JP2013152583A - Image processing apparatus - Google Patents

Image processing apparatus Download PDF

Info

Publication number
JP2013152583A
JP2013152583A JP2012012639A JP2012012639A JP2013152583A JP 2013152583 A JP2013152583 A JP 2013152583A JP 2012012639 A JP2012012639 A JP 2012012639A JP 2012012639 A JP2012012639 A JP 2012012639A JP 2013152583 A JP2013152583 A JP 2013152583A
Authority
JP
Japan
Prior art keywords
component
image
filter
total variation
regularization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012012639A
Other languages
Japanese (ja)
Inventor
Yu Sakurai
優 櫻井
Tomiaki Goto
富朗 後藤
Yasutaka Sakuta
泰隆 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012012639A priority Critical patent/JP2013152583A/en
Publication of JP2013152583A publication Critical patent/JP2013152583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sharp and smooth enlarged digital still image by reducing a calculation time required for sharpening a digital image.SOLUTION: In a digital image device employing a Total Variation regularization method, an input signal of a digital image is separated into a skeleton component and a texture component, and the skeleton component is processed by a linear expansion filter, a Shock filter, and a Total Variation filter sequentially in this order to sharpen the image.

Description

本発明は、デジタル画像の画像処理を行う画像処理装置に関するものである。     The present invention relates to an image processing apparatus that performs image processing of a digital image.

デジタル画像の画僧数を増やし、当該画像を拡大する際、元のデジタル信号成分には存在しない高周波成分を復元することにより高精細なデジタル画像を得るための様々な方法が研究されている。これらの方法は超解像技術と言われている。     Various methods for obtaining a high-definition digital image by restoring a high-frequency component that does not exist in the original digital signal component when increasing the number of images in the digital image and enlarging the image have been studied. These methods are called super-resolution techniques.

非特許文献1、2及び3によると、超解像技術の一つであるTV正則化方法(Total Variation正則化方法)を用いた超解像画像拡大法は、拡大画像のエッジ成分を鮮鋭化する上で非常に大きな効果が確認されており、TV正則化方法は高精細な拡大画像を得る方法の1つとして有用である。     According to Non-Patent Documents 1, 2, and 3, the super-resolution image enlargement method using the TV regularization method (Total Variation regularization method), which is one of the super-resolution techniques, sharpens the edge component of the enlarged image. Therefore, the TV regularization method is useful as one of methods for obtaining a high-definition enlarged image.

特願2010−056571Japanese Patent Application No. 2010-056771

齊藤隆弘:“1枚の画像からの超解像度オーバーサンプリング”、映像メディア学会誌、Vol.62、No.2、pp.181-189、2008Takahiro Saito: “Super-resolution oversampling from a single image”, The Journal of the Institute of Image Media Sciences, Vol.62, No.2, pp.181-189, 2008 桜井優、吉川明博、鈴木彰太郎、後藤富朗、平野智:“Total Variation正則化と事例学習法を組合せた超解像度画像の復元”、映像メディア学会誌、Vol. 61、No. 9、pp. 1363-1366、2007Yu Sakurai, Akihiro Yoshikawa, Shotaro Suzuki, Tomoro Goto, Satoshi Hirano: "Restoring Super-Resolution Images Combining Regularization with Total Variation and Case Learning Method", The Journal of the Institute of Image Media and Technology, Vol. 61, No. 9, pp. 1363-1366, 2007 作田泰隆、後藤富朗、平野智、桜井優、“Total Variation 正則化法を用いた超解像拡大法の高速化”、FIT(情報科学技術フォーラム)、I-023、2011、9月Yasutaka Sakuta, Tomoro Goto, Satoshi Hirano, Yuu Sakurai, “Acceleration of Super-Resolution Expansion Using Total Variation Regularization”, FIT (Information Science and Technology Forum), I-023, 2011, September A. Chambolle, “An algorithm for total variation minimization and applications”, J. Mathematical Imaging and Vision, Vol.20, No.1, pp.89-97, 2004A. Chambolle, “An algorithm for total variation minimization and applications”, J. Mathematical Imaging and Vision, Vol.20, No.1, pp.89-97, 2004 S. J. Osher and L. I. Rudin: “Feature-oriented image enhancement using shock filters”, SIAM Journal on Numerical Analysis, Vol. 27, pp. 910-940, 1990.S. J. Osher and L. I. Rudin: “Feature-oriented image enhancement using shock filters”, SIAM Journal on Numerical Analysis, Vol. 27, pp. 910-940, 1990.

非特許文献1及び2による方法は、拡大画像のエッジ成分を鮮鋭化させるためには大きな効果があるが、エッジ成分を鮮鋭化するための演算時間が非常に長くなるという欠点があった。非特許文献3による方法は、非特許文献1及び2による方法と比べて、拡大画像のエッジ成分を鮮鋭化させるための演算時間を短くすることは可能になるが、画質の鮮鋭度で少し劣ることと、動画へ応用するためには演算時間が長過ぎるという欠点があった。     The methods according to Non-Patent Documents 1 and 2 have a great effect for sharpening the edge component of the enlarged image, but have a drawback that the calculation time for sharpening the edge component becomes very long. Compared with the methods according to Non-Patent Literatures 1 and 2, the method according to Non-Patent Literature 3 can shorten the calculation time for sharpening the edge component of the enlarged image, but is slightly inferior in image quality sharpness. In addition, there is a drawback that the calculation time is too long for application to moving images.

本発明は上記課題に鑑みて、拡大画像のエッジ成分を鮮鋭化するための演算時間を短くし、静止画のみならず動画においても鮮鋭な画像を得ることを目的とする。     The present invention has been made in view of the above problems, and it is an object of the present invention to shorten a calculation time for sharpening an edge component of an enlarged image and obtain a sharp image not only for a still image but also for a moving image.

上記課題を解決するため、本発明は、非特許文献3で用いられているTV正則化拡大部のHPF(ハイパスフィルタ)の代わりに、非特許文献5で用いられているShockフィルタを用いることを第1の特徴とし、前記ShockフィルタをTV正則化フィルタと縦続接続して用いることを第2の特徴とする。     In order to solve the above problem, the present invention uses the Shock filter used in Non-Patent Document 5 instead of the HPF (High Pass Filter) of the TV regularization enlargement unit used in Non-Patent Document 3. A first feature is that the Shock filter is used in cascade connection with a TV regularization filter.

具体的には、本発明は、入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、画像のエッジ成分を鮮鋭化するShockフィルタとを備えたことを特徴とする。     Specifically, the present invention sharpens the edge component of the image with respect to the skeleton component obtained by the Total Variation regularization component separation means for obtaining the skeleton component of the input image and the Total Variation regularization component separation means. A shock filter is provided.

また、本発明は、入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分を拡大するTotal Variation正則化拡大手段とを備え、前記Total Variation正則化拡大手段は、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、画像を拡大する拡大フィルタと、前記拡大フィルタにより拡大された画像のエッジ成分を鮮鋭化するShockフィルタとを有することを特徴とする。     Further, the present invention comprises Total Variation regularization component separation means for obtaining a skeleton component of an input image, and Total Variation regularization expansion means for enlarging the skeleton component obtained by the Total Variation regularization component separation means, The Total Variation regularization enlargement means includes an enlargement filter that enlarges an image with respect to the skeleton component obtained by the Total Variation regularization component separation means, and a Shock filter that sharpens an edge component of the image enlarged by the enlargement filter It is characterized by having.

また、本発明は、入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分を拡大するTotal Variation正則化拡大手段とを備え、前記Total Variation正則化拡大手段は、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、画像を拡大する拡大フィルタと、前記拡大フィルタにより拡大された画像のエッジ成分を鮮鋭化するShockフィルタと、前記Shockフィルタにより鮮鋭化された画像を平滑化するTotal Variation正則化フィルタとを有することを特徴とする。     Further, the present invention comprises Total Variation regularization component separation means for obtaining a skeleton component of an input image, and Total Variation regularization expansion means for enlarging the skeleton component obtained by the Total Variation regularization component separation means, The Total Variation regularization enlargement means includes an enlargement filter that enlarges an image with respect to the skeleton component obtained by the Total Variation regularization component separation means, and a Shock filter that sharpens an edge component of the image enlarged by the enlargement filter And a Total Variation regularization filter that smoothes the image sharpened by the Shock filter.

本発明によれば、Shockフィルタにより画像が鮮鋭化される。また、Shockフィルタにより画像が鮮鋭化された後、TV正則化フィルタにより鮮鋭化された画像が平滑化されるように構成した場合には、2つのフィルタによって処理される前の画像と比べ、エッジ部が鮮鋭で且つ平滑な画像を得ることができる。また、非特許文献3の方法とは異なり、TV正則化フィルタで何度も画像を平滑化処理しなくても済むので、画像処理に要するトータルの演算時間を短くすることができる。     According to the present invention, the image is sharpened by the Shock filter. In addition, when the image is sharpened by the TV regularization filter after the image is sharpened by the Shock filter, the edge is compared with the image before being processed by the two filters. A sharp and smooth image can be obtained. In addition, unlike the method of Non-Patent Document 3, since it is not necessary to smooth the image many times with the TV regularization filter, the total calculation time required for the image processing can be shortened.

本発明に係る超解像システムを示す図である。It is a figure which shows the super-resolution system based on this invention. 本発明の第1実施形態のTV正則化拡大部の構成を示す図である。It is a figure which shows the structure of the TV regularization expansion part of 1st Embodiment of this invention. TV正則化成分分離による入力信号成分の分離を示す図である。It is a figure which shows isolation | separation of the input signal component by TV regularization component isolation | separation. 本発明に係るTV正則化成分分離部の演算アルゴリズムを示すフローチャートである。It is a flowchart which shows the calculation algorithm of the TV regularization component separation part which concerns on this invention. 本発明に係るShockフィルタの演算アルゴリズムを示すフローチャートである。It is a flowchart which shows the calculation algorithm of the Shock filter which concerns on this invention. 本発明の第2実施形態のTV正則化拡大部の構成を示す図である。It is a figure which shows the structure of the TV regularization expansion part of 2nd Embodiment of this invention.

(第1実施形態)
以下、図1〜図5に従って、本発明の第1実施形態を詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS.

本発明の第1実施形態は、図1に示すように、入力画像fをエッジ成分と低周波成分(以下では両成分を合せて「骨格成分」という)及び細かい振動成分とノイズ成分(以下では両成分を合せて「テクスチャ成分」という)に分離するためのTV正則化成分分離部1と、TV正則化拡大部2と、線形補間拡大部3と、拡大骨格成分U及び拡大テクスチャ成分Vとを加算するための加算器4から構成される。     In the first embodiment of the present invention, as shown in FIG. 1, the input image f is converted into an edge component and a low frequency component (hereinafter, both components are collectively referred to as “skeleton component”), and a fine vibration component and a noise component (hereinafter referred to as “skeletal component”). TV regularization component separation unit 1, TV regularization enlargement unit 2, linear interpolation enlargement unit 3, enlarged skeleton component U and enlarged texture component V for separating both components into "texture components") It is comprised from the adder 4 for adding.

前記TV正則化拡大部2は、図2に示すように、線形拡大フィルタ5と、Shockフィルタ7と、TV正則化フィルタ8が縦続接続された構成である。     As shown in FIG. 2, the TV regularization expansion unit 2 has a configuration in which a linear expansion filter 5, a Shock filter 7, and a TV regularization filter 8 are connected in cascade.

TV正則化成分分離部1において入力信号fが骨格成分u及びテクスチャ成分vに分離される状況を図3により模式的に示す。     A situation in which the input signal f is separated into the skeleton component u and the texture component v in the TV regularization component separation unit 1 is schematically shown in FIG.

分離された第一成分である骨格成分uはTV正則化拡大部2によって、エッジ成分が急峻化され且つ拡大される。一方、分離された第二成分であるテクスチャ成分vは、例えばBicubic法などの線形補間法を用いて、線形補間拡大部3によって拡大される。TV正則化拡大部2からの出力で、エッジ成分が急峻化され且つ拡大された拡大骨格成分Uと線形補間拡大部3からの出力で、線形補間法により拡大されたテクスチャ成分Vは加算器4により加算され、出力画像となる。     The separated skeleton component u, which is the first component, is sharpened and enlarged by the TV regularization enlargement unit 2. On the other hand, the separated texture component v, which is the second component, is enlarged by the linear interpolation enlargement unit 3 using a linear interpolation method such as the Bicubic method. The output from the TV regularization enlargement unit 2 has the edge component sharpened and enlarged, and the enlarged skeleton component U and the output from the linear interpolation enlargement unit 3, the texture component V enlarged by the linear interpolation method, are added by the adder 4. Are added to form an output image.

TV正則化成分分離は非特許文献4で用いられているChambolleの射影法と呼ばれる繰り返し演算によって、式(1)に従って求められる。     The TV regularization component separation is obtained according to the equation (1) by an iterative operation called the Chamblle projection method used in Non-Patent Document 4.

(1)
式(1)中で、pi,jは入力画素信号fi,jに対応した双対ベクトルと呼ばれる2次元のベクトルである。i,jは画素の位置を表す。
(1)
In equation (1), p i, j is a two-dimensional vector called a dual vector corresponding to the input pixel signal f i, j . i, j represents the position of the pixel.

式(1)における各記号は、夫々式(2)及び式(3)のとおり定義される。     Each symbol in Formula (1) is defined as Formula (2) and Formula (3), respectively.

(2)   (2)

(3)
pi,jを、式(1)に従って全画素i=1〜K、j=1〜Lまで演算し、その後、n=1〜Nまで繰り返し演算を行う。K及びLは画素数を表す。繰り返し演算の回数Nは通常は10〜30回くらいの値が取られる。繰り返し演算の終わった後のpi,jの値より、テクチャ成分vi,jが式(4)に従って求められる。
(3)
p i, j is calculated from all the pixels i = 1 to K and j = 1 to L according to the equation (1), and then repeatedly calculated from n = 1 to N. K and L represent the number of pixels. The number of iterations N is usually about 10 to 30 times. The texture component v i, j is obtained from the value of p i, j after the end of the repetitive calculation according to the equation (4).

(4)
一方、骨格成分uは式(5)に従って求められる。
(4)
On the other hand, the skeleton component u is obtained according to the equation (5).

(5)
上記式(1)〜式(4)の演算を行うフローチャートを図4に示す。
(5)
FIG. 4 shows a flowchart for performing the calculations of the above formulas (1) to (4).

次に、Shockフィルタ7における演算処理を説明する。繰り返し演算を行う画素の値を
Next, calculation processing in the Shock filter 7 will be described. The pixel value to be repeatedly calculated

と表す。
It expresses.

は式(6)の繰り返し演算によって求められる。 Is obtained by the iterative calculation of equation (6).

(6)
式(6)の第2項の各要素は夫々式(7)及び式(8)のとおり定義される。
(6)
Each element of the 2nd term of a formula (6) is defined as a formula (7) and a formula (8), respectively.

(7)        (7)

(8)
式(7)及び式(8)中の各要素は夫々式(9)、式(10)、式(11)及び式(12)のとおり定義される。
(8)
Each element in Formula (7) and Formula (8) is defined as Formula (9), Formula (10), Formula (11), and Formula (12), respectively.

(9)                      (9)

(10)                      (10)

(11)          (11)

(12)
式(9)及び式(10)の関数mは式(13)のとおり定義される。
(12)
The function m in the equations (9) and (10) is defined as the equation (13).

(13)
上記式(6)〜式(13)の演算を行うフローチャートを図5に示す。
(13)
FIG. 5 shows a flowchart for performing the calculations of the above formulas (6) to (13).

Shockフィルタ7の演算を数回繰り返した後の画像
Image after repeating Shock Filter 7 operation several times

は、もとの画像のエッジが強調されるが、同時に平面的な方向に画像の縁にギザギザの形とエッジ付近にオーバシュートとアンダーシュートによる輝度変化が現れる。前記ギザギザの形と輝度変化は、次段のTV正則化フィルタ8により平滑化される。 The edge of the original image is emphasized, but at the same time, a jagged shape is formed at the edge of the image in a planar direction and a luminance change due to overshoot and undershoot appears in the vicinity of the edge. The jagged shape and luminance change are smoothed by the TV regularization filter 8 at the next stage.

Shockフィルタ7では演算が5回ほど繰り返し行われ、TV正則化フィルタ8では演算が20回ほどの繰り返し行なわれ、その後TV正則化フィルタでは演算が1回行われる。
(第2実施形態)
図6に示すように、図1のTV正則化拡大部2からTV正則化フィルタ8を省き、線形拡大フィルタ5とShockフィルタ7のみによって構成しても構わない。
(第3実施形態)
第1及び第2実施形態では、画像の拡大を行うものを示したが、画像の拡大を行わない、すなわち、線形拡大フィルタ5を省いた構成としても構わない。前記構成では画像の拡大を行わずに画像の鮮鋭度を増すこととなり、用途としては、現行のテレビジョン信号例の画素数を変えずに鮮鋭度を向上させる手段としても使用が可能である。
(その他の実施形態)
第1、第2及び第3実施形態は何れもハードウェアではなく、ソフトウェアのみで構成しても構わないし、ハードウェアとソフトウェアの組み合わせで構成しても構わない。ソフトウェアで構成した場合、図1、図2、図4、図5、図6等で示される構成は、各機能を実現するための画像処理プログラムとして実現される。
The shock filter 7 repeats the calculation about 5 times, the TV regularization filter 8 performs the calculation about 20 times, and then the TV regularization filter performs the calculation once.
(Second Embodiment)
As shown in FIG. 6, the TV regularization filter 8 may be omitted from the TV regularization expansion unit 2 of FIG. 1, and only the linear expansion filter 5 and the Shock filter 7 may be configured.
(Third embodiment)
In the first and second embodiments, the image enlargement is shown. However, the image enlargement may not be performed, that is, the linear enlargement filter 5 may be omitted. The above configuration increases the sharpness of the image without enlarging the image, and can be used as a means for improving the sharpness without changing the number of pixels of the current television signal example.
(Other embodiments)
The first, second, and third embodiments are not hardware but may be configured only by software, or may be configured by a combination of hardware and software. When configured by software, the configuration shown in FIGS. 1, 2, 4, 5, 6, etc. is realized as an image processing program for realizing each function.

産業上の利用の可能性Industrial applicability

本発明の方法はテレビジョン画像を始め、デジタルカメラ画像、医療用画像、監視カメラ画像、衛星伝送画像などを拡大して表示する際の高精細化画像の復元に利用することができる。     The method of the present invention can be used to restore high-definition images when enlarging and displaying television images, digital camera images, medical images, surveillance camera images, satellite transmission images, and the like.

1 TV正則化成分分離部(TV正則化成分分離手段)
2 TV正則化拡大部(TV正則化拡大手段)
3 線形補間拡大部
4 加算器
5 線形拡大フィルタ(拡大フィルタ)
6 TV正則化フィルタ
7 Shockフィルタ
1 TV regularization component separation unit (TV regularization component separation means)
2 TV regularization expansion part (TV regularization expansion means)
3 Linear interpolation enlargement section
4 Adder
5 Linear magnification filter (magnification filter)
6 TV regularization filter
7 Shock filter

Claims (3)

入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、入力画像のエッジ成分を鮮鋭化するShockフィルタとを備えたことを特徴とする画像処理装置。 Total Variation regularization component separation means for obtaining the skeleton component of the input image, and a Shock filter for sharpening the edge component of the input image with respect to the skeleton component obtained by the Total Variation regularization component separation means A featured image processing apparatus. 入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分を拡大するTotal Variation正則化拡大手段とを備え、前記Total Variation正則化拡大手段は、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、画像を拡大する拡大フィルタと、前記拡大フィルタにより拡大された画像のエッジ成分を鮮鋭化するShockフィルタとを有することを特徴とする画像処理装置。 Total Variation regularization component separation means for obtaining a skeleton component of an input image, and Total Variation regularization expansion means for expanding the skeleton component obtained by the Total Variation regularization component separation means, and the Total Variation regularization expansion means Has a magnifying filter for enlarging an image with respect to the skeleton component obtained by the Total Variation regularization component separating means, and a Shock filter for sharpening an edge component of the image magnified by the magnifying filter. An image processing apparatus. 入力画像の骨格成分を得るTotal Variation正則化成分分離手段と、前記Total Variation正則化成分分離手段により得られた骨格成分を拡大するTotal Variation正則化拡大手段とを備え、前記Total Variation正則化拡大手段は、前記Total Variation正則化成分分離手段により得られた骨格成分に対し、画像を拡大する拡大フィルタと、前記拡大フィルタにより拡大された画像のエッジ成分を鮮鋭化するShockフィルタと、前記Shockフィルタにより鮮鋭化された画像を平滑化するTotal Variation正則化フィルタとを有することを特徴とする画像処理装置。


Total Variation regularization component separation means for obtaining a skeleton component of an input image, and Total Variation regularization expansion means for expanding the skeleton component obtained by the Total Variation regularization component separation means, and the Total Variation regularization expansion means The skeleton component obtained by the Total Variation regularization component separation means is an enlargement filter for enlarging an image, a Shock filter for sharpening an edge component of an image enlarged by the enlargement filter, and the Shock filter. An image processing apparatus comprising: a Total Variation regularization filter that smoothes a sharpened image.


JP2012012639A 2012-01-25 2012-01-25 Image processing apparatus Pending JP2013152583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012639A JP2013152583A (en) 2012-01-25 2012-01-25 Image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012639A JP2013152583A (en) 2012-01-25 2012-01-25 Image processing apparatus

Publications (1)

Publication Number Publication Date
JP2013152583A true JP2013152583A (en) 2013-08-08

Family

ID=49048878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012639A Pending JP2013152583A (en) 2012-01-25 2012-01-25 Image processing apparatus

Country Status (1)

Country Link
JP (1) JP2013152583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144535A (en) * 2015-02-06 2016-08-12 国立大学法人名古屋大学 Interosseous distance measurement device, interosseous distance measurement method, program to cause computer to function as interosseous distance measurement device, and storage medium storing program
CN114237000A (en) * 2021-12-15 2022-03-25 中国工程物理研究院激光聚变研究中心 Off-axis digital holographic optimization reconstruction method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093386A1 (en) * 2008-01-21 2009-07-30 Olympus Corporation Image processing apparatus, image processing program, computer readable storage medium having image processing program stored therein, and image processing method
JP2010157210A (en) * 2008-12-31 2010-07-15 Postech Academy-Industry Foundation Method for removing blur from image and recording medium
JP2011076274A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Image processing apparatus, image processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093386A1 (en) * 2008-01-21 2009-07-30 Olympus Corporation Image processing apparatus, image processing program, computer readable storage medium having image processing program stored therein, and image processing method
JP2010157210A (en) * 2008-12-31 2010-07-15 Postech Academy-Industry Foundation Method for removing blur from image and recording medium
JP2011076274A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Image processing apparatus, image processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015033349; Sakuta, Y.: 'Super-resolution utilizing Total Variation regularization on CELL processor' Consumer Electronics (ICCE), 2012 IEEE International Conference on , 20120116, p.723-724, IEEE *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144535A (en) * 2015-02-06 2016-08-12 国立大学法人名古屋大学 Interosseous distance measurement device, interosseous distance measurement method, program to cause computer to function as interosseous distance measurement device, and storage medium storing program
CN114237000A (en) * 2021-12-15 2022-03-25 中国工程物理研究院激光聚变研究中心 Off-axis digital holographic optimization reconstruction method and system
CN114237000B (en) * 2021-12-15 2023-05-23 中国工程物理研究院激光聚变研究中心 Off-axis digital holographic optimization reconstruction method and system

Similar Documents

Publication Publication Date Title
Ma et al. Handling motion blur in multi-frame super-resolution
US9076234B2 (en) Super-resolution method and apparatus for video image
WO2010098054A1 (en) Image correction device and image correction method
JP3251127B2 (en) Video data processing method
WO2011111819A1 (en) Image processing device, image processing program, and method for generating images
JP6462372B2 (en) Super-resolution device and program
Wang et al. A graph-based joint bilateral approach for depth enhancement
Jeong et al. Multi-frame example-based super-resolution using locally directional self-similarity
JP2013152583A (en) Image processing apparatus
Zhao et al. Single depth image super-resolution with multiple residual dictionary learning and refinement
JP2015228113A (en) Image processor and image processing method
JP2017076240A (en) Image processing apparatus, image processing method, and program
JP6344651B2 (en) Imaging device with focus assist function
JP2011182094A (en) Image processor and image processing program
JP5076758B2 (en) Image processing method and program
Qian et al. Blind super-resolution restoration with frame-by-frame nonparametric blur estimation
JP2012113398A (en) Image processing device and image processing system
Munezawa et al. Super-resolution method for enlarged images utilizing non-linear filtering
Salahieh et al. Single-image full-focus reconstruction using depth-based deconvolution
JP2015049588A (en) Superresolution image processing apparatus using n-th power filter
Yousef et al. Mathematical model development of super-resolution image Wiener restoration
CN112435192B (en) Lightweight image definition enhancing method
Liu et al. MAP-based image super-resolution reconstruction
KR101332030B1 (en) Method of magnifying image and computer readable medium storing the program thereof
Watanabe et al. Super-resolution image processing with total variation regularization and shock filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223