JP2013153572A - Apparatus and method for controlling power supply - Google Patents

Apparatus and method for controlling power supply Download PDF

Info

Publication number
JP2013153572A
JP2013153572A JP2012012363A JP2012012363A JP2013153572A JP 2013153572 A JP2013153572 A JP 2013153572A JP 2012012363 A JP2012012363 A JP 2012012363A JP 2012012363 A JP2012012363 A JP 2012012363A JP 2013153572 A JP2013153572 A JP 2013153572A
Authority
JP
Japan
Prior art keywords
power
facility
load
battery
connection switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012012363A
Other languages
Japanese (ja)
Inventor
Yuji Wada
有司 和田
Naohiko Shiokawa
直彦 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012012363A priority Critical patent/JP2013153572A/en
Publication of JP2013153572A publication Critical patent/JP2013153572A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a peak of power supply by making effective use of charge power of a battery provided in an apparatus for controlling power supply.SOLUTION: The present invention comprises: a load equipment connection switch that connects commercial power distribution equipment 10 and load equipment 40, 50; a power generation connection switch that connects a solar battery 20 for generating electric power using sunshine; a battery connection switch that connects a battery 30; and a power controller 60 that supplies electric power from the commercial power distribution equipment 10 and a solar battery 20 to the load equipment 40, 50 by turning on the load equipment connection switch and the power generation equipment connection switch and supplies electric power of the battery 30 to the load equipment 40, 50 by turning on the battery connection switch when the electric power supplied from the commercial power distribution equipment 10 to the load equipment 40, 50 is not less than peak-cut start power.

Description

本発明は、太陽電池などの再生可能エネルギー発電システムで発電した電力を商用電源から供給される電力と連系して負荷に供給する電力供給制御装置及び電力供給制御方法に関する。   The present invention relates to a power supply control device and a power supply control method for supplying power generated by a renewable energy power generation system such as a solar battery to a load in conjunction with power supplied from a commercial power source.

近年の世界における原油価格の高騰、環境破壊を懸念した二酸化炭素排出量規制の強化、原子力発電所建設の反対活動の高まりなどを受け、安い電力を安定して供給するための発電環境は年々厳しさを増してきている。このため、石炭、石油、原子力などの化石燃料を用いる発電から、太陽光、風力などの再生可能エネルギーを用いる発電にシフトされつつある。   In recent years, in response to rising crude oil prices in the world, stricter regulations on carbon dioxide emissions, which are concerned about environmental destruction, and increasing activities against the construction of nuclear power plants, the power generation environment for stably supplying cheap electricity has become severe year by year. It is increasing. For this reason, power generation using fossil fuels such as coal, oil, and nuclear power is being shifted to power generation using renewable energy such as sunlight and wind power.

再生可能エネルギーを用いる発電の内、太陽電池を用いた発電は、太陽電池を設置しさえすれば、個別の家屋でも発電が可能となることから、一般住宅や公共施設に次第に普及しつつある。太陽電池は、日々の日照状況によって発電できる電力が大きく異なるため安定した電力供給をすることができない。このため、太陽電池は通常は商用電源と連系させて運転する。太陽電池で発電した電力を商用電源から供給される電力と連系して負荷に供給する電力供給制御装置としては、下記特許文献1に示すような技術がある。   Of the power generation using renewable energy, power generation using solar cells is becoming more and more popular in ordinary houses and public facilities because it is possible to generate power in individual houses as long as solar cells are installed. Solar cells cannot supply power stably because the power that can be generated varies greatly depending on the daily sunshine conditions. For this reason, solar cells are usually operated in conjunction with a commercial power source. As a power supply control device that supplies power generated by a solar battery to a load linked to power supplied from a commercial power source, there is a technique as shown in Patent Document 1 below.

特開2011−130655号公報JP 2011-130655 A

従来から用いられている太陽電池の電力供給制御装置には、太陽電池の余剰電力を蓄えるため、及び商用電源の停電時のバックアップのため、太陽電池及び商用電源と並列にバッテリが接続されている。しかし、従来の電力供給制御装置では、前述のように、バッテリは、余剰電力の充電と停電時のバックアップに用いられるだけで、その他の目的で使用されてはいない。   Conventionally used power supply control devices for solar cells have a battery connected in parallel with the solar cells and the commercial power source for storing the surplus power of the solar cell and for backup at the time of a power failure of the commercial power source. . However, in the conventional power supply control device, as described above, the battery is only used for charging the surplus power and backing up during a power failure, and is not used for any other purpose.

電力の供給は需要量と供給量が常に一致していなければならない。そのため、最大需要電力を上回る供給電力分の発電所を設ける必要がある。近年は、空調設備に用いられる電力が増大しているため、電力供給のピーク時とオフピーク時における電力供給量の差が大きくなってきている。したがって、発電所の稼働率は低下し、発電コストの上昇を招いている。   For power supply, the demand and supply must always match. For this reason, it is necessary to provide a power plant for supply power exceeding the maximum demand power. In recent years, since the electric power used for air conditioning equipment has increased, the difference in the amount of power supply between the peak time of power supply and the off peak time has increased. Therefore, the operating rate of the power plant is decreasing, leading to an increase in power generation cost.

このような近年の電力供給事情を睨み、従来の電力供給制御装置が備えるバッテリを有効に活用できるようにすれば、電力供給のピークを抑え、発電所の稼働率を上げ、発電コストを低下させることができる。   In view of these recent power supply situations, if the battery provided in the conventional power supply control device can be used effectively, the peak of power supply can be suppressed, the operating rate of the power plant can be increased, and the power generation cost can be reduced. be able to.

本発明は、このような事情に鑑みてなされたものであり、太陽電池などの再生可能エネルギー発電設備で発電した電力を商用電源から供給される電力と連系して負荷に供給する電力供給制御装置において、電力供給制御装置が備えるバッテリの充電電力を有効に活用して電力供給のピークを抑えることができる電力供給制御装置及び電力供給制御方法の提供を目的とする。   The present invention has been made in view of such circumstances, and power supply control for supplying power generated by a renewable energy power generation facility such as a solar battery to a load in conjunction with power supplied from a commercial power source. An object of the present invention is to provide a power supply control device and a power supply control method capable of effectively using the charging power of a battery included in the power supply control device to suppress the peak of power supply.

上記目的を達成するための本発明に係る電力供給制御装置は、負荷設備接続スイッチと、発電設備接続スイッチと、バッテリ接続スイッチと、制御部とを有する。   The power supply control device according to the present invention for achieving the above object includes a load facility connection switch, a power generation facility connection switch, a battery connection switch, and a control unit.

負荷設備接続スイッチは、商用配電設備及び負荷設備を接続する。発電設備接続スイッチは、再生可能エネルギーを用いて発電する再生可能エネルギー発電設備を接続する。バッテリ接続スイッチはバッテリを接続する。制御部は、負荷設備接続スイッチ及び発電設備接続スイッチをONさせて商用配電設備及び再生可能エネルギー発電設備から負荷設備に電力を供給する一方、商用配電設備から負荷設備に供給する電力がピークカット開始電力以上になるとバッテリ接続スイッチもONさせてバッテリの電力も負荷設備に供給する。   The load facility connection switch connects the commercial power distribution facility and the load facility. The power generation facility connection switch connects a renewable energy power generation facility that generates power using renewable energy. The battery connection switch connects a battery. The control unit turns on the load facility connection switch and the power generation facility connection switch to supply power to the load facility from the commercial power distribution facility and the renewable energy power generation facility, while the power supplied from the commercial power distribution facility to the load facility starts peak cutting When the electric power is exceeded, the battery connection switch is also turned on to supply the battery power to the load facility.

上記目的を達成するための本発明に係る電力供給制御方法は、商用配電設備及び負荷設備を接続する負荷設備接続スイッチと、再生可能エネルギーを用いて発電する再生可能エネルギー発電設備を接続する発電設備接続スイッチと、バッテリを接続するバッテリ接続スイッチと、負荷設備接続スイッチ、発電設備接続スイッチ及びバッテリ接続スイッチのON、OFFを制御する制御部と、を有する電力供給制御装置の電力供給制御方法であって、負荷設備接続スイッチ及び発電設備接続スイッチをONさせて商用配電設備及び再生可能エネルギー発電設備から負荷設備に電力を供給する連系電力供給段階と、商用配電設備から負荷設備に供給する電力がピークカット開始電力以上になるとバッテリ接続スイッチもONさせてバッテリの電力も負荷設備に供給するピークカット電力供給段階と、を含む。   In order to achieve the above object, a power supply control method according to the present invention comprises a load facility connection switch for connecting a commercial power distribution facility and a load facility, and a power generation facility for connecting a renewable energy power generation facility that generates power using renewable energy. A power supply control method for a power supply control device comprising: a connection switch; a battery connection switch for connecting a battery; and a load facility connection switch, a power generation facility connection switch, and a control unit for controlling ON / OFF of the battery connection switch. Power supply stage for supplying power from the commercial power distribution equipment and renewable energy power generation equipment to the load equipment by turning on the load equipment connection switch and the power generation equipment connection switch, and the power supplied from the commercial power distribution equipment to the load equipment When the peak cut start power is exceeded, the battery connection switch is turned on and the battery power is turned on. Including a peak shaving power supplying to the load equipment.

本発明によれば、商用配電設備から負荷設備に供給される電力がピークカット開始電力以上の電力であれば、バッテリを商用配電設備及び再生可能エネルギー発電設備と並列に接続するので、商用配電設備が負荷設備に供給する電力を一時的に抑えることができる。このため、商用配電設備が負荷設備に供給する電力のピークカットを実現できる。   According to the present invention, if the power supplied from the commercial power distribution facility to the load facility is equal to or higher than the peak cut start power, the battery is connected in parallel with the commercial power distribution facility and the renewable energy power generation facility. Can temporarily suppress the power supplied to the load facility. For this reason, the peak cut of the electric power which commercial power distribution equipment supplies to load equipment is realizable.

本実施形態に係る電力供給制御装置のブロック図である。It is a block diagram of the electric power supply control apparatus which concerns on this embodiment. 図1に示すパワーコントローラの制御系のブロック図である。It is a block diagram of the control system of the power controller shown in FIG. 図2のブロック図におけるスイッチの開閉状態を運転モードごとに示す図である。It is a figure which shows the open / close state of the switch in the block diagram of FIG. 2 for every operation mode. 本実施形態に係る電力供給制御装置において、連系運転モードの電力供給状態を示す図である。In the power supply control device according to the present embodiment, it is a diagram showing a power supply state in the interconnected operation mode. 本実施形態に係る電力供給制御装置において、ピークカット運転モードの電力供給状態を示す図である。It is a figure which shows the electric power supply state of the peak cut operation mode in the electric power supply control apparatus which concerns on this embodiment. 本実施形態に係る電力供給制御装置において、自立運転モードの電力供給状態を示す図である。It is a figure which shows the electric power supply state of self-sustained operation mode in the electric power supply control apparatus which concerns on this embodiment. 本実施形態に係る電力供給制御装置において、充電運転モードの電力供給状態を示す図である。In the electric power supply control apparatus which concerns on this embodiment, it is a figure which shows the electric power supply state of charge operation mode. 本実施形態に係る電力供給制御装置の動作及び本実施形態に係る電力供給制御方法を示す動作フローチャートである。It is an operation | movement flowchart which shows the operation | movement of the power supply control apparatus which concerns on this embodiment, and the power supply control method which concerns on this embodiment. 本実施形態に係る電力供給制御装置の動作及び本実施形態に係る電力供給制御方法を示す動作フローチャートである。It is an operation | movement flowchart which shows the operation | movement of the power supply control apparatus which concerns on this embodiment, and the power supply control method which concerns on this embodiment. 本実施形態に係る電力供給制御装置において、連系運転モード・ピークカット運転モード・充電運転モードの切換えの説明に供する図である。In the electric power supply control apparatus which concerns on this embodiment, it is a figure where it uses for description of switching of interconnection operation mode, peak cut operation mode, and charge operation mode.

以下に、本発明に係る電力供給制御装置及び電力供給制御方法の実施形態について説明する。本実施形態では、再生可能エネルギー発電設備として太陽電池を用いた場合について説明する。ただし、本発明は、再生可能エネルギー発電設備として、太陽光発電設備、太陽熱発電設備、風力発電設備、その他現在知られている波力発電設備や潮力発電設備など、発電できる電力の大きさが自然環境に左右される、すべての再生可能エネルギー発電設備に対して適用可能である。   Embodiments of a power supply control device and a power supply control method according to the present invention will be described below. This embodiment demonstrates the case where a solar cell is used as renewable energy power generation equipment. However, the present invention is a renewable energy power generation facility, such as a solar power generation facility, a solar thermal power generation facility, a wind power generation facility, and other currently known wave power generation facilities and tidal power generation facilities. It is applicable to all renewable energy power generation facilities that are affected by the natural environment.

[電力供給制御装置の構成]
図1は、本実施形態に係る電力供給制御装置のブロック図である。
[Configuration of power supply control device]
FIG. 1 is a block diagram of a power supply control device according to the present embodiment.

電力供給制御装置100は、パワーコントローラ60を有し、パワーコントローラ60には、商用配電設備10、太陽電池20、バッテリ30、一般負荷設備40、停電時使用負荷設備50、電力検出器70が接続される。   The power supply control device 100 includes a power controller 60, and a commercial power distribution facility 10, a solar cell 20, a battery 30, a general load facility 40, a load facility 50 used during a power failure, and a power detector 70 are connected to the power controller 60. Is done.

商用配電設備10は商用の発電所に接続され、一般家庭であれば、100Vの50Hzまたは60Hzの交流電圧を供給するコンセントに相当する。   The commercial power distribution equipment 10 is connected to a commercial power plant, and corresponds to an outlet for supplying an AC voltage of 50V or 60 Hz of 100V in a general household.

太陽電池20は太陽光が有するエネルギーを電力に変換する半導体素子を面状に配置したものであって、一般家庭であれば、家屋の屋根の上に設置される。   The solar cell 20 is a semiconductor device in which semiconductor elements that convert the energy of sunlight into electric power are arranged in a planar shape, and is installed on the roof of a house if it is a general household.

バッテリ30は商用配電設備10及び太陽電池20から供給される電力を充電し、後述するピークカット運転時には商用配電設備10及び太陽電池20に並列に接続される。   The battery 30 charges electric power supplied from the commercial power distribution facility 10 and the solar cell 20, and is connected in parallel to the commercial power distribution facility 10 and the solar cell 20 during a peak cut operation described later.

一般負荷設備40は、商用配電設備10、太陽電池20及びバッテリ30のうちの少なくともいずれかから供給される電力で動作する。一般負荷設備40は、一般家庭では、冷蔵庫、洗濯機、テレビ、電灯等、家屋内外に設置されている、商用配電設備10の電力で動作するすべての電気機器である。   The general load facility 40 operates with electric power supplied from at least one of the commercial power distribution facility 10, the solar cell 20, and the battery 30. The general load equipment 40 is all electric devices that operate with the electric power of the commercial power distribution equipment 10 such as a refrigerator, a washing machine, a television set, and an electric lamp, which are installed inside and outside the house.

停電時使用負荷設備50は、商用配電設備10からの電力供給が途絶えたとき(停電時)でも太陽電池20またはバッテリ30の電力で動作する。停電時使用負荷設備50は、通常は一般負荷設備40の内の一部の設備である。一般家庭では、停電した時に足元を照らす非常灯、電灯が例示できる。しかし、一般負荷設備40の内のどれを停電時使用負荷設備50とするかは自由である。たとえば、食料を扱う店舗では、冷蔵庫を停電時使用負荷設備50に設定しても良いし、クリーニング店では、洗濯機を停電時使用負荷設備50に設定しても良い。また、一般負荷設備40以外の設備、たとえば停電時にしか使用しない、非常用誘導設備を停電時使用負荷設備50に設定しても良い。   The use load facility 50 at the time of a power failure operates with the power of the solar cell 20 or the battery 30 even when the power supply from the commercial power distribution facility 10 is interrupted (at the time of a power failure). The load equipment 50 used during a power failure is usually a part of the general load equipment 40. In ordinary households, emergency lights and electric lights that illuminate your feet when a power failure occurs can be exemplified. However, any of the general load facilities 40 can be freely used as the load facility 50 used during a power failure. For example, in a store that handles food, a refrigerator may be set as the use load facility 50 during a power failure, and in a cleaning store, a washing machine may be set as the use load facility 50 during a power failure. Moreover, you may set the facilities other than the general load equipment 40, for example, the emergency induction equipment used only at the time of a power failure, to the load equipment 50 used at the time of a power failure.

パワーコントローラ60は、太陽電池20を接続するための発電設備接続端子、バッテリ30を接続するためのバッテリ接続端子、商用配電設備10と一般負荷設備40を接続するための一般負荷接続端子、停電時使用負荷設備50を接続するための停電時使用負荷接続端子、電力検出器70を接続するための電力検出器接続端子を備える。   The power controller 60 includes a power generation equipment connection terminal for connecting the solar battery 20, a battery connection terminal for connecting the battery 30, a general load connection terminal for connecting the commercial power distribution equipment 10 and the general load equipment 40, and a power failure. A power load connection terminal for power failure for connecting the service load facility 50 and a power detector connection terminal for connecting the power detector 70 are provided.

パワーコントローラ60は、商用配電設備10及び太陽電池20から一般負荷設備40及び停電時使用負荷設備50に電力を供給する(連系運転)。   The power controller 60 supplies power from the commercial power distribution facility 10 and the solar battery 20 to the general load facility 40 and the load facility 50 used during a power failure (interconnection operation).

また、商用配電設備10から一般負荷設備40及び停電時使用負荷設備50に供給する電力が、あらかじめ定めてあるピークカット開始電力以上になると、商用配電設備10から供給される電力のピークカットをするために、バッテリ30の電力も一般負荷設備40及び停電時使用負荷設備50に供給する(ピークカット運転)。なお、ピークカット開始電力は、設置される家屋の設備容量や電力の使用状況に応じて異なるため、使用者が最適なピークカットとなるように設定する。   In addition, when the power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure exceeds a predetermined peak cut start power, the power supplied from the commercial power distribution facility 10 is peak cut. Therefore, the electric power of the battery 30 is also supplied to the general load facility 40 and the load facility 50 used during power failure (peak cut operation). Since the peak cut starting power varies depending on the installed capacity of the house to be installed and the power usage status, the peak cut starting power is set so that the user has the optimum peak cut.

さらに、商用配電設備10から一般負荷設備40及び停電時使用負荷設備50に供給する電力が、あらかじめ定めてあるピークカット終了電力以下になると、バッテリ30を切り離して、商用配電設備10及び太陽電池20から一般負荷設備40及び停電時使用負荷設備50に電力を供給する(ピークカット運転から連系運転)。なお、ピークカット終了電力も、設置される家屋の設備容量や電力の使用状況に応じて異なるため、使用者が、バッテリ30が過放電とならない程度に設定する。   Further, when the power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure is equal to or lower than a predetermined peak cut end power, the battery 30 is disconnected and the commercial power distribution facility 10 and the solar cell 20 are separated. To supply power to the general load facility 40 and the load facility 50 used during a power failure (from peak cut operation to interconnection operation). Since the peak cut end power also varies depending on the installed capacity of the house to be installed and the usage status of the power, the user sets it to such an extent that the battery 30 is not overdischarged.

また、パワーコントローラ60は、商用配電設備10が停電した場合には、バッテリ30の電力を停電時使用負荷設備50に供給する(自立運転)。   Moreover, the power controller 60 supplies the electric power of the battery 30 to the use load equipment 50 at the time of a power failure, when the commercial power distribution equipment 10 carries out a power failure (independent operation).

さらに、パワーコントローラ60は、商用配電設備10が停電した場合に行う自立運転が終了した時(復電時)、または充電スケジュールタイマの設定によって、商用配電設備10から一般負荷設備40及び停電時使用負荷設備50に供給する電力が日中に比較して少なくなる夜間の定時刻(たとえば毎日22時から充電開始)になった時には、商用配電設備10からバッテリ30に充電する(充電運転)。   Furthermore, the power controller 60 is used when the independent operation performed when the commercial power distribution facility 10 is out of power (when power is restored), or from the commercial power distribution facility 10 to the general load facility 40 and the power load by setting the charging schedule timer. When the power supplied to the load facility 50 reaches a fixed time in the night (for example, charging starts every day at 22:00) when the power supplied to the load facility 50 is smaller than the daytime, the battery 30 is charged from the commercial power distribution facility 10 (charging operation).

電力検出器70は、商用配電設備10から一般負荷設備40及び停電時使用負荷設備50に供給している電力を検出する。電力検出器70は、パワーコントローラ60の外部に設けられ、電力検出器70が検出した電力はパワーコントローラ60に入力される。   The power detector 70 detects power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure. The power detector 70 is provided outside the power controller 60, and the power detected by the power detector 70 is input to the power controller 60.

パワーコントローラ60は、商用配電設備10、太陽電池20及びバッテリ30から一般負荷設備40及び停電時使用負荷設備50への電力の供給を制御する。パワーコントローラ60の制御については後述する。   The power controller 60 controls the supply of electric power from the commercial power distribution facility 10, the solar cell 20, and the battery 30 to the general load facility 40 and the load facility 50 used during a power failure. Control of the power controller 60 will be described later.

図2は、図1に示すパワーコントローラの制御系のブロック図である。   FIG. 2 is a block diagram of a control system of the power controller shown in FIG.

パワーコントローラ60のバッテリ接続端子には、MCCB21、MC21、MC22、MC23のスイッチが接続される。バッテリ接続端子、MCCB21、MC21、MC22、MC23のスイッチによってバッテリ接続スイッチを構成する。   MCCB21, MC21, MC22, and MC23 switches are connected to the battery connection terminal of the power controller 60. A battery connection switch is comprised by the switch of a battery connection terminal and MCCB21, MC21, MC22, MC23.

発電設備接続端子には、MCCB51のスイッチが接続される。発電設備接続端子とMCCB51のスイッチによって発電設備接続スイッチを構成する。   The MCCB 51 switch is connected to the power generation equipment connection terminal. The power generation equipment connection switch and the MCCB 51 switch constitute a power generation equipment connection switch.

バッテリ接続端子と発電設備接続端子には、MCCB21、MC21、MC22、MC23のスイッチとMCCB51のスイッチを介して、直流電流と交流電流を双方向に変換するインバータユニット1〜nが接続される。インバータユニット1〜nを設ける台数は、太陽電池20の出力に応じて決める。たとえば、太陽電池20の出力が20Kwでインバータユニット1台当たりの容量が10Kwであるときには、2台のインバータユニットを設ける。インバータユニット1〜nのそれぞれには、MC11、MC12、MC41〜MC4nのスイッチが接続される。   Inverter units 1 to n that convert DC current and AC current bidirectionally are connected to the battery connection terminal and the power generation equipment connection terminal via the switches MCCB21, MC21, MC22, MC23 and MCCB51. The number of inverter units 1 to n provided is determined according to the output of the solar cell 20. For example, when the output of the solar battery 20 is 20 Kw and the capacity per inverter unit is 10 Kw, two inverter units are provided. MC11, MC12, and MC41 to MC4n switches are connected to each of the inverter units 1 to n.

停電時使用負荷接続端子には、MCCB62のスイッチが接続される。   The MCCB 62 switch is connected to the load connection terminal used during a power failure.

一般負荷接続端子には、ELCB11、MCCB61、MC61、MC62のスイッチが接続される。MC11、MC12、MC41〜MC4nのスイッチ、MCCB62のスイッチ及びELCB11、MCCB61、MC61、MC62のスイッチによって負荷設備接続スイッチを構成する。   The switches of ELCB11, MCCB61, MC61, and MC62 are connected to the general load connection terminal. A load equipment connection switch is configured by the switches MC11, MC12, MC41 to MC4n, the switch MCCB62, and the switches ELCB11, MCCB61, MC61, MC62.

一般負荷接続端子と制御部64との間には、商用配電設備10からの電力供給が途絶えたこと(停電)を検出するNVR62を設けている。商用配電設備10の停電がNVR62によって検出されると、そのことが制御部64に知らされる。   Between the general load connection terminal and the control unit 64, an NVR 62 that detects that power supply from the commercial power distribution facility 10 has been interrupted (power failure) is provided. When a power failure in the commercial power distribution facility 10 is detected by the NVR 62, this is notified to the control unit 64.

制御部64は、パワーコントローラ60が備えるすべてのスイッチのON、OFFを制御する。   The control unit 64 controls ON / OFF of all switches provided in the power controller 60.

[電力供給制御装置の動作]
図3は、図2に示したパワーコントローラ60におけるスイッチの開閉状態を運転モードごとに示す図である。図4から図7は、電力供給制御装置100の運転モード別の電力の受給状態を示す図である。
[Operation of power supply control device]
FIG. 3 is a diagram showing the open / closed state of the switches in the power controller 60 shown in FIG. 2 for each operation mode. FIGS. 4 to 7 are diagrams showing the power receiving state for each operation mode of the power supply control device 100.

本実施形態に係る電力供給制御装置100は、連系運転モード、ピークカット運転モード、自立運転モード、充電運転モードの4つの運転モードを有する。   The power supply control device 100 according to the present embodiment has four operation modes: a grid operation mode, a peak cut operation mode, a self-sustaining operation mode, and a charge operation mode.

連系運転モードでは、図2に示したMC22、MC23のスイッチがOFFになり、MC11、MC12のスイッチがONになり、MC41〜MC4nのスイッチがOFFになり、MC61、MC62のスイッチがONになる。連系運転モードに移行する条件は、太陽電池20の発電量が一定以上ある場合である。   In the interconnection operation mode, the switches MC22 and MC23 shown in FIG. 2 are turned off, the switches MC11 and MC12 are turned on, the switches MC41 to MC4n are turned off, and the switches MC61 and MC62 are turned on. . The condition for shifting to the grid operation mode is a case where the power generation amount of the solar cell 20 is a certain level or more.

連系運転モードでは、図4の点線で示すように、一般負荷設備40と停電時使用負荷設備50が商用配電設備10及び太陽電池20と並列に接続される。したがって、連系運転モードでは、商用配電設備10と太陽電池20の両方から一般負荷設備40及び停電時使用負荷設備50に電力が供給される。   In the interconnection operation mode, as shown by a dotted line in FIG. 4, the general load facility 40 and the load facility 50 used during a power failure are connected in parallel with the commercial power distribution facility 10 and the solar cell 20. Therefore, in the interconnection operation mode, power is supplied from both the commercial power distribution facility 10 and the solar battery 20 to the general load facility 40 and the load facility 50 used during a power failure.

ピークカット運転モードでは、MC22、MC23のスイッチがONになり、MC11、MC12のスイッチがONになり、MC41〜MC4nのスイッチがOFFになり、MC61、MC62のスイッチがONになる。ピークカット運転モードに移行する条件は、一般負荷設備40と停電時使用負荷設備50が商用配電設備10から供給されている電力がピークカット開始電力以上になった後に、ピークカット終了電力以下になるまでの間である。なお、ピークカット開始電力はピークカット終了電力よりも大きな電力に設定する。   In the peak cut operation mode, the switches MC22 and MC23 are turned on, the switches MC11 and MC12 are turned on, the switches MC41 to MC4n are turned off, and the switches MC61 and MC62 are turned on. The condition for shifting to the peak cut operation mode is that the power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure becomes equal to or less than the peak cut end power after the peak cut start power is exceeded. Until. Note that the peak cut start power is set to be larger than the peak cut end power.

ピークカット運転モードでは、図5の点線に示すように、一般負荷設備40と停電時使用負荷設備50が商用配電設備10、太陽電池20及びバッテリ30の3つの電源に並列に接続される。したがって、ピークカット運転モードでは、商用配電設備10と太陽電池20に加えて、バッテリ30からも一般負荷設備40及び停電時使用負荷設備50に電力が供給される。なお、バッテリ30の放電電力は、あらかじめ設定された一定電力となる。そのため太陽電池20の発電電力が大きければ、一般負荷設備40及び停電時仕様負荷設備50に供給される電力は大きくなる。仮に太陽電池20の発電電力がない場合も、バッテリ30からはあらかじめ設定された電力が一般負荷設備40及び停電時仕様負荷設備50に供給される。   In the peak cut operation mode, as shown by the dotted line in FIG. 5, the general load facility 40 and the load facility 50 used during a power failure are connected in parallel to the three power sources of the commercial power distribution facility 10, the solar cell 20, and the battery 30. Therefore, in the peak cut operation mode, power is supplied from the battery 30 to the general load facility 40 and the load facility 50 used during a power failure in addition to the commercial power distribution facility 10 and the solar battery 20. Note that the discharge power of the battery 30 is a constant power set in advance. Therefore, if the generated power of the solar cell 20 is large, the power supplied to the general load facility 40 and the specification load facility 50 at the time of power failure increases. Even if there is no power generated by the solar cell 20, preset power is supplied from the battery 30 to the general load facility 40 and the power load specification load facility 50.

自立運転モードでは、MC22、MC23のスイッチがONになり、MC11、MC12のスイッチがOFFになり、MC41〜MC4nのスイッチがONになり、MC61、MC62のスイッチがOFFになる。自立運転モードに移行する条件は、商用配電設備10に停電が生じた場合である。   In the self-sustained operation mode, the switches MC22 and MC23 are turned on, the switches MC11 and MC12 are turned off, the switches MC41 to MC4n are turned on, and the switches MC61 and MC62 are turned off. The condition for shifting to the self-sustaining operation mode is when a power failure occurs in the commercial power distribution facility 10.

自立運転モードでは、図6の点線に示すように、太陽電池20とバッテリ30が停電時使用負荷設備50に電力を供給する。   In the self-sustained operation mode, as shown by the dotted line in FIG. 6, the solar cell 20 and the battery 30 supply power to the load facility 50 used during a power failure.

充電運転モードでは、MC22、MC23のスイッチがONになり、MC11、MC12のスイッチがONになり、MC41〜MC4nのスイッチがOFFになり、MC61、MC62のスイッチがONになる。充電運転モードに移行する条件は、商用配電設備10の停電が解消されて、自立運転モードから充電運転モードに復帰した場合、及び、タイマーで設定した、充電運転モードに移行する時間になった場合である。   In the charging operation mode, the switches MC22 and MC23 are turned on, the switches MC11 and MC12 are turned on, the switches MC41 to MC4n are turned off, and the switches MC61 and MC62 are turned on. The conditions for shifting to the charging operation mode are when the commercial power distribution facility 10 has been eliminated from power and when it has returned from the self-sustained operation mode to the charging operation mode, and when the time set for the timer to enter the charging operation mode is reached. It is.

なお、MCCB21、MCCB51、MCCB61、MCCB62、ELCB11のスイッチは、電力供給制御装置100が正常に動作しているときにはすべてONになっており、これらのスイッチの接点は閉じている。   Note that the switches MCCB21, MCCB51, MCCB61, MCCB62, and ELCB11 are all ON when the power supply control device 100 is operating normally, and the contacts of these switches are closed.

充電運転モードでは、図7の点線に示すように、商用配電設備10からの電力がバッテリ30に供給されて、バッテリ30が充電される。   In the charging operation mode, as shown by a dotted line in FIG. 7, power from the commercial power distribution facility 10 is supplied to the battery 30 and the battery 30 is charged.

図8及び図9は、電力供給制御装置100の動作を示す動作フローチャートである。この動作フローチャートは、本実施形態に係る電力供給制御方法の手順の示すものである。   8 and 9 are operation flowcharts showing the operation of the power supply control device 100. FIG. This operation flowchart shows the procedure of the power supply control method according to the present embodiment.

パワーコントローラ60は、NVR62の信号によって商用配電設備10が停電しているか否かを判断する(S1)。   The power controller 60 determines whether the commercial power distribution facility 10 has a power failure based on a signal from the NVR 62 (S1).

図8に示すように、商用配電設備10が停電していれば(S1:YES)、自立運転モードに移行し、図6に示したような自立運転を行う。すなわち、太陽電池20とバッテリ30から停電時使用負荷設備50に電力を供給する(S2)。一方、商用配電設備10が停電していなければ(S1:NO)、連系運転またはピークカット運転に移行する(S3)。連系運転またはピークカット運転は、図9の動作フローチャートで詳しく説明する。   As shown in FIG. 8, if the commercial power distribution facility 10 has a power failure (S1: YES), it shifts to the self-sustaining operation mode and performs the self-sustaining operation as shown in FIG. That is, electric power is supplied from the solar cell 20 and the battery 30 to the use load facility 50 during a power failure (S2). On the other hand, if the commercial power distribution facility 10 is not out of power (S1: NO), the operation shifts to the grid operation or peak cut operation (S3). The interconnection operation or peak cut operation will be described in detail with reference to the operation flowchart of FIG.

パワーコントローラ60は、商用配電設備10が停電から復帰したか否かを判断する(S4)。商用配電設備10が停電から復帰していなければ(S4:NO)、自立運転を継続する。一方、商用配電設備10が停電から復帰したら(S4:YES)、充電運転に移行して、自立運転で放電したバッテリ30に充電をする(S5)。   The power controller 60 determines whether the commercial power distribution facility 10 has recovered from a power failure (S4). If the commercial power distribution facility 10 has not recovered from the power failure (S4: NO), the autonomous operation is continued. On the other hand, when the commercial power distribution facility 10 is restored from the power failure (S4: YES), the charging operation is started and the battery 30 discharged in the self-sustaining operation is charged (S5).

パワーコントローラ60は、バッテリ30の充電が終了したか否かを判断する(S6)。バッテリ30の充電が終了していなければ(S5:NO)、充電運転を継続する。一方、バッテリ30の充電が終了したら(S5:YES)、連系運転またはピークカット運転に移行する(S3)。   The power controller 60 determines whether or not the charging of the battery 30 has been completed (S6). If the charging of the battery 30 is not completed (S5: NO), the charging operation is continued. On the other hand, when the charging of the battery 30 is completed (S5: YES), the system shifts to a grid operation or a peak cut operation (S3).

次に、パワーコントローラ60は、運転の終了信号が入力されたか否かにより運転が終了したか否かを判断する(S7)。運転が終了していなければ(S7:NO)、S1のステップに戻って運転を継続する。一方、運転が終了したら(S7:YES)、パワーコントローラ60はすべての処理を終了して運転を停止させる。   Next, the power controller 60 determines whether or not the operation is completed depending on whether or not an operation end signal is input (S7). If the operation has not ended (S7: NO), the operation returns to the step S1 and continues the operation. On the other hand, when the operation ends (S7: YES), the power controller 60 ends all the processes and stops the operation.

連系運転またはピークカット運転に移行したら、図9のフローチャートに示すように、パワーコントローラ60は、電力検出器70によって検出される電力を見て、商用配電設備10の受電電力を検出する。つまり、商用配電設備10が一般負荷設備40及び停電時使用負荷設備50に供給している電力を検出する(S31)。   After shifting to the grid operation or the peak cut operation, as shown in the flowchart of FIG. 9, the power controller 60 looks at the power detected by the power detector 70 and detects the received power of the commercial power distribution facility 10. That is, the electric power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure is detected (S31).

商用配電設備10の受電電力がピークカット開始電力以上であれば(S32:YES)、パワーコントローラ60は、連系運転からピークカット運転に移行する(S33)。ピークカット運転では、バッテリ30からの電力もインバータユニット1−インバータユニットnを介して一般負荷設備40及び停電時使用負荷設備50に供給される。このため、商用配電設備10の受電電力はバッテリ30から供給されている電力分だけ低下し、商用配電設備10の受電電力をピークカットできる。   If the received power of the commercial power distribution facility 10 is equal to or higher than the peak cut start power (S32: YES), the power controller 60 shifts from the grid operation to the peak cut operation (S33). In the peak cut operation, the electric power from the battery 30 is also supplied to the general load facility 40 and the load facility 50 used during a power failure via the inverter unit 1-inverter unit n. For this reason, the received power of the commercial power distribution facility 10 is reduced by the amount of power supplied from the battery 30, and the received power of the commercial power distribution facility 10 can be peak cut.

商用配電設備10の受電電力がピークカット開始電力以上でなければ(S32:NO)、パワーコントローラ60は、連系運転を継続する(S34)。   If the received power of the commercial power distribution facility 10 is not equal to or higher than the peak cut start power (S32: NO), the power controller 60 continues the interconnection operation (S34).

連系運転からピークカット運転に移行すると、パワーコントローラ60は、電力検出器70によって検出される電力と、バッテリ30の残存容量を監視する。商用配電設備10の受電電力がピークカット終了電力以下になるか、バッテリ30の残存容量が規定値以下になれば(S35:YES)、ピークカット運転から連系運転に移行する(S34)。一方、商用配電設備10の受電電力がピークカット終了電力以下になるか、バッテリ30の残存容量が規定値以下にならなければ(S35:NO)、S31のステップに戻って運転を継続する。   When shifting from the grid operation to the peak cut operation, the power controller 60 monitors the power detected by the power detector 70 and the remaining capacity of the battery 30. If the received power of the commercial power distribution facility 10 is equal to or lower than the peak cut end power or the remaining capacity of the battery 30 is equal to or lower than the specified value (S35: YES), the peak cut operation is shifted to the interconnected operation (S34). On the other hand, if the received power of the commercial power distribution facility 10 is equal to or lower than the peak cut end power or the remaining capacity of the battery 30 is not equal to or less than the specified value (S35: NO), the operation returns to the step of S31 to continue the operation.

本実施形態に係る電力供給制御装置及び電力供給整合方法は、パワーコントローラ60を以上のように動作させる。   The power supply control device and the power supply matching method according to the present embodiment operate the power controller 60 as described above.

図10は、本実施形態に係る電力供給制御装置において、連系運転モード・ピークカット運転モード・充電運転モードの切換えの説明に供する図である。   FIG. 10 is a diagram for explaining switching of the grid operation mode, the peak cut operation mode, and the charge operation mode in the power supply control device according to the present embodiment.

図10に示すように、電力供給制御装置は、タイマーで設定した時間により、22時から6時までは充電運転モードで動作する。   As shown in FIG. 10, the power supply control device operates in the charging operation mode from 22:00 to 6:00 depending on the time set by the timer.

6時から連系運転モードに移行して、商用配電設備10の受電電力がピークカット開始電力を超えると、ピークカット運転モードに移行する。ピークカット運転モードに移行すると、一般負荷設備40及び停電時使用負荷設備50で消費される電力(負荷消費電力)が上昇しても、その上昇分の電力がバッテリ30から供給されるので、商用配電設備10の受電電力はピークカット開始電力を超えることはない。ピークカット運転モードでの運転中に、一般負荷設備40及び停電時使用負荷設備50で消費される電力(負荷消費電力)が低下して、ピークカット終了電力を下回ると、もはやピークカットのためにピークカット運転モードを維持する必要がなくなるので、連系運転モードに移行する。商用配電設備10の受電電力の変動に応じて連系運転とピークカット運転を繰り返し、22時になると充電運転モードに移行する。   When the operation mode shifts from 6 o'clock to the interconnection operation mode and the received power of the commercial power distribution facility 10 exceeds the peak cut start power, the operation mode shifts to the peak cut operation mode. When shifting to the peak cut operation mode, even if the electric power (load power consumption) consumed by the general load equipment 40 and the load equipment 50 used during a power failure rises, the increased power is supplied from the battery 30. The received power of the power distribution facility 10 does not exceed the peak cut start power. During operation in the peak cut operation mode, when the power (load power consumption) consumed by the general load facility 40 and the load facility 50 used during a power failure decreases and falls below the peak cut end power, it is no longer due to the peak cut. Since it is not necessary to maintain the peak cut operation mode, the operation mode is shifted to the interconnection operation mode. The interconnection operation and the peak cut operation are repeated according to fluctuations in the received power of the commercial power distribution facility 10, and the charging operation mode is shifted to 22:00.

このように、本実施形態に係る電力供給制御装置及び電力供給制御方法によれば、夜間に充電されたバッテリ30の電力と、太陽電池20の発電電力で、一般負荷設備40及び停電時使用負荷設備50に供給する電力をアシストする。したがって、商用配電設備10が一般負荷設備40及び停電時使用負荷設備50に供給する電力を一時的に抑えることができる。このため、商用配電設備10が一般負荷設備40及び停電時使用負荷設備50に供給する電力のピークカットを実現でき、発電所の電力供給状態の平準化を図ることができる。   As described above, according to the power supply control device and the power supply control method according to the present embodiment, the power of the battery 30 charged at night and the generated power of the solar battery 20 are used for the general load facility 40 and the load used during a power failure. The power supplied to the facility 50 is assisted. Therefore, the power supplied from the commercial power distribution facility 10 to the general load facility 40 and the load facility 50 used during a power failure can be temporarily suppressed. For this reason, peak cut of the electric power which commercial power distribution equipment 10 supplies to general load equipment 40 and use load equipment 50 at the time of a power failure can be realized, and the power supply state of the power plant can be leveled.

10 商用配電設備、
20 太陽電池、
30 バッテリ、
40 一般負荷設備、
50 停電時使用負荷設備、
60 パワーコントローラ、
62 NVR、
64 制御部、
70 電力検出器、
100 電力供給制御装置。
10 Commercial power distribution equipment,
20 solar cells,
30 battery,
40 General load equipment,
50 Load equipment used during power outages,
60 power controller,
62 NVR,
64 control unit,
70 power detector,
100 Power supply control device.

Claims (9)

商用配電設備及び負荷設備を接続する負荷設備接続スイッチと、
再生可能エネルギーを用いて発電する再生可能エネルギー発電設備を接続する発電設備接続スイッチと、
バッテリを接続するバッテリ接続スイッチと、
前記負荷設備接続スイッチ及び前記発電設備接続スイッチをONさせて前記商用配電設備及び前記再生可能エネルギー発電設備から前記負荷設備に電力を供給する一方、前記商用配電設備から前記負荷設備に供給する電力がピークカット開始電力以上になると前記バッテリ接続スイッチもONさせて前記バッテリの電力も前記負荷設備に供給する制御部と、
を有することを特徴とする電力供給制御装置。
A load facility connection switch for connecting commercial power distribution facilities and load facilities;
A power generation facility connection switch for connecting a renewable energy power generation facility that generates power using renewable energy; and
A battery connection switch for connecting the battery;
While the load facility connection switch and the power generation facility connection switch are turned on to supply power from the commercial power distribution facility and the renewable energy power generation facility to the load facility, power supplied from the commercial power distribution facility to the load facility is A controller that turns on the battery connection switch and supplies the battery power to the load facility when the peak cut start power is exceeded,
A power supply control device comprising:
前記制御部は、
前記商用配電設備から前記負荷設備に供給する電力がピークカット終了電力以下になると前記バッテリ接続スイッチをOFFさせて前記商用配電設備及び前記再生可能エネルギー発電設備からのみ前記負荷設備に電力を供給することを特徴とする請求項1に記載の電力供給制御装置。
The controller is
When the power supplied from the commercial power distribution facility to the load facility is equal to or lower than the peak cut end power, the battery connection switch is turned off to supply power to the load facility only from the commercial power distribution facility and the renewable energy power generation facility. The power supply control device according to claim 1.
前記ピークカット開始電力は前記ピークカット終了電力よりも大きいことを特徴とする請求項2に記載の電力供給制御装置。   The power supply control device according to claim 2, wherein the peak cut start power is larger than the peak cut end power. 前記商用配電設備から前記負荷設備に供給している電力は、前記制御部外に設けた電力検出器によって検出し、検出した電力は前記制御部に入力されることを特徴とする請求項1から3のいずれかに記載の電力供給制御装置。   The power supplied from the commercial power distribution facility to the load facility is detected by a power detector provided outside the control unit, and the detected power is input to the control unit. 4. The power supply control device according to any one of 3. 前記再生可能エネルギー発電設備は、太陽光発電設備、太陽熱発電設備、風力発電設備のいずれかまたはこれらの発電設備のいずれかを複数組み合わせた発電設備であることを特徴とする請求項1から4のいずれかに記載の電力供給制御装置。   5. The renewable energy power generation facility is any one of a solar power generation facility, a solar thermal power generation facility, a wind power generation facility, or a power generation facility that is a combination of any of these power generation facilities. The power supply control device according to any one of the above. 前記負荷設備は、
前記商用配電設備、前記再生可能エネルギー発電設備及び前記バッテリのうちの少なくともいずれかから供給される電力で動作する一般負荷設備と、
前記商用配電設備からの電力供給が途絶えたときでも前記再生可能エネルギー発電設備または前記バッテリから供給される電力で動作する停電時使用負荷設備と、
を有することを特徴とする請求項1から5のいずれかに記載の電力供給制御装置。
The load equipment is
A general load facility that operates with electric power supplied from at least one of the commercial power distribution facility, the renewable energy power generation facility, and the battery;
Load facility for use during a power failure that operates with the power supplied from the renewable energy power generation facility or the battery even when the power supply from the commercial power distribution facility is interrupted,
The power supply control device according to claim 1, wherein
商用配電設備及び負荷設備を接続する負荷設備接続スイッチと、
再生可能エネルギーを用いて発電する再生可能エネルギー発電設備を接続する発電設備接続スイッチと、
バッテリを接続するバッテリ接続スイッチと、
前記負荷設備接続スイッチ、前記発電設備接続スイッチ及び前記バッテリ接続スイッチのON、OFFを制御する制御部と、
を有する電力供給制御装置の電力供給制御方法であって、
前記負荷設備接続スイッチ及び前記発電設備接続スイッチをONさせて前記商用配電設備及び前記再生可能エネルギー発電設備から前記負荷設備に電力を供給する連系電力供給段階と、
前記商用配電設備から前記負荷設備に供給する電力がピークカット開始電力以上になると前記バッテリ接続スイッチもONさせて前記バッテリの電力も前記負荷設備に供給するピークカット電力供給段階と、
を含むことを特徴とする電力供給制御方法。
A load facility connection switch for connecting commercial power distribution facilities and load facilities;
A power generation facility connection switch for connecting a renewable energy power generation facility that generates power using renewable energy; and
A battery connection switch for connecting the battery;
A control unit for controlling ON and OFF of the load facility connection switch, the power generation facility connection switch, and the battery connection switch;
A power supply control method for a power supply control device comprising:
A connected power supply stage for turning on the load facility connection switch and the power generation facility connection switch to supply power from the commercial power distribution facility and the renewable energy power generation facility to the load facility;
When the power supplied from the commercial power distribution facility to the load facility is equal to or higher than the peak cut start power, the battery connection switch is also turned on and the power of the battery is also supplied to the load facility.
A power supply control method comprising:
前記ピークカット電力供給段階の後に、
前記商用配電設備から前記負荷設備に供給する電力がピークカット終了電力以下になると前記バッテリ接続スイッチをOFFさせて前記商用配電設備及び前記再生可能エネルギー発電設備からのみ前記負荷設備に電力を供給するピークカット電力供給終了段階を含むことを特徴とする請求項7に記載の電力供給制御方法。
After the peak cut power supply step,
When the power supplied from the commercial power distribution facility to the load facility is equal to or lower than the peak cut end power, the battery connection switch is turned off to supply power to the load facility only from the commercial power distribution facility and the renewable energy power generation facility. The power supply control method according to claim 7, further comprising a cut power supply end stage.
前記ピークカット開始電力は前記ピークカット終了電力よりも大きいことを特徴とする請求項8に記載の電力供給制御方法。   The power supply control method according to claim 8, wherein the peak cut start power is larger than the peak cut end power.
JP2012012363A 2012-01-24 2012-01-24 Apparatus and method for controlling power supply Pending JP2013153572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012363A JP2013153572A (en) 2012-01-24 2012-01-24 Apparatus and method for controlling power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012363A JP2013153572A (en) 2012-01-24 2012-01-24 Apparatus and method for controlling power supply

Publications (1)

Publication Number Publication Date
JP2013153572A true JP2013153572A (en) 2013-08-08

Family

ID=49049474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012363A Pending JP2013153572A (en) 2012-01-24 2012-01-24 Apparatus and method for controlling power supply

Country Status (1)

Country Link
JP (1) JP2013153572A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606325A (en) * 2013-11-18 2014-02-26 上海工程技术大学 Solar photovoltaic power generation comprehensive experiment platform
KR101643094B1 (en) * 2015-06-03 2016-08-10 김세원 Power processing and administratuon system
WO2017142218A1 (en) * 2016-02-15 2017-08-24 두산중공업 주식회사 Energy storage system and system operating method
CN108604796A (en) * 2015-12-17 2018-09-28 埃蒂克斯实验室责任有限公司 The switching at runtime of power supply supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346445A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Solar light power generation system
JP2003244840A (en) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The Load-leveling device
JP2009033892A (en) * 2007-07-27 2009-02-12 Panasonic Corp Independent power supply system
JP2009033802A (en) * 2007-07-24 2009-02-12 Fuji Pureamu Kk Power storage type photovoltaic power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346445A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Solar light power generation system
JP2003244840A (en) * 2001-12-14 2003-08-29 Furukawa Electric Co Ltd:The Load-leveling device
JP2009033802A (en) * 2007-07-24 2009-02-12 Fuji Pureamu Kk Power storage type photovoltaic power generation system
JP2009033892A (en) * 2007-07-27 2009-02-12 Panasonic Corp Independent power supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606325A (en) * 2013-11-18 2014-02-26 上海工程技术大学 Solar photovoltaic power generation comprehensive experiment platform
KR101643094B1 (en) * 2015-06-03 2016-08-10 김세원 Power processing and administratuon system
CN108604796A (en) * 2015-12-17 2018-09-28 埃蒂克斯实验室责任有限公司 The switching at runtime of power supply supply
WO2017142218A1 (en) * 2016-02-15 2017-08-24 두산중공업 주식회사 Energy storage system and system operating method
KR101792395B1 (en) * 2016-02-15 2017-11-01 두산중공업 주식회사 Energy Storage System and management method thereof
US10756544B2 (en) 2016-02-15 2020-08-25 DOOSAN Heavy Industries Construction Co., LTD Energy storage system and management method thereof

Similar Documents

Publication Publication Date Title
KR101268356B1 (en) Storage system that maximizes the utilization of renewable energy
JP6160481B2 (en) Power supply device, power supply system, and power supply control method
EP2793345B1 (en) Electric power supply system
JP5793719B2 (en) Control device
JPWO2011162025A1 (en) DC power distribution system
KR101139476B1 (en) Multi-functional electric power supplying system for totally controlling solar cell, battery and commercial power source
KR20140034848A (en) Charging apparatus
KR102107483B1 (en) IoT hybrid micro grid system
JP2013128351A (en) Power supply system, and charge and discharge unit
JP2013153572A (en) Apparatus and method for controlling power supply
JP2014131422A (en) Power supply system, and power conditioner
WO2017072526A1 (en) Power generation
JP2014121151A (en) Power storage system and power supply system
TWM449396U (en) Smart energy-storage system
JP5895231B2 (en) Control device
JP6397338B2 (en) Power supply system
JP2012227999A (en) Photovoltaic power storage and generation system
JP6410567B2 (en) POWER SUPPLY SYSTEM, START-UP CONTROL DEVICE, AND POWER SUPPLY SYSTEM CONTROL METHOD
JP3178526U (en) Power storage device
KR20110027438A (en) Emergency power source supply system using multiple power generation
JP2015204656A (en) Power supply control device and power supply control method
JP2003219578A (en) Uninterruptible power source system
JP2013031349A (en) Storage battery system
KR20140094179A (en) Power transfer system for continuous loads with small capacity charger in small size generator and method the same
JP2014121153A (en) Power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621