JP2013155904A - Hot water storage system - Google Patents

Hot water storage system Download PDF

Info

Publication number
JP2013155904A
JP2013155904A JP2012015585A JP2012015585A JP2013155904A JP 2013155904 A JP2013155904 A JP 2013155904A JP 2012015585 A JP2012015585 A JP 2012015585A JP 2012015585 A JP2012015585 A JP 2012015585A JP 2013155904 A JP2013155904 A JP 2013155904A
Authority
JP
Japan
Prior art keywords
hot water
pipe
storage tank
water storage
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012015585A
Other languages
Japanese (ja)
Other versions
JP5901312B2 (en
Inventor
Tsutomu Ozu
努 小津
Takehiro Seyama
雄広 勢山
Masakazu Terashima
正和 寺嶋
Shigeto Matsuo
滋人 松尾
Takayuki Watanabe
崇之 渡邉
Yusuke Ito
裕介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Gastar Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Gastar Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2012015585A priority Critical patent/JP5901312B2/en
Publication of JP2013155904A publication Critical patent/JP2013155904A/en
Application granted granted Critical
Publication of JP5901312B2 publication Critical patent/JP5901312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water storage system which can prevent a freeze of heat collection piping without winding a heater to the piping, and can supply heat depending on a status at the side of a heat source machine.SOLUTION: A hot water storage system comprises: a second three-way valve 38 for switching a heat collection circulation passage connecting a hot water storage tank 13 and an exhaust heat collection device 50 to a bypass circulation passage (passage of a thick solid line) which bypasses the hot water storage tank; a branched passage (passage of a thick dot line) branched from the middle of the bypass circulation passage and returning to the bypass circulation passage through a bath hot water supply machine 70; and a circulation pump 46 for circulating hot water and water to the branched passage. When preventing a freeze of heat collection piping 53, the hot water storage system switches the heat collection circulation passage to the bypass circulation passage by the second three-way valve 38, operates a heat collection pump 52 and a circulation pump 46 of the exhaust heat collection device, and heats water by the bath hot water supply machine 70. By this, a part of water circulating in the bypass circulation passage flows to the side of the branched passage, is heated by the bath hot water supply machine 70, returned to the bypass circulation passage, and a water temperature in the bypass circulation passage is raised, thus preventing a freeze.

Description

本発明は、燃料電池などの熱源(ガスエンジン発電機、燃料処理装置(改質器)等)から熱回収して貯湯タンク内の湯を加熱し給湯する貯湯システムに係り、特に、貯湯タンクの蓄熱が不足する場合にその不足分をバックアップ熱源機で補って給湯する貯湯システムに関する。   The present invention relates to a hot water storage system that recovers heat from a heat source such as a fuel cell (a gas engine generator, a fuel processing device (reformer), etc.) to heat and supply hot water in a hot water storage tank. The present invention relates to a hot water storage system that supplies hot water by supplementing the shortage with a backup heat source machine when heat storage is insufficient.

図12は、燃料電池の排熱を利用する従来の貯湯システム100の構成例を示している。貯湯システム100は、貯湯タンクユニット101と、燃料電池130の排熱を回収する排熱回収装置110と、バックアップ熱源機としてのガス給湯器120とを備えている。排熱回収装置110は、排熱回収熱交換器111と排熱回収ポンプ112とから構成される。   FIG. 12 shows a configuration example of a conventional hot water storage system 100 that uses exhaust heat of a fuel cell. The hot water storage system 100 includes a hot water storage tank unit 101, an exhaust heat recovery device 110 that recovers exhaust heat of the fuel cell 130, and a gas water heater 120 as a backup heat source unit. The exhaust heat recovery device 110 includes an exhaust heat recovery heat exchanger 111 and an exhaust heat recovery pump 112.

貯湯タンク102の下部の給水口103には給水管104が接続され、上部の出湯口105には出湯管106が接続されている。出湯管106の途中には、貯湯タンク102からの湯と給水管104からの水とを設定された混合比で混合する混合器107が設けてあり、混合器107の出側は、接続配管121を通じて、ガス給湯器120の給水接続口122に配管されている。   A water supply pipe 104 is connected to the lower water supply port 103 of the hot water storage tank 102, and a hot water discharge pipe 106 is connected to the upper hot water outlet 105. A mixer 107 that mixes hot water from the hot water storage tank 102 and water from the water supply pipe 104 at a set mixing ratio is provided in the middle of the hot water discharge pipe 106, and the outlet side of the mixer 107 is connected to a connecting pipe 121. And is connected to the water supply connection port 122 of the gas water heater 120.

ガス給湯器120は、給湯もしくは浴槽への注湯の際に給水接続口122から流入する給水(または湯)を加熱する熱交換器123および第1バーナ124などを備えている。   The gas water heater 120 includes a heat exchanger 123 and a first burner 124 that heat water supplied (or hot water) flowing from the water supply connection port 122 when hot water is supplied or poured into a bathtub.

上記構成の貯湯システム100では、燃料電池130の排熱を回収して貯湯タンク102内の湯水を加熱する際に排熱回収ポンプ112を作動させる。これにより、貯湯タンク102内の湯水は、貯湯タンク102の下部から熱回収配管(低温)114、排熱回収熱交換器111、熱回収配管(高温)115を経由して貯湯タンク102の上部に戻る経路を循環し、排熱回収熱交換器111を通る際に加熱される。   In the hot water storage system 100 configured as described above, the exhaust heat recovery pump 112 is operated when the exhaust heat of the fuel cell 130 is recovered and the hot water in the hot water storage tank 102 is heated. Thus, the hot water in the hot water storage tank 102 passes from the lower part of the hot water storage tank 102 to the upper part of the hot water storage tank 102 via the heat recovery pipe (low temperature) 114, the exhaust heat recovery heat exchanger 111, and the heat recovery pipe (high temperature) 115. It circulates in the return path and is heated as it passes through the exhaust heat recovery heat exchanger 111.

給湯動作では、貯湯タンク102に十分蓄熱されている場合には、貯湯タンク102の湯と給水とを混合器107で混合して設定温度の湯を作ってガス給湯器120へ送り、ガス給湯器120は追加の加熱を行わずにそのまま給湯する。また、貯湯タンク102に蓄熱がない場合には、貯湯タンク102内にある設定温度より低い温度の湯または水をガス給湯器120に送り、ガス給湯器120で設定温度に加熱して給湯する。貯湯タンク102内の湯が設定温度よりわずかに低く、そのままガス給湯器120に送るとガス給湯器120を最小能力で作動させても給湯温度が設定温度を超えてしまう場合には、混合器107で貯湯タンク102からの湯に給水を混合して温度を意図的に下げた湯水をガス給湯器120に送り、ガス給湯器120で設定温度に加熱して給湯する、といったことが行われる。   In the hot water supply operation, when the hot water storage tank 102 has sufficiently stored heat, the hot water and hot water in the hot water storage tank 102 are mixed by the mixer 107 to produce hot water at a set temperature, and the hot water is supplied to the gas water heater 120. 120 does not perform additional heating and supplies hot water as it is. Further, when there is no heat storage in the hot water storage tank 102, hot water or water having a temperature lower than the set temperature in the hot water storage tank 102 is sent to the gas water heater 120 and heated to the set temperature by the gas water heater 120 to supply hot water. If the hot water in the hot water storage tank 102 is slightly lower than the set temperature and is sent to the gas water heater 120 as it is, the hot water temperature will exceed the set temperature even if the gas water heater 120 is operated with the minimum capacity. Then, the hot water from the hot water storage tank 102 is mixed with the hot water and the temperature is intentionally lowered to the gas water heater 120, and the gas water heater 120 is heated to the set temperature to supply the hot water.

特開2010−236713号公報JP 2010-236713 A 特開2007−10244号公報JP 2007-10244 A 特許第4559307号公報Japanese Patent No. 4559307 特許第3935416号公報Japanese Patent No. 3935416

貯湯タンクユニットと燃料電池などの熱源とは別体に設けられることが多く、これらの間を結ぶ熱回収配管は、屋外に配管される。そのため、寒冷地では、燃焼電池130の運転を停止させている間に、熱回収配管が凍結する恐れがある。凍結対策には、たとえば、施工時に熱回収配管にヒータを巻く、または燃料電池ユニット内の排熱回収ポンプを運転しながら燃料電池ユニット内に設けた電気ヒータなどの加熱装置で熱回収配管内の水を循環加熱する、といった方法が想定される。しかし、これらの方法では、施工時の作業工数が増えたり、ヒータなどを付加したりするので、システムコストが高くなってしまう。   A hot water storage tank unit and a heat source such as a fuel cell are often provided separately from each other, and a heat recovery pipe connecting them is provided outdoors. Therefore, in a cold region, the heat recovery pipe may freeze while the operation of the combustion battery 130 is stopped. As countermeasures against freezing, for example, a heater is wound around the heat recovery pipe at the time of construction, or a heating device such as an electric heater provided in the fuel cell unit while operating the exhaust heat recovery pump in the fuel cell unit. A method of circulating and heating water is assumed. However, in these methods, the number of work steps at the time of construction increases and a heater or the like is added, resulting in an increase in system cost.

本発明は、上記の問題を解決しようとするものであり、配管にヒータを巻きつけたりすることなく熱回収配管の凍結を防止することのできる貯湯システムを提供することを目的としている。   An object of the present invention is to provide a hot water storage system capable of preventing the heat recovery pipe from being frozen without winding a heater around the pipe.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。   The gist of the present invention for achieving the object lies in the inventions of the following items.

[1]給水が供給される貯湯タンクと、所定の熱源から熱を回収して前記貯湯タンク内の水を加熱する加熱装置とを備え、前記貯湯タンク内の蓄熱が設定温度の給湯に不足する場合にその不足分の加熱をバックアップ熱源機で行う貯湯システムであって、
前記加熱装置は、前記熱源から熱回収するための熱交換器と、前記貯湯タンクから前記熱交換器の入側に至る往き熱回収配管と、前記熱交換器の出側から前記貯湯タンクに至る戻り熱回収配管と、前記貯湯タンクから前記往き熱回収配管、前記熱交換器、前記戻り熱回収配管を経由して前記貯湯タンクに戻る熱回収循環経路の湯水を循環させる熱回収ポンプとを備えて構成され、
さらに、前記熱回収循環経路を、前記貯湯タンクをバイパスする迂回循環経路に切り替える経路変更部と、
前記バックアップ熱源機の給湯口に接続された第1配管から分岐し、前記迂回循環経路を成す部分の前記戻り熱回収配管に合流する分岐管と、
前記迂回循環経路を成す部分の前記往き熱回収配管から分岐し、前記バックアップ熱源機の給水口に通じる第2配管に合流する合流管と、
前記合流管に設けられて、前記第2配管側に向けて送水する循環ポンプと、
制御部と、
を備え、
前記制御部は、
前記熱源の熱を回収して貯湯タンク内の水を加熱するときは、前記熱回収ポンプを作動させて前記貯湯タンク内の水を前記熱回収循環経路に循環させ、
前記熱回収配管に熱を供給するときは、前記熱回収循環経路を前記迂回循環経路に切り替えて、前記熱回収ポンプおよび前記循環ポンプを作動させ、さらに前記バックアップ熱源機で加熱するように制御する
ことを特徴とする貯湯システム。
[1] A hot water storage tank to which water is supplied and a heating device that recovers heat from a predetermined heat source and heats the water in the hot water storage tank, and the heat storage in the hot water storage tank is insufficient for the hot water at a set temperature. A hot water storage system that uses a backup heat source to heat the shortage
The heating device includes a heat exchanger for recovering heat from the heat source, a forward heat recovery pipe from the hot water storage tank to the inlet side of the heat exchanger, and an outlet side of the heat exchanger to the hot water storage tank. A return heat recovery pipe, and a heat recovery pump for circulating hot water in a heat recovery circulation path that returns from the hot water storage tank to the forward heat recovery pipe, the heat exchanger, and the return heat recovery pipe to the hot water storage tank. Configured
Furthermore, a path changing unit that switches the heat recovery circulation path to a bypass circulation path that bypasses the hot water storage tank;
A branch pipe branched from the first pipe connected to the hot water supply port of the backup heat source machine, and joined to the return heat recovery pipe of the portion constituting the bypass circulation path;
A merging pipe that branches from the forward heat recovery pipe of the part that forms the detour circulation path and joins to a second pipe that leads to a water supply port of the backup heat source unit;
A circulation pump that is provided in the junction pipe and feeds water toward the second pipe;
A control unit;
With
The controller is
When recovering the heat of the heat source to heat the water in the hot water storage tank, the heat recovery pump is operated to circulate the water in the hot water storage tank to the heat recovery circulation path,
When supplying heat to the heat recovery pipe, the heat recovery circulation path is switched to the bypass circulation path, the heat recovery pump and the circulation pump are operated, and further controlled to be heated by the backup heat source unit. Hot water storage system characterized by that.

上記発明では、貯湯タンクと排熱回収装置との間を結ぶ熱回収循環経路を、貯湯タンクをバイパスさせた迂回循環経路に切り替える経路変更部と、迂回循環経路の戻り熱回収配管から分岐してバックアップ熱源機を経由して迂回循環経路に戻る分岐経路(往き熱回収配管から分岐し、合流管、第2配管、バックアップ熱源機、第1配管、分岐管を経て戻り熱回収配管に戻る経路)と、分岐経路に湯水を循環させる循環ポンプとを備える。凍結を防止するなどのために熱回収配管に熱を供給する際には、熱回収循環経路を、貯湯タンクをバイパスした迂回循環経路に切り替え、排熱回収装置の熱回収ポンプと循環ポンプを運転し、さらにバックアップ熱源機で加熱する。これにより、迂回循環経路を循環する水の一部が、分岐経路側に流れ、バックアップ熱源機で加熱されて、迂回循環経路に戻るようになり、迂回循環経路内の水温が上昇し、凍結が防止される。   In the above invention, the heat recovery circulation path connecting the hot water storage tank and the exhaust heat recovery device is branched from the path changing unit that switches to the bypass circulation path bypassing the hot water storage tank, and the return heat recovery pipe of the bypass circulation path. Branch path that returns to the detour circulation path via the backup heat source machine (path that branches from the forward heat recovery pipe, returns to the heat recovery pipe via the merge pipe, second pipe, backup heat source machine, first pipe, and branch pipe) And a circulation pump for circulating hot water in the branch path. When supplying heat to the heat recovery pipe to prevent freezing, switch the heat recovery circulation path to a bypass circulation path bypassing the hot water storage tank, and operate the heat recovery pump and circulation pump of the exhaust heat recovery device Then, heat with a backup heat source machine. As a result, part of the water circulating in the detour circulation path flows to the branch path side, is heated by the backup heat source unit, and returns to the detour circulation path, the water temperature in the detour circulation path rises, and freezing occurs. Is prevented.

[2]前記第1配管を通じて流入する前記バックアップ熱源機の給湯口からの湯水と、前記貯湯タンクからの湯水と、給水とを設定された混合比で混合して給湯する混合器をさらに有し、
前記バックアップ熱源機の給水口には前記第2配管を通じて給水が供給され、
前記制御部は、前記混合器から設定温度の湯が給湯されるように、前記バックアップ熱源機による加熱および前記混合器の混合比を制御する
ことを特徴とする[1]に記載の貯湯システム。
[2] A mixer for supplying hot water by mixing hot water from the hot water supply port of the backup heat source machine flowing in through the first pipe, hot water from the hot water storage tank, and water supply at a set mixing ratio. ,
Water is supplied to the water supply port of the backup heat source machine through the second pipe,
The hot water storage system according to [1], wherein the control unit controls heating by the backup heat source unit and a mixing ratio of the mixer so that hot water having a set temperature is supplied from the mixer.

上記発明では、バックアップ熱源機からの湯と貯湯タンクからの湯と給水管からの給水とを混合器で混合して設定温度の給湯を行う方式(後混合方式)を採用している。   In the said invention, the system (post-mixing system) which mixes the hot water from a backup heat source machine, the hot water from a hot water storage tank, and the feed water from a water supply pipe with a mixer, and supplies hot water of a preset temperature is employ | adopted.

[3]前記貯湯タンクの出湯口からの湯水と給水とを設定された混合比で混合すると共に、前記バックアップ熱源機の給水口に通じる前記第2配管が出側に接続された混合器をさらに有し、
前記制御部は、前記バックアップ熱源機による追加の加熱無しにもしくは前記バックアップ熱源機による加熱を足して前記バックアップ熱源機から設定温度の給湯が行われるように前記混合器の混合比を制御する
ことを特徴とする[1]に記載の貯湯システム。
[3] A mixer in which hot water and feed water from the hot water outlet of the hot water storage tank are mixed at a set mixing ratio, and the second pipe leading to the water feed port of the backup heat source machine is further connected to the outlet side. Have
The control unit controls the mixing ratio of the mixer so that hot water at a set temperature is supplied from the backup heat source unit without additional heating by the backup heat source unit or by adding heating by the backup heat source unit. The hot water storage system according to [1], which is characterized.

上記発明では、貯湯タンクからの湯と給水管からの給水とを混合器で混合した湯水をバックアップ熱源機に送り、バックアップ熱源機で不足分を加熱して給湯する方式(給水予熱方式)を採用している。   In the above invention, a hot water supply (hot water preheating method) is used in which hot water from a hot water storage tank and hot water from a water supply pipe are mixed in a mixer and sent to a backup heat source machine, and the shortage is heated by the backup heat source machine. doing.

[4]前記経路変更部は、前記戻り熱回収配管側から流入する湯水の温度が所定温度未満の場合は前記熱回収循環経路を前記迂回循環経路に切り替える
ことを特徴とする[1]乃至[4]のいずれか1項に記載の貯湯システム。
[4] The path changing unit switches the heat recovery circulation path to the bypass circulation path when the temperature of hot water flowing from the return heat recovery piping side is lower than a predetermined temperature. 4] The hot water storage system according to any one of the above.

上記発明では、熱回収やバックアップ熱源機によって十分加熱された湯のみ貯湯タンクに戻り、水または加熱不足の湯水が貯湯タンクに戻ることが防止される。なお、凍結防止が可能な程度に加熱した湯水の温度では、経路変更部は迂回循環経路になる。   In the above-mentioned invention, only hot water sufficiently heated by heat recovery or a backup heat source device is returned to the hot water storage tank, and water or hot water with insufficient heating is prevented from returning to the hot water storage tank. In addition, at the temperature of the hot water heated to the extent that freezing prevention is possible, the path changing unit becomes a bypass circulation path.

本発明に係る貯湯システムによれば、配管にヒータを巻きつけたりすることなく熱回収配管の凍結を防止することができる。   According to the hot water storage system according to the present invention, freezing of the heat recovery pipe can be prevented without winding a heater around the pipe.

本発明の第1の実施の形態に係る風呂給湯システムの構成を示す図である。It is a figure which shows the structure of the bath hot-water supply system which concerns on the 1st Embodiment of this invention. 風呂給湯器の概略構成を示す図である。It is a figure which shows schematic structure of a bath water heater. 本発明の第1の実施の形態に係る風呂給湯システムの排熱回収動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the waste heat recovery operation | movement of the bath hot-water supply system which concerns on the 1st Embodiment of this invention. 第1の実施の形態に係る風呂給湯システムの給湯動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the hot water supply operation | movement of the bath hot water system which concerns on 1st Embodiment. 本発明の第1の実施の形態に係る風呂給湯システムの熱回収配管の凍結防止動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the freeze prevention operation | movement of the heat recovery piping of the bath hot-water supply system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの構成を示す図である。It is a figure which shows the structure of the bath hot-water supply system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの排熱回収動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the waste heat recovery operation | movement of the bath hot-water supply system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの第1モードの給湯動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the hot water supply operation of the 1st mode of the bath hot water system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの第2モードの給湯動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the hot water supply operation | movement of the 2nd mode of the bath hot-water supply system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの第3モードの給湯動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the hot water supply operation | movement of the 3rd mode of the bath hot-water supply system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る風呂給湯システムの熱回収配管の凍結防止動作における湯水の流れを示す説明図である。It is explanatory drawing which shows the flow of the hot water in the freeze prevention operation | movement of the heat recovery piping of the bath hot-water supply system which concerns on the 2nd Embodiment of this invention. 従来の貯湯システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the conventional hot water storage system.

以下、図面に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の基本概念を説明する。   The basic concept of the present invention will be described.

本発明に係る貯湯システムは、貯湯タンクと排熱回収装置との間を結ぶ熱回収循環経路を、貯湯タンクをバイパスした迂回循環経路に切り替える経路変更部と、この迂回循環経路の途中から分岐しバックアップ熱源機を経由して迂回循環経路に戻る分岐経路と、この分岐経路に湯水を循環させる循環ポンプとを備える。熱回収配管の凍結を防止する際には、熱回収循環経路を迂回循環経路に切り替え、排熱回収装置の熱回収ポンプと循環ポンプとを作動させ、さらにバックアップ熱源機で加熱する。これにより、迂回循環経路を循環する水の一部が、分岐経路側に流れ、バックアップ熱源機で加熱されて、迂回循環経路に戻るようになり、迂回循環経路内の水温が上昇させられ、凍結が防止される。   A hot water storage system according to the present invention includes a path changing unit that switches a heat recovery circulation path connecting a hot water storage tank and an exhaust heat recovery device to a bypass circulation path that bypasses the hot water storage tank, and a branch from the middle of the bypass circulation path. A branch path returning to the detour circulation path via the backup heat source unit and a circulation pump for circulating hot water in the branch path are provided. In order to prevent the heat recovery pipe from freezing, the heat recovery circulation path is switched to a bypass circulation path, the heat recovery pump and the circulation pump of the exhaust heat recovery apparatus are operated, and further heated by a backup heat source machine. As a result, a part of the water circulating in the detour circulation path flows to the branch path side, is heated by the backup heat source machine, and returns to the detour circulation path, and the water temperature in the detour circulation path is raised and frozen. Is prevented.

以下、上記本発明の凍結防止技術を給水予熱方式の貯湯システムに適用した第1の実施の形態と、後混合方式の貯湯システムに適用した第2の実施の形態について説明する。   Hereinafter, a first embodiment in which the anti-freezing technology of the present invention is applied to a hot water storage system using a feed water preheating system and a second embodiment in which the technique is applied to a hot water storage system using a post-mixing system will be described.

まず、本発明の第1の実施の形態について説明する。   First, a first embodiment of the present invention will be described.

図1は、本発明の貯湯システムを適用した第1の実施の形態に係る風呂給湯システム10の構成を示している。風呂給湯システム10は、貯湯タンクユニット11と、熱源機4と、熱源機4の排熱を回収する排熱回収装置50と、バックアップ熱源機としての風呂給湯器70とを備えて構成される。風呂給湯システム10は、貯湯タンク13からの湯と給水管12からの給水とを混合器23で混合した湯水を風呂給湯器70に送り、風呂給湯器70で不足分を加熱して給湯する給水予熱方式を採用している。なお、図中、装置間の配管や外部配管は2重の矢印で示してある。また、熱源機4として本例では燃料電池を使用する。   FIG. 1 shows a configuration of a bath hot water supply system 10 according to a first embodiment to which a hot water storage system of the present invention is applied. The bath hot water supply system 10 includes a hot water storage tank unit 11, a heat source unit 4, an exhaust heat recovery device 50 that recovers exhaust heat from the heat source unit 4, and a bath water heater 70 as a backup heat source unit. The bath hot water supply system 10 sends hot water obtained by mixing hot water from the hot water storage tank 13 and water supplied from the water supply pipe 12 in the mixer 23 to the bath water heater 70, and supplies the hot water by heating the shortage in the bath water heater 70. Preheating method is adopted. In the figure, piping between apparatuses and external piping are indicated by double arrows. In this example, a fuel cell is used as the heat source unit 4.

貯湯タンクユニット11は、給水管12から供給される給水を蓄える貯湯タンク13を備えている。貯湯タンク13は中空略円柱状のタンクであり、下部には給水口14が設けてあり、上部には出湯口15が設けてある。さらに貯湯タンク13の下部には取水口16が、上部には戻り口17が設けてある。   The hot water storage tank unit 11 includes a hot water storage tank 13 that stores water supplied from a water supply pipe 12. The hot water storage tank 13 is a hollow, substantially cylindrical tank, with a water supply port 14 provided at the lower part and a hot water outlet 15 provided at the upper part. Further, a water intake port 16 is provided at the lower part of the hot water storage tank 13 and a return port 17 is provided at the upper part.

貯湯タンク13は、たとえば、容量100リットル程度を有し、底から20リットルの水位の箇所に、その箇所の水温を検出する第1温度センサ18aが、底から40リットルの水位の箇所に、その箇所の水温を検出する第2温度センサ18bが、底から60リットルの水位の箇所に、その箇所の水温を検出する第3温度センサ18cが、底から80リットルの水位の箇所に、その箇所の水温を検出する湯切れ温度センサ18dが、さらに貯湯タンク13内のほぼ最上部に、その箇所の水温を検出するタンク上部温度センサ18eがそれぞれ設けてある。   The hot water storage tank 13 has, for example, a capacity of about 100 liters, and a first temperature sensor 18a for detecting the water temperature at the water level of 20 liters from the bottom has a water level of 40 liters from the bottom. A second temperature sensor 18b for detecting the water temperature at the location is located at a location where the water level is 60 liters from the bottom, and a third temperature sensor 18c for detecting the water temperature at the location is located at a location where the water level is 80 liters from the bottom. A hot water temperature sensor 18d for detecting the water temperature is further provided, and a tank upper temperature sensor 18e for detecting the water temperature at the location is provided at the uppermost part of the hot water storage tank 13, respectively.

排熱回収装置50は、熱源機4の内部などに設けられて熱源機4の排熱を回収する。排熱回収装置50は排熱回収熱交換器51と、排熱回収ポンプ52とを有する。貯湯タンク13と排熱回収装置50の排熱回収熱交換器51は、これらの間に貯湯タンク13の水を循環させる熱回収循環経路が構成されるように熱回収配管53(53a、53b)で接続されている。詳細には、貯湯タンク13の取水口16には熱回収配管(低温)53aの一端が接続され、排熱回収熱交換器51の入り側に熱回収配管(低温)53aの他端が接続されている。排熱回収ポンプ52は、排熱回収熱交換器51の入り側近傍の熱回収配管(低温)53aに介挿されており、排熱回収ポンプ52は熱回収配管(低温)53a内の水を貯湯タンク13の取水口16側から排熱回収熱交換器51の入り側に向けて送水する。   The exhaust heat recovery device 50 is provided in the heat source unit 4 or the like and recovers the exhaust heat of the heat source unit 4. The exhaust heat recovery device 50 includes an exhaust heat recovery heat exchanger 51 and an exhaust heat recovery pump 52. The heat recovery pipe 53 (53a, 53b) is configured so that a heat recovery circulation path for circulating water in the hot water storage tank 13 is configured between the hot water storage tank 13 and the exhaust heat recovery heat exchanger 51 of the exhaust heat recovery apparatus 50. Connected with. Specifically, one end of a heat recovery pipe (low temperature) 53 a is connected to the water intake 16 of the hot water storage tank 13, and the other end of the heat recovery pipe (low temperature) 53 a is connected to the inlet side of the exhaust heat recovery heat exchanger 51. ing. The exhaust heat recovery pump 52 is inserted into a heat recovery pipe (low temperature) 53a in the vicinity of the entrance side of the exhaust heat recovery heat exchanger 51, and the exhaust heat recovery pump 52 uses the water in the heat recovery pipe (low temperature) 53a. Water is fed from the intake 16 side of the hot water storage tank 13 toward the entrance side of the exhaust heat recovery heat exchanger 51.

排熱回収熱交換器51の出側には熱回収配管(高温)53bの一端が接続され、熱回収配管(高温)53bの他端は貯湯タンクユニット11内で第1三方弁21の第1接続口21aに接続されている。   One end of a heat recovery pipe (high temperature) 53 b is connected to the outlet side of the exhaust heat recovery heat exchanger 51, and the other end of the heat recovery pipe (high temperature) 53 b is the first one of the first three-way valve 21 in the hot water storage tank unit 11. It is connected to the connection port 21a.

第1三方弁21は、前述の第1接続口21aと、第2接続口21bと第3接続口21cとを備え、第1接続口21aと第2接続口21bとを接続し第3接続口21cを閉鎖するA方向と、第1接続口21aと第3接続口21cとを接続し第2接続口21bを閉鎖するB方向とに接続状態を切り替え可能に構成されている。なお、第1三方弁21は第1接続口21aから流入する水の温度が所定温度以上ならばA方向となり、所定温度未満ならばB方向に切り替わるように制御部20により制御される。   The first three-way valve 21 includes the first connection port 21a, the second connection port 21b, and the third connection port 21c, and connects the first connection port 21a and the second connection port 21b to form a third connection port. The connection state can be switched between the A direction for closing 21c and the B direction for connecting the first connection port 21a and the third connection port 21c and closing the second connection port 21b. The first three-way valve 21 is controlled by the control unit 20 so as to be in the A direction if the temperature of the water flowing in from the first connection port 21a is equal to or higher than the predetermined temperature, and to be switched to the B direction if the temperature is lower than the predetermined temperature.

第1三方弁21の第2接続口21bは貯湯タンク13の戻り口17に配管されている。第1三方弁21の第3接続口21cにはバイパス管54の一端が接続され、バイパス管54の他端は貯湯タンクユニット11内で熱回収配管(低温)53aに合流している。   The second connection port 21 b of the first three-way valve 21 is connected to the return port 17 of the hot water storage tank 13. One end of the bypass pipe 54 is connected to the third connection port 21 c of the first three-way valve 21, and the other end of the bypass pipe 54 joins the heat recovery pipe (low temperature) 53 a in the hot water storage tank unit 11.

第1三方弁21の第1接続口21a近傍の熱回収配管(高温)53bには熱回収配管高温側温度センサ22aが設けてあり、貯湯タンク13の取水口16からバイパス管54との合流箇所までの間の熱回収配管(低温)53aに熱回収配管低温側温度センサ22bが設けてある。   A heat recovery pipe high temperature side temperature sensor 22a is provided in the heat recovery pipe (high temperature) 53b in the vicinity of the first connection port 21a of the first three-way valve 21, and a junction between the water intake 16 of the hot water storage tank 13 and the bypass pipe 54 is provided. The heat recovery pipe low temperature side sensor 22b is provided in the heat recovery pipe (low temperature) 53a until the above.

貯湯タンクユニット11は、貯湯タンク13の出湯口15からの湯と、給水とを混合する混合器23を備えている。この混合器23は、実際には、貯湯タンク13の出湯口15からの湯の混合量を調整する第1混合器23aと、給水管12からの給水の混合量を調整する第2混合器23bとを有して構成される。   The hot water storage tank unit 11 includes a mixer 23 that mixes hot water from the hot water outlet 15 of the hot water storage tank 13 and water supply. This mixer 23 is actually a first mixer 23 a that adjusts the amount of hot water supplied from the hot water outlet 15 of the hot water storage tank 13 and a second mixer 23 b that adjusts the amount of mixed water supplied from the water supply pipe 12. And is configured.

第1混合器23aの入り側は貯湯タンク13の出湯口15に配管で接続されており、この配管の途中には、過圧逃がし弁24、吸気弁25、タンク出口温度センサ26が設けてある。第2混合器23bの入り側には給水管12が接続されている。   The inlet side of the first mixer 23a is connected to a hot water outlet 15 of the hot water storage tank 13 by piping, and an overpressure relief valve 24, an intake valve 25, and a tank outlet temperature sensor 26 are provided in the middle of the piping. . A water supply pipe 12 is connected to the entrance side of the second mixer 23b.

第1混合器23aの出側と第2混合器23bの出側は合流して混合器23の出口に通じている。混合器23の出口には、風呂給湯器70の給水接続口へ通じる接続配管61が接続されている。混合器23の出側近傍の接続配管61には出湯温度センサ32およびハイカット温度センサ33が設けてある。   The outlet side of the first mixer 23 a and the outlet side of the second mixer 23 b merge to communicate with the outlet of the mixer 23. A connection pipe 61 that leads to a water supply connection port of the bath water heater 70 is connected to the outlet of the mixer 23. The connecting pipe 61 in the vicinity of the outlet side of the mixer 23 is provided with a tapping temperature sensor 32 and a high cut temperature sensor 33.

貯湯タンクユニット11内部の給水管12には流量センサ34、給水温度センサ35、減圧弁36が設けられている。給水管12は、これらの下流で2つに分岐し、その一方は逆止弁37aを介して第2混合器23bの入り側に接続され、他方は逆止弁37bを介して貯湯タンク13の給水口14に接続されている。   The water supply pipe 12 inside the hot water storage tank unit 11 is provided with a flow rate sensor 34, a water supply temperature sensor 35, and a pressure reducing valve 36. The water supply pipe 12 branches into two downstream of these, one of which is connected to the inlet side of the second mixer 23b via a check valve 37a, and the other is connected to the hot water storage tank 13 via the check valve 37b. It is connected to the water supply port 14.

さらに貯湯タンク13の取水口16には所定の排水箇所に通じる排水管41が接続されており、排水管41の途中にはこの管路を開閉する排水栓42が設けてある。   Further, a drain pipe 41 leading to a predetermined drainage point is connected to the water intake 16 of the hot water storage tank 13, and a drain plug 42 for opening and closing the pipe line is provided in the middle of the drain pipe 41.

風呂給湯器70の給湯接続口には給湯栓などに通じる給湯配管62が接続されている。また、給湯配管62の途中で分岐した分岐管43は貯湯タンクユニット11に向けて配管され、貯湯タンクユニット11内部にて熱回収配管(高温)53bに合流している。貯湯タンクユニット11内部の分岐管43には、戻り配管温度センサ28および熱回収配管(高温)53b側からの逆流を防止する逆止弁44が設けてある。   A hot water supply pipe 62 leading to a hot water tap or the like is connected to the hot water supply connection port of the bath water heater 70. Further, the branch pipe 43 branched in the middle of the hot water supply pipe 62 is piped toward the hot water storage tank unit 11 and joined to the heat recovery pipe (high temperature) 53b inside the hot water storage tank unit 11. The branch pipe 43 in the hot water storage tank unit 11 is provided with a check valve 44 for preventing a reverse flow from the return pipe temperature sensor 28 and the heat recovery pipe (high temperature) 53b side.

また、貯湯タンクユニット11の内部において熱回収配管(低温)53aから分岐し接続配管61に合流する合流管45が設けてある。合流管45の途中には、熱回収配管(低温)53aから接続配管61側へ送水する循環ポンプ46とポンプ電磁弁47を備えている。ポンプ電磁弁47は、合流管45を開閉する。ポンプ電磁弁47は接続配管61から湯水が逆流して貯湯タンク13に流入することを防止する。またポンプ電磁弁47は、後述する給湯動作の際に貯湯タンク13下部の水が取水口16から出て接続配管61を通じて風呂給湯器70の給水接続口へ流出することを防止する。   In addition, a junction pipe 45 that branches from the heat recovery pipe (low temperature) 53 a and joins to the connection pipe 61 is provided in the hot water storage tank unit 11. In the middle of the merging pipe 45, a circulation pump 46 and a pump solenoid valve 47 for supplying water from the heat recovery pipe (low temperature) 53a to the connection pipe 61 are provided. The pump solenoid valve 47 opens and closes the merge pipe 45. The pump solenoid valve 47 prevents hot water from flowing backward from the connection pipe 61 and flowing into the hot water storage tank 13. Further, the pump solenoid valve 47 prevents water in the lower part of the hot water storage tank 13 from flowing out from the water intake 16 and flowing out to the water supply connection port of the bath water heater 70 through the connection pipe 61 during a hot water supply operation described later.

また、貯湯タンクユニット11には、雰囲気温度(外気温度)を計測する雰囲気温度センサ49が設けてある。   The hot water storage tank unit 11 is provided with an atmospheric temperature sensor 49 for measuring the atmospheric temperature (outside air temperature).

貯湯タンクユニット11は、当該貯湯タンクユニット11の動作を統括制御する制御部20を備えている。制御部20はCPU(Central Processing Unit)と、該CPUが実行するプログラムや固定データなどが記憶されたフラッシュROM(Read Only Memory)と、CPUがプログラムを実行する際に各種情報を一時記憶するRAM(Random Access Memory)、各種の信号を入出力するI/F(Interface)部などを主要部とする回路で構成されている。制御部20には、貯湯タンクユニット11の各種センサからの検出信号が入力されている。また制御部20からは各弁やその他の制御対象に対して制御信号が出力される。制御部20はさらに熱源機4や風呂給湯器70と各種の情報や指令を授受するようになっている。   The hot water storage tank unit 11 includes a control unit 20 that performs overall control of the operation of the hot water storage tank unit 11. The control unit 20 includes a CPU (Central Processing Unit), a flash ROM (Read Only Memory) that stores programs executed by the CPU, fixed data, and the like, and a RAM that temporarily stores various types of information when the CPU executes programs. (Random Access Memory) and an I / F (Interface) unit for inputting / outputting various signals and the like. Detection signals from various sensors of the hot water tank unit 11 are input to the control unit 20. A control signal is output from the control unit 20 to each valve and other controlled objects. The control unit 20 further exchanges various information and commands with the heat source unit 4 and the bath water heater 70.

次に、バックアップ熱源機としての風呂給湯器70の構成例を説明する。風呂給湯器70は給水接続口から流入する水を加熱して出湯する機能、風呂(浴槽)2へ注湯(湯張り)する機能、風呂(浴槽)2内の湯水を追い焚きする機能などを備えたガス燃焼式の風呂給湯器である。   Next, a configuration example of the bath water heater 70 as a backup heat source device will be described. The bath water heater 70 has a function of heating and discharging water flowing from the water supply connection port, a function of pouring (filling) the bath (tub) 2, and a function of chasing hot water in the bath (tub) 2. This is a gas-fired bath water heater.

図2に示すように、風呂給湯器70は、第1熱交換水管72aと第2熱交換水管72bとが通る一缶二水路型の熱交換器72と、この熱交換器72を加熱するバーナ73を備える。バーナ73にはガス供給管73aが接続され、このガス供給管73aの途中には、ガスの供給/遮断を切り替えるガス弁や供給ガス量を調整する比例弁などが設けてある。   As shown in FIG. 2, the bath water heater 70 includes a one-can two-water channel type heat exchanger 72 through which a first heat exchange water pipe 72 a and a second heat exchange water pipe 72 b pass, and a burner that heats the heat exchanger 72. 73 is provided. A gas supply pipe 73a is connected to the burner 73, and a gas valve for switching supply / cutoff of gas and a proportional valve for adjusting the amount of supply gas are provided in the middle of the gas supply pipe 73a.

第1熱交換水管72aの入り側は入水管74により給水接続口に接続され、第1熱交換水管72aの出側は出湯管75により給湯接続口に接続されている。また、第2熱交換水管72bの入り側には風呂(浴槽)2へ通じる風呂戻り管76が、第2熱交換水管72bの出側には同じく風呂(浴槽)2へ通じる風呂往き管77がそれぞれ接続されている。   The inlet side of the first heat exchange water pipe 72 a is connected to a water supply connection port by a water inlet pipe 74, and the outlet side of the first heat exchange water pipe 72 a is connected to a hot water supply connection port by a hot water outlet pipe 75. Further, a bath return pipe 76 leading to the bath (tub) 2 is provided on the entry side of the second heat exchange water pipe 72b, and a bath return pipe 77 similarly leading to the bath (tub) 2 is provided on the exit side of the second heat exchange water pipe 72b. Each is connected.

出湯管75と風呂戻り管76とは、連結管78によって接続されており、該連結管78の途中には、連結管78の閉鎖/開通を切り替える注湯電磁弁79が設けてある。また、連結管78の接続箇所より上流側の出湯管75の途中には、略閉鎖状態から全開状態まで開度を調整可能な水量サーボ81が出湯水量を調整するために設けてある。水量サーボ81の下流側には、出湯温度を検出する出湯温度センサ82が設けてある。   The hot water outlet pipe 75 and the bath return pipe 76 are connected by a connecting pipe 78, and a hot water electromagnetic valve 79 for switching between closing and opening of the connecting pipe 78 is provided in the middle of the connecting pipe 78. In addition, a water amount servo 81 capable of adjusting the opening degree from a substantially closed state to a fully open state is provided in the middle of the hot water discharge pipe 75 upstream from the connection point of the connecting pipe 78 to adjust the amount of hot water discharged. A tapping temperature sensor 82 for detecting tapping temperature is provided on the downstream side of the water amount servo 81.

さらに、入水管74から分岐し、水量サーボ81より第1熱交換水管72a側の所定箇所で出湯管75に合流・接続されたバイパス管83を備え、このバイパス管83の途中に、略閉鎖から全開まで開度を調整可能なバイパス調整弁84を備えている。第1熱交換水管72aからの湯とバイパス管83を経由した水とを混合して設定温度の湯になるようにバイパス調整弁84が調整される。バイパス管83の分岐箇所より上流側の入水管74には、入水管74内の流量を検出する流量センサ85および入水温度を検知する入水温度センサ86が設けてある。   Furthermore, a bypass pipe 83 branched from the water intake pipe 74 and joined to and connected to the hot water discharge pipe 75 at a predetermined location on the first heat exchange water pipe 72a side from the water quantity servo 81 is provided. A bypass adjustment valve 84 whose opening degree can be adjusted until it is fully opened is provided. The bypass adjustment valve 84 is adjusted so that hot water from the first heat exchange water pipe 72a and water via the bypass pipe 83 are mixed to become hot water at a set temperature. The inlet pipe 74 upstream of the branching point of the bypass pipe 83 is provided with a flow rate sensor 85 that detects the flow rate in the inlet pipe 74 and an incoming water temperature sensor 86 that detects the incoming water temperature.

風呂戻り管76の途中には、風呂(浴槽)2内の水を、追い焚き循環経路(風呂戻り管76、第2熱交換水管72b、風呂往き管77)を通じて循環させるための風呂循環ポンプ87が設けてある。風呂戻り管76に設けた流水スイッチ88は、風呂循環ポンプ87を作動させたとき、追い焚き循環経路に実際に水が循環しているか否かを検出する。   In the middle of the bath return pipe 76, a bath circulation pump 87 for circulating the water in the bath (tub) 2 through the recirculation circulation path (bath return pipe 76, second heat exchange water pipe 72 b, bath going-out pipe 77). Is provided. A flowing water switch 88 provided in the bath return pipe 76 detects whether water is actually circulating in the recirculation circulation path when the bath circulation pump 87 is operated.

このほか、風呂戻り管76および風呂往き管77には、それぞれ管内の温度を検出する風呂往き温度センサ89a、風呂戻り温度センサ89bが設けてある。   In addition, the bath return pipe 76 and the bath return pipe 77 are provided with a bath return temperature sensor 89a and a bath return temperature sensor 89b, respectively, for detecting the temperature in the pipe.

制御部91は、CPUと、該CPUが実行するプログラムや固定データなどが記憶されたフラッシュROMと、CPUがプログラムを実行する際に各種情報を一時記憶するRAMなどを主要部とする回路で構成されている。制御部91には、風呂給湯器70が有する各種センサ、弁、風呂循環ポンプ87などが接続されている。   The control unit 91 includes a CPU, a flash ROM that stores a program executed by the CPU, fixed data, and the like, and a RAM that temporarily stores various types of information when the CPU executes the program. Has been. Various sensors, valves, a bath circulation pump 87, and the like that the bath water heater 70 has are connected to the control unit 91.

さらに、通常は、制御部91には、配線を介してリモコン92が直接接続されるが、ここでは、風呂給湯器70を貯湯タンクユニット11側の制御部20の制御下で動作させるために、制御部91を配線を介して制御部20に接続し、制御部20に配線を介してリモコン(貯湯タンクユニット11側と風呂給湯器70の共通のリモコン)92が接続されている。共通リモコン92は、給湯設定温度や風呂設定温度の指定、湯張り動作や追い焚き動作の開始・終了指示、電源のオン/オフなど各種の操作をユーザから受けるスイッチ類、および動作状態や設定温度などを表示する表示部などで構成される。   Furthermore, normally, a remote controller 92 is directly connected to the control unit 91 via wiring. Here, in order to operate the bath water heater 70 under the control of the control unit 20 on the hot water storage tank unit 11 side, The control unit 91 is connected to the control unit 20 via wiring, and a remote control (a common remote control for the hot water storage tank unit 11 side and the bath water heater 70) 92 is connected to the control unit 20 via wiring. The common remote control 92 includes switches for receiving various operations from the user such as designation of hot water supply set temperature and bath set temperature, start / end instructions for hot water filling and reheating, and power on / off, as well as operation state and set temperature. It is comprised with the display part etc. which display etc.

風呂給湯器70の制御部91は、給湯配管62へ給湯する給湯動作では、貯湯タンクユニット11に接続される共通リモコン92で設定された給湯設定温度の湯が出湯されるようにバーナ73のON/OFFやその燃焼量、バイパス調整弁84の開度などを制御する。詳細には、貯湯タンクユニット11側から接続配管61を通じて供給される湯水の温度が給湯設定温度以上ならば、自装置のバーナ73を燃焼させることなくそのまま給湯配管62へ給湯する。貯湯タンクユニット11側から供給された湯水の温度が給湯設定温度未満ならば、給湯設定温度になるように自装置内にある図示されない燃焼用空気送風用のファンを駆動させると共にバーナ73を燃焼させ、その燃焼量やバイパス調整弁84の開度を制御する。   In the hot water supply operation for supplying hot water to the hot water supply pipe 62, the controller 91 of the bath water heater 70 turns on the burner 73 so that hot water at the hot water supply set temperature set by the common remote controller 92 connected to the hot water storage tank unit 11 is discharged. / OFF, the combustion amount thereof, the opening degree of the bypass adjustment valve 84, and the like are controlled. Specifically, if the temperature of the hot water supplied from the hot water storage tank unit 11 through the connection pipe 61 is equal to or higher than the hot water supply set temperature, the hot water is supplied to the hot water supply pipe 62 without burning the burner 73 of the apparatus itself. If the temperature of the hot water supplied from the hot water storage tank unit 11 side is lower than the hot water supply set temperature, a combustion air blowing fan (not shown) in the apparatus is driven and the burner 73 is burned so as to reach the hot water set temperature. The amount of combustion and the opening degree of the bypass adjustment valve 84 are controlled.

風呂(浴槽)2へ注湯(湯張り)する動作では、注湯電磁弁79を開けてバーナ73を燃焼させた状態で水量サーボ81の開度を調整することにより、給水接続口から流入する湯水が熱交換器72の第1熱交換水管72aを通って加熱され、さらに出湯管75から連結管78、風呂戻り管76および風呂往き管77の双方(もしくは一方)を通じて風呂(浴槽)2へ流れ込む(この経路を注湯回路とする)。この際、共通リモコン92でユーザが設定した風呂設定温度の湯が注湯されるようにバーナ73の燃焼量やバイパス調整弁84の開度などを制御する。なお、貯湯タンクユニット11側から接続配管61を通じて供給された湯が既に風呂設定温度に達しており風呂給湯器70で追加の加熱が不要な場合は、バーナ73を燃焼させずに注湯動作を行う。風呂給湯器70は風呂(浴槽)2内の水位をチェックし、設定水位に達すると注湯動作は終了する。   In the operation of pouring (hot water) into the bath (tub) 2, the opening of the water quantity servo 81 is adjusted while the burner 73 is burned by opening the pouring solenoid valve 79, thereby flowing from the water supply connection port. The hot water is heated through the first heat exchange water pipe 72a of the heat exchanger 72, and further from the hot water pipe 75 to the bath (tub) 2 through both (or one) of the connecting pipe 78, the bath return pipe 76 and the bath outlet pipe 77. Flow in (this path is a pouring circuit). At this time, the combustion amount of the burner 73, the opening degree of the bypass adjustment valve 84, and the like are controlled so that hot water having a bath setting temperature set by the user is poured by the common remote controller 92. If the hot water supplied from the hot water storage tank unit 11 through the connection pipe 61 has already reached the bath set temperature and no additional heating is required in the bath water heater 70, the hot water pouring operation is performed without burning the burner 73. Do. The bath water heater 70 checks the water level in the bath (tub) 2, and the hot water pouring operation ends when the set water level is reached.

追い焚き動作では、注湯電磁弁79を閉鎖し、風呂循環ポンプ87を作動させた状態でバーナ73を燃焼させる。これにより風呂(浴槽)2内の湯水が風呂戻り管76を通じて風呂給湯器70に取り込まれ熱交換器72の第2熱交換水管72bを通る間に加熱され、加熱後の湯水が風呂往き管77を通じて風呂(浴槽)2へ戻される。   In the reheating operation, the hot water solenoid valve 79 is closed, and the burner 73 is burned with the bath circulation pump 87 activated. As a result, hot water in the bath (tub) 2 is taken into the bath water heater 70 through the bath return pipe 76 and heated while passing through the second heat exchange water pipe 72 b of the heat exchanger 72, and the heated hot water is heated to the bath outlet pipe 77. It is returned to the bath (tub) 2 through.

次に、風呂給湯システム10の各種動作について説明する。   Next, various operations of the bath hot water supply system 10 will be described.

<排熱回収動作>
図3は、排熱回収動作における湯水の流れを表している。排熱回収動作において湯水の流れる経路を太線で示してある。熱源機4の排熱を回収して貯湯タンク13内の湯水を加熱する排熱回収動作では、制御部20は熱源機4に指示して排熱回収ポンプ52を作動させる。これにより、貯湯タンク13内の湯水は、取水口16から出て、熱回収配管(低温)53a、排熱回収熱交換器51、熱回収配管(高温)53b、A方向の第1三方弁21を経由して戻り口17から貯湯タンク13の上部に戻る熱回収循環経路を循環する。なお、排熱回収動作において、排熱回収装置50からの戻り温度が低いときは第1三方弁21は制御部20によりB方向にされ、戻り温度が一定以上になると第1三方弁21は制御部20によりA方向に切り替えられる。これにより、低温の水が貯湯タンク13の上部に戻されることが防止される。
<Exhaust heat recovery operation>
FIG. 3 shows the flow of hot water in the exhaust heat recovery operation. The path through which hot water flows in the exhaust heat recovery operation is indicated by a bold line. In the exhaust heat recovery operation for recovering the exhaust heat of the heat source unit 4 and heating the hot water in the hot water storage tank 13, the control unit 20 instructs the heat source unit 4 to operate the exhaust heat recovery pump 52. As a result, the hot water in the hot water storage tank 13 exits from the water intake 16 and is connected to the heat recovery pipe (low temperature) 53a, the exhaust heat recovery heat exchanger 51, the heat recovery pipe (high temperature) 53b, and the first three-way valve 21 in the A direction. Is circulated through the heat recovery circulation path from the return port 17 to the upper part of the hot water storage tank 13 via In the exhaust heat recovery operation, when the return temperature from the exhaust heat recovery device 50 is low, the first three-way valve 21 is moved in the B direction by the control unit 20, and when the return temperature exceeds a certain level, the first three-way valve 21 is controlled. The unit 20 switches to the A direction. Thereby, low temperature water is prevented from returning to the upper part of the hot water storage tank 13.

給水は貯湯タンク13の下部の給水口14から供給され、排熱回収動作で加熱された湯は貯湯タンク13の上部に戻されるので、貯湯タンク13内には下部が低温で上部が高温となるような温度勾配が形成される。そして排熱回収動作を続けることで上部に溜まる高温の湯量が次第に増加する。   The hot water is supplied from the water supply port 14 at the lower part of the hot water storage tank 13 and the hot water heated by the exhaust heat recovery operation is returned to the upper part of the hot water storage tank 13, so that the lower part of the hot water storage tank 13 has a low temperature and the upper part has a high temperature. Such a temperature gradient is formed. By continuing the exhaust heat recovery operation, the amount of hot water that accumulates in the upper portion gradually increases.

<給湯動作>
給湯は以下の(1)または(2)の制御モードで行われる。
<Hot-water supply operation>
Hot water is supplied in the following control mode (1) or (2).

(1)燃焼オフモード
燃焼オフモードは、貯湯タンク13に十分蓄熱されている場合の給湯動作である。図4は、給湯動作における湯水の流れを表している。図中、湯水の流れる経路を太線で示してある。燃焼オフモードでは、混合器23で貯湯タンク13からの湯と給水とを混合して給湯設定温度+α℃(α℃は接続配管61での温度低下分を考慮した温度で、たとえば、2℃)の湯を作り、接続配管61を通じて風呂給湯器70へ供給する。風呂給湯器70は、給湯設定温度の湯が供給されたので自装置での追加の加熱は行わず、バーナ73をオフにし、貯湯タンクユニット11側から供給された湯をそのまま給湯配管62へ給湯する。
(1) Combustion off mode The combustion off mode is a hot water supply operation in the case where the hot water storage tank 13 has sufficiently stored heat. FIG. 4 shows the flow of hot water in the hot water supply operation. In the figure, the path through which hot water flows is indicated by a bold line. In the combustion off mode, the hot water and hot water from the hot water storage tank 13 are mixed in the mixer 23 to set the hot water supply temperature + α ° C. (α ° C. is a temperature taking into account the temperature drop in the connecting pipe 61, for example, 2 ° C.). The hot water is made and supplied to the bath water heater 70 through the connecting pipe 61. The bath water heater 70 is supplied with hot water at the set temperature of the hot water supply, and does not perform additional heating by itself, turns off the burner 73 and supplies the hot water supplied from the hot water storage tank unit 11 side to the hot water supply pipe 62 as it is. To do.

(2)追い加熱モード
貯湯タンク13内の蓄熱量が不足して上記燃焼オフモードで給湯設定温度の湯を給湯できない場合の給湯動作であり、風呂給湯器70で追加の加熱が行われる。追い加熱モードの給湯動作における湯水の流れは図4と同様である。ただし、風呂給湯器70は燃焼オンになる。
(2) Additional heating mode This is a hot water supply operation in the case where the amount of heat stored in the hot water storage tank 13 is insufficient and hot water having a hot water supply set temperature cannot be supplied in the combustion off mode, and additional heating is performed by the bath water heater 70. The flow of hot water in the hot water supply operation in the follow-up heating mode is the same as that in FIG. However, the bath water heater 70 is turned on.

詳細には、貯湯タンク13内の湯が給湯設定温度よりわずかに低く、そのまま風呂給湯器70に送ると風呂給湯器70を最小能力で作動させても給湯温度が給湯設定温度を超えてしまう場合は、混合器23で貯湯タンク13からの湯に給水を混合して温度を意図的に下げた湯水を風呂給湯器70に送り、風呂給湯器70で給湯設定温度に加熱して給湯する。貯湯タンク13内の湯の温度が給湯設定温度より十分低く、上記の意図的な温度低下が不要な場合は、貯湯タンク13内にある給湯設定温度より低い温度の湯(または水)を風呂給湯器70に送り、風呂給湯器70で給湯設定温度に加熱して給湯する。   More specifically, when the hot water in the hot water storage tank 13 is slightly lower than the hot water supply set temperature and is sent to the bath water heater 70 as it is, the hot water temperature exceeds the hot water set temperature even if the bath water heater 70 is operated with the minimum capacity. The hot water from the hot water tank 13 mixed with hot water from the hot water storage tank 13 by the mixer 23 is sent to the bath water heater 70, and the hot water hot water is heated to the set hot water temperature by the bath water heater 70. When the temperature of the hot water in the hot water storage tank 13 is sufficiently lower than the hot water supply set temperature and the above-described intentional temperature reduction is not necessary, hot water (or water) having a temperature lower than the hot water supply set temperature in the hot water storage tank 13 is used as the bath hot water. The hot water is supplied to the water heater 70 and heated to the set hot water temperature by the bath water heater 70.

<熱回収配管の凍結防止動作>
制御部20は、貯湯タンクユニット11の雰囲気温度センサ49が凍結の可能性のある温度を検知した場合、もしくは雰囲気温度センサ49の検出温度から熱回収配管53が凍結する恐れがあると判断した場合に熱回収配管53の凍結防止動作を行う。凍結防止動作を行うとき、貯湯タンクユニット11の制御部20は、第1三方弁21をB方向にし、ポンプ電磁弁47を開き、循環ポンプ46および排熱回収装置50の排熱回収ポンプ52を運転する。
<Operation to prevent freezing of heat recovery piping>
When the control unit 20 detects a temperature at which the ambient temperature sensor 49 of the hot water storage tank unit 11 may be frozen, or when it is determined that the heat recovery pipe 53 may be frozen based on the temperature detected by the ambient temperature sensor 49. In addition, the freeze recovery operation of the heat recovery pipe 53 is performed. When performing the freeze prevention operation, the control unit 20 of the hot water storage tank unit 11 sets the first three-way valve 21 in the B direction, opens the pump electromagnetic valve 47, and turns on the circulation heat pump 46 and the exhaust heat recovery pump 52 of the exhaust heat recovery device 50. drive.

図5は、熱回収配管53の凍結防止動作における水の流れを太線および太破線で表している。第1三方弁21をB方向に設定することで、熱回収循環経路は貯湯タンク13を迂回してバイパス管54を通る迂回循環経路(図5の太実線で示す経路)に切り替えられる。迂回循環経路は、排熱回収熱交換器51から熱回収配管(高温)53b、B方向の第1三方弁21、バイパス管54、熱回収配管(低温)53aを経由して排熱回収熱交換器51に戻る循環経路である。排熱回収ポンプ52を作動させることで迂回循環経路内を水が循環する。   FIG. 5 shows the flow of water in the freeze prevention operation of the heat recovery pipe 53 with a bold line and a thick broken line. By setting the first three-way valve 21 in the B direction, the heat recovery circulation path is switched to a bypass circulation path (path indicated by a thick solid line in FIG. 5) that bypasses the hot water storage tank 13 and passes through the bypass pipe 54. The bypass circulation path passes through the heat recovery pipe (high temperature) 53b from the exhaust heat recovery heat exchanger 51, the first three-way valve 21 in the B direction, the bypass pipe 54, and the heat recovery pipe (low temperature) 53a to recover the heat recovery heat. This is a circulation path returning to the vessel 51. By operating the exhaust heat recovery pump 52, water circulates in the detour circulation path.

また、ポンプ電磁弁47を開いて循環ポンプ46を運転することで、上記迂回循環経路内の水の一部が分岐経路(図5の太破線で示す経路)を循環する。すなわち、熱回収配管(低温)53aを流れる水の一部は、循環ポンプ46の作用により合流管45側へと引き込まれ、合流管45から接続配管61、風呂給湯器70、給湯配管62、分岐管43を経由して熱回収配管(高温)53b内に戻るように流れ、風呂給湯器70を通過する際に加熱される。戻り配管温度センサ28の検出する温度に基づいて風呂給湯器70の燃焼ON/OFFを制御することで、熱回収配管53内の水を一定温度以上に加熱して、熱回収配管53の凍結を防止する。なお、第1三方弁21は、熱回収配管53の凍結防止が可能な程度に風呂給湯器70で加熱した温度ではA方向にならず、B方向を維持する。   Further, by opening the pump solenoid valve 47 and operating the circulation pump 46, a part of the water in the detour circulation path circulates through the branch path (path indicated by a thick broken line in FIG. 5). That is, a part of the water flowing through the heat recovery pipe (low temperature) 53a is drawn to the merging pipe 45 side by the action of the circulation pump 46, and from the merging pipe 45, the connection pipe 61, the bath water heater 70, the hot water pipe 62, and the branch. It flows back to the heat recovery pipe (high temperature) 53b via the pipe 43, and is heated when passing through the bath water heater 70. By controlling the combustion ON / OFF of the bath water heater 70 based on the temperature detected by the return pipe temperature sensor 28, the water in the heat recovery pipe 53 is heated to a certain temperature or more, and the heat recovery pipe 53 is frozen. To prevent. The first three-way valve 21 maintains the B direction, not the A direction, at a temperature heated by the bath water heater 70 to such an extent that the heat recovery pipe 53 can be prevented from freezing.

上記の凍結防止動作では、熱回収循環経路を迂回循環経路に設定して貯湯タンク13をバイパスさせるので、凍結防止動作によって冷たい水が貯湯タンク13の上部に流入することはない。また、貯湯タンク13をバイパスさせると貯湯タンク13を経由する場合に比べて循環する総水量が少なくなるので、熱回収配管53全体を風呂給湯器70での加熱により短時間で昇温することができ、凍結防止のための加熱量を少なく抑えることができる。   In the anti-freezing operation, the heat recovery circulation path is set as a bypass circulation path and the hot water storage tank 13 is bypassed. Therefore, cold water does not flow into the upper part of the hot water storage tank 13 by the anti-freezing operation. Further, when the hot water storage tank 13 is bypassed, the total amount of water circulated is smaller than when passing through the hot water storage tank 13, so that the temperature of the entire heat recovery pipe 53 can be raised in a short time by heating in the bath water heater 70. The amount of heating for preventing freezing can be reduced.

なお、熱源機4が雰囲気温度(外気温度)を検出する温度センサを有する場合には、雰囲気温度センサ49に代えてその温度センサを上記凍結防止動作の開始制御に利用してもよい。   In the case where the heat source device 4 has a temperature sensor that detects the ambient temperature (outside temperature), the temperature sensor may be used for the start control of the freeze prevention operation instead of the ambient temperature sensor 49.

このような凍結防止動作によって、熱回収配管53の凍結を防止することができるので、寒冷地の屋外配管でも、施工時に熱回収配管53にヒータを巻くなどの措置が必要なくなる。また、熱回収配管53内の水を循環加熱するために熱源機4側に電気ヒータなどの加熱装置を設ける必要もない。   Such freezing prevention operation can prevent the heat recovery pipe 53 from freezing, so that it is not necessary to take measures such as winding a heater around the heat recovery pipe 53 at the time of construction even in an outdoor pipe in a cold region. Further, it is not necessary to provide a heating device such as an electric heater on the heat source unit 4 side in order to circulate and heat the water in the heat recovery pipe 53.

次に、本発明の第2の実施の形態について説明する。   Next, a second embodiment of the present invention will be described.

図6は、本発明の貯湯システムを適用した第2の実施の形態に係る風呂給湯システム10Bの構成を示している。第2の実施の形態に係る風呂給湯システム10Bは、風呂給湯器70で給水を加熱して得た湯と貯湯タンク13からの湯水と給水とを混合器23で混合して給湯設定温度の湯を作って給湯する方式(後混合方式)を採用している。   FIG. 6 shows a configuration of a bath hot water supply system 10B according to a second embodiment to which the hot water storage system of the present invention is applied. The hot-water supply system 10B according to the second embodiment is configured to mix hot water obtained by heating the hot-water supply with the hot-water heater 70, hot water from the hot water storage tank 13 and the hot water with the mixer 23, and hot water having a hot-water supply set temperature. The method of making hot water and making hot water (after mixing method) is adopted.

貯湯タンクを使用する風呂給湯システムでは、ガス給湯器などから直接給湯する場合に比べて、貯湯タンク内の圧損や接続配管の圧損が加わるので、システム全体の圧損が大きくなる。また、施工条件によっては貯湯タンクユニットとバックアップ熱源機であるガス給湯器とを離して設置しなければならず、貯湯タンクユニットからガス給湯器までの接続配管が長くなるとさらに圧損が増えてしまう。   In a bath hot water system that uses a hot water storage tank, pressure loss in the hot water storage tank and pressure loss in the connecting piping are added, compared to when hot water is supplied directly from a gas water heater or the like. Further, depending on the construction conditions, it is necessary to install the hot water storage tank unit and the gas water heater as a backup heat source machine apart from each other, and the pressure loss further increases when the connecting pipe from the hot water storage tank unit to the gas hot water heater becomes longer.

第1の実施の形態で示した給水予熱方式の風呂給湯システム10の場合、給湯する全量の湯が必ず接続配管61および風呂給湯器70内を経由するので、圧損の影響を受けやすい。第2の実施の形態に示す後混合方式では上記の圧損を低減する。これにより、低水圧地域での給湯量低下が防止される。   In the case of the hot water supply hot water bath system 10 shown in the first embodiment, since the entire amount of hot water to be supplied always passes through the connection pipe 61 and the bath water heater 70, it is easily affected by pressure loss. In the post-mixing method shown in the second embodiment, the pressure loss is reduced. Thereby, the fall of the amount of hot water supply in a low water pressure area is prevented.

図6に示すように、第2の実施の形態に係る風呂給湯システム10Bは、貯湯タンクユニット11Bと、熱源機4と、排熱回収装置50と、バックアップ熱源機としての風呂給湯器70とを備えて構成される。本例では、熱源機4は燃料電池である。なお、第1の実施の形態と同一箇所には同一の符号を付してある。また、図中、装置間の配管や外部配管は2重の矢印で示してある。   As shown in FIG. 6, a bath water heater system 10B according to the second embodiment includes a hot water storage tank unit 11B, a heat source unit 4, an exhaust heat recovery device 50, and a bath water heater 70 as a backup heat source unit. It is prepared for. In this example, the heat source unit 4 is a fuel cell. In addition, the same code | symbol is attached | subjected to the same location as 1st Embodiment. In the figure, piping between apparatuses and external piping are indicated by double arrows.

貯湯タンクユニット11Bは、給水管12から供給される給水を蓄える貯湯タンク13を備えている。なお、貯湯タンク13の構造および内部の温度センサ18a〜18eは第1の実施の形態と同様であり、その説明は省略する。また、排熱回収装置50、および排熱回収装置50と貯湯タンク13とを接続する熱回収配管53などは第1の実施の形態と同様であり、それらの説明も省略する。   The hot water storage tank unit 11 </ b> B includes a hot water storage tank 13 that stores water supplied from the water supply pipe 12. The structure of the hot water storage tank 13 and the internal temperature sensors 18a to 18e are the same as those in the first embodiment, and a description thereof will be omitted. Further, the exhaust heat recovery device 50, the heat recovery pipe 53 that connects the exhaust heat recovery device 50 and the hot water storage tank 13, and the like are the same as those in the first embodiment, and the description thereof is also omitted.

貯湯タンクユニット11Bは、貯湯タンク13の出湯口15からの湯と、風呂給湯器70からの湯と、給水とを混合する混合器30を備えている。この混合器30は、実際には、貯湯タンク13の出湯口15からの湯の混合量を調整する第1混合器30aと、風呂給湯器70からの湯の混合量を調整する第2混合器30bと、給水管12からの給水の混合量を調整する第3混合器30cとを有して構成される。   The hot water storage tank unit 11 </ b> B includes a mixer 30 that mixes hot water from the hot water outlet 15 of the hot water storage tank 13, hot water from the bath water heater 70, and water supply. This mixer 30 is actually a first mixer 30 a that adjusts the amount of hot water supplied from the outlet 15 of the hot water storage tank 13 and a second mixer that adjusts the amount of hot water supplied from the bath water heater 70. 30 b and a third mixer 30 c that adjusts the amount of water supplied from the water supply pipe 12.

第1混合器30aの入り側は貯湯タンク13の出湯口15に配管で接続されており、この配管の途中には、過圧逃がし弁24、吸気弁25、タンク出口温度センサ26が設けてある。第2混合器30bの入り側は風呂給湯器70の給湯接続口に接続配管(高温)65で接続されている。接続配管(高温)65のうち貯湯タンクユニット11B内の所定箇所には接続配管(高温)65内の湯水の温度を検出する戻り配管温度センサ28が設けてある。第3混合器30cの入り側には給水管12が接続されている。   The inlet side of the first mixer 30a is connected to a hot water outlet 15 of the hot water storage tank 13 by piping, and an overpressure relief valve 24, an intake valve 25, and a tank outlet temperature sensor 26 are provided in the middle of the piping. . The entrance side of the second mixer 30 b is connected to the hot water supply connection port of the bath water heater 70 by a connection pipe (high temperature) 65. A return pipe temperature sensor 28 for detecting the temperature of hot water in the connection pipe (high temperature) 65 is provided at a predetermined location in the hot water storage tank unit 11B in the connection pipe (high temperature) 65. The water supply pipe 12 is connected to the entrance side of the third mixer 30c.

第1混合器30aの出側と第2混合器30bの出側は合流し、給湯高温温度センサ29の設けられた配管を経た後、第3混合器30cの出側からの配管と合流して混合器30の出口に通じている。混合器30の出口には給湯配管31が接続されている。混合器30の出側近傍の給湯配管31には出湯温度センサ32およびハイカット温度センサ33が設けてある。   The outlet side of the first mixer 30a and the outlet side of the second mixer 30b join together, and after passing through the pipe provided with the hot water supply high temperature sensor 29, join the pipe from the outlet side of the third mixer 30c. It leads to the outlet of the mixer 30. A hot water supply pipe 31 is connected to the outlet of the mixer 30. A hot water supply temperature sensor 32 and a high cut temperature sensor 33 are provided in the hot water supply pipe 31 in the vicinity of the outlet side of the mixer 30.

貯湯タンクユニット11B内部の給水管12には流量センサ34、給水温度センサ35、減圧弁36が設けられている。給水管12は、これらの下流で3つに分岐し、その1つは逆止弁37aを介して第3混合器30cの入り側に接続され、他の1つは逆止弁37bを介して貯湯タンク13の給水口14に接続され、他の1つは逆止弁37cを介して第2三方弁38の第2接続口38bに配管12bを通じて接続されている。   The water supply pipe 12 inside the hot water storage tank unit 11B is provided with a flow rate sensor 34, a water supply temperature sensor 35, and a pressure reducing valve 36. The water supply pipe 12 branches into three downstream of these, one of which is connected to the inlet side of the third mixer 30c via a check valve 37a, and the other one via the check valve 37b. The other one is connected to the second connection port 38b of the second three-way valve 38 through the pipe 12b via the check valve 37c.

第2三方弁38は、第1接続口38aと第2接続口38bと第3接続口38cとを備え、第1接続口38aと第2接続口38bとを接続し第3接続口38cを閉鎖したC方向と、第1接続口38aと第3接続口38cとを接続し第2接続口38bを閉鎖したD方向とに接続状態を切り替え可能になっている。第3接続口38cには、ハイカット温度センサ33の下流側で給湯配管31から分岐した配管31bが接続されている。この配管31bの途中には逆止弁39が設けてある。第2三方弁38の第1接続口38aは風呂給湯器70の給水接続口に接続配管(低温)66を通じて接続されている。   The second three-way valve 38 includes a first connection port 38a, a second connection port 38b, and a third connection port 38c, connects the first connection port 38a and the second connection port 38b, and closes the third connection port 38c. The connection state can be switched between the C direction and the D direction in which the first connection port 38a and the third connection port 38c are connected and the second connection port 38b is closed. A pipe 31b branched from the hot water supply pipe 31 on the downstream side of the high cut temperature sensor 33 is connected to the third connection port 38c. A check valve 39 is provided in the middle of the pipe 31b. The first connection port 38 a of the second three-way valve 38 is connected to the water supply connection port of the bath water heater 70 through a connection pipe (low temperature) 66.

さらに貯湯タンク13の取水口16には所定の排水箇所に通じる排水管41が接続されており、排水管41の途中にはこの管路を開閉する排水栓42が設けてある。   Further, a drain pipe 41 leading to a predetermined drainage point is connected to the water intake 16 of the hot water storage tank 13, and a drain plug 42 for opening and closing the pipe line is provided in the middle of the drain pipe 41.

また、貯湯タンクユニット11B内において、接続配管(高温)65の戻り配管温度センサ28より混合器30寄りの箇所から分岐した分岐管43は熱回収配管(高温)53bに合流している。貯湯タンクユニット11B内部の分岐管43には熱回収配管(高温)53b側からの逆流を防止する逆止弁44が設けてある。   Further, in the hot water storage tank unit 11B, the branch pipe 43 branched from the portion closer to the mixer 30 than the return pipe temperature sensor 28 of the connection pipe (high temperature) 65 joins the heat recovery pipe (high temperature) 53b. The branch pipe 43 in the hot water storage tank unit 11B is provided with a check valve 44 for preventing a back flow from the heat recovery pipe (high temperature) 53b side.

また、貯湯タンクユニット11Bの内部において熱回収配管(低温)53aから分岐し、第2三方弁38の第2接続口38bの近傍で配管12bに合流する合流管45が設けてある。合流管45の途中には、熱回収配管(低温)53aから配管12b側へ送水する循環ポンプ46とポンプ電磁弁47を備えている。ポンプ電磁弁47は、合流管45を開閉する。ポンプ電磁弁47は配管12bからの給水が循環ポンプ46を逆流して取水口16から貯湯タンク13の下部に流入することを防止する。またポンプ電磁弁47は、後述する給湯動作の際に貯湯タンク13下部の水が取水口16から出てC方向の第2三方弁38および接続配管(低温)66を経由して風呂給湯器70の給水接続口の方向へ流出することを防止する。   Further, a junction pipe 45 that branches from the heat recovery pipe (low temperature) 53a inside the hot water storage tank unit 11B and joins the pipe 12b in the vicinity of the second connection port 38b of the second three-way valve 38 is provided. In the middle of the junction pipe 45, a circulation pump 46 and a pump solenoid valve 47 for supplying water from the heat recovery pipe (low temperature) 53a to the pipe 12b side are provided. The pump solenoid valve 47 opens and closes the merge pipe 45. The pump solenoid valve 47 prevents water supply from the pipe 12 b from flowing back through the circulation pump 46 and flowing into the lower part of the hot water storage tank 13 from the water intake 16. In addition, the pump solenoid valve 47 has a bath water heater 70 via the second three-way valve 38 and the connecting pipe (low temperature) 66 in the C direction when the water in the lower part of the hot water storage tank 13 comes out from the intake port 16 during a hot water supply operation described later. Prevents water from flowing in the direction of the water supply connection port.

制御部20の構成および信号の授受については第1の実施の形態と同様であり、その説明は省略する。   The configuration of the control unit 20 and the transmission / reception of signals are the same as those in the first embodiment, and a description thereof will be omitted.

バックアップ熱源機としての風呂給湯器70は第1の実施の形態と同様の構成を備える。ただし、第2の実施の形態の風呂給湯器70の制御部91は、給湯接続口から接続配管(高温)65へ出湯する動作では、貯湯タンクユニット11B側の制御部20から指示された温度の湯が接続配管(高温)65へ出湯されるようにバーナ73の燃焼量やバイパス調整弁84の開度などを制御する。   The bath water heater 70 as a backup heat source machine has the same configuration as that of the first embodiment. However, the controller 91 of the bath water heater 70 according to the second embodiment has a temperature instructed by the controller 20 on the hot water storage tank unit 11B side in the operation of discharging hot water from the hot water supply connection port to the connection pipe (high temperature) 65. The combustion amount of the burner 73 and the opening degree of the bypass adjustment valve 84 are controlled so that the hot water is discharged to the connection pipe (high temperature) 65.

風呂(浴槽)2へ注湯(湯張り)する動作では、共通リモコン92でユーザが設定した風呂設定温度の湯が注湯されるようにバーナ73の燃焼量やバイパス調整弁84の開度などを制御する。なお、貯湯タンクユニット11B側から接続配管(低温)66を通じて供給された湯が既に風呂設定温度に達しており風呂給湯器70で追加の加熱が不要な場合は、バーナ73を燃焼させずに注湯動作を行う。風呂給湯器70は風呂(浴槽)2内の水位をチェックし、設定水位に達すると注湯動作は終了する。追い焚き動作は第1の実施の形態と同様である。   In the operation of pouring (filling) the bath (tub) 2, the combustion amount of the burner 73, the opening of the bypass adjustment valve 84, etc. so that the bath set temperature set by the user with the common remote controller 92 is poured. To control. If the hot water supplied from the hot water storage tank unit 11B side through the connection pipe (low temperature) 66 has already reached the bath set temperature and no additional heating is required in the bath water heater 70, the burner 73 is not burned. Perform hot water operation. The bath water heater 70 checks the water level in the bath (tub) 2, and the hot water pouring operation ends when the set water level is reached. The chasing operation is the same as that in the first embodiment.

次に、風呂給湯システム10Bの各種動作について説明する。   Next, various operations of the bath hot water supply system 10B will be described.

<排熱回収動作>
図7は、排熱回収動作における湯水の流れを表している。排熱回収動作において湯水の流れる経路を太線で示してある。排熱回収動作の制御、動作は第1の実施の形態と同一であり、その説明は省略する。
<Exhaust heat recovery operation>
FIG. 7 shows the flow of hot water in the exhaust heat recovery operation. The path through which hot water flows in the exhaust heat recovery operation is indicated by a bold line. The control and operation of the exhaust heat recovery operation are the same as in the first embodiment, and a description thereof is omitted.

<給湯動作>
貯湯タンクユニット11Bは風呂給湯器70の近くに設置される場合もあれば、遠く離れて設置される場合もある。たとえば、2階に風呂があるような家屋では、風呂給湯器70は2階の外壁に設置され貯湯タンクユニット11Bおよび熱源機4は1階に設置されるといったケースがあり、このような場合には装置間を結ぶ接続配管(高温)65および接続配管(低温)66の配管長が長くなって圧損の大きい設置状況になる。本発明の第2の実施の形態に係る風呂給湯システム10Bでは、低水圧地域において、配管が長くて圧損が大きい設置状況になっても、出湯量を十分確保できるように、圧損の増加を抑えた給湯を行うようになっている。
<Hot-water supply operation>
The hot water storage tank unit 11B may be installed near the bath water heater 70 or may be installed far away. For example, in a house with a bath on the second floor, there is a case where the bath water heater 70 is installed on the outer wall of the second floor, and the hot water storage tank unit 11B and the heat source unit 4 are installed on the first floor. The connection pipe (high temperature) 65 and the connection pipe (low temperature) 66 connecting the apparatuses become long, resulting in an installation situation where the pressure loss is large. In the hot water supply system 10B according to the second embodiment of the present invention, an increase in pressure loss is suppressed so that a sufficient amount of hot water can be secured even in an installation situation where the piping is long and the pressure loss is large in a low water pressure region. It is supposed to do hot water supply.

給湯は以下の3つの制御モードのいずれかで行われる。   Hot water is supplied in one of the following three control modes.

(1)第1モード(タンク出湯モード)
第1モードは、貯湯タンク13に十分蓄熱されている場合の給湯動作である。図8は、第1モードの給湯動作における湯水の流れを表している。図中、湯水の流れる経路を太線で示してある。第1モードでは、混合器30で貯湯タンク13からの湯と給水とを混合して給湯設定温度の湯を作り、給湯する。風呂給湯器70には給水は送らず、風呂給湯器70での加熱はなく燃焼運転しない。
(1) First mode (tank hot water mode)
The first mode is a hot water supply operation in the case where the hot water storage tank 13 has sufficiently stored heat. FIG. 8 shows the flow of hot water in the hot water supply operation in the first mode. In the figure, the path through which hot water flows is indicated by a bold line. In the first mode, hot water and hot water from the hot water storage tank 13 are mixed by the mixer 30 to create hot water at a hot water supply set temperature and hot water is supplied. No water is sent to the bath water heater 70, no heating is performed in the bath water heater 70, and no combustion operation is performed.

詳細には、混合器30の第2混合器30bは閉じ、第1混合器30aと第3混合器30cの開度を調整して、出湯温度センサ32によって検出される混合器30の出側の湯の温度が給湯設定温度になるように制御する。ここでは、たとえば、貯湯タンク13に設けた湯切れ温度センサ18dの検出温度が、給湯設定温度(実際には、給湯配管などでの温度低下を考慮してたとえば給湯設定温度+1℃とする)以上の場合は第1モードでの給湯を行う。   Specifically, the second mixer 30b of the mixer 30 is closed, the opening degree of the first mixer 30a and the third mixer 30c is adjusted, and the outlet side of the mixer 30 detected by the tapping temperature sensor 32 is adjusted. The hot water temperature is controlled so as to become the hot water supply set temperature. Here, for example, the detection temperature of the hot water temperature sensor 18d provided in the hot water storage tank 13 is equal to or higher than the hot water supply set temperature (actually, for example, the hot water supply set temperature + 1 ° C. in consideration of a temperature drop in the hot water supply pipe or the like). In this case, hot water is supplied in the first mode.

(2)第2モード(給湯器出湯モード)
第2モードは、貯湯タンク13に利用可能な湯がない場合の給湯動作である。図9は、第2モードの給湯動作における湯水の流れを表している。図中、湯水の流れる経路を太線で示してある。第2モードでは、給水を風呂給湯器70で給湯設定温度より高い温度に加熱した湯と給水とを混合器30で混合して給湯設定温度の湯を給湯する。
(2) Second mode (hot water supply hot water mode)
The second mode is a hot water supply operation when there is no hot water available in the hot water storage tank 13. FIG. 9 shows the flow of hot water in the hot water supply operation in the second mode. In the figure, the path through which hot water flows is indicated by a bold line. In the second mode, hot water heated to a temperature higher than the hot water supply set temperature by the bath water heater 70 and hot water are mixed by the mixer 30 to supply hot water at the hot water set temperature.

詳細には、第2三方弁38をC方向に設定し、風呂給湯器70に給水を供給する。また、混合器30の第1混合器30aは閉じ、第2混合器30bと第3混合器30cの開度を調整して、出湯温度センサ32によって検出される混合器30の出側の湯の温度が給湯設定温度になるように制御する。   Specifically, the second three-way valve 38 is set in the C direction, and water is supplied to the bath water heater 70. Also, the first mixer 30a of the mixer 30 is closed, the opening degree of the second mixer 30b and the third mixer 30c is adjusted, and the hot water on the outlet side of the mixer 30 detected by the hot water temperature sensor 32 is adjusted. The temperature is controlled so as to become the hot water supply set temperature.

なお、制御部20は、風呂給湯器70の出湯温度が給湯設定温度より十分高くなるように風呂給湯器70に対して出湯温度を指示する。これにより、給水と混ぜて給湯設定温度を得るために必要な風呂給湯器70からの湯の量が少なくなり、接続配管(低温)66、風呂給湯器70および接続配管(高温)65を経由することにより生じる圧損を小さく抑えることができる。たとえば、給湯設定温度が40℃ならば風呂給湯器70から55℃の湯をもらう。また給湯設定温度が60℃ならば風呂給湯器70から75℃の湯をもらう、というようにする。   Note that the control unit 20 instructs the bath water heater 70 to provide a hot water temperature so that the hot water temperature of the bath water heater 70 is sufficiently higher than the hot water supply set temperature. Thereby, the amount of hot water from the bath water heater 70 necessary for mixing with the water supply to obtain the hot water supply set temperature is reduced, and passes through the connection pipe (low temperature) 66, the bath water heater 70, and the connection pipe (high temperature) 65. The pressure loss caused by this can be kept small. For example, if the hot water supply set temperature is 40 ° C., hot water at 55 ° C. is obtained from the bath water heater 70. If the hot water supply set temperature is 60 ° C., 75 ° C. hot water is obtained from the bath water heater 70.

[効果の算定]
給水温度15℃、給湯設定温度40℃、給湯流量8L/minのとき、風呂給湯器70から40℃の湯をもらう場合は、給湯流量の全量を風呂給湯器70からもらうので、接続配管(高温)65および接続配管(低温)66を湯水が8L/minで流れることになる。これに対し風呂給湯器70から55℃の湯をもらう場合は、接続配管(高温)65、接続配管(低温)66を流れる流量は5L/minでよく、貯湯タンクユニット11B内で給水3L/minと混合して40℃の湯8L/minが作られる。流速(配管径が同じ場合は流量に比例)が大きいほど圧損は大きくなるので、流量を下げられることは圧損低減に大きく寄与する。
[Calculation of effect]
When the hot water supply temperature is 15 ° C, the hot water supply set temperature is 40 ° C, and the hot water supply flow rate is 8L / min. ) 65 and connecting pipe (low temperature) 66 will flow hot water at 8 L / min. On the other hand, when 55 ° C. hot water is received from the bath water heater 70, the flow rate through the connecting pipe (high temperature) 65 and the connecting pipe (low temperature) 66 may be 5 L / min, and the water supply is 3 L / min in the hot water storage tank unit 11B. To make 8L / min of 40 ° C hot water. Since the pressure loss increases as the flow velocity (proportional to the flow rate when the pipe diameter is the same) is increased, reducing the flow rate greatly contributes to pressure loss reduction.

給水予熱方式の場合は、貯湯タンクに蓄熱がある場合でも、貯湯タンクユニットで40℃、8L/minの湯を作って、全量をバックアップ熱源機としての給湯器の給水接続口への配管および給湯器に流すことになる。貯湯タンクに蓄熱がない場合も、貯湯ユニットから8L/minの給水を給湯器に送って40℃まで加熱する。いずれにしても、給湯器への配管および給湯器に8L/min流さなければならない。   In the case of the hot water preheating method, even if there is heat storage in the hot water storage tank, hot water of 40 ° C and 8L / min is made with the hot water tank unit, and the entire amount is connected to the water supply connection port of the hot water heater as a backup heat source and hot water supply Will flow into the vessel. Even when there is no heat storage in the hot water storage tank, 8 L / min of water is sent from the hot water storage unit to the water heater and heated to 40 ° C. In any case, it is necessary to flow 8 L / min through the pipe to the water heater and the water heater.

内径16mmの架橋ポリエチレン配管を使った実験結果では、配管長が25mの時(配管往復で25mとすると、風呂給湯器70と貯湯タンクユニット11Bとを12.5m離して設置するケースに相当する)、風呂給湯器70への接続配管の流量が8L/minで配管圧損は11kPa、5L/minで5kPaという結果であり、55%の圧損低減を実現している。   According to the experimental results using a cross-linked polyethylene pipe having an inner diameter of 16 mm, when the pipe length is 25 m (when the pipe is reciprocated to 25 m, it corresponds to a case where the bath water heater 70 and the hot water storage tank unit 11B are installed 12.5 m apart). As a result, the pressure loss of the pipe connected to the bath water heater 70 is 8 L / min and the pipe pressure loss is 11 kPa, and 5 L / min is 5 kPa. The pressure loss is reduced by 55%.

(3)第3モード(後混合出湯モード)
第3モードは、貯湯タンク13内に蓄熱はあるが、温度が低く、貯湯タンク13内の湯だけでは不十分な場合の給湯動作である。図10は、第3モードの給湯動作における湯水の流れを表している。図中、湯水の流れる経路を太線で示してある。第3モードは、たとえば、貯湯タンク13の湯切れ温度センサ18dの検出温度が給湯設定温度より低いが給湯設定温度より所定温度(たとえば10℃)以上は低くないような場合に選択される。
(3) Third mode (post-mixing hot water mode)
The third mode is a hot water supply operation in the case where heat is stored in the hot water storage tank 13 but the temperature is low and the hot water in the hot water storage tank 13 is not sufficient. FIG. 10 shows the flow of hot water in the hot water supply operation in the third mode. In the figure, the path through which hot water flows is indicated by a bold line. The third mode is selected, for example, when the temperature detected by the hot water temperature sensor 18d of the hot water storage tank 13 is lower than the hot water supply set temperature but not lower than a predetermined temperature (for example, 10 ° C.) above the hot water supply set temperature.

第3モードでは、給水を風呂給湯器70で加熱した湯と貯湯タンク13からの湯と給水とを混合して給湯設定温度の湯を作る。詳細には、第2三方弁38をC方向とし、給水を風呂給湯器70で加熱して作った湯と、給水と、貯湯タンク13からの湯とを混合器30で混合して給湯設定温度の湯を作り、給湯する。貯湯タンク13内の湯の温度が低くても、風呂給湯器70からもらった高温の湯と混ぜて使うことにより、貯湯タンク13に貯めた蓄熱をより使い切ることができるため、第1、第2モードのみで制御する場合よりも省エネ性が増す。   In the third mode, the hot water heated by the bath water heater 70, the hot water from the hot water storage tank 13 and the hot water are mixed to make hot water having a hot water supply set temperature. Specifically, the hot water produced by heating the water supply with the bath water heater 70 with the second three-way valve 38 in the C direction, the water supply, and the hot water from the hot water storage tank 13 are mixed with the mixer 30 to set the hot water supply set temperature. Make hot water and supply hot water. Even if the temperature of the hot water in the hot water storage tank 13 is low, the heat stored in the hot water storage tank 13 can be used up more by mixing with the hot water received from the bath water heater 70, so the first and second Energy savings are higher than when controlling only in the mode.

なお、制御部20は第1モードを優先選択し、第1モードで設定温度の湯を給湯できない場合であって給湯設定温度より所定温度(たとえば、10℃)以上低くない湯を貯湯タンク13から供給可能な場合は第3モードを選択し、第3モードを選択できない場合に第2モードを選択する。   The controller 20 preferentially selects the first mode, and hot water that is not lower than the hot water set temperature by a predetermined temperature (for example, 10 ° C.) from the hot water storage tank 13 when hot water at the set temperature cannot be supplied in the first mode. When the supply is possible, the third mode is selected, and when the third mode cannot be selected, the second mode is selected.

<熱回収配管の凍結防止動作>
制御部20は、貯湯タンクユニット11Bの雰囲気温度センサ49が凍結の可能性のある温度を検知した場合、もしくは雰囲気温度センサ49の検出温度から熱回収配管53が凍結する恐れがあると判断した場合に熱回収配管53の凍結防止動作を行う。凍結防止動作を行うとき、貯湯タンクユニット11Bの制御部20は、第1三方弁21をB方向にし、第2三方弁38をC方向にし、ポンプ電磁弁47を開き、循環ポンプ46および排熱回収装置50の排熱回収ポンプ52を運転する。
<Operation to prevent freezing of heat recovery piping>
When the control unit 20 detects a temperature at which the ambient temperature sensor 49 of the hot water storage tank unit 11B may be frozen, or determines that the heat recovery pipe 53 may be frozen from the temperature detected by the ambient temperature sensor 49. In addition, the freeze recovery operation of the heat recovery pipe 53 is performed. When performing the freeze prevention operation, the control unit 20 of the hot water storage tank unit 11B sets the first three-way valve 21 in the B direction, the second three-way valve 38 in the C direction, opens the pump solenoid valve 47, opens the circulation pump 46 and the exhaust heat. The exhaust heat recovery pump 52 of the recovery device 50 is operated.

図11は、熱回収配管53の凍結防止動作における水の流れを太線および太破線で表している。第1三方弁21をB方向に設定することで、熱回収循環経路は貯湯タンク13を迂回してバイパス管54を通る迂回循環経路(図中、太実線で示す経路)に切り替えられる。迂回循環経路は、排熱回収熱交換器51から熱回収配管(高温)53b、B方向の第1三方弁21、バイパス管54、熱回収配管(低温)53aを経由して排熱回収熱交換器51に戻る循環経路である。排熱回収ポンプ52を作動させることで迂回循環経路内を水が循環する。   FIG. 11 shows the flow of water in the freeze prevention operation of the heat recovery pipe 53 with a bold line and a thick broken line. By setting the first three-way valve 21 in the B direction, the heat recovery circulation path is switched to a bypass circulation path (path indicated by a thick solid line in the figure) that bypasses the hot water storage tank 13 and passes through the bypass pipe 54. The bypass circulation path passes through the heat recovery pipe (high temperature) 53b from the exhaust heat recovery heat exchanger 51, the first three-way valve 21 in the B direction, the bypass pipe 54, and the heat recovery pipe (low temperature) 53a to recover the heat recovery heat. This is a circulation path returning to the vessel 51. By operating the exhaust heat recovery pump 52, water circulates in the detour circulation path.

また、第2三方弁38をC方向にして、ポンプ電磁弁47を開き、循環ポンプ46を運転することで、上記迂回循環経路内の水の一部が分岐経路(図5の太破線で示す経路)を循環する。すなわち、熱回収配管(低温)53aを流れる水の一部は、循環ポンプ46の作用により合流管45側へと引き込まれ、合流管45から、配管12bの一部、C方向の第2三方弁38、接続配管(低温)66、風呂給湯器70、接続配管(高温)65、分岐管43を経由して熱回収配管(高温)53b内に戻るように流れ、風呂給湯器70を通過する際に加熱される。戻り配管温度センサ28の検出する温度に基づいて風呂給湯器70の燃焼ON/OFFを制御することで、熱回収配管53内の水を一定温度以上に加熱して、熱回収配管53の凍結を防止する。なお、第1三方弁21は、熱回収配管53の凍結防止が可能な程度に風呂給湯器70で加熱した温度ではA方向にならず、B方向を維持する。   Further, the second three-way valve 38 is set in the C direction, the pump electromagnetic valve 47 is opened, and the circulation pump 46 is operated, so that a part of the water in the detour circulation path is branched (shown by a thick broken line in FIG. 5). Cycle). That is, a part of the water flowing through the heat recovery pipe (low temperature) 53a is drawn to the merging pipe 45 side by the action of the circulation pump 46, and from the merging pipe 45, a part of the pipe 12b, the second three-way valve in the C direction. 38, when passing through the bath water heater 70 through the connection pipe (low temperature) 66, the bath water heater 70, the connection pipe (high temperature) 65, the branch pipe 43 and the heat recovery pipe (high temperature) 53b. To be heated. By controlling the combustion ON / OFF of the bath water heater 70 based on the temperature detected by the return pipe temperature sensor 28, the water in the heat recovery pipe 53 is heated to a certain temperature or more, and the heat recovery pipe 53 is frozen. To prevent. The first three-way valve 21 maintains the B direction, not the A direction, at a temperature heated by the bath water heater 70 to such an extent that the heat recovery pipe 53 can be prevented from freezing.

上記の凍結防止動作では、熱回収循環経路を迂回循環経路に設定して貯湯タンク13をバイパスさせるので、凍結防止動作によって冷たい水が貯湯タンク13の上部に流入することはない。また、貯湯タンク13をバイパスさせると貯湯タンク13を経由する場合に比べて循環する総水量が少なくなるので、熱回収配管53全体を風呂給湯器70での加熱により短時間で昇温することができ、凍結防止のための加熱量を少なく抑えることができる。   In the anti-freezing operation, the heat recovery circulation path is set as a bypass circulation path and the hot water storage tank 13 is bypassed. Therefore, cold water does not flow into the upper part of the hot water storage tank 13 by the anti-freezing operation. Further, when the hot water storage tank 13 is bypassed, the total amount of water circulated is smaller than when passing through the hot water storage tank 13, so that the temperature of the entire heat recovery pipe 53 can be raised in a short time by heating in the bath water heater 70. The amount of heating for preventing freezing can be reduced.

なお、熱源機4が雰囲気温度(外気温度)を検出する温度センサを有する場合には、雰囲気温度センサ49に代えてその温度センサを上記凍結防止動作の開始制御に利用してもよい。   In the case where the heat source device 4 has a temperature sensor that detects the ambient temperature (outside temperature), the temperature sensor may be used for the start control of the freeze prevention operation instead of the ambient temperature sensor 49.

このような凍結防止動作によって、熱回収配管53の凍結を防止することができるので、寒冷地の屋外配管でも、施工時に熱回収配管53にヒータを巻くなどの措置が必要なくなる。また、熱回収配管53内の水を循環加熱するために熱源機4側に電気ヒータなどの加熱装置を設ける必要もない。   Such freezing prevention operation can prevent the heat recovery pipe 53 from freezing, so that it is not necessary to take measures such as winding a heater around the heat recovery pipe 53 at the time of construction even in an outdoor pipe in a cold region. Further, it is not necessary to provide a heating device such as an electric heater on the heat source unit 4 side in order to circulate and heat the water in the heat recovery pipe 53.

以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成は実施の形態に示したものに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to that shown in the embodiment, and there are changes and additions within the scope of the present invention. Are also included in the present invention.

本発明の貯湯システムは、風呂給湯システム10(10B)のうちの貯湯タンクユニット11(または11B)を備えれば、排熱回収装置50や風呂給湯器70、熱源機4は含まれても含まれなくてもよく、たとえば、排熱回収装置50は熱源機4に含まれる構成でもよいし、風呂給湯器70は既存のものを使用してもよい。   If the hot water storage system of the present invention includes the hot water storage tank unit 11 (or 11B) of the bath hot water system 10 (10B), the exhaust heat recovery device 50, the bath water heater 70, and the heat source device 4 are included. For example, the exhaust heat recovery device 50 may be included in the heat source unit 4, or the bath water heater 70 may be an existing one.

第2の実施の形態では、給湯の制御モードとして第1モード、第2モード、第3モードを有する好適例を示したが、少なくとも第1、第2モードがあれば、第3モードのない構成でもかまわない。   In 2nd Embodiment, although the suitable example which has 1st mode, 2nd mode, and 3rd mode as a hot water supply control mode was shown, if there exists at least 1st and 2nd mode, the structure without 3rd mode But it doesn't matter.

第2モードにおいて、給湯設定温度よりどの程度高温の湯を風呂給湯器70でつくるかは、適宜に定めればよいが、接続配管61(高温)、接続配管62(低温)、風呂給湯器70を流れる水量を減らして圧損を低減するためには、給水と混合して給湯設定温度の湯が得られる範囲内で十分高い温度にすることが望ましい。なお、実施の形態の風呂給湯器70では、入水温度を検出する入水温度センサ86を備える構成を示したが、入水温度センサ86を設けずに入水温度を演算で推定するようにしてもよい。すなわち、前回出湯温度安定時に測定された出湯温度To、流量W、ガス量(加熱量)Qと、このときの効率ηとから、入水温度Tiの推定値を、Ti=To−(ηQ/W)、などの演算で逆算して求めるようにしてもよい。なお、効率ηは、出湯温度と流量とを様々に変化させてそれぞれの条件での値(効率η)を予め測定して記憶しておく。そして、演算時は、この記憶を参照して、その演算に代入する出湯温度および流量に対応する効率ηを取得し、使用すればよい。   In the second mode, how much hot water is produced by the bath water heater 70 from the set temperature of the hot water supply may be determined as appropriate. However, the connection pipe 61 (high temperature), the connection pipe 62 (low temperature), and the bath water heater 70 are used. In order to reduce the pressure loss by reducing the amount of water flowing through the water, it is desirable that the temperature be sufficiently high as long as it is mixed with the feed water to obtain hot water at the hot water set temperature. In addition, in the bath water heater 70 of the embodiment, the configuration including the incoming water temperature sensor 86 that detects the incoming water temperature is shown, but the incoming water temperature may be estimated by calculation without providing the incoming water temperature sensor 86. That is, an estimated value of the incoming water temperature Ti is calculated from Ti = To− (ηQ / W) from the hot water temperature To, the flow rate W, the gas amount (heating amount) Q measured at the last time when the hot water temperature was stabilized, and the efficiency η at this time. ), Etc. may be obtained by back calculation. In addition, efficiency (eta) measures and memorize | stores beforehand the value (efficiency (eta)) in each condition by changing tapping temperature and flow volume variously. Then, at the time of calculation, it is only necessary to obtain and use the efficiency η corresponding to the hot water temperature and the flow rate to be substituted for the calculation with reference to this memory.

実施の形態では、燃料電池の排熱を回収して貯湯タンク13内の水を加熱したが、熱源は燃料電池に限定されず、たとえば、ガスエンジン発電機、燃料処理装置(改質器)等でもよい。   In the embodiment, the exhaust heat of the fuel cell is recovered and the water in the hot water storage tank 13 is heated. However, the heat source is not limited to the fuel cell. For example, a gas engine generator, a fuel processing device (reformer), etc. But you can.

なお、実施の形態では、風呂給湯器70を一缶二水路型としたが風呂の追い焚きと給湯とを別々の熱交換器で行うタイプの給湯器であってもかまわない。   In the embodiment, the bath water heater 70 is a single-can two-water channel type, but it may be a water heater of a type in which the reheating of the bath and the hot water supply are performed by separate heat exchangers.

次に、本発明の第1の実施の形態の変形例について説明する。   Next, a modification of the first embodiment of the present invention will be described.

図5において、熱源機4は低温状態では正常に動作しない場合が考えられる。このように凍結を防止する温度以上に熱を与えなければならない事情、タイミングが存在する場合には以下のようにする。   In FIG. 5, the case where the heat source unit 4 does not operate normally in a low temperature state can be considered. In the case where there is a circumstance and timing at which heat must be applied above the temperature at which freezing is prevented, the following is performed.

すなわち、第1の実施の形態と同じにポンプ電磁弁47を開いて循環ポンプ46を運転しつつ、第1三方弁21をB方向に設定して排熱回収ポンプ52を作動させる。第1の実施の形態と異なる点は、風呂給湯器70の燃焼ON/OFF制御によって熱回収配管53内の水を一定温度に加熱する際の該一定温度の値が、凍結防止の場合は例えば2〜7℃であったが、この一定温度の値を熱源機4側事情温度(例えば30〜40℃)にする点のみである(以下第1の実施の形態の変形例A)。熱源機4側事情に最適な設定温度と、戻り配管温度センサ28の検出する温度に基づいて風呂給湯器70の燃焼ON/OFFを制御することで、熱源機4側事情の要件を満たすようにしても良い。   That is, the exhaust heat recovery pump 52 is operated by setting the first three-way valve 21 in the B direction while opening the pump electromagnetic valve 47 and operating the circulation pump 46 as in the first embodiment. The difference from the first embodiment is that the value of the constant temperature when the water in the heat recovery pipe 53 is heated to a constant temperature by the combustion ON / OFF control of the bath water heater 70 is, for example, freezing prevention. Although it was 2-7 degreeC, it is only a point which makes the value of this fixed temperature the heat source machine 4 side circumstance temperature (for example, 30-40 degreeC) (the modification A of 1st Embodiment below). By controlling the combustion ON / OFF of the bath water heater 70 based on the set temperature optimum for the situation of the heat source machine 4 and the temperature detected by the return pipe temperature sensor 28, the requirements of the situation of the heat source machine 4 are satisfied. May be.

ただし、上記本発明の第1の実施の形態の変形例Aにおいては、以下の問題点が新たに発生する。すなわち、凍結を防止しながら熱源機4側事情温度の要件を満たすようにすると、本来熱源機4側事情要件に関係のない分岐管43や接続配管61までが(例えば図6〜図11においては、接続配管(高温)65や接続配管(低温)66までが)凍結の防止には不必要な位に高温となる点である。   However, in the modification A of the first embodiment of the present invention, the following problems newly occur. That is, if the requirement of the temperature of the heat source device 4 side is satisfied while preventing freezing, the branch pipe 43 and the connection pipe 61 that are not originally related to the requirement of the heat source device 4 side are connected (for example, in FIGS. 6 to 11). The connection pipe (high temperature) 65 and the connection pipe (low temperature) 66 are temperatures that are unnecessary to prevent freezing.

そこで、ポンプ電磁弁47を開かず、循環ポンプ46の運転をOFFにし、第1三方弁21をA方向に設定して排熱回収ポンプ52を逆転作動させても良い(以下制御例B)。この場合、熱回収配管高温側温度センサ22aで検出する温度に応じて、排熱回収ポンプ52の逆流流量をコントロールしても良いし、熱回収配管低温側温度センサ22bで検出する温度が一定温度(例えば20〜30℃)となるように排熱回収ポンプ52の逆回転数を制御することで、分岐管43や接続配管61に湯水を循環させないで、熱源機4側事情の要件を満たすようにしても良い。   Therefore, the exhaust solenoid valve 47 may not be opened, the operation of the circulation pump 46 may be turned off, the first three-way valve 21 may be set in the A direction, and the exhaust heat recovery pump 52 may be operated in reverse (hereinafter, control example B). In this case, the back flow rate of the exhaust heat recovery pump 52 may be controlled according to the temperature detected by the heat recovery pipe high temperature side temperature sensor 22a, or the temperature detected by the heat recovery pipe low temperature side temperature sensor 22b is a constant temperature. By controlling the reverse rotation speed of the exhaust heat recovery pump 52 to be (for example, 20 to 30 ° C.), the hot water is not circulated through the branch pipe 43 or the connection pipe 61, so as to satisfy the requirements of the heat source unit 4 side circumstances. Anyway.

そして凍結を防止しながら熱源機4側事情温度の要件を満たすようにしなければならない場合には、例えば、第1三方弁21をB方向に設定して分岐管43や接続配管61に湯水を循環させる(風呂給湯器70の燃焼熱を利用した)凍結の防止(第1の実施の形態、又は、第1の実施の形態の変形例A)と、第1三方弁21をA方向に設定して分岐管43や接続配管61に湯水を循環させない制御で熱源機4側事情による送熱運転(制御例B、貯湯タンク13内の蓄熱送熱運転)を適宜入替ながら、分岐管43や接続配管61が凍結の防止には不必要な位に高温となる不具合を防止して、放熱ロスを防ぐようにしても良い。   And, when it is necessary to satisfy the temperature requirement on the heat source unit 4 side while preventing freezing, for example, the first three-way valve 21 is set in the B direction and hot water is circulated through the branch pipe 43 and the connection pipe 61. Preventing freezing (using the combustion heat of the bath water heater 70) (first embodiment or modification A of the first embodiment) and setting the first three-way valve 21 in the A direction Thus, the branch pipe 43 and the connection pipe are appropriately replaced with the heat transfer operation (control example B, the heat storage and heat transfer operation in the hot water storage tank 13) according to the circumstances of the heat source unit 4 with the control that does not circulate the hot water through the branch pipe 43 and the connection pipe 61. It is also possible to prevent a heat dissipation loss by preventing a problem that 61 becomes unnecessarily high to prevent freezing.

特に、第1の実施の形態の変形例Aと制御例Bの交互運転(例えば制御例B運転中に時々短時間ポンプ電磁弁47を開いて循環ポンプ46を運転して分岐管43内温度を戻り配管温度センサ28で監視し、2℃に近くなったら(7℃以下になったら)、逆転していた排熱回収ポンプ52の作動を停止して、変形例Aに切替(変形例A運転開始時は例えば排熱回収ポンプ52の起動を遅延させて切替)を行い、変形例A運転により分岐管43や接続配管61が例えば30〜40℃に上昇して安定したことを例えば戻り配管温度センサ28、熱回収配管高温側温度センサ22a等で確認したならば制御例B運転に戻すといった交互運転)を行うと、分岐管43や接続配管61での放熱が多くなるが、熱源機4側事情温度の要件を連続的に満たすことができる。なお、第1の実施の形態の変形例Aと制御例Bの交互運転中において、第1の実施の形態の変形例Aの運転再開時には、制御例Bを行っていた結果冷えた分岐管43内の水(例えば2〜7℃)が熱回収配管53内の湯(例えば30〜40℃)と混ざって熱源機4側に送られるので、一時的に熱源機4側事情温度を満たさなくなる場合がある。このような場合には風呂給湯器70で作られた湯が合流管45に至るまで(例えば熱回収配管高温側温度センサ22aで湯が来たことを確認してから所定時間後まで)排熱回収ポンプ52の起動を遅延させれば、より一層熱源機4側事情温度の要件を確実に連続的に満たしつつ(熱源機4を常時例えば30〜40℃に加温しつつ)凍結を予防(分岐管43、接続配管61を常時例えば2〜40℃に保温)することができる。   In particular, the alternate operation of the modified example A and the control example B of the first embodiment (for example, during the operation of the control example B, the pump solenoid valve 47 is occasionally opened for a short time to operate the circulation pump 46 to control the temperature in the branch pipe 43. Monitored by the return pipe temperature sensor 28, when the temperature becomes close to 2 ° C. (below 7 ° C.), the operation of the exhaust heat recovery pump 52 that has been reversed is stopped and switched to the modified example A (modified example A operation) At the start, for example, the start of the exhaust heat recovery pump 52 is delayed and switched), and the fact that the branch pipe 43 and the connecting pipe 61 have risen to, for example, 30 to 40 ° C. and stabilized by the operation of the modified example A, for example, If the sensor 28, the heat recovery pipe high temperature side temperature sensor 22a, etc. are used, the heat is dissipated in the branch pipe 43 and the connection pipe 61, but the heat source 4 side is increased. Continuously meet the temperature requirements Can. During the alternate operation of the modified example A and the control example B of the first embodiment, when the operation of the modified example A of the first embodiment is resumed, the branch pipe 43 cooled as a result of performing the control example B. Since the water (for example, 2 to 7 ° C.) is mixed with the hot water (for example, 30 to 40 ° C.) in the heat recovery pipe 53 and sent to the heat source unit 4 side, the temperature of the heat source unit 4 side is temporarily not satisfied. There is. In such a case, until the hot water produced by the bath water heater 70 reaches the merging pipe 45 (for example, after confirming that the hot water has been received by the heat recovery pipe high temperature side temperature sensor 22a, the exhaust heat is exhausted). If the start-up of the recovery pump 52 is delayed, the freezing can be prevented while further reliably satisfying the temperature requirement on the heat source device 4 side (continuously heating the heat source device 4 to, for example, 30 to 40 ° C.) ( The branch pipe 43 and the connection pipe 61 can always be kept warm, for example, at 2 to 40 ° C.

2…風呂(浴槽)
4…熱源機(燃料電池)
10、10B…風呂給湯システム
11、11B…貯湯タンクユニット
12…給水管
12b…給水管から分岐した配管
13…貯湯タンク
14…給水口
15…出湯口
16…取水口
17…戻り口
18a…第1温度センサ
18b…第2温度センサ
18c…第3温度センサ
18d…湯切れ温度センサ
18e…タンク上部温度センサ
20…制御部
21…第1三方弁
21a…第1接続口
21b…第2接続口
21c…第3接続口
22a…熱回収配管高温側温度センサ
22b…熱回収配管低温側温度センサ
23…混合器
23a…第1混合器
23b…第2混合器
24…過圧逃がし弁
25…吸気弁
26…タンク出口温度センサ
28…戻り配管温度センサ
29…給湯高温温度センサ
30…混合器
30a…第1混合器
30b…第2混合器
30c…第3混合器
31…給湯配管
31b…配管
32…出湯温度センサ
33…ハイカット温度センサ
34…流量センサ
35…給水温度センサ
36…減圧弁
37a…逆止弁
37b…逆止弁
37c…逆止弁
38…第2三方弁
38a…第1接続口
38b…第2接続口
38c…第3接続口
39…逆止弁
41…排水管
42…排水栓
43…分岐管
44…逆止弁
45…合流管
46…循環ポンプ
47…ポンプ電磁弁
49…雰囲気温度センサ
50…排熱回収装置
51…排熱回収熱交換器
52…排熱回収ポンプ
53…熱回収配管
53a…熱回収配管(低温)
53b…熱回収配管(高温)
54…バイパス管
61…接続配管
62…給湯配管
65…接続配管(高温)
66…接続配管(低温)
70…風呂給湯器
72…熱交換器
72a…第1熱交換水管
72b…第2熱交換水管
73…バーナ
73a…ガス供給管
74…入水管
75…出湯管
76…風呂戻り管
77…風呂往き管
78…連結管
79…注湯電磁弁
81…水量サーボ
82…出湯温度センサ
83…バイパス管
84…バイパス調整弁
85…流量センサ
86…入水温度センサ
87…風呂循環ポンプ
88…流水スイッチ
89a…風呂往き温度センサ
89b…風呂戻り温度センサ
91…制御部
92…共通リモコン
2 ... Bath (tub)
4 ... Heat source machine (fuel cell)
DESCRIPTION OF SYMBOLS 10, 10B ... Bath hot water supply system 11, 11B ... Hot water storage tank unit 12 ... Water supply pipe 12b ... Pipe branched from the water supply pipe 13 ... Hot water storage tank 14 ... Water supply port 15 ... Hot water outlet 16 ... Water intake 17 ... Return port 18a ... 1st Temperature sensor 18b ... 2nd temperature sensor 18c ... 3rd temperature sensor 18d ... Hot water temperature sensor 18e ... Tank upper temperature sensor 20 ... Control part 21 ... 1st three-way valve 21a ... 1st connection port 21b ... 2nd connection port 21c ... 3rd connection port 22a ... Heat recovery pipe high temperature side temperature sensor 22b ... Heat recovery pipe low temperature side temperature sensor 23 ... Mixer 23a ... First mixer 23b ... Second mixer 24 ... Overpressure relief valve 25 ... Intake valve 26 ... Tank outlet temperature sensor 28 ... Return pipe temperature sensor 29 ... Hot water supply high temperature sensor 30 ... Mixer 30a ... First mixer 30b ... Second mixer 30c ... 3 Mixer 31 ... Hot water supply pipe 31b ... Pipe 32 ... Hot water temperature sensor 33 ... High cut temperature sensor 34 ... Flow rate sensor 35 ... Water supply temperature sensor 36 ... Pressure reducing valve 37a ... Check valve 37b ... Check valve 37c ... Check valve 38 ... 2nd three-way valve 38a ... 1st connection port 38b ... 2nd connection port 38c ... 3rd connection port 39 ... Check valve 41 ... Drain pipe 42 ... Drain plug 43 ... Branch pipe 44 ... Check valve 45 ... Merge pipe 46 ... Circulating pump 47 ... Pump solenoid valve 49 ... Ambient temperature sensor 50 ... Exhaust heat recovery device 51 ... Exhaust heat recovery heat exchanger 52 ... Exhaust heat recovery pump 53 ... Heat recovery piping 53a ... Heat recovery piping (low temperature)
53b ... Heat recovery piping (high temperature)
54 ... Bypass pipe 61 ... Connection pipe 62 ... Hot water supply pipe 65 ... Connection pipe (high temperature)
66 ... Connection piping (low temperature)
70 ... Bath water heater 72 ... Heat exchanger 72a ... First heat exchange water pipe 72b ... Second heat exchange water pipe 73 ... Burner 73a ... Gas supply pipe 74 ... Inlet pipe 75 ... Outlet pipe 76 ... Bath return pipe 77 ... Bath return pipe 77 78 ... Connecting pipe 79 ... Pouring solenoid valve 81 ... Water volume servo 82 ... Outflow temperature sensor 83 ... Bypass pipe 84 ... Bypass adjustment valve 85 ... Flow sensor 86 ... Incoming water temperature sensor 87 ... Bath circulation pump 88 ... Flow water switch 89a ... Bath going out Temperature sensor 89b ... Bath return temperature sensor 91 ... Control unit 92 ... Common remote controller

Claims (4)

給水が供給される貯湯タンクと、所定の熱源から熱を回収して前記貯湯タンク内の水を加熱する加熱装置とを備え、前記貯湯タンク内の蓄熱が設定温度の給湯に不足する場合にその不足分の加熱をバックアップ熱源機で行う貯湯システムであって、
前記加熱装置は、前記熱源から熱回収するための熱交換器と、前記貯湯タンクから前記熱交換器の入側に至る往き熱回収配管と、前記熱交換器の出側から前記貯湯タンクに至る戻り熱回収配管と、前記貯湯タンクから前記往き熱回収配管、前記熱交換器、前記戻り熱回収配管を経由して前記貯湯タンクに戻る熱回収循環経路の湯水を循環させる熱回収ポンプとを備えて構成され、
さらに、前記熱回収循環経路を、前記貯湯タンクをバイパスする迂回循環経路に切り替える経路変更部と、
前記バックアップ熱源機の給湯口に接続された第1配管から分岐し、前記迂回循環経路を成す部分の前記戻り熱回収配管に合流する分岐管と、
前記迂回循環経路を成す部分の前記往き熱回収配管から分岐し、前記バックアップ熱源機の給水口に通じる第2配管に合流する合流管と、
前記合流管に設けられて、前記第2配管側に向けて送水する循環ポンプと、
制御部と、
を備え、
前記制御部は、
前記熱源の熱を回収して貯湯タンク内の水を加熱するときは、前記熱回収ポンプを作動させて前記貯湯タンク内の水を前記熱回収循環経路に循環させ、
前記熱回収配管に熱を供給するときは、前記熱回収循環経路を前記迂回循環経路に切り替えて、前記熱回収ポンプおよび前記循環ポンプを作動させ、さらに前記バックアップ熱源機で加熱するように制御する
ことを特徴とする貯湯システム。
A hot water storage tank to which hot water is supplied and a heating device that recovers heat from a predetermined heat source and heats the water in the hot water storage tank, when the heat storage in the hot water storage tank is insufficient for hot water at a set temperature. A hot water storage system that uses a backup heat source machine to heat the shortage,
The heating device includes a heat exchanger for recovering heat from the heat source, a forward heat recovery pipe from the hot water storage tank to the inlet side of the heat exchanger, and an outlet side of the heat exchanger to the hot water storage tank. A return heat recovery pipe, and a heat recovery pump for circulating hot water in a heat recovery circulation path that returns from the hot water storage tank to the forward heat recovery pipe, the heat exchanger, and the return heat recovery pipe to the hot water storage tank. Configured
Furthermore, a path changing unit that switches the heat recovery circulation path to a bypass circulation path that bypasses the hot water storage tank;
A branch pipe branched from the first pipe connected to the hot water supply port of the backup heat source machine, and joined to the return heat recovery pipe of the portion constituting the bypass circulation path;
A merging pipe that branches from the forward heat recovery pipe of the part that forms the detour circulation path and joins to a second pipe that leads to a water supply port of the backup heat source unit;
A circulation pump that is provided in the junction pipe and feeds water toward the second pipe;
A control unit;
With
The controller is
When recovering the heat of the heat source to heat the water in the hot water storage tank, the heat recovery pump is operated to circulate the water in the hot water storage tank to the heat recovery circulation path,
When supplying heat to the heat recovery pipe, the heat recovery circulation path is switched to the bypass circulation path, the heat recovery pump and the circulation pump are operated, and further controlled to be heated by the backup heat source unit. Hot water storage system characterized by that.
前記第1配管を通じて流入する前記バックアップ熱源機の給湯口からの湯水と、前記貯湯タンクからの湯水と、給水とを設定された混合比で混合して給湯する混合器をさらに有し、
前記バックアップ熱源機の給水口には前記第2配管を通じて給水が供給され、
前記制御部は、前記混合器から設定温度の湯が給湯されるように、前記バックアップ熱源機による加熱および前記混合器の混合比を制御する
ことを特徴とする請求項1に記載の貯湯システム。
A mixer for supplying hot water by mixing hot water from the hot water supply port of the backup heat source machine flowing in through the first pipe, hot water from the hot water storage tank, and water supply at a set mixing ratio;
Water is supplied to the water supply port of the backup heat source machine through the second pipe,
The hot water storage system according to claim 1, wherein the control unit controls heating by the backup heat source unit and a mixing ratio of the mixer so that hot water having a set temperature is supplied from the mixer.
前記貯湯タンクの出湯口からの湯水と給水とを設定された混合比で混合すると共に、前記バックアップ熱源機の給水口に通じる前記第2配管が出側に接続された混合器をさらに有し、
前記制御部は、前記バックアップ熱源機による追加の加熱無しにもしくは前記バックアップ熱源機による加熱を足して前記バックアップ熱源機から設定温度の給湯が行われるように前記混合器の混合比を制御する
ことを特徴とする請求項1に記載の貯湯システム。
Mixing hot water and water supply from the hot water outlet of the hot water storage tank at a set mixing ratio, and further comprising a mixer connected to the outlet side of the second pipe leading to the water supply port of the backup heat source machine,
The control unit controls the mixing ratio of the mixer so that hot water at a set temperature is supplied from the backup heat source unit without additional heating by the backup heat source unit or by adding heating by the backup heat source unit. The hot water storage system according to claim 1, wherein
前記経路変更部は、前記戻り熱回収配管側から流入する湯水の温度が所定温度未満の場合は前記熱回収循環経路を前記迂回循環経路に切り替える
ことを特徴とする請求項1乃至4のいずれか1項に記載の貯湯システム。
The said path | route change part switches the said heat | fever recovery circulation path to the said detour circulation path | route, when the temperature of the hot water flowing in from the said return heat recovery piping side is less than predetermined temperature. The hot water storage system according to item 1.
JP2012015585A 2012-01-27 2012-01-27 Hot water storage system Expired - Fee Related JP5901312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015585A JP5901312B2 (en) 2012-01-27 2012-01-27 Hot water storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015585A JP5901312B2 (en) 2012-01-27 2012-01-27 Hot water storage system

Publications (2)

Publication Number Publication Date
JP2013155904A true JP2013155904A (en) 2013-08-15
JP5901312B2 JP5901312B2 (en) 2016-04-06

Family

ID=49051278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015585A Expired - Fee Related JP5901312B2 (en) 2012-01-27 2012-01-27 Hot water storage system

Country Status (1)

Country Link
JP (1) JP5901312B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033439A (en) * 2014-07-31 2016-03-10 株式会社ガスター Hot water storage system
KR101830481B1 (en) * 2015-11-21 2018-02-20 주식회사 코와 Waste Heat Recovery System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263388A (en) * 2006-03-27 2007-10-11 Osaka Gas Co Ltd Exhaust heat recovering device
JP2010133610A (en) * 2008-12-03 2010-06-17 Sharp Corp Heat pump water heater system
JP2011012886A (en) * 2009-07-01 2011-01-20 Rinnai Corp Hot water supply system
JP2011257130A (en) * 2011-08-22 2011-12-22 Osaka Gas Co Ltd Apparatus for recovering exhaust heat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263388A (en) * 2006-03-27 2007-10-11 Osaka Gas Co Ltd Exhaust heat recovering device
JP2010133610A (en) * 2008-12-03 2010-06-17 Sharp Corp Heat pump water heater system
JP2011012886A (en) * 2009-07-01 2011-01-20 Rinnai Corp Hot water supply system
JP2011257130A (en) * 2011-08-22 2011-12-22 Osaka Gas Co Ltd Apparatus for recovering exhaust heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033439A (en) * 2014-07-31 2016-03-10 株式会社ガスター Hot water storage system
KR101830481B1 (en) * 2015-11-21 2018-02-20 주식회사 코와 Waste Heat Recovery System

Also Published As

Publication number Publication date
JP5901312B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5601465B2 (en) Hot water system
JP2008145096A (en) Hot water supply system and hot water supply method
JP2011149672A (en) Solar heat hot water supply system
JP5836794B2 (en) Hot water storage system
JP5901312B2 (en) Hot water storage system
JP5901920B2 (en) Solar heat utilization system
JP5846413B2 (en) Cogeneration system
JP5814643B2 (en) Hot water storage system
JP5755532B2 (en) Hot water storage system
JP5938206B2 (en) Hot water storage system
JP2016031196A (en) Hot water storage system
JP6143092B2 (en) Hot water storage system
JP6362469B2 (en) Hot water storage system
JP6015924B2 (en) Hot water storage hot water system
JP5923299B2 (en) Hot water storage system
JP2005207618A (en) Storage type hot water supply device and cogeneration system
JP6403631B2 (en) Hot water storage unit
JP6403630B2 (en) Hot water storage unit
JP6191352B2 (en) Hot water storage system
JP6286312B2 (en) Hot water storage system
JP2013069598A (en) Cogeneration system
JP5938208B2 (en) Hot water storage system
JP2016038114A (en) Hot water storage system
JP6050581B2 (en) Hot water storage system
JP5574106B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees