JP2013153113A - Rectangular wire and coil - Google Patents

Rectangular wire and coil Download PDF

Info

Publication number
JP2013153113A
JP2013153113A JP2012014142A JP2012014142A JP2013153113A JP 2013153113 A JP2013153113 A JP 2013153113A JP 2012014142 A JP2012014142 A JP 2012014142A JP 2012014142 A JP2012014142 A JP 2012014142A JP 2013153113 A JP2013153113 A JP 2013153113A
Authority
JP
Japan
Prior art keywords
wire
rectangular
coil
bending
rectangular wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014142A
Other languages
Japanese (ja)
Inventor
Toshihiko Yamazaki
利彦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012014142A priority Critical patent/JP2013153113A/en
Publication of JP2013153113A publication Critical patent/JP2013153113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rectangular wire which is improved to solve such a problem that insulation deteriorates starting from a portion becoming the outside when being bent, and such a problem that the heat dissipation efficiency is low because the heat dissipation area on the outside is small, and to provide a coil formed by winding this rectangular wire.SOLUTION: A rectangular wire 10 consists of a rectangular conductor 1 having a cross-sectional shape formed by connecting two ends of an end side 1a, which is located on the outside when being bent and is a convex curve outwardly, with two other sides 1c, 1c, respectively, and an insulation coating 2 formed around the rectangular conductor 1. A coil 100 is formed by winding this rectangular wire 10 edgewise around the teeth of a reactor core or the stator core of a motor.

Description

本発明は、改良された平角線とこの平角線を巻装してなるコイルに関するものである。   The present invention relates to an improved rectangular wire and a coil formed by winding the rectangular wire.

モータを構成するステータのティース周りに形成されるコイルや、リアクトルのコア周りに形成されるコイルを構成する巻線には、従来一般の断面円形の丸線に代わって、コイルの占積率向上の観点から平角線が適用されるようになっている。   The coil formed around the teeth of the stator that makes up the motor and the windings that make up the coil formed around the core of the reactor have been improved in place of the conventional round circular wire. From the point of view, a rectangular wire is applied.

平角線は、断面が略矩形、すなわち、矩形の隅角部に曲率が付されて角が取れた断面を有した銅素材の平角導線と、この平角導線の周りに形成された絶縁被膜から構成されるのが一般的である。なお、この絶縁被膜は、平角導線の周りに熱硬化性のエナメル樹脂を溶剤に溶かして数μm厚で塗布し、熱処理して塗布層を固め、この処理を複数回繰り返して所望厚のエナメル被膜が形成される。   A flat wire is made up of a copper rectangular conductor having a substantially rectangular cross section, that is, a corner with a rounded corner, and a dielectric coating formed around the rectangular conductor. It is common to be done. This insulating film is prepared by dissolving a thermosetting enamel resin around a flat wire in a solvent and applying it to a thickness of several μm, heat-treating it to harden the coating layer, and repeating this process several times to obtain an enamel film with a desired thickness. Is formed.

この平角線が巻装されてコイルを形成する際には、その矩形断面の端辺をティースやリアクトルといったコア側に配し、長辺をコアから立ち上げた姿勢で巻装する、いわゆるエッジワイズ巻きによってコイルの形成がおこなわれる。   When this rectangular wire is wound to form a coil, the end of the rectangular cross section is placed on the core side such as a tooth or a reactor, and the long side is wound in a posture raised from the core, so-called edgewise A coil is formed by winding.

ここで、図4,5を参照して、従来の平角線とこの平角線をコア周囲に巻装してなるコイルの有する課題を説明する。   Here, with reference to FIGS. 4 and 5, a problem of a conventional flat wire and a coil formed by winding the flat wire around the core will be described.

従来の平角線は、図4aで示すように断面視が略矩形(隅角部には微小径の曲率)で銅素材の平角導線Dに対し、この表面に図4bで示すようにエナメル被膜Zを形成して平角線Wが構成されるものである。ここで、既述するように、エナメル樹脂の塗布と熱処理を所定回繰り返して所望厚のエナメル被膜Zが形成される過程で、液状のエナメルが反応硬化するまでの間に平角導線Dから表面張力Qを受け、一般部の厚みt1に比して隅角部の厚みは相対的に薄くなってしまい(厚みt2でt2<t1)、エナメル被膜加工の際に既に被膜厚は不均一なものとなっている。なお、エッジワイズ巻きに際しては、略矩形断面の2つの短辺の一方が曲げ内側となり、他方が曲げ外側となるようにして巻装される。   As shown in FIG. 4a, the conventional rectangular wire is substantially rectangular in cross-sectional view as shown in FIG. 4a (the corner portion has a small diameter curvature) and is formed on the surface of the rectangular conductive wire D made of copper. To form a rectangular wire W. Here, as described above, in the process in which enamel coating Z having a desired thickness is formed by repeating enamel resin application and heat treatment a predetermined number of times, the surface tension from the flat wire D until the liquid enamel is reactively cured. In response to Q, the thickness of the corner portion is relatively thinner than the thickness t1 of the general part (thickness t2 is t2 <t1), and the film thickness is already non-uniform during enamel coating. It has become. When edgewise winding is performed, winding is performed such that one of two short sides of a substantially rectangular cross section is on the inner side of bending and the other is on the outer side of bending.

そして、図4bで示す断面の平角線WをコアCOの周囲に所定のターン数でエッジワイズ巻きすることによって、図5で示すように平角線WからなるコイルCが形成される。   Then, the rectangular wire W having the cross section shown in FIG. 4B is edgewise wound around the core CO with a predetermined number of turns, thereby forming a coil C composed of the rectangular wire W as shown in FIG.

このように平角線Wをエッジワイズ巻き加工してコイルCを形成する際に、曲げ外側のエナメル被膜Zは引き伸ばされて厚みt3(<t1)となり、曲げ加工前の段階で既に相対的に薄い隅角部の厚みは当初のt2からさらに薄い厚みt4にまで減少してしまう。   Thus, when the coil C is formed by edgewise winding the flat wire W, the enamel coating Z on the outer side of the bend is stretched to a thickness t3 (<t1), which is already relatively thin before the bending process. The thickness of the corner portion is reduced from the initial t2 to a thinner thickness t4.

この曲げ加工によって外側となる領域(曲げ外側の領域)の隅角部の厚みt4如何によっては絶縁低下の原因となってしまうことから、設計段階ではエンジワイズ巻きの際の曲げ半径に大きな制約が生じることになる。   This bending process causes a decrease in insulation depending on the corner thickness t4 of the outer region (bending outer region), so there is a great restriction on the bending radius during engine-wise winding at the design stage. Will occur.

そして、コアの中でもリアクトルコアの周囲に平角線を巻装してコイルを形成する場合においては、平角線の扁平度が高い断面形状であることから、上記の課題が一層顕著なものとなる。   In the case where a coil is formed by winding a rectangular wire around the reactor core in the core, the above problem becomes more remarkable because the flat wire has a high flatness.

さらに、放熱性の観点で言えば、コイルに通電されて生じた熱を放熱してコイルを冷却するに当たり、放熱は主としてコイルの外側からおこなわれることになる(放熱はX方向)が、たとえば従来の丸線と比較すると明らかなように、平角線Wの曲げ外側の端辺が直線状の短辺ゆえに平角線Wの外側の放熱面積は小さくなってしまい、放熱効率が低いという課題も有している。   Further, from the viewpoint of heat dissipation, when the coil is radiated to cool the coil by radiating the heat generated by energizing the coil, the heat is radiated mainly from the outside of the coil (heat radiation is in the X direction). As apparent from the comparison with the round wire, the end of the flat wire W on the outer side of the bend is a straight short side, so that the heat radiation area outside the flat wire W is reduced and the heat radiation efficiency is low. ing.

このように、従来の平角線は占積率を向上できる一方で、その曲げ外側の隅角部における極薄の絶縁被膜を起点とした絶縁低下の課題や、その曲げ外側の絶縁被膜の放熱面積が小さいことに起因した低い放熱効率といった課題を有しており、これらの課題解決が当該技術分野で急務の解決課題の一つとなっている。   Thus, while the conventional rectangular wire can improve the space factor, the problem of insulation deterioration starting from an extremely thin insulating film at the corner outside the bend, and the heat dissipation area of the insulating film outside the bend There is a problem such as low heat dissipation efficiency due to the small size, and solving these problems is one of the urgent solutions in the technical field.

ここで、特許文献1には、巻線を螺旋状に巻回して形成された複数のターンを具えるコイルと、このコイルが配置される環状の磁性コアと、コイルと磁性コアとの組合体の外周を覆う外側樹脂部とを具えるリアクトルが開示されており、ここで、巻線はエナメル被覆といった絶縁層を有していない平角線から構成されており、コイルの各ターンを構成する巻線間に外側樹脂部の構成樹脂が介在されて隣り合うターン間を絶縁しているリアクトルが開示されている。巻線に裸線を利用していることでコイルを容易に形成することができる上に、外側樹脂部の形成と同時に隣り合うターン間の絶縁構造を形成することができるため、リアクトルの生産性に優れているというものである。   Here, in Patent Document 1, a coil having a plurality of turns formed by winding a winding spirally, an annular magnetic core in which the coil is disposed, and a combination of the coil and the magnetic core A reactor including an outer resin portion that covers the outer periphery of the coil is disclosed. Here, the winding is made of a rectangular wire that does not have an insulating layer such as enamel coating, and the winding that constitutes each turn of the coil. A reactor is disclosed in which a constituent resin of an outer resin portion is interposed between wires to insulate adjacent turns. The use of bare wire for the winding makes it possible to easily form a coil and to form an insulating structure between adjacent turns at the same time as the formation of the outer resin part, so the productivity of the reactor It is excellent in.

しかしながら、裸線を使用していることで仮に樹脂が裸線の全周に十分に含浸しない場合には絶縁性が著しく低下するという大きな課題を有しており、現実的とは言い難い。また、裸線が平角導線である場合には、樹脂が硬化する過程で表面張力を受けてその隅角部に形成される絶縁被膜が薄くなってしまうことは既述する従来の平角線の場合と同じであり、やはり、隅角部の絶縁信頼性の問題が存在するものであり、隅角部の絶縁被膜を起点とした絶縁低下の課題や外側の放熱面積が少ないことに起因した低い放熱効率の課題を解消するには至らない。   However, since the bare wire is used, if the resin is not sufficiently impregnated around the entire circumference of the bare wire, there is a big problem that the insulating property is remarkably lowered, which is not practical. In addition, when the bare wire is a flat wire, the insulation film formed at the corners due to surface tension during the resin curing process becomes thin. It is the same as above, and there is still a problem of insulation reliability at the corner, and low heat dissipation due to the problem of insulation deterioration starting from the insulating coating at the corner and the outside heat dissipation area is small It will not solve the efficiency problem.

特開2010−267932号公報JP 2010-267932 A

本発明は上記する問題に鑑みてなされたものであり、平角線に改良を加えることによって、その曲げ加工された際に外側となる部位の一部が起点となって絶縁低下が生じ易いといった課題と、その外側の放熱面積が小さいことを理由とした低い放熱効率といった課題の双方を解消することのできる平角線と、この平角線を巻装してなるコイルを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and by improving the flat wire, there is a problem in that a part of the outer portion becomes the starting point when the bending is performed and the insulation is likely to be lowered. An object of the present invention is to provide a flat wire that can solve both of the problems of low heat dissipation efficiency due to the small heat dissipation area on the outside and a coil formed by winding the flat wire.

前記目的を達成すべく、本発明による平角線は、曲げ加工された際に曲げ外側に位置する端辺が外側に凸の曲線であり、該端辺の2つの端部がそれぞれ他の2つの辺を繋いでなる断面形状の平角導線と、平角導線の周りに形成された絶縁被膜とからなるものである。   In order to achieve the above-mentioned object, the rectangular wire according to the present invention is a curved line in which an end located outside the bend is bent outward when bent, and the two ends of the end are the other two. A flat conducting wire having a cross-sectional shape connecting the sides and an insulating film formed around the flat conducting wire.

本発明の平角線は、従来の平角線の断面形状を改良して、平角線がエッジワイズ巻き等の曲げ加工された際に外側となる端辺を外側に凸の曲線とした断面形状を有する平角導線と、この平角導線の周囲に形成された絶縁被膜から構成されたものである。   The flat wire of the present invention has a cross-sectional shape that improves the cross-sectional shape of the conventional flat wire, and has an end that becomes the outer side when the flat wire is bent, such as edgewise winding, with a convex curve outward. It is comprised from the flat conducting wire and the insulating film formed in the circumference | surroundings of this flat conducting wire.

したがって、平角導線の断面形状は、従来の略矩形断面の一方の短辺の側方のさらに外側に凸の曲線領域で画成された断面が付加された断面形状となる。   Therefore, the cross-sectional shape of the rectangular conducting wire is a cross-sectional shape in which a cross-section defined by a convex curved region is added to the outer side of one short side of a conventional substantially rectangular cross-section.

ここで、「外側に凸の曲線」には、半円形、円弧形、半楕円形などが含まれるが、中でも隅角部が完全に解消される半円形が望ましい。   Here, the “outwardly convex curve” includes a semicircular shape, an arc shape, a semielliptical shape, and the like, and among them, a semicircular shape in which a corner portion is completely eliminated is preferable.

曲げ加工された際に曲げ外側となる端辺が外側に凸の曲線であり、該端辺の2つの端部がそれぞれ他の2つの辺を繋いでなる断面形状を有していることで、この曲げ外側の領域における隅角部を解消することができ、この曲げ外側の領域において絶縁被膜形成過程で絶縁被膜が極薄となる箇所は生じない。そのため、曲げ加工によってこの曲げ外側の領域が引っ張られて絶縁被膜が多少薄くなったとしても、従来の断面略矩形の平角導線の場合のように絶縁性を低下させるような極薄の絶縁被膜とはなり得ず、もって曲げ加工によって外側となる領域での絶縁性低下の問題は効果的に解消される。   The end side that becomes the outer side when bent is a curve that is convex outward, and the two end portions of the end side have a cross-sectional shape that connects the other two sides, respectively. The corners in the outer region of the bend can be eliminated, and no portion where the insulating coating becomes extremely thin in the process of forming the insulating coating in the outer region of the bending is generated. For this reason, even if the region outside the bend is pulled by bending and the insulating coating becomes somewhat thin, an extremely thin insulating coating that reduces the insulating property as in the case of a rectangular conductor with a substantially rectangular cross section, Therefore, the problem of deterioration of insulation in the region that is outside by bending is effectively solved.

さらに、曲げ加工された際に外側となる端辺を外側に凸の曲線であり、該端辺の2つの端部がそれぞれ他の2つの辺を繋いでなる断面形状を有していることで、従来の断面略矩形の平角導線に比してこの外側の放熱面積が格段に大きくなり、放熱効率を高めることができる。   Furthermore, it is a curve that is convex outward on the outer edge when bent and has a cross-sectional shape in which the two ends of the edge are connected to the other two edges, respectively. As compared with the conventional rectangular conductor having a substantially rectangular cross section, the heat radiation area on the outside is significantly increased, and the heat radiation efficiency can be improved.

このように、本発明の平角線は、曲げ加工された際に曲げ外側に位置する端辺が外側に凸の曲線となるようにその断面形状を改良しただけであり、平角線の製造コストを何等高騰させるものではない。
また、本発明は、上記する本発明の平角線を巻装してなるコイルにも及ぶものである。
Thus, the rectangular wire according to the present invention is only improved in cross-sectional shape so that the edge located on the outer side of the bending becomes a curved curve outward when bent, and the manufacturing cost of the rectangular wire is reduced. It is not something that will soar.
The present invention also extends to a coil formed by winding the above-described rectangular wire of the present invention.

モータのステータコアを構成するティースやリアクトルコアに対して、本発明のコイルを形成することができる。特に、平角線の扁平度が高い断面形状であるリアクトルコアに対して本発明のコイルを適用することで、絶縁低下が顕著であった従来のリアクトルに対してその改善効果は絶大である。   The coil of this invention can be formed with respect to the teeth and the reactor core which comprise the stator core of a motor. In particular, when the coil of the present invention is applied to a reactor core having a cross-sectional shape with a high flatness of a flat wire, the improvement effect is tremendous with respect to a conventional reactor in which insulation deterioration is remarkable.

以上の説明から理解できるように、本発明の平角線とこれを巻装してなるコイルによれば、平角線の断面に改良を加えて、それが曲げ加工された際に曲げ外側に位置する端辺が外側に凸の曲線であり、該端辺の2つの端部がそれぞれ他の2つの辺を繋いでなる断面としたことにより、平角線が曲げ加工された際に曲げ外側に位置する領域における隅角部が解消され、このことによって平角導線周りに形成される絶縁被膜の厚みが極薄となる領域が生じるのを解消でき、絶縁性低下といった問題が解消される。さらに、曲げ加工された際に曲げ外側となる端辺を外側に凸の曲線とした断面形状を有していることでこの曲げ外側の放熱面積が大きくなり、放熱効率を高めることができる。   As can be understood from the above description, according to the rectangular wire of the present invention and the coil formed by winding the same, the cross section of the rectangular wire is improved and positioned on the outer side of the bend when it is bent. Since the end side is a curved line that protrudes outward, and the two end portions of the end side are connected to each other two sides, the rectangular wire is positioned outside the bend when bent. The corner portion in the region is eliminated, which can eliminate the occurrence of a region in which the thickness of the insulating coating formed around the flat conducting wire is extremely thin, and the problem of reduced insulation is solved. Furthermore, since it has a cross-sectional shape in which the end side that is the outside of the bend when bent is curved outwardly, the heat dissipation area on the outside of the bend increases, and the heat dissipation efficiency can be improved.

本発明の平角線の実施の形態を説明した斜視図である。It is the perspective view explaining embodiment of the flat wire of this invention. リアクトルコアの周囲に図1の平角線をエッジワイズ巻きして形成されたコイルの一部を説明した断面図である。FIG. 2 is a cross-sectional view illustrating a part of a coil formed by edgewise winding a rectangular wire in FIG. 1 around a reactor core. 曲げ加工後の平角線の絶縁性の検証に当たり、曲げ加工前の平角線モデルを示した断面図であって、(a)は比較例モデルを示した図であり、(b)は実施例モデルを示した図である。(c)は、エッジワイズ曲げをイメージした模式図である。In verification of insulation of a rectangular wire after bending, it is a sectional view showing a rectangular wire model before bending, wherein (a) is a diagram showing a comparative example model, and (b) is an example model. FIG. (C) is the schematic diagram which imaged edgewise bending. (a)は、従来の断面視略矩形の平角導線を説明した図であり、(b)は、(a)の平角導線の周りに絶縁被膜が形成されて構成された従来の平角線を説明した図である。(A) is a figure explaining the conventional rectangular conducting wire of the cross-section view, (b) explains the conventional rectangular conducting wire formed by forming an insulating film around the rectangular conducting wire of (a). FIG. 図4で示す平角線をコアの周囲に巻装してなる従来のコイルを説明した図である。It is the figure explaining the conventional coil formed by winding the rectangular wire shown in FIG. 4 around the core.

以下、図面を参照して本発明の平角線とこの平角線を巻装してなるコイルの実施の形態を説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a rectangular wire of the present invention and a coil formed by winding the rectangular wire will be described with reference to the drawings.

(平角線の実施の形態)
図1は、本発明の平角線の実施の形態を説明した斜視図である。図示する平角線10は、銅素材の平角導線1の周りに、エナメル被膜等の絶縁被膜2が形成されてその全体が構成されている。
(Embodiment of flat wire)
FIG. 1 is a perspective view illustrating an embodiment of a flat wire according to the present invention. The illustrated flat wire 10 is formed as a whole by forming an insulating coating 2 such as an enamel coating around a rectangular conductive wire 1 made of copper.

平角線10を構成する平角導線1は、その断面形状において、これが曲げ加工された際に内側に位置する短辺1bが直線状を呈し、対向する端辺、すなわち曲げ加工された際に曲げ外側に位置する短辺1aは半円形を呈しており、これら2つの短辺1a,1bを2つの長辺1cが繋いでその断面の外郭ラインが構成されるものである。   The flat conducting wire 1 constituting the flat wire 10 has a cross-sectional shape in which the short side 1b located inside when the wire is bent has a straight line shape, and the opposite end side, that is, the bent outside when bent. The short side 1a located in the shape of a semicircle is formed by connecting these two short sides 1a and 1b to the two long sides 1c to form an outline line of the cross section.

このような断面形状の平角導線1の表面に熱硬化性のエナメル樹脂を溶剤に溶かして塗布し、熱処理して塗布層を固め、この処理を複数回繰り返して所望厚のエナメル被膜からなる絶縁被膜2が形成される。この際に、直線状の長辺1cから半円形である短辺1aに亘って隅角部は存在せず、そのために、エナメル樹脂が反応硬化するまでの間に平角導線1から表面張力を受けたとしても、被膜厚が薄くなる領域は存在しない(長辺1c〜短辺1aにかけて厚みはs1)。   An insulating coating made of an enamel coating having a desired thickness is obtained by applying a thermosetting enamel resin dissolved in a solvent to the surface of the flat conductor wire 1 having such a cross-sectional shape, heat-treating the coating layer, and repeating this treatment a plurality of times. 2 is formed. At this time, there is no corner portion extending from the straight long side 1c to the semicircular short side 1a. For this reason, surface tension is applied from the flat conductor 1 until the enamel resin is reactively cured. Even so, there is no region where the film thickness becomes thin (thickness s1 from the long side 1c to the short side 1a).

一方で、短辺1bと長辺1cの間には隅角部が存在しており、エナメル樹脂が反応硬化するまでの間に平角導線1から表面張力Qを受けることで隅角部の被膜厚は相対的に薄くなっている(厚みs2でs2<s1)。   On the other hand, a corner portion exists between the short side 1b and the long side 1c, and the film thickness of the corner portion is received by receiving the surface tension Q from the flat wire 1 until the enamel resin is reactively cured. Is relatively thin (thickness s2 and s2 <s1).

しかしながら、図示する平角線10では、曲げ加工された際に内側となる領域に相対的に薄い絶縁被膜2を有することから、曲げ加工によってこの曲げ内側の隅角部の絶縁被膜2の厚みは厚みs2よりも薄くなることはない。   However, since the flat wire 10 shown in the figure has a relatively thin insulating coating 2 in the inner region when it is bent, the thickness of the insulating coating 2 at the corners inside the bending is increased by bending. It will never be thinner than s2.

そして、図示する平角線10では、曲げ加工された際に外側となる領域に相対的に薄い絶縁被膜2が存在しないことから(長辺1c〜短辺1aにかけて厚みはs1)、曲げ加工によってこの外側の領域の絶縁被膜2が引っ張られて多少薄くなったとしても、絶縁性を低下する程度に極端に厚みが薄くなるものではない。   In the illustrated rectangular wire 10, the relatively thin insulating coating 2 does not exist in the outer region when bent (the thickness is s 1 from the long side 1 c to the short side 1 a). Even if the insulating coating 2 in the outer region is pulled and becomes somewhat thin, the thickness is not extremely reduced to such an extent that the insulating property is lowered.

(コイルの実施の形態)
図2は、リアクトルコアの周囲に図1の平角線をエッジワイズ巻きして形成されたコイルの一部を取り出した断面図である。
(Coil embodiment)
FIG. 2 is a cross-sectional view of a part of a coil formed by edgewise winding the flat wire of FIG. 1 around the reactor core.

曲げ加工により、コイル100を構成する各平角線10の外側に位置する短辺1aに対応する箇所の絶縁被膜2の厚みs1’は、長辺1cに対応する絶縁被膜2の厚みs1よりも若干薄くなっているものの、この曲げ外側の領域には隅角部が存在しないために絶縁性を低下する程度に極端に絶縁被膜の厚みが薄い箇所は生じない。   The thickness s1 ′ of the insulating coating 2 corresponding to the short side 1a located outside each rectangular wire 10 constituting the coil 100 is slightly larger than the thickness s1 of the insulating coating 2 corresponding to the long side 1c by bending. Although it is thin, since there is no corner portion in the outer region of the bend, there is no portion where the thickness of the insulating coating is extremely thin to the extent that the insulation is lowered.

そして、図2と図5を比較した場合に、曲げ外側の領域の絶縁被膜の面積は、図5の従来の平角線Wを構成する直線状の短辺に対応する絶縁被膜Zに対して、図2で示す半円形の短辺1aに対応する絶縁被膜2の面積は格段に大きくなっており、このことによってこの曲げ外側の絶縁被膜2からの放熱性能が格段に向上し(放熱はX方向)、放熱効率が高いコイルとなる。   And when FIG. 2 and FIG. 5 are compared, the area of the insulating coating in the region outside the bend is compared to the insulating coating Z corresponding to the straight short side constituting the conventional rectangular wire W of FIG. The area of the insulating coating 2 corresponding to the semicircular short side 1a shown in FIG. 2 is remarkably large, and this greatly improves the heat dissipation performance from the insulating coating 2 outside the bend (heat dissipation is in the X direction). ), A coil with high heat dissipation efficiency.

[曲げ加工後の平角線の絶縁性を検証した計算結果について]
本発明者等は、図3a、bで示す断面の平角線モデルであって(図3aは比較例モデル、図3bは実施例モデル)、以下の表1で示す寸法の平角線モデルを設定し、それぞれの平角線を半径6mmでエッジワイズ曲げ加工した際の1/4周長と絶縁被膜の伸び率を計算した。計算結果を以下の表2に示す。なお、図3cは実施例に関するエッジワイズ曲げをイメージした模式図であるが、比較例は肩部曲げが存在しない以外は実施例のイメージを適用できる。
[Calculation results verifying insulation of rectangular wire after bending]
The inventors set a rectangular wire model of the cross section shown in FIGS. 3a and 3b (FIG. 3a is a comparative example model and FIG. 3b is an example model), and a rectangular wire model having the dimensions shown in Table 1 below. The 1/4 circumference and the elongation of the insulation coating when each rectangular wire was edgewise bent with a radius of 6 mm were calculated. The calculation results are shown in Table 2 below. FIG. 3c is a schematic diagram in which the edgewise bending related to the embodiment is imagined, but the image of the embodiment can be applied to the comparative example except that there is no shoulder bending.

Figure 2013153113
Figure 2013153113

Figure 2013153113
Figure 2013153113

本計算の前提条件として、幅広の平角線をエッジワイズ曲げ加工する際には平角線が波打つのを防止するために拘束曲げを基本とし、このことによって平角導線の厚みを1.0mmより厚くならないものとする。また、エッジワイズ曲げ加工の曲げ中心は、平角導線の幅中心とする。   As a precondition for this calculation, when a wide flat wire is edgewise bent, the basic wire is constrained bending to prevent the flat wire from wavy, and this prevents the thickness of the flat wire from becoming thicker than 1.0 mm. And Also, the bending center of the edgewise bending process is the width center of the flat wire.

計算結果を示す表2より、比較例の絶縁被膜の最薄部は隅角部であるが、ここは、曲げ中心からの距離(曲げ半径)が曲げ外側と同じで最も伸び率が高い部位であるため、曲げ加工後の絶縁被膜厚が薄くなり過ぎて絶縁低下の危険性がある。   From Table 2 showing the calculation results, the thinnest part of the insulating coating of the comparative example is a corner, but this is the part where the distance from the bending center (bending radius) is the same as the outside of the bend and the elongation is highest. For this reason, the insulation film thickness after bending becomes too thin, and there is a risk of insulation deterioration.

本検証の際の条件である半径6mmでのエッジワイズ曲げ加工よりも大きな曲げ半径で曲げる方が絶縁性の観点から安全であるが、このように曲げ半径に制約が加わることから設計自由度が減少することになる。   Bending with a larger bending radius than the edgewise bending process with a radius of 6 mm, which is the condition for this verification, is safer from the viewpoint of insulation, but because the bending radius is restricted in this way, the design flexibility is increased. Will be reduced.

一方、実施例の平角線では、肩部の伸び率は小さく、曲げ加工前の絶縁被膜厚が特に薄い部位ではないことから、曲げ加工後も絶縁被膜には十分な厚みが確保されており、絶縁低下を起こす危険性はない。   On the other hand, in the rectangular wire of the example, the elongation percentage of the shoulder portion is small, and since the insulating film thickness before bending is not a particularly thin part, a sufficient thickness is ensured in the insulating coating even after bending, There is no risk of insulation loss.

なお、比較例、実施例ともに最も伸び率が高い曲げ外側に関しては、比較例の隅角部よりは曲げ加工前の絶縁被膜厚が厚いため、伸びた後でも絶縁被膜には十分な厚みが確保されており、双方ともにこの部位において絶縁低下を起こす危険性はない。   In addition, for the outer side of the bend with the highest elongation rate in both the comparative example and the example, the insulating film thickness before the bending process is thicker than the corner portion of the comparative example, so a sufficient thickness is ensured in the insulating film even after the elongation. In both cases, there is no risk of lowering insulation at this site.

[曲げ加工後の平角線の冷却性能を検証した計算結果について]
上記計算で用いた条件の下で、平角線を半径6mmでエッジワイズ曲げ加工して積み重ねてなるコイルの外側の面積(放熱面積)を計算する。
[Calculation results verifying cooling performance of rectangular wire after bending]
Under the conditions used in the above calculation, the area outside the coil (heat dissipating area) obtained by stacking the flat wire with edge radius bending with a radius of 6mm is calculated.

ここで、本計算の前提条件として、実際のリアクトル用コイルは20ターン程度積み重ねるが、これを単純化して1つの銅線(平角導線)で比較する。また、絶縁被膜厚は部位によって異なるため、これを単純化して銅線の曲げ外側の面積で比較する。   Here, as a precondition for this calculation, an actual reactor coil is stacked for about 20 turns, but this is simplified and compared with one copper wire (flat conductor). Also, since the insulation film thickness varies depending on the part, this is simplified and compared with the area outside the bending of the copper wire.

比較例モデルに関し、隅角部の微小径R=0.1であり、銅線の短辺の直線部分の長さは0.8mmであることから、比較例モデルの銅線の曲げ外側の面積は、(2π×0.1)/4)×2+(1.0−2×0.1) = 1.11mm2となる。 Regarding the comparative model, since the corner portion has a small diameter R = 0.1 and the length of the straight portion of the short side of the copper wire is 0.8 mm, the area outside the bending of the copper wire of the comparative model is ( 2π × 0.1) / 4) × 2 + (1.0−2 × 0.1) = 1.11 mm 2

一方、実施例モデルの場合は、半円形の半径R=0.5より、その銅線の曲げ外側の面積は、(2π×0.5)/2 = 1.57mm2となる。 On the other hand, in the case of the example model, since the semicircular radius R = 0.5, the area outside the bending of the copper wire is (2π × 0.5) /2=1.57 mm 2 .

本計算結果より、実施例モデルの曲げ外側の平角線の放熱面積は平角線モデルの4割増しの面積となることが試算されており、冷却性能が格段に向上することが本試算結果にて裏付けられている。   From this calculation result, it has been estimated that the heat radiation area of the rectangular wire outside the bend of the example model will be 40% more than that of the flat wire model, and it is confirmed by this calculation result that the cooling performance is remarkably improved. It has been.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…平角導線、1a…短辺(曲げ加工された際に外側に位置する短辺)、1b…短辺(曲げ加工された際に内側に位置する短辺)、1c…長辺、2…絶縁被膜、10…平角線、20…リアクトルコア、100…コイル   DESCRIPTION OF SYMBOLS 1 ... Flat conducting wire, 1a ... Short side (short side located outside when bent), 1b ... Short side (short side located inside when bent), 1c ... Long side, 2 ... Insulating coating, 10 ... flat wire, 20 ... reactor wire, 100 ... coil

Claims (3)

曲げ加工された際に曲げ外側に位置する端辺が外側に凸の曲線であり、該端辺の2つの端部がそれぞれ他の2つの辺を繋いでなる断面形状の平角導線と、
平角導線の周りに形成された絶縁被膜とからなる平角線。
A rectangular conductor having a cross-sectional shape in which the end side located outside the bend when bent is a convex curve outward, and the two end portions of the end side connect each other two sides;
A flat wire comprising an insulating film formed around a flat conductive wire.
前記端辺が半円形である請求項1に記載の平角線。   The rectangular wire according to claim 1, wherein the end side is semicircular. 請求項1または2に記載の平角線を巻装してなるコイル。   A coil formed by winding the flat wire according to claim 1.
JP2012014142A 2012-01-26 2012-01-26 Rectangular wire and coil Pending JP2013153113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014142A JP2013153113A (en) 2012-01-26 2012-01-26 Rectangular wire and coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014142A JP2013153113A (en) 2012-01-26 2012-01-26 Rectangular wire and coil

Publications (1)

Publication Number Publication Date
JP2013153113A true JP2013153113A (en) 2013-08-08

Family

ID=49049238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014142A Pending JP2013153113A (en) 2012-01-26 2012-01-26 Rectangular wire and coil

Country Status (1)

Country Link
JP (1) JP2013153113A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100006A (en) * 2012-11-15 2014-05-29 Denso Corp Stator winding wire and manufacturing method of stator winding wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014100006A (en) * 2012-11-15 2014-05-29 Denso Corp Stator winding wire and manufacturing method of stator winding wire
US10181776B2 (en) 2012-11-15 2019-01-15 Denso Corporation Stator winding and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6092862B2 (en) Coiled member and coil device
US9197107B2 (en) Stator, method for manufacturing stator, and flat conductor for winding
US9088192B2 (en) Conductor wire for motor and coil for motor
JP2014011937A (en) Stator
JP2013158213A (en) Rotary electric machine
JP6276041B2 (en) Rotating electrical machine stator
JP2013158212A (en) Method of manufacturing coil unit
JP2010177075A (en) Insulated wire, and coil
JP2013094019A (en) Segment coil, method of manufacturing segment coil, and stator
JP5393097B2 (en) Alpha winding coil
JP2017041531A (en) Rectangular wire and coil, and manufacturing method for coil
JP5233558B2 (en) Coil parts
JP6354552B2 (en) Coil forming method
JP2011166945A (en) Stator coil and motor
JP2013153113A (en) Rectangular wire and coil
JP6093266B2 (en) Segment coil and stator
WO2019062922A1 (en) Conductor segment and stator assembly thereof, and motor
JP2011125084A (en) Stator of axial gap motor and manufacturing method for stator core
JP4573323B2 (en) Winding coil
JP4824508B2 (en) Litz wire coil
WO2019062917A1 (en) Conductor segment, stator assembly and motor
JP5681380B2 (en) Flat coil and electromagnetic energy converter using the same
JP5121813B2 (en) Trance
JP2016085846A (en) Assembled conductor
JP2018032707A (en) Rectangular wire for forming reactor coil