JP2013157447A - Light-emitting element mounting substrate and light-emitting device using the same - Google Patents

Light-emitting element mounting substrate and light-emitting device using the same Download PDF

Info

Publication number
JP2013157447A
JP2013157447A JP2012016746A JP2012016746A JP2013157447A JP 2013157447 A JP2013157447 A JP 2013157447A JP 2012016746 A JP2012016746 A JP 2012016746A JP 2012016746 A JP2012016746 A JP 2012016746A JP 2013157447 A JP2013157447 A JP 2013157447A
Authority
JP
Japan
Prior art keywords
emitting element
light
light emitting
ceramic particles
element mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012016746A
Other languages
Japanese (ja)
Other versions
JP5832318B2 (en
Inventor
Masanori Okamoto
征憲 岡本
Sosuke Nishiura
崇介 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012016746A priority Critical patent/JP5832318B2/en
Publication of JP2013157447A publication Critical patent/JP2013157447A/en
Application granted granted Critical
Publication of JP5832318B2 publication Critical patent/JP5832318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element mounting substrate which has high heat conductivity and can reduce light transmission at a frame part and has high luminous efficiency; and provide a light-emitting device using the light-emitting element mounting substrate.SOLUTION: In a light-emitting element mounting substrate, a sintered body included in each of a base part 3 and a frame part 5 has a porosity of 5% or less; the base part 3 and the frame part 5 include ceramic particles 7 having average aspect ratios different from each other in which the ceramic particles 7 included in the frame part 5 have a smaller average aspect ratio than that of the ceramic particles 7 included in the base part 3. Because of this, the light-emitting element mounting substrate which has high heat conductivity and low light transmittance at the frame part, and a light-emitting device using the light-emitting element mounting substrate can be obtained.

Description

本発明は、高い反射性を有する発光素子搭載用基板およびそれを用いた発光装置に関する。   The present invention relates to a light-emitting element mounting substrate having high reflectivity and a light-emitting device using the same.

近年、LED(Light Emission Diode)電球に代表される発光素子を搭載した発光装置は、高輝度化および白色化に対する改良が図られ、携帯電話や大型の液晶テレビ等のバックライトとして利用されている。その中で、高い反射性を有するだけでなく、従来の発光素子搭載用基板に用いられてきた合成樹脂に比べて、熱伝導性および機械的強度が高く、耐熱性や耐久性に優れ、長期間紫外線に曝されても劣化しないという理由から、アルミナセラミックスやガラスセラミックスを基材とした発光素子搭載用基板が注目されている。   2. Description of the Related Art In recent years, light emitting devices equipped with light emitting elements typified by LED (Light Emission Diode) bulbs have been improved for high brightness and whitening, and are used as backlights for mobile phones, large liquid crystal televisions, and the like. . Among them, not only has high reflectivity, but also has higher thermal conductivity and mechanical strength, superior heat resistance and durability, and longer than the synthetic resin used for conventional light emitting element mounting substrates. A light emitting element mounting substrate based on alumina ceramics or glass ceramics has attracted attention because it does not deteriorate even when exposed to ultraviolet rays for a period of time.

また、発光素子搭載用基板には、発光素子から発せられる光の発光効率を高めるために、発光素子が搭載される基板の表面に、発光素子を囲繞する壁面を有する、いわゆる枠体付きの発光素子搭載用基板が提案されている(例えば、特許文献1を参照)。   In addition, the light emitting element mounting substrate has a so-called frame-like light emission having a wall surface surrounding the light emitting element on the surface of the substrate on which the light emitting element is mounted in order to increase the light emission efficiency of light emitted from the light emitting element. An element mounting substrate has been proposed (see, for example, Patent Document 1).

LED電球は、近年、携帯電話など小型の電子機器等の照明として利用されているが、スマートフォンに代表されるように、小型の電子機器はますます高性能化と高機能化が図られていることから、このような小型の電子機器に搭載されるLED電球にも更なる小型化と高輝度化が求められており、そのため発光素子搭載用基板にも小型化への要求が高まっている。   In recent years, LED bulbs have been used as lighting for small electronic devices such as mobile phones. However, as represented by smartphones, small electronic devices have become increasingly sophisticated and highly functional. For this reason, LED bulbs mounted on such small electronic devices are required to be further reduced in size and brightness, and therefore, there is an increasing demand for downsizing of light-emitting element mounting substrates.

特開2006−261290号公報JP 2006-261290 A

ところが、セラミックス製の発光素子搭載用基板は、上述のように、熱伝導性には優れているものの、セラミックスを基材として枠体付きの発光素子搭載用基板を作製し、それを小型化した場合には、基板の面積とともに、枠体の厚みも薄くなることから、発光素子から発せられた光が枠体を透過しやすくなり発光効率が低下するという問題があった。   However, although the ceramic light-emitting element mounting substrate is excellent in thermal conductivity as described above, a light-emitting element mounting substrate with a frame body is manufactured using ceramics as a base material, and the size thereof is reduced. In this case, since the thickness of the frame body is reduced along with the area of the substrate, there is a problem that light emitted from the light emitting element is easily transmitted through the frame body and the light emission efficiency is lowered.

従って、本発明は、高熱伝導性を有するとともに、枠体部における光の透過を低減でき、発光効率の高い発光素子搭載用基板とそれを用いた発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light-emitting element mounting substrate having high thermal conductivity, and capable of reducing light transmission in the frame body portion and having high light emission efficiency, and a light-emitting device using the same.

本発明の発光素子搭載用基板は、セラミック粒子の焼結体からなる上面の中央部に発光素子の搭載面を有する基体部と、該基体部に一体的に形成され、前記基体部上で前記搭載面を囲むように配置されている枠体部と、を備えている発光素子搭載用基板であって、前記基体部および前記枠体部を構成する焼結体はともに気孔率が5%以下であるとともに、前記基体部と前記枠体部とは、平均アスペクト比の異なるセラミック粒子により構成されており、前記枠体部を構成するセラミック粒子は前記基体部を構成するセラミック粒子よりも平均アスペクト比が小さいことを特徴とする。   The substrate for mounting a light emitting element of the present invention is formed integrally with a base part having a light emitting element mounting surface at the center part of the upper surface made of a sintered body of ceramic particles, and the base part is formed on the base part. A light emitting element mounting substrate including a frame body portion disposed so as to surround the mounting surface, wherein both the base body portion and the sintered body constituting the frame body portion have a porosity of 5% or less. And the base body portion and the frame body portion are composed of ceramic particles having different average aspect ratios, and the ceramic particles constituting the frame body portion have an average aspect ratio higher than that of the ceramic particles constituting the base body portion. The ratio is small.

本発明の発光装置は、上記の発光素子搭載用基板の前記搭載部に発光素子を備えている
ことを特徴とする。
The light emitting device of the present invention is characterized in that a light emitting element is provided in the mounting portion of the light emitting element mounting substrate.

本発明によれば、高熱伝導性を有するとともに、枠体部における光の透過を低減でき、発光効率の高い発光素子搭載用基板とそれを用いた発光装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while having high thermal conductivity, the transmission of the light in a frame part can be reduced, and the light emitting element mounting substrate with high luminous efficiency, and a light-emitting device using the same can be obtained.

(a)(b)は、本実施形態の発光素子搭載用基板の一例を模式的に示す断面模式図および平面図である。(A) and (b) are the cross-sectional schematic diagram and top view which show typically an example of the light emitting element mounting substrate of this embodiment. 図1(a)のA部およびB部の拡大図である。It is an enlarged view of A part and B part of Drawing 1 (a). 本実施形態の発光装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the light-emitting device of this embodiment. 本実施形態の発光素子搭載用基板の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the light emitting element mounting substrate of this embodiment.

図1(a)(b)は、本実施形態の発光素子搭載用基板の一例を模式的に示す断面模式図および平面図である。 図2は、図1(a)のA部およびB部の拡大図である。   FIGS. 1A and 1B are a schematic cross-sectional view and a plan view schematically showing an example of a light-emitting element mounting substrate according to the present embodiment. FIG. 2 is an enlarged view of a portion A and a portion B in FIG.

本実施形態の発光素子搭載用基板は、発光素子を搭載するための搭載面1を有する基体部3と、その搭載面1を囲むように配置されている枠体部5とが一体的に形成されたものである。基体部3および枠体部5は、いずれもセラミック粒子7の焼結体により形成されており、気孔率が5%以下である。また、基体部3と枠体部5とは、平均アスペクト比の異なるセラミック粒子7により構成されており、枠体部5を構成するセラミック粒子7は基体部3を構成するセラミック粒子7よりも平均アスペクト比が小さいことが特徴である。   In the light emitting element mounting substrate of the present embodiment, a base body portion 3 having a mounting surface 1 for mounting a light emitting element and a frame body portion 5 arranged so as to surround the mounting surface 1 are integrally formed. It has been done. The base 3 and the frame 5 are both formed of a sintered body of ceramic particles 7 and have a porosity of 5% or less. Further, the base body portion 3 and the frame body portion 5 are composed of ceramic particles 7 having different average aspect ratios, and the ceramic particles 7 constituting the frame body portion 5 are more average than the ceramic particles 7 constituting the base body portion 3. It is characterized by a small aspect ratio.

これにより、高熱伝導性であり、光の透過を低減できる枠体部5を備えた発光効率の高い発光素子搭載用基板を得ることができる。   Thereby, it is possible to obtain a light emitting element mounting substrate having a high thermal conductivity and a high light emission efficiency including the frame portion 5 that can reduce the transmission of light.

すなわち、本実施形態の発光素子搭載用基板は、枠体部5を構成するセラミック粒子7と基体部3を構成するセラミック粒子7との間でセラミック粒子7の平均アスペクト比に違いをつけることによって、発光素子から発せられる光の指向性および反射率の向上に寄与する部分である枠体部5の特性と、発光素子から出る熱を逃がす部分である基体部3におけるそれぞれの特性を高めることができる。   That is, the light emitting element mounting substrate of the present embodiment makes a difference in the average aspect ratio of the ceramic particles 7 between the ceramic particles 7 constituting the frame portion 5 and the ceramic particles 7 constituting the base portion 3. The characteristics of the frame body part 5 that contributes to the improvement of the directivity and reflectance of light emitted from the light emitting element and the characteristics of the base body part 3 that is a part that releases heat from the light emitting element can be improved. it can.

つまり、枠体部5を構成するセラミック粒子7の平均アスペクト比が小さいと、セラミック粒子7が球形に近い形状であるために、各セラミック粒子7が放射状に光を反射させることが可能になることから、枠体部5における光の散乱が高まり、これにより枠体部5における光の透過を抑制でき、その結果、発光効率を向上させることができる。   That is, when the average aspect ratio of the ceramic particles 7 constituting the frame body portion 5 is small, the ceramic particles 7 have a shape close to a sphere, and thus each ceramic particle 7 can reflect light radially. Therefore, the scattering of light in the frame body part 5 is increased, whereby the transmission of light in the frame body part 5 can be suppressed, and as a result, the light emission efficiency can be improved.

一方、基体部3側を平均アスプクト比の大きいセラミック粒子7により形成した場合には、セラミック粒子3の熱伝導性が長手方向に高いことを利用して、基体部3を高熱伝導性にすることができ、こうして高熱伝導性と高反射性を同時に併せ持つ発光素子搭載用基板を得ることができる。この場合、枠体部5は、例えば、断面視したときに、単位面積当たりに存在するセラミック粒子7の数が多く、セラミック粒子7の輪郭を明確に見ることができる程度の焼結状態を有しているのがよい。   On the other hand, when the base part 3 side is formed of ceramic particles 7 having a large average aspect ratio, the base part 3 is made to have high thermal conductivity by utilizing the fact that the thermal conductivity of the ceramic particles 3 is high in the longitudinal direction. Thus, a light emitting element mounting substrate having both high thermal conductivity and high reflectivity can be obtained. In this case, for example, the frame 5 has a sintered state in which the number of ceramic particles 7 present per unit area is large when the cross-sectional view is seen, and the outline of the ceramic particles 7 can be clearly seen. It is good to have.

これに対し、基体部3および枠体部5の焼結体の気孔率がいずれも5%よりも高い場合には、焼結体の機械的強度が低下するとともに、吸水率が高くなるために、発光素子搭載用基板としての信頼性が低下してしまう。また、枠体部5の気孔率が5%よりも高くなると、気孔によって光が透過しやすくなり、発光効率が低下してしまう。   On the other hand, when the porosity of the sintered body of the base body portion 3 and the frame body portion 5 is higher than 5%, the mechanical strength of the sintered body is lowered and the water absorption is increased. As a result, the reliability of the light emitting element mounting substrate is lowered. Moreover, when the porosity of the frame body part 5 is higher than 5%, light is easily transmitted by the pores, and the light emission efficiency is lowered.

また、枠体部5を構成するセラミック粒子7と基体部3を構成するセラミック粒子7との間でセラミック粒子7の平均アスペクト比に違いの無い構成では、高い熱伝導率と光の指向性および反射率の高いことを効率良く達成できる発光素子搭載用基板を得ることは困難である。   Further, in the configuration in which the average aspect ratio of the ceramic particles 7 does not differ between the ceramic particles 7 constituting the frame body portion 5 and the ceramic particles 7 constituting the base portion 3, high thermal conductivity and light directivity and It is difficult to obtain a light emitting element mounting substrate that can efficiently achieve a high reflectance.

本実施形態の発光素子搭載用基板としては、特に、枠体部5は平均アスペクト比が1.5以下のセラミック粒子7により構成されており、基体部3は平均アスペクト比が1.5以上のセラミック粒子7の焼結体によって構成されていることが望ましい。   As the light emitting element mounting substrate of the present embodiment, in particular, the frame part 5 is composed of ceramic particles 7 having an average aspect ratio of 1.5 or less, and the base part 3 has an average aspect ratio of 1.5 or more. It is desirable that the ceramic particle 7 is composed of a sintered body.

この場合、基体部3および枠体部5のそれぞれの焼結体を構成するセラミック粒子7の平均粒径は1〜10μm程度であるのがよく、特に、枠体部5を構成するセラミック粒子7の平均粒径が基体部5を構成するセラミック粒子7の平均粒径よりも小さいことが光の反射率を高めつつ、基体部3における熱伝導性を高めるという点で望ましい。   In this case, the average particle diameter of the ceramic particles 7 constituting the respective sintered bodies of the base body portion 3 and the frame body portion 5 should be about 1 to 10 μm, and in particular, the ceramic particles 7 constituting the frame body portion 5. Is preferably smaller than the average particle diameter of the ceramic particles 7 constituting the base portion 5 in terms of increasing the thermal conductivity in the base portion 3 while increasing the light reflectance.

また、基体部3の焼結体を構成するセラミック粒子7の平均アスペクト比は、基体部3の機械的強度を高くできるという点で、3以下、特に2以下であることが望ましい。   Further, the average aspect ratio of the ceramic particles 7 constituting the sintered body of the base portion 3 is preferably 3 or less, particularly 2 or less in that the mechanical strength of the base portion 3 can be increased.

ここで、焼結体の気孔率は、断面研磨した試料の電子顕微鏡写真を用いて、まず、写真上に認められる気孔の総面積を画像解析により求め、次に、その気孔の総面積を写真の面積で除して求める。この場合、気孔は最大径が0.1μm以上であるものを選択することとし、それ以下の気孔は除くようにする。   Here, the porosity of the sintered body was determined by image analysis of the total area of pores found on the photograph, using an electron micrograph of the cross-section polished sample, and then the total area of the pores was photographed. Divide by the area of In this case, pores having a maximum diameter of 0.1 μm or more are selected, and pores smaller than that are excluded.

基体部3および枠体部5の焼結体を構成するセラミック粒子7の平均アスペクト比および平均粒径は、得られた発光素子搭載用基板を断面研磨し、走査型電子顕微鏡観察して得られた写真を画像解析して求める。   The average aspect ratio and average particle size of the ceramic particles 7 constituting the sintered bodies of the base body 3 and the frame body 5 are obtained by cross-sectional polishing the obtained light emitting element mounting substrate and observing it with a scanning electron microscope. This is obtained by image analysis.

具体的には、走査型電子顕微鏡により撮影した写真上で、セラミック粒子7が10〜30個程度入る円を描き、この円内に存在する各セラミック粒子7について、それぞれ長辺および短辺の長さを測定し、長辺/短辺の比から各セラミック粒子7のアスペクト比を求め、次いで、これらの平均値から平均アスペクト比を求める。   Specifically, on a photograph taken with a scanning electron microscope, a circle containing about 10 to 30 ceramic particles 7 is drawn, and each ceramic particle 7 existing in the circle has a long side and a long side. The aspect ratio of each ceramic particle 7 is obtained from the ratio of the long side / short side, and then the average aspect ratio is obtained from the average value thereof.

セラミック粒子7の平均粒径は、同じ領域の各セラミック粒子7の輪郭から面積をそれぞれ求め、円の面積から直径を算出し、このようにして求めた直径の平均値を求めて、これを平均粒径とする。   The average particle diameter of the ceramic particles 7 is obtained by calculating the area from the contours of the ceramic particles 7 in the same region, calculating the diameter from the area of the circle, and determining the average value of the diameters thus obtained. The particle size.

また、本実施形態の発光素子搭載用基板では、枠体部5は、搭載面1を囲繞する部分の壁面9が上側に開口径を大きくするようなすり鉢状であり、枠体部5の焼結体は、その枠体部5を平面視したときに、搭載面1側から上方側に向けて、単位面積当たりに存在するセラミック粒子7の数が多くなっていることが望ましい。   Further, in the light emitting element mounting substrate of this embodiment, the frame body portion 5 has a mortar shape in which the wall surface 9 of the portion surrounding the mounting surface 1 has a larger opening diameter on the upper side. It is desirable that the number of ceramic particles 7 present per unit area increases from the mounting surface 1 side to the upper side when the frame 5 is viewed in plan.

枠体部5が上記のようなすり鉢状の構造である場合には、搭載面1側から上方側へ向けて枠体部5の厚みtが次第に薄くなっていくが、本実施形態の発光素子搭載用基板では、枠体部5を構成するセラミック粒子7の単位面積当たりの数が搭載面1側から上方側に向けて多くなっているために、セラミック粒子7の粒界による光の反射率の低下を抑えることができ、これにより発光素子搭載用基板に設けられた枠体部5の全面からより均一に光を反射させることができる。   When the frame body part 5 has a mortar-like structure as described above, the thickness t of the frame body part 5 gradually decreases from the mounting surface 1 side to the upper side. In the mounting substrate, the number of ceramic particles 7 constituting the frame body portion 5 per unit area increases from the mounting surface 1 side to the upper side, so that the reflectance of light by the grain boundaries of the ceramic particles 7 is increased. As a result, the light can be more uniformly reflected from the entire surface of the frame body portion 5 provided on the light emitting element mounting substrate.

本実施形態の構成は、枠体部5の厚みtが100〜1000μm、特に、100〜500μmと極めて薄い構成の発光素子搭載用基板に好適なものとなる。   The configuration of the present embodiment is suitable for a light-emitting element mounting substrate having a very thin configuration in which the thickness t of the frame body portion 5 is 100 to 1000 μm, particularly 100 to 500 μm.

ここで、枠体部5が基体部3に一体的に形成されるというのは、枠体部5と基体部3とが同時焼成されて焼結されたものという意味である。   Here, the fact that the frame body portion 5 is formed integrally with the base body portion 3 means that the frame body portion 5 and the base body portion 3 are simultaneously fired and sintered.

また、この発光素子搭載用基板は、基体部3と枠体部5とが同じ材質であるのがよい。基体部3と枠体部5とが同じ材質であると、同時焼成される際に、基体部3と枠体部5との焼結速度が近いことから発光素子搭載用基板の反りや変形を低減することができるからである。この場合、同じ材質というのは、基体部3および枠体部5に含まれる主成分のセラミック成分が同じであるという意味である。ここで、主成分とは、基体部3および枠体部5に含まれるセラミック成分の含有量が80質量%以上である場合をいう。   Further, in this light emitting element mounting substrate, the base body portion 3 and the frame body portion 5 are preferably made of the same material. When the base body 3 and the frame body 5 are made of the same material, when the base body 3 and the frame body 5 are sintered at the same time, the sintering speed of the base body 3 and the frame body 5 is close. This is because it can be reduced. In this case, the same material means that the ceramic components of the main components contained in the base body portion 3 and the frame body portion 5 are the same. Here, the main component refers to a case where the content of the ceramic component contained in the base body portion 3 and the frame body portion 5 is 80% by mass or more.

なお、基体部3および枠体部5は、高い熱伝導性を有し、かつ高強度であるという点でアルミナを主成分とし、これにSiおよびMgなどの添加剤を含有するものが望ましい。   In addition, the base | substrate part 3 and the frame part 5 have a high thermal conductivity and high intensity | strength, and the thing which contains an additive, such as Si and Mg, to this is desirable in the point.

図3は、本実施形態の発光装置を示す断面模式図である。本実施形態の発光装置は、上述した発光素子搭載用基板の搭載部1に発光素子11を備えていることを特徴とするものである。この発光装置は、基体部3および枠体部5が緻密な焼結体によって形成されているとともに、基体部3と枠体部5とを平均アスペクト比が異なるセラミック粒子により形成された基板を採用していることから、発光素子11から発せられた光を枠体部5から指向性良く、高い効率で発光させることが可能になるとともに、熱伝導性にも優れた発光装置となる。   FIG. 3 is a schematic cross-sectional view showing the light emitting device of this embodiment. The light emitting device of this embodiment is characterized in that the light emitting element 11 is provided in the mounting portion 1 of the light emitting element mounting substrate described above. This light emitting device employs a substrate in which the base portion 3 and the frame portion 5 are formed of a dense sintered body, and the base portion 3 and the frame portion 5 are formed of ceramic particles having different average aspect ratios. Therefore, the light emitted from the light emitting element 11 can be emitted from the frame portion 5 with high directivity and high efficiency, and the light emitting device is also excellent in thermal conductivity.

なお、本実施形態の発光素子搭載用基板には、必要に応じて、その表面や内部に、発光素子や外部電源と接続するための導体層を設けてもよい。   In addition, the light emitting element mounting substrate of this embodiment may be provided with a conductor layer for connecting to the light emitting element or an external power source on the surface or inside thereof as necessary.

次に、本実施形態の発光素子搭載用基板および発光装置の製造方法について説明する。図4は、本実施形態の発光素子搭載用基板の製造工程を示す模式図である。   Next, a method for manufacturing the light emitting element mounting substrate and the light emitting device of the present embodiment will be described. FIG. 4 is a schematic view showing a manufacturing process of the light emitting element mounting substrate of the present embodiment.

まず、図4(a)に示すように、基体部3および枠体部5を形成するためのシート状成形体21を作製する。その組成は、例えば、Al粉末を主成分とし、これにSiO粉末およびMgO粉末を所定量添加した混合粉末を用いる。 First, as shown in FIG. 4A, a sheet-like molded body 21 for forming the base body portion 3 and the frame body portion 5 is produced. The composition is, for example, a mixed powder in which Al 2 O 3 powder is a main component and a predetermined amount of SiO 2 powder and MgO powder is added thereto.

次に、この混合粉末に対して、有機バインダを溶媒とともに添加してスラリーや混練物を調製した後、これをプレス法、ドクターブレード法、圧延法、射出法などの成形方法を用いてシート状成形体21を形成する。   Next, an organic binder is added to the mixed powder together with a solvent to prepare a slurry or a kneaded product, which is then formed into a sheet shape using a molding method such as a press method, a doctor blade method, a rolling method, or an injection method. Formed body 21 is formed.

なお、発光素子搭載用基板を製造する場合、必要に応じて、シート状成形体21の表面や内部に、発光素子や外部電源と接続するための導体層となる導体パターンを形成してもよい。   In addition, when manufacturing a light emitting element mounting substrate, you may form the conductor pattern used as the conductor layer for connecting with a light emitting element or an external power supply in the surface and inside of the sheet-like molded object 21 as needed. .

次に、図4(b)に示すように、一方の面に凸部23を有する金型を用意し、この金型を用いて、作製したシート状成形体をプレス成形し、凸部23に対応する部分が凹部となる成形体25を形成する。   Next, as shown in FIG. 4 (b), a mold having a convex portion 23 on one surface is prepared, and the produced sheet-like molded body is press-molded using this mold to form the convex portion 23. A molded body 25 is formed in which the corresponding part is a recess.

このプレス成形の工程において、シート状成形体21は、金型の凸部23によって加圧された部分と、凸部23の周囲の部分とでは、加圧後の成形体25の密度が異なってくる。   In this press molding step, the density of the compact 25 after pressing is different between the portion pressed by the convex portion 23 of the mold and the portion around the convex portion 23. come.

すなわち、図4(c)に示すように、金型の凸部23の周囲の部分で加圧された領域27は、凸部23の部分で加圧された領域29に比較してシート状成形体21の厚みの変化
が小さいことから、領域27は領域29に比較して成形体25における生密度が低くなる。つまり、領域29は領域27よりも生密度が高くなっている。
That is, as shown in FIG. 4 (c), the region 27 pressed in the peripheral portion of the convex portion 23 of the mold is formed into a sheet shape as compared with the region 29 pressed in the convex portion 23 portion. Since the change in the thickness of the body 21 is small, the green density in the molded body 25 is lower in the region 27 than in the region 29. That is, the density of the region 29 is higher than that of the region 27.

次に、この成形体25を所定の温度条件で焼成することにより発光素子搭載用基板を得ることができる。   Next, the molded body 25 is fired under a predetermined temperature condition, whereby a light emitting element mounting substrate can be obtained.

こうして得られた発光素子搭載用基板は、成形体25における領域27(低密度)と領域29(領域27よりも高密度)のそれぞれの生密度に依存して焼成後において焼結状態が異なってくる。   The thus obtained light emitting element mounting substrate has a different sintered state after firing depending on the green density of the region 27 (low density) and the region 29 (higher density than the region 27) in the molded body 25. come.

生密度が低くなっている領域27は、成形体25の状態で、領域29よりもセラミック粉末の接し方が弱いために、焼成過程においてもセラミック粉末の成分の拡散が領域29のセラミック粉末に比べて遅く、このため、この領域27のセラミック粉末は領域29のセラミック粉末よりも粒成長が遅くなる。   In the region 27 where the green density is low, the ceramic powder is less in contact with the region 29 than in the region 29 in the state of the molded body 25, so that the diffusion of the components of the ceramic powder is compared with the ceramic powder in the region 29 even during the firing process. Therefore, the grain growth of the ceramic powder in the region 27 is slower than that of the ceramic powder in the region 29.

一方、生密度の高い領域29は、成形体25の状態で領域27の部分に比較してセラミック粉末が強固に接していることから、焼成過程においてセラミック粉末の成分が拡散しやすく、このためセラミック粉末は粒成長しやすくなる。   On the other hand, in the high density region 29, the ceramic powder is more firmly in contact with the region 27 in the state of the molded body 25, so that the components of the ceramic powder are easily diffused during the firing process. The powder tends to grow.

その結果、成形体25を気孔率が5%以下になるように焼結させても、成形体25の密度の低い方の領域27はセラミック粉末の粒成長の度合いが小さいために、平均アスペクト比が小さくなり、一方、成形体25の密度の高い方の領域29はセラミック粉末の粒成長の度合いが大きいために、平均アスペクト比を大きくすることができる。   As a result, even if the molded body 25 is sintered to have a porosity of 5% or less, the region 27 having a lower density of the molded body 25 has a small degree of grain growth of the ceramic powder, so that the average aspect ratio is reduced. On the other hand, the area 29 having a higher density of the molded body 25 has a higher degree of grain growth of the ceramic powder, so that the average aspect ratio can be increased.

こうして、基体部3および枠体部5を構成する焼結体がともに気孔率が5%以下であり、枠体部5を構成するセラミック粒子7が基体部3を構成するセラミック粒子7よりも平均アスペクト比の小さい発光素子搭載用基板を得ることができる。   Thus, both the sintered bodies constituting the base portion 3 and the frame portion 5 have a porosity of 5% or less, and the ceramic particles 7 constituting the frame portion 5 are more average than the ceramic particles 7 constituting the base portion 3. A light emitting element mounting substrate having a small aspect ratio can be obtained.

Al粉末93質量%に対して、SiO粉末を5質量%、MgO粉末を2質量%の割合で混合した後、さらに、有機バインダーとしてアクリル系バインダーを19質量%、ワックスとしてパラフィンワックスを3質量%、有機溶媒としてトルエンを混合してスラリーを調製した後、ドクターブレード法にて平均厚みが800μmのシート状成形体を作製した。 After mixing SiO 2 powder at 5% by mass and MgO powder at 2% by mass with respect to 93% by mass of Al 2 O 3 powder, 19% by mass of acrylic binder as organic binder and paraffin wax as wax 3% by mass, toluene as an organic solvent was mixed to prepare a slurry, and a sheet-like molded article having an average thickness of 800 μm was prepared by a doctor blade method.

次に、得られたシート状成形体に対し、図4(b)に示した構造の金型を用いて、80℃の温度で加熱プレスを行い、切断して、図4(c)に示すような構造の成形体を形成した。次に、大気中、1510〜1550℃の温度にて1時間の焼成を行った。   Next, with respect to the obtained sheet-like molded object, it heat-presses at the temperature of 80 degreeC using the metal mold | die of the structure shown in FIG.4 (b), cut | disconnects, and it shows in FIG.4 (c) A molded body having such a structure was formed. Next, baking was performed in the air at a temperature of 1510 to 1550 ° C. for 1 hour.

得られた発光素子搭載用基板は、平面の面積が3mm×3mm、枠体部の厚み(基体部の表面の搭載部の高さにおける厚み)が300μm、枠体部の搭載面からの高さが200μであった(基体部の搭載面の領域の厚みは400μm)。   The obtained light emitting element mounting substrate has a plane area of 3 mm × 3 mm, a thickness of the frame portion (a thickness at a height of the mounting portion on the surface of the base portion) of 300 μm, and a height from the mounting surface of the frame portion. Was 200 μm (the thickness of the region of the mounting surface of the base portion was 400 μm).

比較例として、シート状成形体の全体を、上記した凸部を有する金型を用いた成形時の凸部の領域が受ける圧力と同じ圧力で加圧した後、切削加工を施して、枠体部と基体部とが一体化された成形体を作製し、次いで、同じ焼成条件にて焼成したものを作製した。   As a comparative example, the whole sheet-like molded body was pressed at the same pressure as the pressure received by the convex region during molding using the mold having the convex portions described above, and then subjected to cutting work to obtain a frame. A molded body in which the part and the base part were integrated was produced, and then a product fired under the same firing conditions was produced.

作製した発光素子搭載用基板はいずれも搭載面を囲繞する部分の壁面が上側に開口径を大きくするようなすり鉢状の形状となっていた。   Each of the produced light emitting element mounting substrates had a mortar shape in which the wall surface of the portion surrounding the mounting surface had an opening diameter increased upward.

次に、得られた発光素子搭載用基板を加工して搭載面の部分の基体部を切り出して熱伝導率を測定した。   Next, the obtained light emitting element mounting substrate was processed to cut out the base portion of the mounting surface, and the thermal conductivity was measured.

また、得られた発光素子搭載用基板の搭載面にLED素子を実装し、この発光素子を導線で電源と結線し、発光素子の発光強度を100%としたときに、発光素子が実装された枠体部の上面を黒い板で覆って、枠体部の側面から検出される光の量の割合を評価した。   Further, when the LED element was mounted on the mounting surface of the obtained light-emitting element mounting substrate, this light-emitting element was connected to a power source with a lead wire, and the light-emitting element was mounted when the light emission intensity of the light-emitting element was 100%. The upper surface of the frame body portion was covered with a black plate, and the ratio of the amount of light detected from the side surface of the frame body portion was evaluated.

焼結体の気孔率は、断面研磨した試料の電子顕微鏡写真を用いて、まず、写真上に認められる気孔の総面積を画像解析により求め、次に、その気孔の総面積を写真の面積で除して求めた。この場合、気孔は最大径が0.1μm以上であるものを選択し、それ以下の気孔は除くようにした。   The porosity of the sintered body is determined by image analysis of the total area of pores found on the photograph, using an electron micrograph of the sample whose cross-section is polished, and then the total area of the pores is the area of the photograph. It was calculated by dividing. In this case, pores having a maximum diameter of 0.1 μm or more were selected, and pores smaller than that were excluded.

基体部および枠体部の焼結体を構成するセラミック粒子の平均アスペクト比および平均粒径は、得られた発光素子搭載用基板を断面研磨し、走査型電子顕微鏡観察して得られた写真を画像解析して求めた。具体的には、走査型電子顕微鏡により撮影した写真上で、セラミック粒子7が約20個入る円を描き、この円内に存在する各セラミック粒子について、それぞれ長辺および短辺の長さを測定し、長辺/短辺の比から各セラミック粒子のアスペクト比を求め、次いで、これらの平均値から平均アスペクト比を求めた。   The average aspect ratio and average particle size of the ceramic particles constituting the sintered body of the base portion and the frame portion are obtained by polishing the cross-section of the obtained light emitting element mounting substrate and observing it with a scanning electron microscope. Obtained by image analysis. Specifically, on a photograph taken with a scanning electron microscope, a circle containing about 20 ceramic particles 7 is drawn, and the lengths of the long side and the short side are measured for each ceramic particle present in the circle. Then, the aspect ratio of each ceramic particle was determined from the ratio of the long side / short side, and then the average aspect ratio was determined from these average values.

セラミック粒子の平均粒径は、同じ領域の各セラミック粒子の輪郭から面積をそれぞれ求め、円の面積から直径を算出し、このようにして求めた直径の平均値を求めて、これを平均粒径とした。   The average particle size of the ceramic particles is obtained by calculating the area from the contour of each ceramic particle in the same region, calculating the diameter from the area of the circle, and determining the average value of the diameters thus obtained, and calculating the average particle size. It was.

枠体部を高さ方向に3等分して、各領域におけるセラミック粒子を評価したところ、本発明の試料は、いずれも枠体部の搭載面側から上方側に向けてセラミック粒子の数が多くなっていたが、比較例の試料(試料No.1)の枠体部は搭載面側から上方側まで単位面積当たりに存在するセラミック粒子の数に変化は見られなかった。結果を表1に示す。   When the ceramic body in each region was evaluated by dividing the frame body into three equal parts in the height direction, all the samples of the present invention had the number of ceramic particles from the mounting surface side to the upper side of the frame body part. The number of ceramic particles present per unit area from the mounting surface side to the upper side of the frame portion of the sample of the comparative example (sample No. 1) was not changed, although increased. The results are shown in Table 1.

表1から明らかなように、試料No.2〜5では、基体部および枠体部の気孔率がいずれも3.8%以下であり、枠体部の側面から検出される光の量の割合が20%以下であった。また、これらの試料はいずれも熱伝導率は15W/mK以上であった。   As is clear from Table 1, sample No. In Nos. 2 to 5, the porosity of the base part and the frame part was 3.8% or less, and the ratio of the amount of light detected from the side surface of the frame part was 20% or less. All of these samples had a thermal conductivity of 15 W / mK or more.

また、枠体部のセラミック粒子の平均アスペクト比が1.5以下であり、基体部のセラミック粒子の平均アスペクト比が1.5以上である試料No.3〜5では、枠体部の側面から検出される光の量の割合が18%以下であり、熱伝導率が15W/mK以上であった。   In addition, Sample No. 2 in which the average aspect ratio of the ceramic particles in the frame portion is 1.5 or less and the average aspect ratio of the ceramic particles in the base portion is 1.5 or more. In 3-5, the ratio of the quantity of the light detected from the side surface of a frame part was 18% or less, and the heat conductivity was 15 W / mK or more.

一方、試料No.1は、基体部および枠体部の気孔率が3.1%以下であり、熱伝導率が17W/mKであったが、光の量の割合が28%であり、透過率が高かった。   On the other hand, sample No. In No. 1, the porosity of the base portion and the frame portion was 3.1% or less and the thermal conductivity was 17 W / mK, but the ratio of the amount of light was 28% and the transmittance was high.

また、試料No.6は、気孔率が5%以上であったため、熱伝導率が11W/m・K、光の量の割合が35%であった。   Sample No. Since No. 6 had a porosity of 5% or more, the thermal conductivity was 11 W / m · K, and the ratio of the amount of light was 35%.

1・・・・・・・搭載面
3・・・・・・・基体部
5・・・・・・・枠体部
7・・・・・・・セラミック粒子
11・・・・・・発光素子
21・・・・・・シート状成形体
23・・・・・・凸部
25・・・・・・成形体
27・・・・・・金型の凸部の周囲の部分で加圧された領域
29・・・・・・金型の凸部の部分で加圧された領域
DESCRIPTION OF SYMBOLS 1 ... Mounting surface 3 .... Base part 5 .... Frame part 7 .... Ceramic particle 11 ... Light emitting element 21... Sheet-like molded body 23... Convex part 25... Molded body 27. Region 29... Region pressed by the convex portion of the mold

Claims (4)

セラミック粒子の焼結体からなる、上面の中央部に発光素子の搭載面を有する基体部と、該基体部に一体的に形成され、前記基体部上で前記搭載面を囲むように配置されている枠体部と、を備えている発光素子搭載用基板であって、前記基体部および前記枠体部を構成する焼結体はともに気孔率が5%以下であるとともに、前記基体部と前記枠体部とは、平均アスペクト比の異なるセラミック粒子により構成されており、前記枠体部を構成するセラミック粒子は前記基体部を構成するセラミック粒子よりも平均アスペクト比が小さいことを特徴とする発光素子搭載用基板。   A base part made of a sintered body of ceramic particles, having a light emitting element mounting surface at the center of the upper surface, and formed integrally with the base part, and disposed so as to surround the mounting surface on the base part A light emitting element mounting substrate comprising: a base body portion; and a sintered body constituting the base body portion and the frame body portion, each having a porosity of 5% or less; The frame part is composed of ceramic particles having different average aspect ratios, and the ceramic particles constituting the frame part have a smaller average aspect ratio than the ceramic particles constituting the base part. Device mounting board. 前記枠体部は平均アスペクト比が1.5以下のセラミック粒子により構成されており、前記基体部は平均アスペクト比が1.5以上のセラミック粒子の焼結体によって構成されていることを特徴とする請求項1に記載の発光素子搭載用基板。   The frame part is made of ceramic particles having an average aspect ratio of 1.5 or less, and the base part is made of a sintered body of ceramic particles having an average aspect ratio of 1.5 or more. The light emitting element mounting substrate according to claim 1. 前記枠体部は、前記搭載面を囲繞する部分の壁面が上側に開口径を大きくするようなすり鉢状であり、前記枠体部を平面視したときに、前記枠体部の焼結体は、前記搭載面側から上方側に向けて、単位面積当たりに存在する前記セラミック粒子の数が多くなっていることを特徴とする請求項1または2に記載の発光素子搭載用基板。   The frame body portion has a mortar shape in which the wall surface of the portion surrounding the mounting surface increases the opening diameter upward, and when the frame body portion is viewed in plan, the sintered body of the frame body portion is The light emitting element mounting substrate according to claim 1, wherein the number of the ceramic particles present per unit area increases from the mounting surface side to the upper side. 請求項1乃至3のうちいずれかに記載の発光素子搭載用基板の前記搭載部に発光素子を備えていることを特徴とする発光装置。   A light emitting device comprising a light emitting element in the mounting portion of the light emitting element mounting substrate according to claim 1.
JP2012016746A 2012-01-30 2012-01-30 Light-emitting element mounting substrate and light-emitting device using the same Active JP5832318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016746A JP5832318B2 (en) 2012-01-30 2012-01-30 Light-emitting element mounting substrate and light-emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016746A JP5832318B2 (en) 2012-01-30 2012-01-30 Light-emitting element mounting substrate and light-emitting device using the same

Publications (2)

Publication Number Publication Date
JP2013157447A true JP2013157447A (en) 2013-08-15
JP5832318B2 JP5832318B2 (en) 2015-12-16

Family

ID=49052353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016746A Active JP5832318B2 (en) 2012-01-30 2012-01-30 Light-emitting element mounting substrate and light-emitting device using the same

Country Status (1)

Country Link
JP (1) JP5832318B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
JP2007305844A (en) * 2006-05-12 2007-11-22 Stanley Electric Co Ltd Light-emitting device, and its manufacturing method
JP2010142841A (en) * 2008-12-18 2010-07-01 Tsuru Gakuen Soldering iron tip and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
JP2007305844A (en) * 2006-05-12 2007-11-22 Stanley Electric Co Ltd Light-emitting device, and its manufacturing method
JP2010142841A (en) * 2008-12-18 2010-07-01 Tsuru Gakuen Soldering iron tip and method for manufacturing the same

Also Published As

Publication number Publication date
JP5832318B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5094118B2 (en) Light emitting element storage package and method for manufacturing light emitting element storage package
JP5404724B2 (en) Nitride sintered body and manufacturing method thereof
KR100963178B1 (en) Sintered ceramics for mounting light emitting element
CN100459193C (en) White light-emitting diode package structure
JP2006287132A (en) Light emitting diode and package therefor
TWI447866B (en) A ceramic substrate for mounting a light emitting element, and a light emitting device
KR20120027362A (en) Ceramic substrate for mounting luminescent element
JP2016138034A (en) Wavelength conversion sintered body
JP2016204561A (en) Fluorescent member, manufacturing method therefor and light emitting device
JP4654577B2 (en) Ceramic substrate for mounting photoelectric conversion elements
JP5832318B2 (en) Light-emitting element mounting substrate and light-emitting device using the same
JP2017079328A (en) Substrate for mounting light-emitting element, circuit board for mounting light-emitting element, light-emitting element module, and method for manufacturing substrate for mounting light-emitting element
JP6150159B2 (en) Glass ceramic for light emitting diode package, ceramic substrate using the same, and light emitting diode package
JP6169836B2 (en) Light-emitting element mounting substrate and light-emitting device using the same
JP2012238654A (en) Translucent wiring board and method for manufacturing the same
JP5451451B2 (en) SURFACE MOUNT LIGHT EMITTING ELEMENT WIRING BOARD AND LIGHT EMITTING DEVICE HAVING THE SAME
JP5826062B2 (en) Light-emitting element mounting substrate and light-emitting device using the same
JP2015050312A (en) Substrate for mounting light emitting element thereon and light emitting element module using the same
JP2006108180A (en) Reflector, light-emitting diode and package therefor
JP2016201570A (en) Substrate for mounting light-emitting element and light-emitting device using the same
JP6735422B2 (en) Light emitting element mounting substrate, light emitting element mounting circuit board including the same, and light emitting element module
JP5917998B2 (en) Light-emitting element mounting substrate and light-emitting device using the same
JP5623587B2 (en) LIGHT REFLECTOR, LIGHT EMITTING DEVICE MOUNTING WIRING BOARD, AND LIGHT EMITTING DEVICE
JP2015070088A (en) Substrate for light-emitting element and light-emitting device
JP2015162505A (en) Substrate for mounting light-emitting element and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5832318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150