JP2013155272A - Mixed insulating material and molded article thereof - Google Patents

Mixed insulating material and molded article thereof Download PDF

Info

Publication number
JP2013155272A
JP2013155272A JP2012016341A JP2012016341A JP2013155272A JP 2013155272 A JP2013155272 A JP 2013155272A JP 2012016341 A JP2012016341 A JP 2012016341A JP 2012016341 A JP2012016341 A JP 2012016341A JP 2013155272 A JP2013155272 A JP 2013155272A
Authority
JP
Japan
Prior art keywords
insulating material
silicone rubber
mixed insulating
mixed
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012016341A
Other languages
Japanese (ja)
Inventor
Naoki Ota
直樹 太田
Masahide Osawa
昌英 大沢
Yusuke Kurosawa
優介 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Electric Co Ltd
Original Assignee
Nissei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Electric Co Ltd filed Critical Nissei Electric Co Ltd
Priority to JP2012016341A priority Critical patent/JP2013155272A/en
Publication of JP2013155272A publication Critical patent/JP2013155272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Insulating Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new mixed insulating material which has both characteristics of flexibility and heat resistance or cold resistance that conventional insulating materials lack, and is excellent in cost-effectiveness, and a molded article thereof.SOLUTION: The mixed insulating material is obtained by melting and mixing a polyester-based copolymer and silicone rubber under a desired condition without using a compatibilizing agent. The molded article such as a cable, tube or packing is obtained by molding the mixed insulating material. The content ratio (wt.%) of the polyester-based copolymer to the silicone rubber is preferably 90:10 to 5:95.

Description

本発明は、新規の混合絶縁材料及びその成形品に関し、特に、耐熱性、耐寒性、耐油性、機械的強度及び柔軟性のすべてを兼ね備え、かつ、コストパフォーマンスに優れることを特徴としたものである。 The present invention relates to a novel mixed insulating material and a molded product thereof, and is particularly characterized by having all of heat resistance, cold resistance, oil resistance, mechanical strength and flexibility, and excellent cost performance. is there.

一般的な絶縁材料としては、安価で汎用的な材料としてポリエチレンが多く用いられている。また、柔軟性、耐熱性及び耐寒性が必要な環境下では、シリコーンゴムが使用される。しかし、ポリエチレンは耐熱性が低く、シリコーンゴムは耐油性や機械的な強度が劣るなどといった問題が、従来から指摘されている。
フッ素ゴムは、シリコーンゴムよりも優れた耐熱性、耐油性を有する柔軟材料であるが、耐寒性に劣り、かつ高価・高比重という問題がある。
その他の高性能な材料として、ポリイミドやフッ素樹脂等が挙げられるが、柔軟性が乏しい上、高価のためコスト面でも問題がある。
こうした中、近年では、絶縁材料において高性能化が求められる一方で、コスト競争に見合った安価な材料が切望されている。例えば、自動車業界においてはハイブリット車や電気自動車の開発が活発であるが、ハイブリッド車においてはエンジンルーム内などの一部の配線において高温で油の多い過酷な環境下で使用されるため、耐熱性、耐寒性に加え耐油性を持つ絶縁材料が必要とされる。また、電気自動車では低コスト化、軽量化を目的とする上で様々なユニットがモジュール化、コンパクト化されており、そのような場所は配線スペースが極めて狭小なことから、配線しやすいように柔軟性の高い絶縁材料が切望されている。これらの特性を有する高性能な絶縁材料を、さらに安価に得ることが課題となっている。
高性能な絶縁材料を得る従来技術の1つとして、シリコーンゴムの主成分であるポリオルガノシロキサンとポリエステル又はポリエーテル、及び、相溶化剤を用い、共加硫してなる熱硬化性ゴム塑性物が知られている。(特許文献1)
その他、充填剤入りシリコーンゴム、相溶剤、ポリイミド又はポリエステル樹脂他を混合し、開始剤の存在下にシリコーンゴムを動的加硫して得られる熱可塑性シリコーンエラストマー組成物等も知られている。(特許文献2)
しかし、これらの公知技術は全て、異種高分子間の界面における強度や分散性を改善するため、相溶剤を用いることを特徴としており、組成物の柔軟性や耐熱性が優れる一方で、相溶剤の材料費や添加・加硫工程等によりコストが嵩む要因となっている。
As a general insulating material, polyethylene is often used as an inexpensive and general-purpose material. In an environment where flexibility, heat resistance and cold resistance are required, silicone rubber is used. However, it has been pointed out that polyethylene has low heat resistance and silicone rubber has poor oil resistance and mechanical strength.
Fluororubber is a flexible material having better heat resistance and oil resistance than silicone rubber, but has poor cold resistance and has problems of high cost and high specific gravity.
Other high-performance materials include polyimide, fluororesin, and the like, but they have poor flexibility and are expensive and have a problem in terms of cost.
Under these circumstances, in recent years, while high performance is demanded for insulating materials, inexpensive materials that meet cost competition are desired. For example, in the automobile industry, development of hybrid cars and electric cars is active, but in hybrid cars, some wiring in the engine room etc. is used in harsh environments with high temperatures and a lot of oil. Insulating materials with oil resistance in addition to cold resistance are required. In electric vehicles, various units are modularized and compact for the purpose of cost reduction and weight reduction, and the wiring space is extremely small in such a place, so it is flexible so that wiring is easy. A highly insulating material is highly desired. It has been a challenge to obtain a high-performance insulating material having these characteristics at a lower cost.
As one of the conventional techniques for obtaining a high-performance insulating material, a thermosetting rubber plastic material obtained by co-vulcanization using a polyorganosiloxane and a polyester or polyether, which are main components of silicone rubber, and a compatibilizing agent. It has been known. (Patent Document 1)
In addition, a thermoplastic silicone elastomer composition obtained by mixing filled silicone rubber, compatibilizer, polyimide, polyester resin or the like and dynamically vulcanizing the silicone rubber in the presence of an initiator is also known. (Patent Document 2)
However, all of these known techniques are characterized by the use of a compatibilizer in order to improve the strength and dispersibility at the interface between different types of polymers, while the flexibility and heat resistance of the composition are excellent, The cost is increased due to the material cost and the addition / vulcanization process.

特許第2608350号公報Japanese Patent No. 2608350 米国特許6465552号公報US Pat. No. 6,465,552

本発明の課題は、ポリエチレン、シリコーンゴム等の単体材料、及び、従来技術のようなポリマーブレンド材料で実現できていない、耐熱性、耐寒性、耐油性、機械的強度及び柔軟性の全てを兼ね備え、かつ、コストパフォーマンスに優れる混合絶縁材料及びその成形品を提供することにある。 The object of the present invention is to combine all of heat resistance, cold resistance, oil resistance, mechanical strength and flexibility that cannot be realized with a single material such as polyethylene and silicone rubber and a polymer blend material as in the prior art. And it is providing the mixed insulation material excellent in cost performance, and its molded article.

本発明に係る混合絶縁材料は、ポリエステル系共重合体及びシリコーンゴムからなり、相溶剤を使うことなく溶融混合により得ることを特徴とする。
本発明者等は鋭意試作を重ねた結果、ポリエステル系共重合体とシリコーンゴムの含有比(wt%)を90:10〜5:95とし、所望の条件下において溶融混合することにより、相溶剤を使うことなく、分散性に優れる新規の混合絶縁材料を得るに至った。
耐熱性等の高性能化、及び、電線、チューブ、パッキン等への成型時の生産性を鑑みると、ポリエステル系共重合体とシリコーンゴムの含有比(wt%)のさらに好ましい範囲は85:15〜55:45である。
また、混合絶縁材料の耐熱温度(UL758準拠)は少なくとも150℃、耐寒性を示す脆化温度(JIS K7216準拠)は−60℃以下、柔軟性を示す硬度(JIS K6253準拠 タイプA)は35〜95であることを特徴とする。
The mixed insulating material according to the present invention comprises a polyester copolymer and silicone rubber, and is obtained by melt mixing without using a compatibilizer.
As a result of repeated trial manufactures, the inventors set the content ratio (wt%) of the polyester copolymer and the silicone rubber to 90:10 to 5:95, and melt-mixed them under desired conditions. A new mixed insulating material having excellent dispersibility has been obtained without using any other material.
Considering higher performance such as heat resistance and productivity at the time of molding into an electric wire, tube, packing, etc., a more preferable range of the content ratio (wt%) of the polyester copolymer and silicone rubber is 85:15. ~ 55: 45.
Moreover, the heat resistance temperature (based on UL758) of the mixed insulating material is at least 150 ° C., the embrittlement temperature indicating cold resistance (based on JIS K7216) is −60 ° C. or less, and the hardness indicating flexibility (JIS K6253 compatible type A) is 35 to 35 ° C. 95.

本発明によれば、以下の顕著な効果が奏される。
(1)本発明の混合絶縁材料は、ポリエチレンに比べて、耐熱性、耐寒性、耐油性及び柔軟性において優れている。
(2)本発明の混合絶縁材料は、シリコーンゴムに比べて、耐油性が格段に改善され、柔軟性、耐熱性、耐寒性及びコストにおいては同等である。ポリエステル系共重合体を混合する付随効果として、シリコーンゴム単体に比べて機械的強度が改善する点も挙げられる。
(3)本発明の混合絶縁材料は、フッ素ゴムに比べて耐熱性は若干劣るが、耐寒性は格段に優れ、コストも低い。
(4)本発明の混合絶縁材料は、ポリイミドやフッ素樹脂等の高性能な材料に比べて、耐熱性において若干劣るが、耐寒性はほぼ同等で、柔軟性においては格段に優れている。かつ、比重が小さいことによる軽量化が可能である。
(5)加熱溶融による混合・成形が可能なため、前もって材料を混合し加硫するなどの工程が不要であり、製造コストが格段に節約できる。
(6)ポリエステル系共重合体及びシリコーンゴム以外に相溶剤等の第3成分材料が不要なため、材料費を抑えられ、かつ第3成分材料による特性の劣化を防止できる。
According to the present invention, the following remarkable effects are exhibited.
(1) The mixed insulating material of the present invention is superior in heat resistance, cold resistance, oil resistance and flexibility as compared with polyethylene.
(2) The mixed insulating material of the present invention has much improved oil resistance compared to silicone rubber, and is equivalent in flexibility, heat resistance, cold resistance and cost. As an incidental effect of mixing the polyester copolymer, the mechanical strength is improved as compared with the silicone rubber alone.
(3) The mixed insulating material of the present invention is slightly inferior in heat resistance as compared with fluororubber, but is extremely excellent in cold resistance and low in cost.
(4) Although the mixed insulating material of the present invention is slightly inferior in heat resistance as compared with high-performance materials such as polyimide and fluororesin, it is almost equivalent in cold resistance and remarkably excellent in flexibility. In addition, the weight can be reduced due to the small specific gravity.
(5) Since mixing and molding by heating and melting are possible, a process such as mixing and vulcanizing materials in advance is unnecessary, and manufacturing costs can be greatly reduced.
(6) Since a third component material such as a compatibilizer other than the polyester-based copolymer and silicone rubber is not required, the material cost can be suppressed and the deterioration of characteristics due to the third component material can be prevented.

図1は本発明における混合絶縁材料の混合状態を示す走査型電子顕微鏡による撮影画像である。(実施例6)FIG. 1 is an image taken by a scanning electron microscope showing a mixed state of the mixed insulating material in the present invention. (Example 6) 図2は本発明における混合絶縁材料を使用した絶縁電線の断面図である。(実施例6及び実施例7)FIG. 2 is a sectional view of an insulated wire using the mixed insulating material according to the present invention. (Example 6 and Example 7)

本発明の混合絶縁材料を得る主たる態様としては、以下のようなものがある。 The main aspects of obtaining the mixed insulating material of the present invention are as follows.

本発明の混合絶縁材料は、ポリエステル系共重合体及びシリコーンゴムからなり、相溶剤を使うことなく溶融混合により得られる。ポリエステル系共重合体は、具体的には数種類のポリエステルを共重合した材料であり、先行文献における相溶剤の役割を果たす。
ポリエステル系共重合体とシリコーンゴムの含有比(wt%)は90:10〜5:95である。耐熱性等の高性能化、及び、電線、チューブ、パッキン等への成型時の生産性を鑑みて、さらに好ましい範囲は85:15〜55:45である。
The mixed insulating material of the present invention comprises a polyester copolymer and silicone rubber, and can be obtained by melt mixing without using a compatibilizer. Specifically, the polyester-based copolymer is a material obtained by copolymerizing several kinds of polyesters, and serves as a compatibilizer in the prior art.
The content ratio (wt%) of the polyester copolymer and the silicone rubber is 90:10 to 5:95. In view of high performance such as heat resistance and productivity at the time of molding into an electric wire, tube, packing, etc., a more preferable range is 85:15 to 55:45.

ここで、ポリエステル系共重合体の含有量が多いと、シリコーンゴムの柔軟性が損なわれる一方、耐油性及び機械的強度が改善される。
シリコーンゴムの含有量が多いと、柔軟性が付与される一方、溶融押出による成型が困難となり、耐油性も損なわれる。
Here, if there is much content of a polyester-type copolymer, while the softness | flexibility of silicone rubber will be impaired, oil resistance and mechanical strength will be improved.
When the content of the silicone rubber is large, flexibility is imparted, but molding by melt extrusion becomes difficult, and oil resistance is also impaired.

該含有比のポリエステル系共重合体とシリコーンゴムを、所望の条件下において溶融混合することにより、相溶剤を使うことなく、異種高分子間の界面における強度や分散性に優れる混合絶縁材料が得られる。具体的には、溶融混合時にポリエステル系共重合体のせん断による自己発熱量を考慮し、ポリエステル系共重合体の融点よりも約15℃〜20℃低い温度でシリコーンゴムと混合させることで、各材料の粘度がほぼ同値となり優れた分散性を得られるため、相溶剤等の第3成分材料が不要となる。
溶融混合の方法は特に限定しないが、一般的な加熱溶融押出機、加熱式ニーダー又はミキサー、加熱式二本ロール等を用いるのが好ましい。
また、押出成型において含有比(wt%)90:10〜55:45は加熱溶融押出が適しており、含有比(wt%)30:70〜5:95は加熱溶融押出後に電子線架橋や紫外線照射架橋によってゴム弾性体にする方法が適している。また、含有比(wt%)30:70〜5:95において前述の架橋方法が行えない場合には、予め加熱溶融混練にてコンパウンド化した後に冷却し、架橋剤を添加して成型後に加熱し架橋するなど、含有比率により最適な成型方法は異なる。
By mixing the polyester copolymer of this content ratio and silicone rubber under desired conditions, a mixed insulating material having excellent strength and dispersibility at the interface between different polymers can be obtained without using a compatibilizer. It is done. Specifically, in consideration of the amount of self-heating due to shearing of the polyester copolymer during melt mixing, each is mixed with silicone rubber at a temperature lower by about 15 ° C. to 20 ° C. than the melting point of the polyester copolymer. Since the materials have substantially the same viscosity and excellent dispersibility can be obtained, a third component material such as a compatibilizer is not necessary.
The method of melt mixing is not particularly limited, but it is preferable to use a general heat melt extruder, a heat kneader or mixer, a heat double roll or the like.
In extrusion molding, a content ratio (wt%) of 90:10 to 55:45 is suitable for heat-melt extrusion, and a content ratio (wt%) of 30:70 to 5:95 is electron beam crosslinking or ultraviolet radiation after heat-melt extrusion. A method of forming a rubber elastic body by irradiation crosslinking is suitable. In addition, when the above-described crosslinking method cannot be performed at a content ratio (wt%) of 30:70 to 5:95, cooling is performed after compounding by heating and melt-kneading in advance, and a crosslinking agent is added and heated after molding. The optimum molding method varies depending on the content ratio such as crosslinking.

「実施例1〜実施例5」
ここで、ポリエステル系共重合体(a)とシリコーンゴム(b)の含有比(wt%)と、その耐熱性、耐寒性、耐油性及び柔軟性等の各種特性を調べた結果を表1に示す。
"Example 1 to Example 5"
Here, the content ratio (wt%) of the polyester-based copolymer (a) and the silicone rubber (b) and the results of examining various properties such as heat resistance, cold resistance, oil resistance and flexibility are shown in Table 1. Show.

表1より、実施例1から実施例5のポリエステル系共重合体(a)とシリコーンゴム(b)の含有比(wt%)90:10〜5:95では、耐熱性、耐寒性、耐油性、機械的強度及び柔軟性のすべてを兼ね備え、かつ、コストパフォーマンスに優れることが分かる。実施例2及び実施例3の含有比(wt%)85:15〜55:45では、上記特性が安定して良好であり、かつ、MFRが高く加熱溶融押出が可能であり生産性が良い点で、特に好ましい範囲と言える。
柔軟性、すなわち硬度(JIS K6253準拠 タイプA)において、本発明の混合絶縁材料はシリコーンゴムを混合させることで柔軟性が増しており、比較例1及び比較例2のポリエステル系共重合体単体及び含有比(wt%)95:5の混合物、従来例1のポリエチレン単体、従来例3のFEP等のフッ素樹脂単体に比べて柔軟性が優れている。
耐寒性を示す脆化温度(JIS K7216準拠)においても、シリコーンゴム特性が寄与し、特に、従来例2のフッ素ゴム単体に比べ優位性は顕著である。
耐熱性(UL758準拠)において、本発明材料の構成要素であるポリエステル系共重合体及びシリコーンゴムは共に優れているため、従来例2のフッ素ゴム単体や従来例3のFEP単体には劣るものの、従来例1のポリエチレン単体により遥かに高い耐熱性を有する。
機械的強度(ASTM D638準拠)においては、ポリエステル系共重合体の優位性によりシリコーンゴムの強度弱さが補填され、安定して良好な強度特性が得られる。
耐油性(ISO6722準拠)においても、ポリエステル系共重合体の優位性によりシリコーンゴムの耐油性弱さが補填され安定して良好な特性を得られ、従来例1のポリエチレン単体、及び比較例3のシリコーンゴム単体より遥かに高い耐油性を有する。
圧縮永久歪み(JIS K6262準拠)においては、シリコーンゴムの優位性がポリエステル系共重合体の圧縮永久歪み弱さを補填するため、安定して良好な特性を得られ、比較例1及び比較例2のポリエステル系共重合体単体及び含有比95:5の混合物、及び従来例1のポリエチレン単体、従来例3のFEP単体より遥かに優れた圧縮永久歪み特性を有する。
総合評価においては、近年のハイブリッド車及び電気自動車用電線の要求特性として挙げられる、−40℃〜150℃の耐熱性・耐寒性、及び耐油性(耐ガソリン性)を有する、柔軟かつ安価な電線であることを基準として、適用可否を判定した。本発明の実施例1から実施例5においては、比較例及び従来例と比較して、総合的に安定して優れた特性を有しており、さらに実施例2及び実施例3においては特に優れていると言える。
表1に挙げた特性項目以外に、本発明の付随効果として耐候性及び耐コロナ性の向上も確認されている。
From Table 1, when the content ratio (wt%) of the polyester copolymer (a) and the silicone rubber (b) of Examples 1 to 5 is 90:10 to 5:95, heat resistance, cold resistance, and oil resistance are obtained. It can be seen that it has both mechanical strength and flexibility and is excellent in cost performance. In the content ratio (wt%) 85:15 to 55:45 of Example 2 and Example 3, the above characteristics are stable and good, the MFR is high, and heat melt extrusion is possible, and the productivity is good. Therefore, it can be said to be a particularly preferable range.
In the flexibility, that is, the hardness (JIS K6253 compliant type A), the mixed insulating material of the present invention is increased in flexibility by mixing silicone rubber, and the polyester-based copolymer alone of Comparative Example 1 and Comparative Example 2 and Compared to a mixture having a content ratio (wt%) of 95: 5, a polyethylene simple substance of Conventional Example 1 and a fluororesin simple substance such as FEP of Conventional Example 3, the flexibility is excellent.
Silicone rubber properties also contribute to the embrittlement temperature (conforming to JIS K7216) showing cold resistance. In particular, the superiority is significant compared to the conventional fluororubber alone.
In heat resistance (based on UL758), since the polyester copolymer and silicone rubber, which are constituent elements of the material of the present invention, are both superior, the fluororubber alone of Conventional Example 2 and the FEP alone of Conventional Example 3 are inferior. The polyethylene alone of Conventional Example 1 has much higher heat resistance.
In the mechanical strength (according to ASTM D638), the strength weakness of the silicone rubber is compensated by the superiority of the polyester-based copolymer, and good strength characteristics can be obtained stably.
Also in oil resistance (ISO 6722 compliant), the superiority of the polyester-based copolymer compensates for the weak oil resistance of the silicone rubber, and stably obtains good characteristics. The polyethylene alone of Conventional Example 1 and Comparative Example 3 Has much higher oil resistance than silicone rubber alone.
In compression set (according to JIS K6262), the superiority of silicone rubber compensates for the compression set weakness of the polyester copolymer, so that stable and good characteristics can be obtained. Comparative Example 1 and Comparative Example 2 The polyester-based copolymer alone and a mixture with a content ratio of 95: 5, the polyethylene simplex of Conventional Example 1 and the FEP simplex of Conventional Example 3 have far superior compression set characteristics.
In comprehensive evaluation, flexible and inexpensive electric wires having heat resistance / cold resistance of −40 ° C. to 150 ° C. and oil resistance (gasoline resistance), which are listed as required characteristics of electric wires for hybrid vehicles and electric vehicles in recent years The applicability was determined based on the above. In Examples 1 to 5 of the present invention, compared with the comparative example and the conventional example, it has comprehensively stable and excellent characteristics, and in Examples 2 and 3, it is particularly excellent. It can be said that.
In addition to the characteristic items listed in Table 1, improvement in weather resistance and corona resistance has also been confirmed as an accompanying effect of the present invention.

以上より、本発明の混合絶縁材料を用いれば、従来の絶縁材料では十分に補えなかった、耐熱性、耐寒性、耐油性、機械的強度及び柔軟性のすべてを兼ね備え、かつ、コストパフォーマンスに優れる、絶縁電線、チューブ及びパッキン等の成形品が得られる。
以下、本発明の混合絶縁材料を用いた成形品の製造例として、図2に示す絶縁電線の例を挙げる。
「実施例6及び実施例7」
As described above, when the mixed insulating material of the present invention is used, it has all of heat resistance, cold resistance, oil resistance, mechanical strength and flexibility, which cannot be sufficiently compensated by the conventional insulating material, and is excellent in cost performance. In addition, molded products such as insulated wires, tubes and packings are obtained.
Hereinafter, the example of the insulated wire shown in FIG. 2 is given as an example of manufacturing a molded article using the mixed insulating material of the present invention.
"Example 6 and Example 7"

錫めっき軟銅線の導体5(φ0.9mm、導体構成19本/0.18mm)に、本発明の混合絶縁材料1を厚さ0.4mm被覆した図2に示す絶縁電線4(φ1.7mm)を得る。この絶縁電線4の評価結果を表2に示す。 Insulated wire 4 (φ1.7 mm) shown in FIG. 2 in which a mixed insulating material 1 of the present invention is coated with a thickness of 0.4 mm on a tin-plated annealed copper wire conductor 5 (φ0.9 mm, conductor configuration 19 pieces / 0.18 mm) Get. The evaluation results of this insulated wire 4 are shown in Table 2.

表2より、いずれの特性においても、実施例6及び実施例7のポリエステル系共重合体(a)とシリコーンゴム(b)の含有比(wt%)が85:15及び55:45の絶縁電線は、比較例4及び比較例5のポリエステル系共重合体単体及びシリコーンゴム単体の中間的な特性を有することが分かる。
加熱後の抗張力及び伸び率の残率(UL758準拠)では、実施例6及び実施例7は従来例5のフッ素ゴム電線及び従来例6のFEP電線と遜色ない特性を有している。
ガソリン浸漬後の抗張力及び伸び率の残率は、実施例6の含有比(wt%)85:15の絶縁電線は従来例5のフッ素ゴム電線及び従来例6のFEP電線と遜色ない特性を有している。
一方、実施例7の含有比55:45の絶縁電線は、比較例5のシリコーンゴム電線の結果からも明らかなように、シリコーンゴムの影響により若干悪化するが、従来例4のポリエチレン電線相当の特性は有している。
ATF浸漬後の抗張力及び伸び率の残率は、従来例4のポリエチレン電線に比べ遥かに優位性があり、従来例5のフッ素ゴム電線及び従来例6のFEP電線と同等レベルの特性を有している。
絶縁抵抗及び絶縁破壊電圧の電気的特性においては、従来例4から従来例6の各種電線に比べて劣っているが、例えば車載用の低圧用電線では十分に使用可能なレベルであることが確認されている。さらに、本発明の混合絶縁材料をジャケット材として使用する場合は、高圧用電線でも使用可能である。
From Table 2, the insulated wires having the content ratio (wt%) of the polyester copolymer (a) of Example 6 and Example 7 and the silicone rubber (b) of 85:15 and 55:45 in any characteristics. It turns out that it has the intermediate characteristic of the polyester-type copolymer single-piece | unit of Comparative Example 4 and Comparative Example 5, and a silicone rubber single-piece | unit.
In terms of the tensile strength after heating and the remaining elongation rate (based on UL758), Example 6 and Example 7 have characteristics comparable to the fluororubber electric wire of Conventional Example 5 and the FEP electric wire of Conventional Example 6.
The tensile strength and the remaining elongation rate after immersion in gasoline are as follows. The insulated wire with the content ratio (wt%) 85:15 in Example 6 has characteristics comparable to the fluororubber wire in Conventional Example 5 and the FEP wire in Conventional Example 6. doing.
On the other hand, the insulated wire having a content ratio of 55:45 in Example 7 is slightly deteriorated due to the influence of silicone rubber, as is apparent from the result of the silicone rubber wire in Comparative Example 5, but is equivalent to the polyethylene wire in Conventional Example 4. Has characteristics.
The tensile strength and the residual elongation rate after immersion in ATF are far superior to the polyethylene wire of Conventional Example 4, and have the same level of characteristics as the fluororubber wire of Conventional Example 5 and the FEP wire of Conventional Example 6. ing.
The electrical characteristics of insulation resistance and dielectric breakdown voltage are inferior to those of the conventional wires 4 to 6, but for example, it is confirmed that they are at a level that can be used satisfactorily with low-voltage wires for vehicles. Has been. Furthermore, when the mixed insulating material of the present invention is used as a jacket material, a high-voltage electric wire can also be used.

本発明の混合絶縁材料1を被覆電線4に成形した際のポリエステル系共重合体3とシリコーンゴム2の混合状態は、図1に示す。
図1は、実施例6の含有比(wt%)85:15の絶縁電線4の混合状態を、走査型電子顕微鏡により観察した画像である。絶縁電線4の絶縁体断面を、溶剤にてシリコーンゴム部分2だけを抽出することにより、小さな丸い空隙部のシリコーンゴム部分2とそれ以外のポリエステル系共重合体部3を確認することができる。図1より、シリコーンゴム部分2がナノオーダーレベルで均一に分散している様子が確認できる。
The mixed state of the polyester-based copolymer 3 and the silicone rubber 2 when the mixed insulating material 1 of the present invention is formed into the covered electric wire 4 is shown in FIG.
FIG. 1 is an image obtained by observing the mixed state of the insulated wire 4 having a content ratio (wt%) of 85:15 in Example 6 with a scanning electron microscope. By extracting only the silicone rubber part 2 from the insulator cross section of the insulated wire 4 with a solvent, the silicone rubber part 2 having a small round gap and the other polyester-based copolymer part 3 can be confirmed. From FIG. 1, it can be confirmed that the silicone rubber portion 2 is uniformly dispersed at the nano-order level.

本発明は、各種絶縁電線、電線の被覆材、チューブ、パッキン等の成形品に幅広く使用可能である。特に、ハイブリッド自動車や電気自動車用モーター等、柔軟性、耐熱性、耐寒性、機械的強度及び耐油性が必要とされ、コストパフォーマンスの厳しい分野において有効利用可能である。 The present invention can be widely used for molded products such as various insulated wires, wire coating materials, tubes, and packings. In particular, flexibility, heat resistance, cold resistance, mechanical strength and oil resistance are required, such as motors for hybrid vehicles and electric vehicles, and can be effectively used in fields with severe cost performance.

1 本発明の混合絶縁材料
2 シリコーンゴム(溶剤による抽出部)
3 ポリエステル系共重合体
4 本発明の混合絶縁材料を使用した絶縁電線
5 導体
1 Mixed insulating material of the present invention 2 Silicone rubber (extraction part by solvent)
3 Polyester copolymer 4 Insulated wire 5 using the mixed insulating material of the present invention 5 Conductor

Claims (7)

相溶剤を使うことなく溶融混合により得られることを特徴とする、ポリエステル系共重合体とシリコーンゴムとの混合絶縁材料。 A mixed insulating material of a polyester copolymer and silicone rubber, which is obtained by melt mixing without using a compatibilizer. 請求項1に記載の混合絶縁材料を成型して得られた被覆電線、チューブ及びパッキン等の成形品。 A molded product such as a covered electric wire, a tube, and packing obtained by molding the mixed insulating material according to claim 1. 該ポリエステル系共重合体と該シリコーンゴムの含有比(wt%)が90:10〜5:95であることを特徴とする、請求項1または2に記載の混合絶縁材料またはその成形品。 3. The mixed insulating material according to claim 1, wherein the content ratio (wt%) of the polyester copolymer and the silicone rubber is 90:10 to 5:95. 4. 該ポリエステル系共重合体と該シリコーンゴムの含有比(wt%)が85:15〜55:45であることを特徴とする、請求項1〜3のいずれかに記載の混合絶縁材料またはその成形品。 4. The mixed insulating material according to claim 1, wherein the content ratio (wt%) of the polyester copolymer and the silicone rubber is 85:15 to 55:45. 5. Goods. 耐熱温度(UL758準拠)が少なくとも150℃であることを特徴とする、請求項1〜4のいずれかに記載の混合絶縁材料またはその成形品。 The mixed insulating material or molded product thereof according to any one of claims 1 to 4, wherein the heat resistant temperature (based on UL758) is at least 150 ° C. 耐寒温度(JIS K7216準拠)の脆化温度が−60℃以下であることを特徴とする、請求項1〜5のいずれかに記載の混合絶縁材料またはその成形品。 The mixed insulating material according to any one of claims 1 to 5, or a molded article thereof, wherein the embrittlement temperature at a cold resistant temperature (based on JIS K7216) is -60 ° C or lower. 硬度(JIS K6253準拠 タイプA)が35〜95であることを特徴とする、請求項1〜6のいずれかに記載の混合絶縁材料またはその成形品。
Hardness (JIS K6253 conformity type A) is 35-95, The mixed insulation material in any one of Claims 1-6, or its molded article.
JP2012016341A 2012-01-30 2012-01-30 Mixed insulating material and molded article thereof Pending JP2013155272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016341A JP2013155272A (en) 2012-01-30 2012-01-30 Mixed insulating material and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016341A JP2013155272A (en) 2012-01-30 2012-01-30 Mixed insulating material and molded article thereof

Publications (1)

Publication Number Publication Date
JP2013155272A true JP2013155272A (en) 2013-08-15

Family

ID=49050792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016341A Pending JP2013155272A (en) 2012-01-30 2012-01-30 Mixed insulating material and molded article thereof

Country Status (1)

Country Link
JP (1) JP2013155272A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064499A1 (en) * 2013-10-29 2015-05-07 ポリプラスチックス株式会社 Corona-resistant resin composition, method for developing corona resistance of resin composition, and corona-resistant member
JP2015090756A (en) * 2013-11-05 2015-05-11 株式会社オートネットワーク技術研究所 Insulated wire
JP2020084068A (en) * 2018-11-28 2020-06-04 日星電気株式会社 Mixed insulation material and formed article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064499A1 (en) * 2013-10-29 2015-05-07 ポリプラスチックス株式会社 Corona-resistant resin composition, method for developing corona resistance of resin composition, and corona-resistant member
JP2016056381A (en) * 2013-10-29 2016-04-21 ポリプラスチックス株式会社 Corona-resistant resin composition, method for developing corona resistance of resin composition, and corona-resistant member
US10017643B2 (en) 2013-10-29 2018-07-10 Polyplastics Co., Ltd. Corona-resistant resin composition, method for developing corona resistance of resin composition, and corona-resistant member
JP2015090756A (en) * 2013-11-05 2015-05-11 株式会社オートネットワーク技術研究所 Insulated wire
WO2015068539A1 (en) * 2013-11-05 2015-05-14 株式会社オートネットワーク技術研究所 Insulated wire
CN105706184A (en) * 2013-11-05 2016-06-22 株式会社自动网络技术研究所 Insulated wire
CN105706184B (en) * 2013-11-05 2017-08-15 株式会社自动网络技术研究所 Insulated electric conductor
JP2020084068A (en) * 2018-11-28 2020-06-04 日星電気株式会社 Mixed insulation material and formed article
JP7195037B2 (en) 2018-11-28 2022-12-23 日星電気株式会社 Mixed insulating materials and moldings

Similar Documents

Publication Publication Date Title
KR102003567B1 (en) Power cable
JP6240688B2 (en) Corona-resistant resin composition, method for expressing corona resistance of resin composition, and corona-resistant member
WO2012161327A1 (en) Cable-coating vinyl chloride resin composition and cable using same
KR101723677B1 (en) Flame-retardant insulating composition, and electrical wire and cable prepared using the same
JP2013225405A (en) Insulation electric wire
JP2013155272A (en) Mixed insulating material and molded article thereof
JP6320692B2 (en) DC cable and electrical insulation composition
JP2015199819A (en) Resin composition for shielding electromagnetic wave and cable
WO2014203701A1 (en) Resin composition for wire covering materials, insulated wire and wiring harness
JP6859322B2 (en) Power transmission cable manufacturing method
KR20140126993A (en) Power cable
WO2017169679A1 (en) Insulated electrical wire
JP2014053196A (en) Insulation electric wire
JP2014029770A (en) Insulated wire
JP2016197560A (en) Electric wire for vehicle and wire harness using the same
JP2016060855A (en) Rubber composition and rubber product using the same
JP3786252B2 (en) Polyolefin insulation insulated wire
JP6299619B2 (en) Insulated wire
JP2016219111A (en) Insulation wire
JP6298441B2 (en) Semiconductive resin composition and power cable using the same
JP5888173B2 (en) Insulated wire
JP7439573B2 (en) Thermoplastic rubber composition, method for producing thermoplastic rubber composition, electric wire and cable
WO2015107944A1 (en) Method for producing insulated electric wire
KR20230041346A (en) Ternary insulation composition containing organic hard modifier, manufacturing method thereof, and insulation material using same
KR20230093628A (en) Resin composition for shielding electromagnetic waves and cable for shielding electromagnetic waves using thereof