換素子もまた、本発明の1つである。 By using the photoelectric conversion element ink of the present invention, a photoelectric conversion element excellent in durability can be produced. A photoelectric conversion element in which an active layer formed using the ink for a photoelectric conversion element of the present invention is sandwiched between a pair of electrodes is also one aspect of the present invention.

本発明の光電変換素子の一例を図1に模式的に示す。
図1に示す光電変換素子1は、陰極2、活性層4、ホール輸送層7、透明電極8、及び、ガラス基板9を有しており、活性層4は、有機半導体化合物5中に、無機半導体化合物6が存在する構造となっている。活性層4では、無機半導体化合物6が、少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子であることにより、紫外線による電子励起に起因する性能低下が抑制されることとなり、耐久性が高くなる。
An example of the photoelectric conversion element of the present invention is schematically shown in FIG.
The photoelectric conversion element 1 shown in FIG. 1 has a cathode 2, an active layer 4, a hole transport layer 7, a transparent electrode 8, and a glass substrate 9, and the active layer 4 is inorganic in the organic semiconductor compound 5. The semiconductor compound 6 is present. In the active layer 4, since the inorganic semiconductor compound 6 is a metal oxide particle doped with an element having an electron in at least 4S orbital, performance degradation due to electron excitation by ultraviolet rays is suppressed, and durability is improved. Becomes higher.

本発明の光電変換素子における活性層以外の陰極、ホール輸送層、透明電極、ガラス基板等については、従来公知のものを用いることができる。 As the cathode, the hole transport layer, the transparent electrode, the glass substrate and the like other than the active layer in the photoelectric conversion element of the present invention, conventionally known ones can be used.

本発明の光電変換素子を製造する方法は特に限定されず、例えば、電極を有する基板上に本発明の光電変換素子用インクを塗工、乾燥させて活性層を形成した後、該活性層上に電極を形成する方法等が挙げられる。
本発明の光電変換素子用インクを塗工する方法は特に限定されないが、例えば、スピンコート法等の印刷法が挙げられる。本発明の光電変換素子用インクを用いると、スピンコート法等の印刷法により安定的かつ簡便に活性層を形成することができ、活性層の形成コストを削減することができる。
The method for producing the photoelectric conversion element of the present invention is not particularly limited. For example, after forming the active layer by coating and drying the photoelectric conversion element ink of the present invention on a substrate having electrodes, the active layer is formed on the active layer. And a method of forming electrodes.
The method for applying the photoelectric conversion element ink of the present invention is not particularly limited, and examples thereof include a printing method such as a spin coating method. When the ink for photoelectric conversion elements of the present invention is used, an active layer can be formed stably and simply by a printing method such as a spin coating method, and the formation cost of the active layer can be reduced.

本発明によれば、耐久性に優れた光電変換素子を製造することのできる光電変換素子用インクを提供することができる。また、本発明によれば、該光電変換素子用インクを用いて製造される光電変換素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ink for photoelectric conversion elements which can manufacture the photoelectric conversion element excellent in durability can be provided. Moreover, according to this invention, the photoelectric conversion element manufactured using this ink for photoelectric conversion elements can be provided.

本発明の光電変換素子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the photoelectric conversion element of this invention.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(無機半導体化合物の製造)
酢酸亜鉛二水和物1重量部及び酢酸スズ0.1重量部をメタノール35重量部に溶解し、60℃の湯浴中にて攪拌しながら、水酸化カリウム0.5重量部をメタノール15重量部に溶解した液を滴下し、滴下終了後3時間加熱攪拌を続けることにより、スズがドープされた酸化亜鉛粒子の分散液を得た。次いで、分散液を遠心分離及び上澄み除去し、沈殿物を回収することによってスズがドープされた酸化亜鉛粒子を得た。
得られた粒子について、FE−TEM/EDS(日本電子社製、JEM−2010FEF)を用いて分析を行うことで、主成分である金属酸化物の金属量及び酸素量、並びに、ドープ元素の含有量を測定した。また、得られた粒子をメタノール中に分散させ、その分散液について、動的光散乱解析装置(PSS−NICOMP社製、380DLS)を用いることにより平均粒子径を測定した。
Example 1
(Manufacture of inorganic semiconductor compounds)
1 part by weight of zinc acetate dihydrate and 0.1 part by weight of tin acetate are dissolved in 35 parts by weight of methanol, and 0.5 parts by weight of potassium hydroxide is added to 15 parts by weight of methanol while stirring in a 60 ° C. hot water bath. The liquid dissolved in the part was added dropwise, and after the completion of the addition, stirring was continued for 3 hours to obtain a dispersion of zinc oxide particles doped with tin. Next, the dispersion was centrifuged and the supernatant was removed, and the precipitate was recovered to obtain tin-doped zinc oxide particles.
The obtained particles are analyzed using FE-TEM / EDS (manufactured by JEOL Ltd., JEM-2010FEF), so that the metal content and oxygen content of the metal oxide as the main component and the inclusion of the doping element The amount was measured. Moreover, the obtained particle | grains were disperse | distributed in methanol and the average particle diameter was measured about the dispersion liquid by using a dynamic light-scattering analyzer (PSS-NICOMP company make, 380DLS).

(光電変換素子用インクの製造)
8重量部のポリ(3−アルキルチオフェン)と、24重量部のスズがドープされた酸化亜鉛粒子と、分散剤又は有機色素として2重量部のD−149(三菱製紙社製)とを、クロロホルム1000重量部に分散及び溶解させて、光電変換素子用インクとした。
(Manufacture of photoelectric conversion element ink)
8 parts by weight of poly (3-alkylthiophene), 24 parts by weight of tin-doped zinc oxide particles, 2 parts by weight of D-149 (manufactured by Mitsubishi Paper Industries) as a dispersant or organic dye, It was dispersed and dissolved in 1000 parts by weight to obtain a photoelectric conversion element ink.

(光電変換素子の製造)
ガラス基板上に陽極として厚み240nmのITO膜を形成し、アセトン、メタノール及びイソプロピルアルコールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。このITO膜の表面上にホール輸送層としてポリエチレンジオキサイドチオフェン:ポリスチレンスルフォネート(PEDOT:PSS)をスピンコート法により100nmの厚みに成膜した。次いで、このホール輸送層の表面上に上記で得られた光電変換素子用インクをスピンコート法により100nmの厚みに成膜して、活性層を形成した。更に、この活性層の表面上に陰極として真空蒸着により厚み100nmのアルミニウム膜を形成し、光電変換素子を得た。
(Manufacture of photoelectric conversion elements)
An ITO film having a thickness of 240 nm was formed as an anode on a glass substrate, and was ultrasonically cleaned for 10 minutes each using acetone, methanol and isopropyl alcohol in this order, and then dried. On the surface of this ITO film, polyethylene dioxide thiophene: polystyrene sulfonate (PEDOT: PSS) was formed as a hole transport layer to a thickness of 100 nm by spin coating. Next, the photoelectric conversion element ink obtained above was formed on the surface of the hole transport layer to a thickness of 100 nm by a spin coating method to form an active layer. Further, an aluminum film having a thickness of 100 nm was formed as a cathode on the surface of the active layer by vacuum vapor deposition to obtain a photoelectric conversion element.

(実施例2)
無機半導体化合物の製造において、酢酸スズの配合量を0.01重量部に変更したこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Example 2)
In the production of the inorganic semiconductor compound, an inorganic semiconductor compound, an ink for a photoelectric conversion element, and a photoelectric conversion element were obtained in the same manner as in Example 1 except that the blending amount of tin acetate was changed to 0.01 parts by weight.

(実施例3)
無機半導体化合物の製造において、酢酸スズの配合量を0.2重量部に変更したこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Example 3)
In the production of the inorganic semiconductor compound, an inorganic semiconductor compound, an ink for a photoelectric conversion element, and a photoelectric conversion element were obtained in the same manner as in Example 1 except that the blending amount of tin acetate was changed to 0.2 parts by weight.

(実施例4)
無機半導体化合物の製造において、酢酸スズの代わりに硝酸インジウム三水和物を用いたこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
Example 4
In the production of the inorganic semiconductor compound, an inorganic semiconductor compound, a photoelectric conversion element ink, and a photoelectric conversion element were obtained in the same manner as in Example 1 except that indium nitrate trihydrate was used instead of tin acetate.

(実施例5)
無機半導体化合物の製造において、酢酸スズの代わりに硝酸ガリウム八水和物を用いたこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Example 5)
In production of the inorganic semiconductor compound, an inorganic semiconductor compound, a photoelectric conversion element ink, and a photoelectric conversion element were obtained in the same manner as in Example 1 except that gallium nitrate octahydrate was used instead of tin acetate.

(比較例1)
無機半導体化合物の製造において、酢酸スズを使用せず酢酸亜鉛二水和物1重量部のみをメタノール35重量部に溶解したこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Comparative Example 1)
In the production of an inorganic semiconductor compound, the same procedure as in Example 1 was carried out except that tin acetate was not used and only 1 part by weight of zinc acetate dihydrate was dissolved in 35 parts by weight of methanol. Ink and photoelectric conversion elements were obtained.

(比較例2)
無機半導体化合物の製造において、酢酸亜鉛二水和物1重量部の代わりに酢酸スズ1重量部を用いたこと以外は比較例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Comparative Example 2)
In the production of an inorganic semiconductor compound, an inorganic semiconductor compound, an ink for a photoelectric conversion element, and photoelectric conversion were performed in the same manner as in Comparative Example 1 except that 1 part by weight of tin acetate was used instead of 1 part by weight of zinc acetate dihydrate. An element was obtained.

(比較例3)
無機半導体化合物の製造において、酢酸スズ0.1重量部の代わりに硝酸マグネシウム六水和物0.01重量部を用いたこと以外は実施例1と同様にして、無機半導体化合物、光電変換素子用インク及び光電変換素子を得た。
(Comparative Example 3)
In the production of an inorganic semiconductor compound, in the same manner as in Example 1 except that 0.01 part by weight of magnesium nitrate hexahydrate was used instead of 0.1 part by weight of tin acetate, the inorganic semiconductor compound and the photoelectric conversion element were used. Ink and photoelectric conversion elements were obtained.

<評価>
(光電変換効率の測定)
光電変換素子の電極間に、電源(KEYTHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて光電変換素子の光電変換効率を測定した。比較例1で得られた光電変換素子の光電変換効率を1.0として規格化した。
(耐候試験後の維持率)
光電変換素子をガラス封止し、温度60℃、湿度35%の状態で60mW/cmの光を24時間照射して耐候試験を行った。耐候試験前後の光電変換効率を上記と同様にして測定し、耐候試験後の維持率を算出した。
<Evaluation>
(Measurement of photoelectric conversion efficiency)
A power source (manufactured by KEYTHLEY, 236 model) was connected between the electrodes of the photoelectric conversion element, and the photoelectric conversion efficiency of the photoelectric conversion element was measured using a solar simulator (manufactured by Yamashita Denso Co., Ltd.) having an intensity of 100 mW / cm 2 . The photoelectric conversion efficiency of the photoelectric conversion element obtained in Comparative Example 1 was normalized as 1.0.
(Maintenance rate after weathering test)
The photoelectric conversion element was glass-sealed, and a weather resistance test was performed by irradiating light of 60 mW / cm 2 for 24 hours at a temperature of 60 ° C. and a humidity of 35%. The photoelectric conversion efficiency before and after the weather resistance test was measured in the same manner as described above, and the maintenance factor after the weather resistance test was calculated.

Figure 2013157471
Figure 2013157471

本発明によれば、耐久性に優れた光電変換素子を製造することのできる光電変換素子用インクを提供することができる。また、本発明によれば、該光電変換素子用インクを用いて製造される光電変換素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ink for photoelectric conversion elements which can manufacture the photoelectric conversion element excellent in durability can be provided. Moreover, according to this invention, the photoelectric conversion element manufactured using this ink for photoelectric conversion elements can be provided.

1 光電変換素子
2 陰極
4 活性層
5 有機半導体化合物
6 無機半導体化合物
7 ホール輸送層
8 透明電極
9 ガラス基板
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion element 2 Cathode 4 Active layer 5 Organic semiconductor compound 6 Inorganic semiconductor compound 7 Hole transport layer 8 Transparent electrode 9 Glass substrate

Claims (4)

有機半導体化合物、無機半導体化合物、及び、有機溶媒を含有し、
前記無機半導体化合物は、少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子であることを特徴とする光電変換素子用インク。
Containing an organic semiconductor compound, an inorganic semiconductor compound, and an organic solvent,
The ink for a photoelectric conversion element, wherein the inorganic semiconductor compound is metal oxide particles doped with an element having electrons in at least 4S orbitals.
少なくとも4S軌道に電子を有する元素がドープされた金属酸化物粒子は、インジウム、ガリウム、スズ又はカドミウムがドープされた酸化亜鉛粒子であることを特徴とする請求項1記載の光電変換素子用インク。 2. The ink for a photoelectric conversion element according to claim 1, wherein the metal oxide particles doped with an element having an electron in at least a 4S orbit are zinc oxide particles doped with indium, gallium, tin, or cadmium. 少なくとも4S軌道に電子を有する元素の含有量が、金属酸化物粒子中の0.1〜20重量%であることを特徴とする請求項1又は2記載の光電変換素子用インク。 The ink for a photoelectric conversion element according to claim 1 or 2, wherein the content of an element having an electron in at least 4S orbit is 0.1 to 20% by weight in the metal oxide particles. 請求項1、2又は3記載の光電変換素子用インクを用いて形成される活性層が、一組の電極間に挟持されていることを特徴とする光電変換素子。 An active layer formed using the photoelectric conversion element ink according to claim 1, 2 or 3 is sandwiched between a pair of electrodes.
JP2012017030A 2012-01-30 2012-01-30 Ink for photoelectric conversion element and photoelectric conversion element Pending JP2013157471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017030A JP2013157471A (en) 2012-01-30 2012-01-30 Ink for photoelectric conversion element and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017030A JP2013157471A (en) 2012-01-30 2012-01-30 Ink for photoelectric conversion element and photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2013157471A true JP2013157471A (en) 2013-08-15

Family

ID=49052373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017030A Pending JP2013157471A (en) 2012-01-30 2012-01-30 Ink for photoelectric conversion element and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2013157471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617053B1 (en) * 2013-12-11 2014-10-29 積水化学工業株式会社 Thin film solar cell and method for manufacturing thin film solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617053B1 (en) * 2013-12-11 2014-10-29 積水化学工業株式会社 Thin film solar cell and method for manufacturing thin film solar cell

Similar Documents

Publication Publication Date Title
Liu et al. Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material
Benetti et al. Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material
Nazir et al. Stabilization of perovskite solar cells: recent developments and future perspectives
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
CN102834929B (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
Ghosekar et al. Review on performance analysis of P3HT: PCBM-based bulk heterojunction organic solar cells
JP5143968B2 (en) Organic solar cell
Behrouznejad et al. Effective Carbon Composite Electrode for Low‐Cost Perovskite Solar Cell with Inorganic CuIn0. 75Ga0. 25S2 Hole Transport Material
JP2011513951A (en) Tandem photovoltaic cell
JP2009252768A (en) Organic solar cell and method of manufacturing the same
JP5836375B2 (en) Dye-sensitized solar cell with improved stability
KR101543438B1 (en) Perovskite solar cell and preparing method thereof
KR101559098B1 (en) Core-shell type nanocomposites included fullerene particle using barrier layer of hole transport layer and preparation method thereof, and solar cell comprising the same
WO2017135705A1 (en) Organic-inorganic hybrid perovskite solar cell
JP6862649B2 (en) Organic electronic devices and their manufacturing methods
JP6111552B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
Zhang et al. Chemical decoration of perovskites by nickel oxide doping for efficient and stable perovskite solar cells
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP2012119405A (en) Organic solar cell and method for manufacturing the same
Chen et al. Perylene Monoimide Phosphorus Salt Interfacial Modified Crystallization for Highly Efficient and Stable Perovskite Solar Cells
JP2013157471A (en) Ink for photoelectric conversion element and photoelectric conversion element
JP2014524143A (en) Binary electron selective buffer layer and photovoltaic cell using the same layer
Ahmad An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells
JP2013191629A (en) Photoelectric conversion element