JP2013151153A - Ballpoint pen tip - Google Patents

Ballpoint pen tip Download PDF

Info

Publication number
JP2013151153A
JP2013151153A JP2012274948A JP2012274948A JP2013151153A JP 2013151153 A JP2013151153 A JP 2013151153A JP 2012274948 A JP2012274948 A JP 2012274948A JP 2012274948 A JP2012274948 A JP 2012274948A JP 2013151153 A JP2013151153 A JP 2013151153A
Authority
JP
Japan
Prior art keywords
ball
radial groove
volume
ink
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012274948A
Other languages
Japanese (ja)
Inventor
Koji Sekine
孝司 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2012274948A priority Critical patent/JP2013151153A/en
Publication of JP2013151153A publication Critical patent/JP2013151153A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a ballpoint pen tip which prevents the following situations: when a radial groove is formed by inserting a cutting tool with cutting blades disposed radially, impact force and pressing force deform a cross sectional shape of a ball holder, an circularity is reduce; and an annular clearance between the ball and a tip opening part differs according to the position of the ballpoint pen tip, an ink discharge amount varies depending on a writing direction, thereby causing gradation of handwriting, an uneven line width and blur of the handwriting.SOLUTION: In a ballpoint pen, a radial ink flowing groove 1 is formed in an inward projecting part which is formed in a through-hole of a ball holder 6 to restrict rearward movement of a ball 7. A ratio of the volume of the radial groove 1 to the volume of the inward projecting part is set to be 0.03-0.12.

Description

本発明は、筆記部材としてのボールと、このボールを貫通孔の先端開口部から一部突出して抱持するボールホルダーとから少なくともなり、ボールホルダーの貫通孔内に形成したボールの後方移動規制をなす内方突出部に放射状のインキ通溝を形成してなるボールペンチップに関する。   The present invention comprises at least a ball as a writing member and a ball holder that partially protrudes and holds the ball from the tip opening of the through hole, and restricts rearward movement of the ball formed in the through hole of the ball holder. The present invention relates to a ballpoint pen tip in which radial ink passage grooves are formed in an inward projecting portion.

上述の放射状のインキ通溝は、ボールホルダーのインキ通路で最も狭い路となっており、インキ供給量を制限することとなりインキ吐出性に対し重要な箇所となっている。そこで、カスレ等の筆跡不具合を抑制するため、ボールの周囲に潤沢なインキを供給することを目的に中心孔に連通し後孔まで貫通した放射状溝を形成することが知られている。また、中心孔に連通し後孔には貫通していない放射状溝の場合、曲路となるため、放射状溝の外径や溝の幅を大きくしボールが内方突出部のボール転写面である座に着座した際、その外側に開口した有効放射状溝横断面積を大きくしたものが知られているが、所謂ブローチなどと称される放射状に配置された切削刃を有する切削冶具を、前方のボールが配置される側から挿入して、放射状溝を形成する際の衝撃力や押圧力により、ボール抱持室の横断面形状が変形し、真円度が損なわれてしまうことがあった。
それにより、ボールと先端開口部との環状の隙間の広さが開口部の位置により異なるので、筆記方向によって開いている隙間の量が異なることになり、吐出されるインキの量に差が生まれ、筆跡の濃淡や、線幅の不均一、筆跡のカスレなどが起こることがあった。
The above-mentioned radial ink passage groove is the narrowest path in the ink path of the ball holder, which restricts the amount of ink supplied and is an important part for ink discharge performance. Therefore, in order to suppress handwriting defects such as blurring, it is known to form a radial groove that communicates with the center hole and penetrates to the rear hole for the purpose of supplying abundant ink around the ball. Also, in the case of a radial groove that communicates with the central hole and does not penetrate the rear hole, it becomes a curved path, so that the outer diameter of the radial groove and the width of the groove are increased, and the ball is the ball transfer surface of the inward protruding portion. It is known that when the seat is seated, the effective radial groove cross-sectional area opened to the outside is increased, but a cutting jig having radially arranged cutting blades called a so-called broach is attached to the front ball. The cross-sectional shape of the ball holding chamber may be deformed by the impact force or the pressing force when forming the radial groove by inserting from the side where the ball is disposed, and the roundness may be impaired.
As a result, the size of the annular gap between the ball and the tip opening varies depending on the position of the opening, so the amount of the gap that is opened differs depending on the writing direction, resulting in a difference in the amount of ink ejected. In some cases, shading of the handwriting, non-uniform line width, blurring of the handwriting, etc. may occur.

そこで、特開2010−221408号公報(特許文献1)には、放射状溝の間に、切削や押圧などの衝撃力を付与することによって、放射状溝の開口部分の幅を広げると共に衝撃力の付与された部分に相当するボール抱持室の側壁部分をも内側に微量ながら倒れこませて、放射状溝の形成によるボール抱持室の横断面形状の変形を矯正するボールペンチップの製造方法が開示されている。   In view of this, JP 2010-221408A (Patent Document 1) provides an impact force such as cutting or pressing between the radial grooves, thereby widening the width of the opening of the radial groove and applying the impact force. A ballpoint pen tip manufacturing method is disclosed in which the side wall portion of the ball holding chamber corresponding to the formed portion is also tilted inward while correcting a deformation of the cross-sectional shape of the ball holding chamber due to the formation of radial grooves. ing.

特開2010−221408号公報JP 2010-221408 A

しかしながら、上記特許文献1に記載の発明では、放射状溝を形成する際の衝撃力や押圧力により発生するボール抱持室の変形量に見合った衝撃力を放射状溝の間に付与する必要があり、放射状溝の間に付与する衝撃力が少ないとボール抱持室の横断面形状の変形を矯正する効果が小さく、放射状溝の間に付与する衝撃力が過大になると矯正の為の衝撃力を受けた部分の延長線上のボール抱持室の側壁部分が必要以上に倒れこみ、逆に変形を増大させてしまい、結局、吐出されるインキの量に差が生まれ、筆跡の濃淡や、線幅の不均一、筆跡のカスレなどが抑制され難いものであった。   However, in the invention described in Patent Document 1, it is necessary to apply between the radial grooves an impact force commensurate with the amount of deformation of the ball holding chamber generated by the impact force or pressing force when forming the radial grooves. If the impact force applied between the radial grooves is small, the effect of correcting the deformation of the cross-sectional shape of the ball holding chamber is small, and if the impact force applied between the radial grooves is excessive, the impact force for correction is reduced. The side wall part of the ball holding chamber on the extension line of the received part falls more than necessary, and on the contrary, the deformation increases, resulting in a difference in the amount of ink ejected, the density of the handwriting, and the line width And unevenness of handwriting and scratches of handwriting are difficult to be suppressed.

本発明は、筆記部材としてのボールと、このボールを貫通孔の先端開口部から一部突出して抱持するボールホルダーとから少なくともなり、ボールホルダーの貫通孔内に形成したボールの後方移動規制をなす内方突出部に放射状のインキ通溝を形成してなるボールペンにおいて、前記内方突出部の体積に対する前記放射状溝の容積の比が0.03以上0.12以下であるボールペンチップを要旨とする。   The present invention comprises at least a ball as a writing member and a ball holder that partially protrudes and holds the ball from the tip opening of the through hole, and restricts rearward movement of the ball formed in the through hole of the ball holder. A ball-point pen in which a radial ink passage groove is formed in an inward protruding portion formed, and a ball-point pen tip whose ratio of the volume of the radial groove to the volume of the inward protruding portion is 0.03 or more and 0.12 or less To do.

内方突出部の体積に対する放射状溝の容積の比を0.12以下にすることで内方突出部の体積に対する加工量に比例した歪み量が相対的に少なくなり、放射状溝を加工した部分
の延長線上に相当するボール抱持室の側壁部分周辺の内側への倒れこみが防止できる。
また、内方突出部の体積に対する放射状溝の容積の比は小さくなればなるほど内方突出部の体積に対する加工量に比例した歪み量が少なくなるが、放射状溝の容積が小さくなりインキ供給に影響を与えるが、内方突出部の体積に対する放射状溝の容積の比を0.03以上することでボール抱持室へのインキ供給の不足が防止できる。
By setting the ratio of the volume of the radial groove to the volume of the inward protruding portion to be 0.12 or less, the amount of distortion proportional to the amount of processing with respect to the volume of the inward protruding portion is relatively reduced, and the portion of the portion where the radial groove is processed It is possible to prevent the inside of the periphery of the side wall portion of the ball holding chamber corresponding to the extension line from falling down.
Also, the smaller the ratio of the volume of the radial groove to the volume of the inward projecting portion, the smaller the amount of distortion proportional to the amount of processing with respect to the volume of the inward projecting portion, but the volume of the radial groove becomes smaller and affects the ink supply. However, when the ratio of the volume of the radial groove to the volume of the inward projecting portion is 0.03 or more, insufficient ink supply to the ball holding chamber can be prevented.

本発明の体積・容積計算のための寸法箇所を示した縦断面図。The longitudinal cross-sectional view which showed the dimension location for the volume and volume calculation of this invention. 図1のI−I’線横断面矢視図。FIG. 2 is a cross-sectional view taken along the line I-I ′ of FIG. 1. 本発明の内抱突出部以外を除去した縦断面図。The longitudinal cross-sectional view which removed except the internal holding | projection part of this invention. 本発明のボールペンの一例の縦断面図。The longitudinal cross-sectional view of an example of the ball-point pen of this invention. 本発明のボールペンチップの一例の縦断面図。The longitudinal cross-sectional view of an example of the ball-point pen tip of this invention. 図5のII部拡大図。The II section enlarged view of FIG. 図3に相当する非貫通放射状溝の場合の内抱突出部以外を除去した縦断面図。The longitudinal cross-sectional view which removed except the internal embedding protrusion in the case of the non-penetrating radial groove | channel equivalent to FIG.

ボールペンチップの基本的な構造は、紙面などの被筆記面と接触してインキを転写する筆記部材となるボールと、これを回転自在に抱持するボールホルダーとからなるものであり、インキの通り道であるボールホルダーの貫通孔を通じて被筆記面にインキを付与するものである。
ボールホルダーの貫通孔であるインキ通路は、該ボールホルダーがインキタンクとなる部材と直接又は接続部材を介して接続されることによってインキタンクの内孔と連通している。また、ボールホルダーは、インキ通路の途中に、内方突出部を形成し、ボールの後退規制部とすると共に、先端開口部をボールの直径よりも小径に加工したカシメ部として、先端からのボールの抜け止めをなして、ボールを抱持している。
内方突出部には、中心孔に連通した放射状溝が略均等に分割され、周状に配置されている。
この放射状溝は、中心孔に連通し後孔まで貫通していない放射状溝(以降、非貫通放射状溝と呼ぶ)と中心孔に連通し後孔まで貫通した放射状溝(以降、貫通放射状溝と呼ぶ)とに大別されるが、放射状に配置された切削刃を有する切削冶具により内方突出部を剪断加工により形成するので、内方突出部の途中で切削冶具を止めて形成する非貫通放射状溝では、加工面は全て剪断面となり、その加工量、つまり放射状溝の容積に比例して加工抵抗が増加し、歪み量が増大する。
これに対し、切削冶具を後孔に貫通させて形成する貫通放射状溝は、切削冶具が後孔に貫通する際、内方突出部の肉が破断し剪断面と破断面を有することとなる。剪断中は未貫通放射状溝同様、加工量に比例して加工抵抗が増加するが破断の際、急激に加工抵抗が増加する為、内方突出部の体積に対する放射状溝の容積の比が非貫通放射状溝と同じ場合、貫通放射状溝の方が歪み量が大きくなる傾向にあり、非貫通放射状溝の方が歪みに対し有利と言えるが、反面、非貫通放射状溝は、曲路となっているため、インキの流れの妨げとなる。インキ流れを向上させる方法として放射状溝の深さを深くしたり、外径を大きしたり、放射状溝の幅を広くしたり、外形に向かい拡幅し開口部分の幅を広げたりするが、全て、放射状溝の容積が大きくなり内方突出部の体積に対する放射状溝の容積の比が大きくなり、歪み量が増大する。
放射状溝は、ボール抱持室にインキを流入させる道となるものであり、インキの流量のみを考慮すれば、多数で幅広の方が好ましく、ボール投影断面積に対して中心孔と放射状溝を含めたインキ通路横断面積が35%以上であることが好ましいが、内方突出部の体積に対する放射状溝の容積の比が大きくなり内方突出部の体積に対する加工量に比例した歪み量が増大する。
The basic structure of a ballpoint pen tip consists of a ball that becomes a writing member that contacts the writing surface such as paper and transfers the ink, and a ball holder that rotatably holds the ball. Ink is applied to the writing surface through the through hole of the ball holder.
The ink passage, which is a through hole of the ball holder, communicates with the inner hole of the ink tank by connecting the ball holder to a member that becomes an ink tank directly or via a connecting member. In addition, the ball holder forms an inward protruding portion in the middle of the ink passage to serve as a ball retraction restricting portion, and the tip opening portion is a crimped portion processed to have a smaller diameter than the ball diameter. Holds the ball and prevents it from slipping out.
In the inward projecting portion, a radial groove communicated with the center hole is divided substantially evenly and arranged circumferentially.
The radial groove communicates with the central hole and does not penetrate to the rear hole (hereinafter referred to as a non-through radial groove) and the radial groove communicates with the central hole and penetrates to the rear hole (hereinafter referred to as a through radial groove). ), But the inward protruding portion is formed by shearing with a cutting jig having cutting blades arranged radially, so that the non-through radial formed by stopping the cutting jig in the middle of the inward protruding portion In the groove, all the processed surfaces become shear surfaces, and the processing resistance increases in proportion to the processing amount, that is, the volume of the radial groove, and the amount of distortion increases.
On the other hand, in the through radial groove formed by penetrating the cutting jig through the rear hole, when the cutting jig penetrates the rear hole, the flesh of the inward projecting portion is broken to have a shear surface and a fracture surface. During shearing, the machining resistance increases in proportion to the machining amount, as in the case of non-penetrating radial grooves, but the processing resistance increases rapidly when fractured, so the ratio of the volume of the radial groove to the volume of the inward protrusion is non-penetrating. In the case of the same as the radial groove, the through radial groove tends to have a larger amount of distortion, and the non-through radial groove can be said to be advantageous for distortion, but the non-through radial groove has a curved path. Therefore, the ink flow is hindered. Increasing the depth of the radial groove, increasing the outer diameter, increasing the width of the radial groove, widening toward the outer shape and widening the opening part as a way to improve ink flow, The volume of the radial groove is increased, the ratio of the volume of the radial groove to the volume of the inward protruding portion is increased, and the amount of distortion is increased.
The radial grooves serve as a path for the ink to flow into the ball holding chamber. If only the ink flow rate is taken into consideration, a large number and a wider width are preferable. The cross-sectional area of the ink passage is preferably 35% or more, but the ratio of the volume of the radial groove to the volume of the inward protruding portion is increased, and the amount of distortion proportional to the processing amount with respect to the volume of the inward protruding portion is increased. .

非使用時に、ボールをボールホルダーの先端開口部に周状に当接させ、特に、低粘度インキを使用した場合のインキの漏れ出しを抑制することを目的にボールホルダーのインキ通路に、コイルスプリングを挿入し、その先端で直接又は部材を介してボールを前方付勢することができる。コイルスプリングの後方移動規制は、ボールホルダーの後端をカシメたり、インキタンクや、インキタンクとの接続部材に形成した段部にコイルスプリングの後端を当て、後方移動規制をすることもできる。
尚、このように、コイルスプリングを挿入する場合、前述したインキ通路横断面積は、コイルスプリング先端部分の横断面積を差し引いた有効インキ通路横断面積である。
When not in use, a coil spring is placed in the ink path of the ball holder in order to keep the ball in contact with the tip opening of the ball holder in a circumferential manner and to prevent ink leakage especially when low-viscosity ink is used. And the ball can be urged forward at the tip thereof directly or through a member. The rearward movement of the coil spring can be restricted by caulking the rear end of the ball holder or by applying the rear end of the coil spring to a step formed on the ink tank or the connecting member with the ink tank.
When the coil spring is inserted as described above, the above-described ink passage cross-sectional area is an effective ink passage cross-sectional area obtained by subtracting the cross-sectional area of the tip portion of the coil spring.

本発明のボールペンチップは、このようなボールペンチップについて、内方突出部の体積に対する放射状溝の容積の比が0.03以上0.12以下とするものであり、ここで言う内方突出部の体積とは、貫通放射溝の場合、放射状溝の前後の開口部それぞれの最外側部に接し軸芯と垂直な横断面で挟まれる部分の体積とする。同様に、非貫通放射溝の場合、放射状溝の前側開口部の最外側部と放射状溝の中心孔への後開口部に接し軸芯と垂直な横断面で挟まれる部分の体積とする。
該部の体積(V1)は、貫通放射状溝である図1及び図1のI−I’線横断面である図2、また内方突出部以外を除去した図3及び図3に相当する非貫通放射状溝である内方突出部以外を除去した図7に示すように、放射状溝1及び1’の前側開口部の最前端開口部と貫通放射状溝の後側開口部の最後端開口部または、非貫通放射状溝の中心孔への後開口部を含む仮想横断面で挟まれた部分のボールホルダーの体積である。
貫通放射状溝の場合、当該挟まれた部分の外形をなす円錐台の体積(V2)より、中心孔の容積(V3)と放射状溝の容積(V4)、及び、ボール抱持室側底部分、後孔前端部分にそれぞれ形成される前側円錐台形の凹み部分の容積(V5)及び後側円錐台形の凹み部分の容積(V6)を差し引いた体積として計算できる。
即ち、V1=V2−V3−V4−V5−V6となる。
非貫通放射状溝の場合、当該挟まれた部分の外形をなす円錐台の体積(V2)より、中心孔の容積(V3)と放射状溝の容積(V4)、及び、ボール抱持室側底部分に形成される前側円錐台形の凹み部分の容積(V5)を差し引いた体積として計算できる。
即ち、V1=V2−V3−V4−V5となる。
The ballpoint pen tip of the present invention is such that the ratio of the volume of the radial groove to the volume of the inward protruding portion is 0.03 or more and 0.12 or less for such a ballpoint pen tip. In the case of a through-radiating groove, the volume is a volume of a portion that is in contact with the outermost part of each of the opening portions before and after the radial groove and is sandwiched by a cross section perpendicular to the axis. Similarly, in the case of a non-penetrating radial groove, the volume of the portion that is in contact with the outermost portion of the front opening portion of the radial groove and the rear opening portion to the center hole of the radial groove and is sandwiched by the transverse section perpendicular to the axis is taken.
The volume (V1) of the part is a non-circularity corresponding to FIG. 1 which is a through radial groove in FIG. 1 and FIG. 2 which is a cross section taken along line II ′ of FIG. As shown in FIG. 7 except for the inward projecting portion that is a through radial groove, the foremost opening of the front opening of the radial grooves 1 and 1 ′ and the rearmost opening of the rear opening of the through radial groove or The volume of the ball holder in the portion sandwiched by the virtual cross section including the rear opening to the center hole of the non-through radial groove.
In the case of the through radial groove, the volume of the center hole (V3) and the volume of the radial groove (V4), and the ball holding chamber side bottom portion, from the volume (V2) of the truncated cone forming the outer shape of the sandwiched portion, It can be calculated as a volume obtained by subtracting the volume (V5) of the front frustoconical recess portion formed at the front end portion of the rear hole and the volume (V6) of the rear frustoconical recess portion.
That is, V1 = V2-V3-V4-V5-V6.
In the case of a non-penetrating radial groove, the volume (V3) of the center hole, the volume of the radial groove (V4), and the ball holding chamber side bottom part from the volume (V2) of the truncated cone forming the outer shape of the sandwiched part Can be calculated as a volume obtained by subtracting the volume (V5) of the concave portion of the front frustoconical shape formed in the above.
That is, V1 = V2-V3-V4-V5.

放射状溝1を後孔13に貫通とした貫通放射状溝の場合には、放射状溝1の前側開口部1aの最前端位置1apにおける横断面径をd1、後側開口部1bの最後端位置1bpにおける横断面径をd2、この放射状溝1の前後の開口部それぞれの最前端及び最後端開口部を含む横断面の距離をL1、放射状溝1の最大外径をd3、放射状溝1の幅をW、放射状溝1の本数をN、中心孔2の径をd4、放射状溝1の前側開口部1aの最前端部1apから中心孔2の前開口部2aまでの高さをL2、放射状溝1の後側開口部1bの最後端部1bpから中心孔2の後開口部2bまでの高さをL3、中心孔2の高さをL4としたとき、以下のように計算される。   In the case of a through radial groove in which the radial groove 1 penetrates the rear hole 13, the transverse sectional diameter at the foremost end position 1ap of the front opening 1a of the radial groove 1 is d1, and the rear end 1b of the rear opening 1b is at the rearmost position 1bp. The cross-sectional diameter is d2, the distance of the cross-section including the front and rear end openings of the front and rear openings of the radial groove 1 is L1, the maximum outer diameter of the radial groove 1 is d3, and the width of the radial groove 1 is W. The number of the radial grooves 1 is N, the diameter of the central hole 2 is d4, the height from the foremost end 1ap of the front opening 1a of the radial groove 1 to the front opening 2a of the central hole 2 is L2, and the radial groove 1 When the height from the rearmost end 1bp of the rear opening 1b to the rear opening 2b of the center hole 2 is L3, and the height of the center hole 2 is L4, the following calculation is performed.

放射状溝1の前後の開口部それぞれの最前端及び最後端開口部を含む仮想横断面で挟まれた部分の外形をなす円錐台の体積V2は次のように求められる。
放射状溝1の前側開口部1aの最前端位置1apにおける横断面径d1を直径とする円の面積(S1)=(d1/2)×円周率)
放射状溝1の後側開口部1bの最後端位置1bpにおける横断面径d2を直径とする円の面積(S2)=(d2/2)×円周率)
円錐台の高さL1より、
円錐台3の体積算出の公式を適用し、
V2=(S1+S2+√S1×S2)×L1×1/3
中心孔2の容積(V3)は、
V3=(d4/2)×円周率×L4
(尚、L4=L1−L2−L3)
前側円錐台形の凹み部分4の容積(V5)は、
中心孔2の開口面積
(S4)=(d4/2)×円周率)
放射状溝1の最大外径を直径とする内接円面積は、
(S3)=(d3/2)×円周率)
より、
V5=(S3+S4+√S3×S4)×L2×1/3
後側円錐台形の凹み部分5の容積(V6)は、
中心孔2の開口面積
(S4)=(d4/2)×円周率)
放射状溝1の最大外径を直径とする内接円面積
(S3)=(d3/2)×円周率)
より、
V6=(S3+S4+√S3×S4)×L3×1/3
放射状溝1の容積(V4)は、ボールホルダー6の縦断面における、放射状溝1の縦断面を底面とし溝幅を高さとする4画柱の体積にほぼ近似する。
よって、放射状溝の占める縦断面面積(S5)に、溝幅(W)と溝本数(N)を乗じて算出することができる。
即ち、
放射状溝の縦断面積(S5)=(L1+L4)/2×(d3−d4)/2
V4=S5×W×N
以上の結果より、
内方突出部の体積(V1)=V2−V3−V4−V5−V6に各値を代入して内方突出部の体積を算出することができる。
The volume V2 of the truncated cone forming the outer shape of the portion sandwiched by the virtual cross section including the foremost end and the rearmost end opening of each of the openings before and after the radial groove 1 is obtained as follows.
Area of a circle having a cross-sectional diameter d1 at the foremost end position 1ap of the front opening 1a of the radial groove 1 as a diameter (S1) = (d1 / 2) 2 × circumference ratio)
Area of a circle having a cross-sectional diameter d2 at the rearmost end position 1bp of the rear opening 1b of the radial groove 1 as a diameter (S2) = (d2 / 2) 2 × circumferential ratio)
From the height of the truncated cone L1,
Apply the formula for calculating the volume of the truncated cone 3,
V2 = (S1 + S2 + √S1 × S2) × L1 × 1/3
The volume (V3) of the center hole 2 is
V3 = (d4 / 2) 2 × circumference × L4
(L4 = L1-L2-L3)
The volume (V5) of the concave portion 4 of the front frustoconical shape is
Opening area of center hole 2 (S4) = (d4 / 2) 2 × circumference ratio)
The inscribed circle area whose diameter is the maximum outer diameter of the radial groove 1 is
(S3) = (d3 / 2) 2 × circumference ratio)
Than,
V5 = (S3 + S4 + √S3 × S4) × L2 × 1/3
The volume (V6) of the recessed part 5 of the rear frustoconical shape is
Opening area of center hole 2 (S4) = (d4 / 2) 2 × circumference ratio)
Inscribed circle area (S3) = (d3 / 2) 2 × circumference ratio) where the maximum outer diameter of the radial groove 1 is the diameter.
Than,
V6 = (S3 + S4 + √S3 × S4) × L3 × 1/3
The volume (V4) of the radial groove 1 is approximately approximate to the volume of a four-column pillar in the vertical cross section of the ball holder 6 with the vertical cross section of the radial groove 1 as the bottom and the groove width as the height.
Therefore, it can be calculated by multiplying the longitudinal sectional area (S5) occupied by the radial groove by the groove width (W) and the number of grooves (N).
That is,
Longitudinal sectional area of radial groove (S5) = (L1 + L4) / 2 × (d3-d4) / 2
V4 = S5 × W × N
based on the above results,
The volume of the inward protruding portion can be calculated by substituting each value into the volume of the inward protruding portion (V1) = V2-V3-V4-V5-V6.

また、放射状溝1’を後孔13に非貫通とした非貫通放射状溝場合には、放射状溝1’の前側開口部1aの最前端位置1apにおける横断面径をd1、通放射状溝1’の底面1b’の中心孔2への後開口部2b’における横断面径をd2、この放射状溝1’の前側開口部1aの最前端位置1apと放射状溝1’ の 底面1b’の中心孔2への後開口部2b’を含む横断面の距離をL1、放射状溝1’の最大外径をd3、放射状溝1’の幅をW、放射状溝1’の本数をN、中心孔2の径をd4、放射状溝1’の前側開口部1aの最前端部1apから中心孔2の前開口部2aまでの高さをL2とし、放射状溝1’の底面1b’の後端位置1bp’から放射状溝1’の底面1b’の中心孔2への後開口部2b’をL3、放射状溝1’の中心孔2の前開口部2aから放射状溝1’の底面1b’の後端位置1bp’の高さをL4としたとき、以下のように計算される。   Further, in the case of a non-penetrating radial groove in which the radial groove 1 ′ is not penetrated through the rear hole 13, the transverse sectional diameter at the foremost end position 1ap of the front opening 1a of the radial groove 1 ′ is d1, and the radial groove 1 ′ The transverse sectional diameter of the rear opening 2b ′ to the center hole 2 of the bottom surface 1b ′ is d2, the frontmost end position 1ap of the front opening 1a of the radial groove 1 ′ and the center hole 2 of the bottom surface 1b ′ of the radial groove 1 ′. The distance of the cross section including the rear opening 2b ′ is L1, the maximum outer diameter of the radial groove 1 ′ is d3, the width of the radial groove 1 ′ is W, the number of the radial grooves 1 ′ is N, and the diameter of the central hole 2 is d4, the height from the foremost end 1ap of the front opening 1a of the radial groove 1 ′ to the front opening 2a of the center hole 2 is L2, and the radial groove from the rear end position 1bp ′ of the bottom surface 1b ′ of the radial groove 1 ′ The rear opening 2b ′ to the center hole 2 of the bottom surface 1b ′ of 1 ′ is L3, in front of the center hole 2 of the radial groove 1 ′. When the height of the rear end position 1bp 'of the bottom surface 1b' of the radial groove 1 'from the opening 2a is L4, the following calculation is performed.

放射状溝1’の前側開口部の最前端開口部と放射状溝1’の底面の中心孔への後開口部を含む仮想横断面で挟まれた部分の外形をなす円錐台の体積V2は、次のように求められる。
放射状溝1’の前側開口部1aの最前端位置1apにおける横断面径d1を直径とする円の面積(S1)=(d1/2)×円周率)
放射状溝1’の底面1b’の中心孔2への後開口部2b’における横断面径d2を直径とする円の面積(S2)=(d2/2)×円周率)
円錐台3の高さL1より、
円錐台の体積算出の公式を適用し、
V2=(S1+S2+√S1×S2)×L1×1/3と前述した貫通放射溝同様に求められる。
中心孔2の容積(V3)は、
中心孔2の高さL5=L4+L3より、
V3=(d4/2)×円周率×L5
前側円錐台形の凹み部分4の容積(V5)は、
中心孔2の開口面積
(S4)=(d4/2)×円周率)
放射状溝1の最大外径を直径とする内接円面積は、
(S3)=(d3/2)×円周率)
より、
V5=(S3+S4+√S3×S4)×L2×1/3と前述した貫通放射溝同様に求められる。
尚、後側円錐台形の凹み部分5の容積(V6)は、放射状溝1’が後孔13に非貫通状態のため形成されない。
放射状溝1’の容積(V4)は、貫通放射溝同様、ボールホルダー6の縦断面における、放射状溝1’の縦断面を底面とし溝幅を高さとする4画柱の体積にほぼ近似する。
よって、放射状溝の占める縦断面面積(S5)に、溝幅(W)と溝本数(N)を乗じて算出することができる。
即ち、
放射状溝の縦断面積(S5)=(L1+L4)/2×(d3−d4)/2
V4=S5×W×N
以上の結果より、
内方突出部の体積(V1)=V2−V3−V4−V5に各値を代入して内方突出部の体積を算出することができる。
The volume V2 of the truncated cone forming the outer shape of the portion sandwiched by the virtual cross section including the frontmost opening of the front opening of the radial groove 1 ′ and the rear opening to the center hole at the bottom of the radial groove 1 ′ is It is required as follows.
Area of a circle having a cross-sectional diameter d1 at the foremost end position 1ap of the front opening 1a of the radial groove 1 ′ (S1) = (d1 / 2) 2 × circumferential ratio)
The area of a circle whose diameter is the cross-sectional diameter d2 in the rear opening 2b ′ to the center hole 2 of the bottom surface 1b ′ of the radial groove 1 ′ (S2) = (d2 / 2) 2 × circumference ratio)
From the height L1 of the truncated cone 3,
Apply the formula for calculating the volume of the truncated cone,
V2 = (S1 + S2 + √S1 × S2) × L1 × 1/3 is obtained in the same manner as the above-described through-radiating groove.
The volume (V3) of the center hole 2 is
From the height L5 = L4 + L3 of the center hole 2,
V3 = (d4 / 2) 2 × circumferential ratio × L5
The volume (V5) of the concave portion 4 of the front frustoconical shape is
Opening area of center hole 2 (S4) = (d4 / 2) 2 × circumference ratio)
The inscribed circle area whose diameter is the maximum outer diameter of the radial groove 1 is
(S3) = (d3 / 2) 2 × circumference ratio)
Than,
V5 = (S3 + S4 + √S3 × S4) × L2 × 1/3 is obtained in the same manner as the above-described through-radiation groove.
Note that the volume (V6) of the rear frustoconical recessed portion 5 is not formed because the radial groove 1 ′ is not penetrating into the rear hole 13.
The volume (V4) of the radial groove 1 ′ is approximately similar to the volume of the four-column pillar in the vertical cross section of the ball holder 6 with the vertical cross section of the radial groove 1 ′ as the bottom surface and the groove width as in the vertical cross section of the ball holder 6.
Therefore, it can be calculated by multiplying the longitudinal sectional area (S5) occupied by the radial groove by the groove width (W) and the number of grooves (N).
That is,
Longitudinal sectional area of radial groove (S5) = (L1 + L4) / 2 × (d3-d4) / 2
V4 = S5 × W × N
based on the above results,
The volume of the inward protruding portion can be calculated by substituting each value into the volume of the inward protruding portion (V1) = V2-V3-V4-V5.

また、上述のような各部の寸法を測定して算出する方法の他に、貫通放射溝の場合、上記の内方突出部の体積となる、放射状溝の前後の開口部それぞれの最外側部に接する軸心と垂直な横断面で挟まれる部分以外の不要部分を切断除去した材料の比重と該材料の重さの実測値から算出することができる。同様に、非貫通放射溝の場合、放射状溝の前側開口部の最外側部と放射状溝の底面の中心孔への後開口部に接し軸芯と垂直な横断面で挟まれる部分以外の不要部分を切断除去した材料の比重と該材料の重さの実測値から算出することができる。
また、該材料を、水やシリコーンオイルなどの液体に沈めて増加する液体の体積を測定したりすることもできる。
不要部分を切断除去方法としては、試験用のボールペンチップサンプルの各部寸法測定方法で後述する不飽和ポリエステル樹脂などの透明性の合成樹脂にボールペンチップサンプルを浸透させて固化させた後にサンドペーパなどで徐々に削って不要部分を除去し、その後、200℃以上の高温、例えばガスバーナーで固化した樹脂を酸化・分解させ取り除く。
尚、内方突出部の体積は、微量であり、測定精度を向上させるため、数10個のサンプルが必要となる。
In addition to the method of measuring and calculating the dimensions of each part as described above, in the case of a through-radiating groove, the outermost part of each of the openings before and after the radial groove, which is the volume of the inward protruding part, is provided. It can be calculated from the specific gravity of the material obtained by cutting and removing unnecessary portions other than the portion sandwiched by the cross section perpendicular to the axis of contact, and the measured value of the weight of the material. Similarly, in the case of a non-penetrating radial groove, an unnecessary portion other than the portion sandwiched by the transverse section perpendicular to the shaft center is in contact with the outermost portion of the front opening portion of the radial groove and the rear opening portion to the center hole of the bottom surface of the radial groove. It can be calculated from the specific gravity of the material from which the material has been cut off and the measured value of the weight of the material.
In addition, the volume of the liquid that increases when the material is submerged in a liquid such as water or silicone oil can be measured.
As a method for cutting and removing unnecessary portions, the ball pen tip sample is infiltrated into a transparent synthetic resin such as an unsaturated polyester resin, which will be described later in the method of measuring the size of each part of the test ball pen tip sample, and then gradually solidified with sand paper or the like. Unnecessary portions are removed by shaving, and then the resin solidified by a high temperature of 200 ° C. or higher, for example, a gas burner is oxidized and decomposed to be removed.
Note that the volume of the inward projecting portion is very small, and several tens of samples are required to improve measurement accuracy.

前述した内方突出部の体積は、放射状溝の形成時、加工抵抗を受ける部分なので内方突出部の体積は大きく、放射状溝の容積は小さい方が好ましいが、放射状溝の容積は、ボール抱持室へのインキ供給を考慮すると小さい値とする調整に限界があり、ボール投影断面積に対して中心孔と放射状溝を含めた有効インキ通路横断面積が35%以上にする必要がある。
内方突出部の体積を大きくするには、材料の該当部分の横断面積を大きくすれば良く、その一つの要素として、該当部分におけるボールホルダーの前方外径、後方外径を大きくすれば良く、ボールホルダーの先端に向かい縮径するテーパーの角度を調整することなどでなすことができる。しかし、先端に向かい縮径するテーパーの角度を軸心に対し鋭角にし過ぎるとボールホルダーの先端肉厚が厚くなり過ぎて筆記時、紙面にボールホルダーの先端部が当たり、筆記感の悪化や筆跡カスレが起こる恐れがある。また、ボールホルダーの先端肉厚を一定にし、テーパーの角度を軸心に対し鈍角にするとテーパー部が短くなり視認性が低下する。
また、別の要素である中心孔径を小さくすることで、中心孔の容積を小さくし、内方突出部の体積を大きくすることができるが、前述したようにボール抱持室へのインキ供給への影響がありインキ供給性を主眼とした寸法設定となり、調整に限界がある。また、中心孔の長さを長くすることで内方突出部を含む円錐台の高さを高くし、円錐台の体積を大きでき、内方突出部の体積を大きくすることもできるが、これら中心孔径の小径化や放射状溝の長さの伸長化は、内方突出部の体積の増加と共に放射状溝の容積をも増加する事となるので、内方突出部の体積に対する放射状溝の容積の比が0.03以上0.12以下になるように各寸法を調整することで放射状溝加工時のボール抱持室の変形が抑制でき且つ、ボール抱持室へのインキ供給の不足が防止できる。
The volume of the inward protruding portion described above is a portion that is subjected to machining resistance when forming the radial groove, so that the volume of the inward protruding portion is large and the volume of the radial groove is preferably small. Considering the ink supply to the holding chamber, there is a limit to the adjustment to be a small value, and the effective ink passage cross-sectional area including the central hole and the radial groove needs to be 35% or more with respect to the ball projected cross-sectional area.
In order to increase the volume of the inward projecting portion, it is only necessary to increase the cross-sectional area of the corresponding portion of the material, and as one element thereof, it is only necessary to increase the front outer diameter and rear outer diameter of the ball holder in the corresponding portion, This can be done by adjusting the taper angle that decreases toward the tip of the ball holder. However, if the taper angle that decreases toward the tip is too acute with respect to the axial center, the tip of the ball holder becomes too thick and the tip of the ball holder hits the paper surface during writing, resulting in poor writing feeling and handwriting. Scratching may occur. Further, if the tip wall thickness of the ball holder is made constant and the taper angle is made obtuse with respect to the axis, the taper portion is shortened and visibility is lowered.
In addition, by reducing the center hole diameter, which is another factor, the volume of the center hole can be reduced and the volume of the inward protruding portion can be increased, but as described above, the ink supply to the ball holding chamber Therefore, the size setting is focused on ink supply, and there is a limit to adjustment. In addition, by increasing the length of the central hole, the height of the truncated cone including the inward protruding portion can be increased, the volume of the truncated cone can be increased, and the volume of the inward protruding portion can be increased. The reduction of the center hole diameter and the extension of the length of the radial groove increase the volume of the radial groove with the increase of the volume of the inward projecting portion. Therefore, the volume of the radial groove with respect to the volume of the inward projecting portion is increased. By adjusting each dimension so that the ratio is 0.03 or more and 0.12 or less, deformation of the ball holding chamber at the time of radial groove processing can be suppressed, and insufficient ink supply to the ball holding chamber can be prevented. .

ボールは、タングステンカーバイドやシリコンカーバイドなどを主成分とした焼結体のボールを使用でき、ボールホルダーとなる金属製の柱状部材は、ステンレスや黄銅、洋白などの合金製の線材を切断して使用できるが、ボールペンチップとしてインキとの耐食性や筆記時のボール回転によるチップホルダーとボールとの接触部分の耐摩耗性の高いステンレス材の使用が主であり、具体的には、パイプ状の素材に側面からピンを押し込み、内抱突出部の形成と同時に、放射状のインキ通路を形成する塑性加工を主とした製造方法を採用する場合は、フェライト系ステンレス材より伸び率の高いオーステナイト系ステンレス材であるSUS303、SUS304が適しているが、放射状溝を切削刃により加工するような切削加工を主とした製造方法を採用する場合は、切削性の高いフェライト系ステンレス材であるSUS430が適している。
更に、SUS303と同程度まで耐食性を向上し、切削性もより向上させた快削ステンレスSF20Т(下村特殊精工株式会社)が好ましい。
更に、切削性に影響する成分である鉛をビスマスに置き換え切削性を保ちつつ、環境に考慮した快削ステンレス材は、より好ましい。
インキ流通路である放射状溝を加工する際のボール抱持室底面の後孔側への倒れこみや、ボール抱持室の側壁部分周辺の内側への倒れこみの抑制のためには、加工し易い材料が望ましく、剪断抵抗がステンレスの約1/2と小さい黄銅、洋白のほうが好ましいがインキとの腐食性や筆記時のボールとの接触部の摩耗性から外周付近の硬度がHv220〜280程度のステンレス材を使用することが一般的であるが、反面、硬度が高いと、放射状に配置された切削刃を有する切削冶具の耐久性が低下し、剪断力が低下し、加工面の剪断面が短く、破断面が長くなることで切削抵抗が増加し、ボール抱持室の変形を助長する。また、放射状溝の加工は、ボールホルダーの中心付近を切削して形成されるので、外周付近の硬度がHv240〜270程度で中心付近の硬度をHv220〜250程度とすることが好ましい。
The ball can be a sintered ball mainly composed of tungsten carbide or silicon carbide, and the metal columnar member used as a ball holder is made by cutting a wire made of an alloy such as stainless steel, brass, or white. Although it can be used, it is mainly made of stainless steel material that has high wear resistance at the contact portion between the tip holder and the ball due to corrosion resistance with ink and ball rotation during writing. Austenitic stainless steel with a higher elongation rate than ferritic stainless steel when using a manufacturing method mainly for plastic working that pushes the pin from the side and forms a radial ink passage simultaneously with the formation of the internal protrusion SUS303 and SUS304, which are suitable, are manufactured mainly for cutting such as processing radial grooves with a cutting blade. When employing the method, SUS430 is suitable is a high machinability ferritic stainless steel.
Furthermore, free-cutting stainless steel SF20Т (Shimomura Special Seiko Co., Ltd.), which has improved corrosion resistance to the same extent as SUS303 and improved machinability, is preferable.
Further, a free-cutting stainless steel material that is environmentally friendly while maintaining machinability by replacing lead, which is a component affecting the machinability, with bismuth, is more preferable.
In order to suppress the fall of the bottom of the ball holding chamber to the rear hole side when machining the radial groove that is the ink flow path, and the inside of the periphery of the side wall of the ball holding chamber, processing should be performed. Materials that are easy to handle are desirable, and brass and white that have a shear resistance of about 1/2 that of stainless steel are preferred, but the hardness near the outer periphery is Hv 220 to 280 due to the corrosiveness with ink and the wear of the contact portion with the ball during writing. It is common to use a stainless steel material of a degree, but on the other hand, if the hardness is high, the durability of the cutting jig having cutting blades arranged radially decreases, the shearing force decreases, and the shearing of the work surface decreases. The cutting force is increased and the deformation of the ball holding chamber is facilitated by shortening the surface and increasing the fracture surface. Further, since the processing of the radial groove is formed by cutting the vicinity of the center of the ball holder, it is preferable that the hardness near the outer periphery is about Hv 240 to 270 and the hardness near the center is about Hv 220 to 250.

ボールホルダーの貫通孔はインキ流通路であり、ドリルなどで形成される。
先ず、比較的小径のドリルにて中心孔となる部分を柱状部材に形成し、次いで大径のドリルにて中心孔側からボール抱持室となる前方の大径部を、所定寸法まで掘り進める。中心孔の長さは、ボールホルダーのボール抱持室のボールと反対側の端部側から大径のドリルにて大径の後孔を形成する際の切削深さを調節することで決まる。中心孔の径は、ボール径の50%程度が好ましく、ボール抱持室の径は、ボール径に0.01mm〜0.04mmを加えた内径であり、インキの粘度等により適宜設定する。尚、ボールホルダーとして長い全長のものを使う場合など、内方突出部より後方部分である後孔を深く掘る必要がある時には、大径のドリルで最後まで深く掘り進むのには大きな力が必要であったり、ドリルへの負担も大きいものとなるので、始めは大径のドリルでドリル径の3倍以下程度掘り進めた後に機能上必要な段差の形成は除き0.01〜0.05mm程度の小径なドリルに変更して行くように次第に小径とするようにドリルを替えて、徐々に深く掘り進めることが好ましく、各ドリルの切削深さは、切粉のドリルねじれ溝部への詰まり防止や加工物からの切粉の排出向上のため、ドリル径の3倍以下が好ましい。深孔加工の方法としては、ステッピングという加工があり、同径のドリルで例えば、径の3倍まで加工したらドリルを加工物から抜き、再度ドリルを入れ前の加工深さの0.6倍まで加工、更にドリルを加工物から抜き、再々度ドリルを入れ前の加工深さの0.6倍まで加工という動作を繰り返し所定の孔深さとする。
放射状溝を後孔に貫通する貫通放射状溝を形成するためには、放射状に配置された切削刃を有する切削冶具が内方突出部の後孔傾斜面を貫く必要があり、切削刃の外形以下の後孔径では切削刃がボールホルダーの肉部分に衝突し貫通できないので、後孔の最前端部の外径は、放射状溝を形成する切削刃の外径、つまり放射状溝外径より大径とする必要がある。
このようにして形成された内方突出部は、放射状溝の形成の際、加工抵抗を受け止める部分ともなるので内方突出部の体積に対する放射状溝の容積の比を考慮した寸法設定が必要である。
尚、中心孔、後孔など切削刃を有する切削冶具を回転させるかボールホルダーである加工物を回転させるかして切削する加工でも放射状溝形成加工ほどではないが加工条件によっては、加工抵抗が増大し加工物が変形する場合があるので、切削冶具材質及び加工物材質などに応じた切削速度及び切削送りで加工することが望ましい。
The through hole of the ball holder is an ink flow path and is formed by a drill or the like.
First, a portion that becomes a central hole is formed in a columnar member with a relatively small-diameter drill, and then a large-diameter portion in front of the ball holding chamber is dug up to a predetermined size from the center hole side with a large-diameter drill. . The length of the center hole is determined by adjusting the cutting depth when forming a large-diameter rear hole with a large-diameter drill from the end of the ball holder opposite to the ball holding chamber. The diameter of the center hole is preferably about 50% of the ball diameter, and the diameter of the ball holding chamber is an inner diameter obtained by adding 0.01 mm to 0.04 mm to the ball diameter, and is appropriately set depending on the viscosity of the ink. In addition, when using a long full-length ball holder, etc., when it is necessary to dig deeper in the rear hole, which is the rear part of the inward protruding part, a large force is required to dig deeper to the end with a large diameter drill. Since the burden on the drill is also large, it is about 0.01 to 0.05 mm except for the formation of a step necessary for function after digging about 3 times or less of the drill diameter with a large diameter drill at first. It is preferable to gradually change the drill so that the diameter becomes smaller as the drill is changed to a smaller diameter, and gradually dig deeper. The cutting depth of each drill is to prevent clogging of the chip into the twisted groove of the chip and to process it. In order to improve the discharge of chips from the object, the drill diameter is preferably 3 times or less the drill diameter. As a method of deep hole machining, there is a process called stepping. For example, after drilling up to 3 times the diameter with a drill of the same diameter, remove the drill from the work piece and insert the drill again up to 0.6 times the machining depth before The operation of machining, further removing the drill from the workpiece, and re-inserting the drill again up to 0.6 times the machining depth before is repeated to obtain a predetermined hole depth.
In order to form a through radial groove that penetrates the radial groove through the rear hole, it is necessary that the cutting jig having the radially arranged cutting blades penetrate the rear hole inclined surface of the inward projecting portion, and the outer diameter of the cutting blade is below With the rear hole diameter, the cutting blade collides with the meat part of the ball holder and cannot penetrate, so the outer diameter of the foremost end of the rear hole is larger than the outer diameter of the cutting blade forming the radial groove, that is, the outer diameter of the radial groove. There is a need to.
The inward projecting portion formed in this way also serves as a part for receiving the processing resistance when forming the radial groove, and therefore it is necessary to set the dimension in consideration of the ratio of the volume of the radial groove to the volume of the inward projecting portion. .
In addition, even when machining is performed by rotating a cutting jig having a cutting blade such as a center hole and a rear hole or rotating a workpiece as a ball holder, the machining resistance may be reduced depending on the machining conditions, although it is not as great as the radial groove forming process. Since it may increase and the workpiece may be deformed, it is desirable to process at a cutting speed and a cutting feed in accordance with the cutting jig material and the workpiece material.

次に、放射状に配置された切削刃を有する切削冶具をボール抱持室側から挿入し、ボール抱持室と中心孔との間の段部側から内方突出部を部分的に剥ぎ取り、該部に中心孔に連通し、中心孔の途中で切削冶具を止め後孔に非貫通とした非貫通放射溝や切削冶具を後孔に貫通させた貫通放射状溝を形成する。
使用する切削刃は、中心部分より放射状に切削刃が形成されている形状であるが、全体の外形としては、円柱の先に同径の底面の円錐が接続された形状である。円柱部分に該当する部分は後方に従い若干小径となる所謂バックテーパーと呼ばれる傾斜を形成しておくと、切削の進行中の抵抗を少なくでき放射状溝長さに対する剪断面長さの比が大きくでき、所謂切れる状態となりボール抱持室の変形を抑制できる。
切削刃の材質は、ダイス鋼、超硬合金、超微粒子超硬合金等があるが、加工量に応じ硬度と靭性のバランスを適度のものとする。耐久性向上や被切削材との滑り性向上のためTiC、TiCN等のコーティングを施したものとするとより良いがコーティング皮膜が3μm以上と厚すぎると切削刃がアール形状となり切れ味低下となるため1μm程度の薄膜
が好ましい。
放射状溝を形成する切削刃の先端部分の開き角度がボール抱持室傾斜面角度より鋭角な場合、放射状溝を形成する切削刃がボール抱持室傾斜面に当接する際、中心孔より当接することとなり、ボール抱持室を径方向に外側に向かって押し広げる力が増大し切削抵抗の増加となり、ボール抱持室の変形を助長する。
放射状溝を形成する切削刃の先端部分の開き角度をボール抱持室傾斜面角度より10°〜20°鈍角にすることで、放射状溝を形成する切削刃の外形からボール抱持室傾斜面に当接させられ、ボール抱持室を径方向に外側に向かって押し広げる力の抑制となり、放射状溝を形成する切削刃が後孔傾斜面方向に進む分力が増大し切削抵抗の減少となり好ましい。
Next, a cutting jig having cutting blades arranged radially is inserted from the ball holding chamber side, and the inward protruding portion is partially peeled off from the step side between the ball holding chamber and the center hole, The portion communicates with the central hole, and a non-penetrating radial groove in which the cutting jig is stopped in the middle of the central hole and is not penetrated through the hole or a through radial groove in which the cutting jig is penetrated through the rear hole is formed.
The cutting blade to be used has a shape in which the cutting blade is formed radially from the central portion, but the overall outer shape is a shape in which a cone of the bottom surface of the same diameter is connected to the tip of a cylinder. If the part corresponding to the cylindrical part forms a so-called back taper that has a slightly smaller diameter in the rear, the resistance during cutting can be reduced, and the ratio of the shear surface length to the radial groove length can be increased, It becomes a so-called cut state, and deformation of the ball holding chamber can be suppressed.
The material of the cutting blade includes die steel, cemented carbide, ultrafine particle cemented carbide, etc., and the balance between hardness and toughness is made appropriate according to the amount of processing. It is better to have a coating of TiC, TiCN, etc. to improve durability and slipperiness with the workpiece, but if the coating film is too thick, the cutting edge becomes rounded and the sharpness is reduced. About a thin film is preferred.
When the opening angle of the tip of the cutting blade forming the radial groove is sharper than the ball holding chamber inclined surface angle, the cutting blade forming the radial groove contacts the ball holding chamber inclined surface from the center hole. As a result, the force that pushes the ball holding chamber radially outward increases, leading to an increase in cutting resistance, which promotes deformation of the ball holding chamber.
By making the opening angle of the tip portion of the cutting blade forming the radial groove an obtuse angle of 10 ° to 20 ° from the ball holding chamber inclined surface angle, the outer shape of the cutting blade forming the radial groove is changed to the ball holding chamber inclined surface. It is preferable that the contact force is suppressed, and the force that pushes the ball holding chamber outward in the radial direction is suppressed, and the cutting force that forms the radial groove increases in the component force that advances in the direction of the inclined surface of the rear hole, thereby reducing the cutting resistance. .

次に、筆記部材となるボールを、ボール抱持室に配置し、ボールホルダーの先端開口部の縁部分を圧接工具によるカシメと呼ばれる塑性変形加工を行うことで、ボールの直径よりも小径に縮径され、ボールの抜け止めがなされる。
続いて、ハンマー工具によってボールに衝撃力を付与する所謂ハンマー工程を施して、ボールをボール抱持室と中心孔との間の段部に撃ち付け、ボールの形状に塑性変形させて凹状のボール転写部を形成すると同時にボールが前後に移動可能な空間を形成する。これによって、筆記時にボールが紙面と当接して後退し、インキが吐出される隙間が形成される。従って、この凹状ボール転写部の大きさを調整することで、ボールの前後移動可能な空間が調整され、インキ吐出を適量にできる。
また、ボールを深く押圧することによって凹状ボール転写部の大きさを広いものとすることで筆記時のボール回転による凹状のボール転写部の摩耗により、放射状溝の凹状のボール転写部の外縁に開口するインキ通路の減少によるインキ吐出量減少が抑制できるが内方突出部の体積に対する放射状溝の容積の関係同様、内方突出部の体積に対する凹状のボール転写部の容積の比が大きくなり、内方突出部の体積に対する加工量に比例した歪み量が増大し、ボール抱持室の変形となるので適宜、凹状のボール転写部の大きさを調整する必要がある。
尚、カシメ行程を、凹状のボール転写部を形成する工程の後に施した場合には、後穴からピンを挿入してボールを押し上げて、カシメられたボールホルダー先端部分を若干拡開し、ボールが前後に移動可能な空間を形成することもできる。
Next, the ball to be a writing member is placed in the ball holding chamber, and the edge portion of the tip opening of the ball holder is subjected to plastic deformation processing called caulking with a pressure welding tool to reduce the diameter to a smaller diameter than the ball diameter. The ball is prevented from coming off.
Subsequently, a so-called hammer process is performed to apply an impact force to the ball with a hammer tool, the ball is shot against the step between the ball holding chamber and the center hole, and is plastically deformed into the shape of the ball to form a concave ball. A space in which the ball can move back and forth is formed simultaneously with the formation of the transfer portion. As a result, when writing, the ball comes into contact with the paper and moves backward, thereby forming a gap through which ink is ejected. Therefore, by adjusting the size of the concave ball transfer portion, the space in which the ball can move back and forth is adjusted, and the ink discharge can be made to an appropriate amount.
Also, by pressing the ball deeply, the size of the concave ball transfer portion is widened, so that the concave ball transfer portion wears due to the rotation of the ball at the time of writing, and an opening is formed at the outer edge of the concave ball transfer portion of the radial groove. Although the decrease in the ink discharge amount due to the decrease in the ink passage to be suppressed can be suppressed, the ratio of the volume of the concave ball transfer portion to the volume of the inward protruding portion is increased similarly to the relationship of the volume of the radial groove to the volume of the inward protruding portion. Since the amount of distortion proportional to the amount of processing with respect to the volume of the side projection increases, and the ball holding chamber is deformed, it is necessary to adjust the size of the concave ball transfer portion as appropriate.
If the caulking process is performed after the step of forming the concave ball transfer portion, a pin is inserted through the rear hole and the ball is pushed up to slightly expand the caulked ball holder tip. It is also possible to form a space that can move back and forth.

本発明で得られたボールペンチップを使用するボールペンに適用するインキとしては、水を主媒体とした水性インキ、アルコールなどの有機溶剤を主媒体とした油性インキのいずれも使用可能であり、これに着色成分である顔料及びまたは染料、凍結防止などのための高沸点有機溶剤、被筆記面への定着性を付与する樹脂成分、表面張力や粘弾性、潤滑性などを調整する界面活性剤や多糖類、防錆・防黴剤などが配合されたものであり、誤字修正などを目的とした酸化チタンなどの白色隠蔽成分を配合したものであってもよい。
また、インキの粘度や残量確認などの必要に応じて、インキ界面に接触させて、インキと相溶しない、α−オレフィンやポリブテンなどのゲル化物、シリコーンオイルなどの高粘度流体などをインキ界面に追従して移動するように層状に充填配置することもできる。この高粘度流体は、インキの逆流を抑制する働きをも担いうる。
As the ink applied to the ballpoint pen using the ballpoint pen tip obtained in the present invention, either water-based ink using water as a main medium or oil-based ink using an organic solvent such as alcohol as a main medium can be used. Pigments and dyes that are coloring components, high-boiling organic solvents for preventing freezing, resin components that provide fixability to the writing surface, surfactants that adjust surface tension, viscoelasticity, lubricity, etc. Saccharides, rust preventives, and antifungal agents are blended, and may be blended with a white hiding component such as titanium oxide for the purpose of correcting typographical errors.
Also, if necessary, such as checking the viscosity or remaining amount of the ink, contact the ink interface to remove gelled products such as α-olefin and polybutene, high viscosity fluids such as silicone oil, etc. that are incompatible with the ink. It is also possible to fill and arrange in layers so as to follow the movement. This high-viscosity fluid can also serve to suppress the backflow of ink.

以下、図面に基づいて一例を説明する。
図4に示したものは、筆記部材としてのボール7を、ボールホルダー6先端開口部6aより一部突出した状態で回転自在に抱持してなるボールホルダー6とインキ収容部8が接合されたボールペン本体である。外装体に収容されて使用される所謂リフィルと称されるものとして示してあるが、外装についての図示及び説明は省略する。
後端の小径部は、ポリプロピレン樹脂などの押し出し成形パイプであるインキ収容部8の先端に圧入して固定されている。
インキ収容部8内には、インキ9が収容されており、インキ9の後端界面に接して、インキと相溶しない高粘度流体である逆流防止体組成物10が配置されている。
Hereinafter, an example will be described based on the drawings.
In FIG. 4, the ink holder 8 is joined to the ball holder 6 that rotatably holds the ball 7 as a writing member in a state in which the ball 7 protrudes partially from the tip opening 6 a of the ball holder 6. It is a ballpoint pen body. Although shown as what is called a refill that is housed and used in an exterior body, illustration and description of the exterior are omitted.
The small-diameter portion at the rear end is fixed by being press-fitted into the front end of the ink containing portion 8 which is an extruded pipe such as polypropylene resin.
An ink 9 is accommodated in the ink accommodating portion 8, and a backflow preventing body composition 10, which is a high-viscosity fluid that is incompatible with the ink, is disposed in contact with the rear end interface of the ink 9.

図4のボールペンチップの拡大図である図5に示すように、ボールホルダー6の内部には、ボール7を背面より押して前方付勢するコイルスプリング11が配設されている。このコイルスプリング11は、ボールホルダー6に挿入された後に、押し込まれて全長を圧縮された状態で、ボールホルダー6の後端開口部6bを縮径するカシメ加工を施すことによって、ボール7の後端を付勢した状態で固定されている。
コイルスプリング11は、伸縮する巻き部11aと先端に直線状に起立した先端直状部11bを備えており、先端直状部11bが、ボールホルダー6のインキ通路である貫通孔を通ってボール7の後端を直接押し、ボール7をボールホルダー6の先端開口部6aの内縁に周接させている。
As shown in FIG. 5, which is an enlarged view of the ballpoint pen tip of FIG. 4, a coil spring 11 is disposed inside the ball holder 6 to push the ball 7 from the back and urge it forward. The coil spring 11 is inserted into the ball holder 6, and then pushed into the rear end opening 6 b of the ball holder 6 in a state in which the coil spring 11 is pressed to compress the entire length of the coil spring 11. It is fixed with the end biased.
The coil spring 11 includes a winding portion 11 a that expands and contracts, and a tip straight portion 11 b that rises linearly at the tip, and the tip straight portion 11 b passes through a through hole that is an ink passage of the ball holder 6 and passes through the ball 7. The rear end of the ball holder 6 is directly pressed to bring the ball 7 into contact with the inner edge of the tip opening 6 a of the ball holder 6.

図6は、ボールペンチップのみのII部拡大図であり、説明の都合上、ボール7の外形を破線にて表示し、透過視した状態を示している。
ボールホルダー6は、円柱状金属部材に貫通したインキの通路として、先端側よりボール抱持室12、中心孔2、後孔13を有している。ボール抱持室12と後孔13との間には、内方突出部14が形成されている。
ボール抱持室12の先端開口部6aは、カシメ加工にて縮径化されており、この縮径化された先端開口部6aと、内方突出部14にて前記ボール7の前後方向への移動し得る範囲を規定していると共に、放射状溝の形成時、加工抵抗を受ける部分となる。
また、内方突出部14に、環状に等間隔で放射状溝1が形成されている。この放射状溝1は、中心孔2に連通し、後孔13に貫通している貫通放射状溝を図示しているが、中心孔2に連通し、後孔13に非貫通状態とした非貫通放射状溝でもよい。
FIG. 6 is an enlarged view of the II part of only the ballpoint pen tip. For convenience of explanation, the outer shape of the ball 7 is indicated by a broken line and shown in a transparent manner.
The ball holder 6 has a ball holding chamber 12, a center hole 2, and a rear hole 13 from the front end side as an ink passage penetrating the cylindrical metal member. An inward protruding portion 14 is formed between the ball holding chamber 12 and the rear hole 13.
The front end opening 6 a of the ball holding chamber 12 is reduced in diameter by caulking, and the reduced diameter front end opening 6 a and the inward projecting portion 14 move the ball 7 in the front-rear direction. The range that can be moved is specified, and when forming the radial groove, it becomes a portion that receives the processing resistance.
Further, the radial grooves 1 are formed in the inward projecting portion 14 in an annular manner at equal intervals. This radial groove 1 is shown as a through radial groove that communicates with the center hole 2 and penetrates the rear hole 13. However, the radial groove 1 communicates with the center hole 2 and is not penetrated into the rear hole 13. It may be a groove.

内方突出部14には、ボール7を押し付けることによって凹状のボール転写部15が形成されており、凹状のボール転写部15は、筆記時に紙面などに当接してボール7が後退した状態の時にボールの位置を安定させ、不要な振動等の少ない円滑な回転を保障せんとするものであり、ボール7と凹状のボール転写部15とが略面状に接触するような形状となし、膜状に介在するインキ9をボール7の回転に対する潤滑剤として生かすこともできるものである。
また、前述の放射状溝1は、内方突出部14の凹状のボール転写部15の外側に開口部1aを有しており、ボール抱持室12へのインキ供給を確保している。
The inward projecting portion 14 is formed with a concave ball transfer portion 15 by pressing the ball 7, and the concave ball transfer portion 15 is in contact with the paper surface or the like when writing and the ball 7 is retracted. It is intended to stabilize the position of the ball and to ensure smooth rotation with little unnecessary vibration, etc., and has a shape in which the ball 7 and the concave ball transfer portion 15 are in contact with each other in a substantially planar shape. It is also possible to make use of the ink 9 intervening as a lubricant against the rotation of the ball 7.
Further, the aforementioned radial groove 1 has an opening 1 a outside the concave ball transfer portion 15 of the inward projecting portion 14, and ensures ink supply to the ball holding chamber 12.

各部の寸法を異ならせた試験用のボールペンチップサンプルを作成し(表1参照)、下記に示す試験を行った。尚、各部寸法は、ボールペンチップを縦に半割り状態とし、オリンパス社製デジタルマイクロスコープVHX−900により200倍で直接測定した。縦に半割りの状態とは、図3または、図7のような状態を指すが、不飽和ポリエステル樹脂などの透明性の合成樹脂、具体的には、丸本ストルアス株式会社製冷間埋込樹脂No.105に冷間埋込樹脂No.105用硬化剤を2%程度添加しよく混練したものを隙間に浸透させて固化させた後にサンドペーパなどで徐々に削って測定サンプルを作成するものである。   Test ballpoint pen samples with different dimensions were prepared (see Table 1), and the following tests were performed. In addition, each part dimension was directly measured by 200 times with Olympus digital microscope VHX-900, with the ball-point pen tip vertically divided in half. The vertically divided state means a state as shown in FIG. 3 or FIG. 7, but a transparent synthetic resin such as an unsaturated polyester resin, specifically, a cold embedding resin manufactured by Marumoto Struers Co., Ltd. No. No. 105 is a cold embedding resin no. A sample to be measured is prepared by adding about 2% of a curing agent for 105 and kneading well into a gap to solidify and then gradually scraping with sandpaper or the like.

Figure 2013151153
Figure 2013151153

表1に示した各ボールペンチップを、ぺんてる株式会社製の0.7mmボールペン「ドット・イーボール0.7」(製品符号:BK127−A)のインキ収容パイプに取り付け、後述の水性インキを充填して、ペン先の方向に遠心力が働くようにして、遠心分離機(国産遠心器(株)製:卓上遠心機H−103N)で遠心処理を施し、筆記具内に存在する気体を除去して試験用ボールペンサンプルとした。   Each of the ballpoint pen tips shown in Table 1 is attached to an ink containing pipe of a 0.7 mm ballpoint pen “Dot Eball 0.7” (product code: BK127-A) manufactured by Pentel Co., Ltd. Then, the centrifugal force works in the direction of the nib, centrifuge with a centrifuge (manufactured by Japan Centrifuge Co., Ltd .: tabletop centrifuge H-103N) to remove the gas present in the writing instrument. A test ballpoint pen sample was used.

試験に使用したインキの配合は次の通り。尚、組成の単に「部」とあるのは「重量部」を表す。
ウォーターブラック#108−L(C.I.DIRECT BLACK19の14%水溶液、オリエント化学工業(株)製) 40.0部
ケルザンAR(キサンタンガム、剪断減粘樹脂、三晶(株)製) 0.2部
エチレングリコール 10.0部
グリセリン 10.0部
ベンゾトリアゾール 0.5部
ハイドロキノンスルホン酸カリウム 0.5部
プロクセルGXL(1,2−ベンズイソチアゾリン−3−オン、防腐剤、ICI(株)製)
0.3部
イオン交換水 38.5部
上記成分中、ケルザンARの全量と水5.0部とをラボミキサーにて30分間攪拌して均一に溶解しケルザン水溶液を調整した。残りの各成分を混合し1時間混合攪拌した後ケルザンAR水溶液を加え更に2時間攪拌して剪断速度10sec−1の時の粘度70mPa・sの黒色インキを得た。
The composition of the ink used in the test is as follows. Note that “parts” in the composition simply means “parts by weight”.
Water black # 108-L (14% aqueous solution of CI DIRECT BLACK19, manufactured by Orient Chemical Industry Co., Ltd.) 40.0 parts Kelzan AR (xanthan gum, shear thinning resin, manufactured by Sanki Co., Ltd.) 0.2 Parts ethylene glycol 10.0 parts glycerin 10.0 parts benzotriazole 0.5 part potassium hydroquinone sulfonate 0.5 part proxel GXL (1,2-benzisothiazolin-3-one, preservative, manufactured by ICI)
0.3 part ion-exchanged water 38.5 parts Among the above components, the whole amount of Kelzan AR and 5.0 parts of water were stirred for 30 minutes with a laboratory mixer and uniformly dissolved to prepare a Kelzan aqueous solution. The remaining components were mixed, mixed and stirred for 1 hour, then added with an aqueous Kelzan AR solution, and further stirred for 2 hours to obtain a black ink having a viscosity of 70 mPa · s at a shear rate of 10 sec-1.

(筆記試験1)
各試験用ボールペンサンプルを筆記荷重100g、筆記角度70°、筆記速度7cm/sの条件で、筆記方向をボールペンの外周に対し任意の方向である0°、これに対して120°回転させた方向、240°回転させた方向の3方向にて、ボールペンを自転させずに、それぞれ3m直線筆記し、それぞれの吐出量を測定し、下記項目を評価する。
(1)吐出差
3方向それぞれの吐出量で最大値から最小値を差し引いた差を算出する。
(2)筆記幅の差
3方向の各筆記幅を測定し最大値から最小値を差し引いた差を算出する。
(Writing test 1)
Each test ballpoint pen sample was rotated at 0 °, which is an arbitrary direction with respect to the outer periphery of the ballpoint pen, and 120 ° with respect to the outer circumference of the ballpoint pen under the conditions of a writing load of 100 g, a writing angle of 70 ° and a writing speed of 7 cm / s. In each of the two directions rotated by 240 °, the ballpoint pen is not rotated, but each 3 m is written in a straight line, the respective discharge amounts are measured, and the following items are evaluated.
(1) Discharge difference The difference obtained by subtracting the minimum value from the maximum value is calculated for the discharge amount in each of the three directions.
(2) Difference in writing width Each writing width in three directions is measured, and a difference obtained by subtracting the minimum value from the maximum value is calculated.

(筆記試験2)
各試験用ボールペンサンプルを筆記荷重100g、筆記角度70°、筆記速度7cm/sの条件で、ボールペンを自転させ、100m螺旋筆記し、0m〜50mの吐出量と50m〜100mの吐出量を測定し、下記項目を評価する。
(1)吐出増減率
50m〜100mの吐出量を0m〜50mの吐出量で除した割合を算出する。
(2)筆記幅の差
1m付近の筆跡幅から100m付近の筆跡幅を差し引いた差を算出する。
試験の結果を(表2)に記載する。
(Writing test 2)
Each test ballpoint pen sample was rotated under the conditions of a writing load of 100 g, a writing angle of 70 °, and a writing speed of 7 cm / s, 100 m spiral writing, and a discharge amount of 0 to 50 m and a discharge amount of 50 to 100 m were measured. Evaluate the following items.
(1) Discharge increase / decrease rate A ratio obtained by dividing the discharge amount of 50 m to 100 m by the discharge amount of 0 m to 50 m is calculated.
(2) Written width difference A difference is calculated by subtracting the handwriting width near 100 m from the handwriting width near 1 m.
The test results are listed in (Table 2).

Figure 2013151153
Figure 2013151153

内方突出部の体積に対する放射状溝の容積の比が、0.03以上0.12以下である各実施例は、内方突出部の体積に対する加工量に比例した歪み量が相対的に少なくなり、ボール抱持室の変形が抑制され、筆記試験1による3方向それぞれの吐出量の差が0.0015g以下である共に、3方向のそれぞれの筆記幅の差も0.05mm以内となり、筆記方向による吐出されるインキの量の差から生じる筆跡の濃淡差や、筆記幅の不均一が気にならない程度となっている。
また、放射状溝の容積の過小が防止され、筆記試験2による筆記増減率が90%以上と筆記初期と大きな吐出量の差がないため、筆記幅の差も0.05mm以内と初期と比べ気にならない程度となっており、インキ供給の不足が防止できインキ追従性が確保されている。
特に、内方突出部の体積に対する放射状溝の容積の比が、0.05以上0.11以下である実施例3〜9では、筆記試験1による3方向それぞれの吐出量の差が0.0010g以下、3方向のそれぞれの筆記幅の差も0.04mm以内であり、筆記試験2による筆記増減率が95%以上、筆記幅の差も0.02mm以内となり、筆跡の濃淡や、線幅の不均一、筆跡のカスレが殆どなくより良い。
これに対し、比較例1は、該容積の比が0.03未満となり、筆記試験1では、3方向それぞれの吐出量の差が0.0003g、3方向のそれぞれの筆記幅の差も0.02mmと良好な結果が得られたが、放射状溝の容積が減少し過ぎた結果、筆記試験2で吐出増減率が85%以下となり、筆跡幅の差が0.09mmと初期と比べ大きく差が発生し、筆跡が薄くカスレるインキ出渋り状態となった。
逆に、比較2は、該容積の比が0.12を超し0.13となり、筆記試験2では、吐出増減率が90%、筆跡幅の差が0.01mmと問題ない結果が得られたが、ボール抱持室の変形が増大し、筆記試験1では、3方向それぞれの吐出量の差が0.0020gと大きく、3方向のそれぞれの筆記幅の差も0.08mmと大きく、筆跡の濃淡差や、筆記幅の不均一が顕著である。
また、非貫通放射状溝である実施例8では内方突出部の体積に対する放射状溝の容積の比が、0.11と同様の貫通放射状溝である実施例9に比べ、筆記試験1による3方向それぞれの吐出量の差が0.0008gと若干低く、放射状溝加工での歪みが小さい傾向を示している。
In each embodiment in which the ratio of the volume of the radial groove to the volume of the inward protruding portion is 0.03 or more and 0.12 or less, the amount of distortion proportional to the processing amount with respect to the volume of the inward protruding portion is relatively small. The deformation of the ball holding chamber is suppressed, the difference in the discharge amount in each of the three directions according to the writing test 1 is 0.0015 g or less, and the difference in the writing width in each of the three directions is within 0.05 mm. The difference in the shade of the handwriting resulting from the difference in the amount of ink ejected due to the ink and the unevenness of the writing width are not worrisome.
Moreover, since the volume of the radial groove is prevented from being too small and the writing increase / decrease rate in writing test 2 is 90% or more, there is no large difference in the amount of discharge from the initial writing, so the difference in writing width is 0.05 mm or less compared to the initial. Insufficient ink supply can be prevented, and ink followability can be ensured.
In particular, in Examples 3 to 9 in which the ratio of the volume of the radial groove to the volume of the inward projecting portion is 0.05 or more and 0.11 or less, the difference in the discharge amount in each of the three directions by the writing test 1 is 0.0010 g. Hereinafter, the difference in writing width in each of the three directions is also within 0.04 mm, the writing increase / decrease rate by writing test 2 is 95% or more, the difference in writing width is also within 0.02 mm, the density of the handwriting, and the line width Non-uniformity, almost no blurring of handwriting, and better.
On the other hand, in Comparative Example 1, the volume ratio is less than 0.03, and in the writing test 1, the difference in the discharge amount in each of the three directions is 0.0003 g, and the difference in the writing width in each of the three directions is also 0.1. Good results were obtained at 02 mm, but as a result of the volume of the radial groove being reduced too much, the rate of increase / decrease in ejection was 85% or less in writing test 2, and the difference in handwriting width was 0.09 mm, which is a large difference compared to the initial value. Occurred, and the ink writing was faintly thin and the ink was awkward.
On the contrary, in comparison 2, the volume ratio exceeds 0.12 and becomes 0.13, and in writing test 2, the discharge increase / decrease rate is 90% and the difference in handwriting width is 0.01 mm. However, the deformation of the ball holding chamber increased, and in the writing test 1, the difference in the discharge amount in each of the three directions was as large as 0.0020 g, and the difference in the writing width in each of the three directions was as large as 0.08 mm. The difference in density and the unevenness of the writing width are remarkable.
Moreover, in Example 8 which is a non-penetrating radial groove, the ratio of the volume of the radial groove to the volume of the inward protruding portion is three directions according to the writing test 1 as compared with Example 9 which is a through radial groove similar to 0.11. The difference between the discharge amounts is a little as low as 0.0008g, indicating that the distortion in the radial grooving tends to be small.

1 放射状溝
1’放射状溝
1a 放射状溝の前側開口部
1ap 放射状溝の前側開口部の最前端位置
1b 放射状溝の後側開口部
1b’ 通放射状溝の底面
1bp 放射状溝の後側開口部の最後端位置
1bp’ 放射状溝の底面の後端位置
2 中心孔
2a 中心孔の前開口部
2b 中心孔の後開口部
2b’ 放射状溝の底面の中心孔への後開口部
3 高さL1の円錐台
4 前側円錐台形の凹み部分
5 後側円錐台形の凹み部分
6 ボールホルダー
6a 先端開口部
6b 後端開口部
7 ボール
8 インキ収容部
9 インキ
10 逆流防止体組成物
11 コイルスプリング
11a 巻き部
11b 先端直状部
12 ボール抱持室
13 後孔
14 内方突出部
15 ボール転写部
d1 横断面径
d2 横断面径
d3 放射状溝の最大外径
d4 中心孔径
L1 横断面距離
L2 高さ
L3 高さ
L4 高さ
L5 高さ
N 放射状溝本数
W 放射状溝幅
DESCRIPTION OF SYMBOLS 1 Radial groove 1 'Radial groove 1a Front opening part of radial groove 1ap Foremost position of front opening part of radial groove 1b Rear opening part of radial groove 1b' Bottom face of radial groove 1bp End of rear opening part of radial groove End position 1 bp 'Rear end position of bottom surface of radial groove 2 Center hole 2a Front opening portion of center hole 2b Rear opening portion of center hole 2b' Rear opening portion to center hole of bottom surface of radial groove 3 Frustum of height L1 4 Front frustoconical recessed portion 5 Rear frustoconical recessed portion 6 Ball holder 6a Front end opening 6b Rear end opening 7 Ball 8 Ink receiving portion 9 Ink 10 Backflow prevention body composition 11 Coil spring 11a Winding portion 11b Direct end Shaped part 12 Ball holding chamber 13 Rear hole 14 Inwardly projecting part 15 Ball transfer part d1 Cross sectional diameter d2 Cross sectional diameter d3 Maximum outer diameter of radial groove d4 Center hole diameter L1 Cross sectional distance L2 It is L3 height L4 height L5 height N radial grooves the number W radial groove width

Claims (1)

筆記部材としてのボールと、このボールを貫通孔の先端開口部から一部突出して抱持するボールホルダーとから少なくともなり、ボールホルダーの貫通孔内に形成したボールの後方移動規制をなす内方突出部に放射状のインキ通溝を形成してなるボールペンにおいて、前記内方突出部の体積に対する前記放射状溝の容積の比が0.03以上0.12以下であるボールペンチップ。 An inward projection that restricts the rearward movement of the ball formed in the through hole of the ball holder, comprising at least a ball as a writing member and a ball holder that partially holds the ball by projecting from the tip opening of the through hole A ballpoint pen tip in which a radial ink passage groove is formed in a portion, and a ratio of a volume of the radial groove to a volume of the inward protruding portion is 0.03 or more and 0.12 or less.
JP2012274948A 2011-12-28 2012-12-17 Ballpoint pen tip Pending JP2013151153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274948A JP2013151153A (en) 2011-12-28 2012-12-17 Ballpoint pen tip

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011289591 2011-12-28
JP2011289591 2011-12-28
JP2012274948A JP2013151153A (en) 2011-12-28 2012-12-17 Ballpoint pen tip

Publications (1)

Publication Number Publication Date
JP2013151153A true JP2013151153A (en) 2013-08-08

Family

ID=49047938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274948A Pending JP2013151153A (en) 2011-12-28 2012-12-17 Ballpoint pen tip

Country Status (1)

Country Link
JP (1) JP2013151153A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071148A (en) * 2015-10-08 2017-04-13 三菱鉛筆株式会社 Writing instrument
JP2017209899A (en) * 2016-05-26 2017-11-30 株式会社パイロットコーポレーション Pipe type ball-point pen chip
CN108215585A (en) * 2018-02-13 2018-06-29 程瑞东 A kind of dynamics simulation writing device, method and intelligent writing pen
JP2021035777A (en) * 2016-05-31 2021-03-04 三菱鉛筆株式会社 Ballpoint pen
WO2022102776A1 (en) * 2020-11-16 2022-05-19 株式会社パイロットコーポレーション Ballpoint pen tip, ballpoint pen refill, and ballpoint pen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170691A (en) * 2001-12-06 2003-06-17 Pilot Corp Method for manufacturing tip of ball-point pen
JP2006341492A (en) * 2005-06-09 2006-12-21 Zebra Pen Corp Tip for oil-based ballpoint pen, and oil-based ballpoint pen using the tip
JP2009166475A (en) * 2007-12-17 2009-07-30 Pentel Corp Manufacturing method for ballpoint pen tip
JP2010221408A (en) * 2009-03-19 2010-10-07 Pentel Corp Applicator
JP2011020317A (en) * 2009-07-15 2011-02-03 Pentel Corp Method for manufacturing ballpoint pen chip
JP2011177982A (en) * 2010-02-26 2011-09-15 Pentel Corp Method of manufacturing ballpoint tip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170691A (en) * 2001-12-06 2003-06-17 Pilot Corp Method for manufacturing tip of ball-point pen
JP2006341492A (en) * 2005-06-09 2006-12-21 Zebra Pen Corp Tip for oil-based ballpoint pen, and oil-based ballpoint pen using the tip
JP2009166475A (en) * 2007-12-17 2009-07-30 Pentel Corp Manufacturing method for ballpoint pen tip
JP2010221408A (en) * 2009-03-19 2010-10-07 Pentel Corp Applicator
JP2011020317A (en) * 2009-07-15 2011-02-03 Pentel Corp Method for manufacturing ballpoint pen chip
JP2011177982A (en) * 2010-02-26 2011-09-15 Pentel Corp Method of manufacturing ballpoint tip

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071148A (en) * 2015-10-08 2017-04-13 三菱鉛筆株式会社 Writing instrument
JP2017209899A (en) * 2016-05-26 2017-11-30 株式会社パイロットコーポレーション Pipe type ball-point pen chip
JP2021035777A (en) * 2016-05-31 2021-03-04 三菱鉛筆株式会社 Ballpoint pen
JP7451383B2 (en) 2016-05-31 2024-03-18 三菱鉛筆株式会社 ballpoint pen
CN108215585A (en) * 2018-02-13 2018-06-29 程瑞东 A kind of dynamics simulation writing device, method and intelligent writing pen
CN108215585B (en) * 2018-02-13 2024-02-02 程瑞东 Dynamics simulation writing device and method and intelligent writing pen
WO2022102776A1 (en) * 2020-11-16 2022-05-19 株式会社パイロットコーポレーション Ballpoint pen tip, ballpoint pen refill, and ballpoint pen
KR20230090375A (en) * 2020-11-16 2023-06-21 가부시키가이샤 파이롯트 코포레이숀 Ballpoint Pen Tips, Ballpoint Refills and Ballpoint Pens
KR102577013B1 (en) * 2020-11-16 2023-09-11 가부시키가이샤 파이롯트 코포레이숀 Ballpoint pen tips, ballpoint pen refills and ballpoint pens

Similar Documents

Publication Publication Date Title
JP2013151153A (en) Ballpoint pen tip
JP4318245B2 (en) Ball-point pen tip, ball-point pen using the ball-point pen tip, and method for manufacturing the ball-point pen tip
CN110238613A (en) A kind of the bolt high surplus method for machining bore of wolfram steel mold and tool
JP2015208932A (en) Oil-based ballpoint pen refill and oil-based ballpoint pen
JP4655855B2 (en) Ballpoint pen tip
JP5549276B2 (en) Ballpoint pen manufacturing method
JP5365383B2 (en) Ballpoint pen manufacturing method
JP5905297B2 (en) Writing instrument
JP2015202688A (en) Oil-based ball point pen refill, and oil-based ball point pen using the same
JP2010221408A (en) Applicator
JP2022151850A (en) Ball-point pen tip
JP4403899B2 (en) Ballpoint pen tip and ballpoint pen using the same
JP5083938B2 (en) Ballpoint pen
JP2023167727A (en) ballpoint pen tip
JP2002321486A (en) Tip of ballpoint pen and ballpoint pen using the same
JP7354873B2 (en) ballpoint pen tip
JP6463069B2 (en) Ballpoint pen
JP2015160394A (en) Ball-point pen tip and ball-point pen using the same
JP2008087300A (en) Ball-point pen tip
JP2013049232A (en) Ball point pen chip
JP2022057568A (en) Ball-point pen tip
CN114472944B (en) Finishing insert for reducing tool wear
JP6010849B2 (en) Ballpoint pen tip
JP2003145981A (en) Ball point pen tip and ball point pen using the tip
JP5617366B2 (en) Drill for drilling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523