JP2013150064A - Base station, and communication control method - Google Patents

Base station, and communication control method Download PDF

Info

Publication number
JP2013150064A
JP2013150064A JP2012007248A JP2012007248A JP2013150064A JP 2013150064 A JP2013150064 A JP 2013150064A JP 2012007248 A JP2012007248 A JP 2012007248A JP 2012007248 A JP2012007248 A JP 2012007248A JP 2013150064 A JP2013150064 A JP 2013150064A
Authority
JP
Japan
Prior art keywords
base station
control channel
radio signal
downlink control
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007248A
Other languages
Japanese (ja)
Other versions
JP5981150B2 (en
Inventor
Tatsunori Araki
辰徳 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012007248A priority Critical patent/JP5981150B2/en
Publication of JP2013150064A publication Critical patent/JP2013150064A/en
Application granted granted Critical
Publication of JP5981150B2 publication Critical patent/JP5981150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce interference of radio signals in a downlink control channel transmitted by a plurality of base stations at the same timing.SOLUTION: In a base station 12, a detection unit 26 detects the number of mobile stations 14 connected to the base station; and a transmission power control unit 30 controls, when there are other base stations that transmit radio signals in a downlink control channel at the same timing, transmission power at which the base station 12 transmits radio signals in the downlink control channel in accordance with the number of connection detected by the detection unit 26.

Description

本発明は、基地局、および通信制御方法に関する。   The present invention relates to a base station and a communication control method.

従来から、複数の基地局から送信される信号が移動局において干渉することが問題となっている。そして、この問題を防止するため、基地局において送信電力を制御する方法が知られている。   Conventionally, there is a problem that signals transmitted from a plurality of base stations interfere with each other in a mobile station. And in order to prevent this problem, the method of controlling transmission power in a base station is known.

たとえば、特許文献1(特開2010−239203号公報)には、セル領域内に存在する移動局と、基地局との直線距離及び移動方向を判定し、基地局から遠ざかりセル領域境界付近に移動する移動局の下り送信電力の増加を抑制することにより、セル内での下り干渉波の増加及び干渉波の変動を抑制と、セル内での通信品質の安定化やスループットの向上とを提供する。   For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-239203), a straight line distance and a moving direction between a mobile station existing in a cell area and a base station are determined, and the mobile station moves away from the base station and near the cell area boundary By suppressing the increase in downlink transmission power of the mobile station, the increase in downlink interference and the fluctuation of interference in the cell are suppressed, and the communication quality in the cell is stabilized and the throughput is improved. .

特開2010−239203号公報JP 2010-239203 A

上述の特許文献1に記載されている送信電力の制御は、通話チャネル(TCH)の信号の送信電力を制御するものである。通話チャネル(TCH)の送信電力制御は、従来から特定の方向にビームを向けるビームフォーミングなどによって行なわれており、比較的容易である。しかしながら、制御チャネルは、ビームフォーミングではなく、オムニ送信される。また、移動局が基地局と接続する際のリンク確立の成功率を向上させるため、基地局は、制御チャネルで無線信号を送信する送信電力を高めている。そのため、隣接する複数の基地局が、同一タイミングで下り制御チャネルで無線信号を送信すると、当該無線信号に干渉が生じることになる。   The transmission power control described in Patent Document 1 described above is for controlling the transmission power of a speech channel (TCH) signal. Transmission power control of a speech channel (TCH) has been conventionally performed by beam forming that directs a beam in a specific direction, and is relatively easy. However, the control channel is transmitted omni, not beamforming. Further, in order to improve the success rate of link establishment when the mobile station connects to the base station, the base station increases the transmission power for transmitting the radio signal through the control channel. For this reason, when a plurality of adjacent base stations transmit radio signals on the downlink control channel at the same timing, interference occurs in the radio signals.

本発明は、上記課題に鑑みてなされたものであり、複数の無線基地局からの制御チャネルの信号が干渉するのを防止することができる基地局、および通信制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a base station and a communication control method capable of preventing interference of control channel signals from a plurality of radio base stations. To do.

上記課題を解決するために、本発明に係る基地局は、無線信号を送信する送信手段と、
自局に接続する移動局の接続数を検出する検出手段と、自局と同一タイミングの下り制御チャネルで無線信号を送信する他の基地局が存在する場合、前記検出手段により検出される接続数に応じて、前記送信手段による下り制御チャネルにおける無線信号の送信電力を制御する制御手段と、を含むことを特徴とする。
In order to solve the above problems, a base station according to the present invention includes a transmission unit that transmits a radio signal,
The number of connections detected by the detecting means when there is a detecting means for detecting the number of connected mobile stations connected to the own station and another base station that transmits a radio signal on the downlink control channel at the same timing as the own station. And a control means for controlling the transmission power of the radio signal in the downlink control channel by the transmission means.

また、本発明の一態様では、前記制御手段は、前記検出手段により検出される接続数の増大に応じて、前記送信手段による前記下り制御チャネルにおける無線信号の送信電力を低減してもよい。   In the aspect of the invention, the control unit may reduce the transmission power of the radio signal in the downlink control channel by the transmission unit in accordance with the increase in the number of connections detected by the detection unit.

なお、この態様では、前記制御手段は、前記検出手段により検出される接続数の減少に応じて、前記送信手段による前記下り制御チャネルにおける無線信号の送信電力を増大してもよい。   In this aspect, the control unit may increase the transmission power of the radio signal in the downlink control channel by the transmission unit according to the decrease in the number of connections detected by the detection unit.

また、本発明に係る通信制御方法は、基地局が自局に接続する移動局の接続数を検出するステップと、自局と同一タイミングの下り制御チャネルで無線信号を送信する他の基地局が存在する場合、前記検出した接続数に応じて、前記基地局が下り制御チャネルにおける無線信号の送信電力を制御するステップと、を含むことを特徴とする。   Further, the communication control method according to the present invention includes a step in which the base station detects the number of mobile stations connected to the own station, and another base station that transmits a radio signal using a downlink control channel at the same timing as the own station. If present, the base station includes a step of controlling transmission power of a radio signal in a downlink control channel according to the detected number of connections.

本発明の実施形態に係る移動通信システムの構成を示す図である。It is a figure which shows the structure of the mobile communication system which concerns on embodiment of this invention. 本実施形態に係る移動通信システムにおける無線チャネル構成を示す図である。It is a figure which shows the radio channel structure in the mobile communication system which concerns on this embodiment. 本実施形態に係る基地局に対する移動局の接続数に応じて変動(拡大/縮小)する実効セル半径を示す図である。It is a figure which shows the effective cell radius which fluctuates (enlargement / reduction) according to the number of mobile stations connected to the base station according to the present embodiment. 本実施形態に係る基地局の機能ブロック図である。It is a functional block diagram of the base station which concerns on this embodiment. 移動局の接続数と、下り制御チャネルにおける送信電力との対応関係を定義したテーブルの一例を示す図である。It is a figure which shows an example of the table which defined the correspondence of the connection number of a mobile station, and the transmission power in a downlink control channel. 本実施形態に係る基地局の下り制御チャネルにおける送信電力制御の処理を示すフロー図である。It is a flowchart which shows the process of the transmission power control in the downlink control channel of the base station which concerns on this embodiment.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る移動通信システム10の構成を示す図である。図1に示すように、移動通信システム10は、複数の基地局12(ここでは1つのみを示す)と、複数の移動局14(ここでは基地局12のセル16内に位置する移動局14−1〜14−4のみを示す)と、を含んで構成される。   FIG. 1 is a diagram showing a configuration of a mobile communication system 10 according to an embodiment of the present invention. As shown in FIG. 1, a mobile communication system 10 includes a plurality of base stations 12 (only one is shown here) and a plurality of mobile stations 14 (here, mobile stations 14 located in a cell 16 of the base station 12). Only -1 to 14-4 are shown).

各基地局12は、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式およびTDMA/TDD(Time Division Multiple Access/Time Division Duplex:時分割多元接続/時分割複信)方式により、自局のセル16内に位置する移動局14と無線通信を行う。なお、移動局14としては、携帯電話機、通信カード、通信機能を内蔵した携帯情報端末などがある。   Each base station 12 uses an OFDMA (Orthogonal Frequency Division Multiple Access) method and a TDMA / TDD (Time Division Multiple Access / Time Division Duplex) method. Wireless communication with the mobile station 14 located in the cell 16. Examples of the mobile station 14 include a mobile phone, a communication card, and a portable information terminal with a built-in communication function.

図2は、移動通信システム10における無線チャネル構成を示す図である(縦軸:周波数、横軸:時間)。図2に示すように、移動通信システム10では、所定周期(ここでは5ms)のTDMAフレームが上りサブフレーム(2.5ms)と下りサブフレーム(2.5ms)とに区分され、さらに各サブフレームがそれぞれ複数のタイムスロット(ここではSlot1〜Slot4)に区分されている。基地局12とその周辺基地局との間では、TDMAフレーム(無線信号の送受信周期)の境界が所定時間内(たとえば±10μs内)に収まるよう、無線信号の送受信タイミングの同期がなされている(フレーム同期がなされている)。また、所定の周波数帯域に複数のOFDMAサブチャネル(ここではSch1〜Sch18)が規定されている。   FIG. 2 is a diagram showing a radio channel configuration in the mobile communication system 10 (vertical axis: frequency, horizontal axis: time). As shown in FIG. 2, in the mobile communication system 10, a TDMA frame having a predetermined period (here, 5 ms) is divided into an uplink subframe (2.5 ms) and a downlink subframe (2.5 ms), and each subframe is further divided. Are divided into a plurality of time slots (here, Slot 1 to Slot 4). The transmission / reception timing of the radio signal is synchronized between the base station 12 and its neighboring base stations so that the boundary of the TDMA frame (radio signal transmission / reception cycle) falls within a predetermined time (for example, within ± 10 μs) ( Frame synchronization is done). A plurality of OFDMA subchannels (here, Sch1 to Sch18) are defined in a predetermined frequency band.

基地局12が移動局14に割り当てる無線チャネルの最小単位はPRU(Physical Resource Unit)と呼ばれ、各PRUは、タイムスロット(Slot1〜Slot4)のいずれかと、サブチャネル(Sch1〜Sch18)のいずれかと、に属する。なお、上りサブフレームおよび下りサブフレームともに、各PRUが、たとえば1から始まる連続するPRU番号(1,2,3,・・・)で識別されるよう定められており、PRU番号の同じPRUは上下ペアで使用されることになっている。つまり、PRUは上下対称に割り当てられる。   The minimum unit of the radio channel that the base station 12 allocates to the mobile station 14 is called a PRU (Physical Resource Unit), and each PRU is either one of time slots (Slot 1 to Slot 4) and one of subchannels (Sch 1 to Sch 18). , Belonging to. In addition, it is determined that each PRU is identified by consecutive PRU numbers (1, 2, 3,...) Starting from 1, for example, in both the uplink subframe and the downlink subframe. It is supposed to be used in upper and lower pairs. That is, PRUs are assigned symmetrically.

このうち、ある特定のサブチャネル(ここではSch1)に属するPRUは、1以上の移動局14に共用されるCCH(Common Channel:共通チャネル)として規定されている。また、各基地局12には、所定の周期で繰り返される互いに重複しないCCHの送受信タイミング(以下単に「CCHタイミング」という)が割り当てられている。具体的には、連続する20フレームに含まれる80のタイムスロット対(4対の上下タイムスロット×20フレーム)のいずれか1つがCCHタイミングとして各基地局12に割り当てられている。そして、各基地局12は、自局に割り当てられたCCHタイミングで、自局のセル16内に位置する1以上の移動局14と各種制御信号を送受信する。   Among these, a PRU belonging to a specific subchannel (here, Sch1) is defined as a CCH (Common Channel) shared by one or more mobile stations 14. Also, each base station 12 is assigned a CCH transmission / reception timing (hereinafter simply referred to as “CCH timing”) that does not overlap each other and is repeated at a predetermined period. Specifically, any one of 80 time slot pairs (4 pairs of upper and lower time slots × 20 frames) included in 20 consecutive frames is assigned to each base station 12 as CCH timing. Each base station 12 transmits / receives various control signals to / from one or more mobile stations 14 located in the cell 16 of the own station at the CCH timing assigned to the own station.

一方、上記特定のサブチャネル以外のサブチャネル(ここではSch2〜Sch18)に属するPRUは、各移動局14に個別に割り当てられるICH(Individual Channel:個別チャネル)として用いられる。ICHには、各移動局14に個別制御チャネルとして原則1つ割り当てられ主に制御情報の伝送に用いられるANCH(Anchor Channel)、各移動局14に通信チャネルとして1つ以上割り当てられ主に通信データの伝送に用いられるEXCH(Extra Channel)などがある。   On the other hand, PRUs belonging to subchannels other than the specific subchannel (here, Sch2 to Sch18) are used as ICH (Individual Channel) individually assigned to each mobile station 14. An ICH is assigned to each mobile station 14 in principle as an individual control channel and is mainly used for transmission of control information. An CHCH (Anchor Channel) is assigned to each mobile station 14 as one or more communication channels. There are EXCH (Extra Channel) used for the transmission of the.

移動通信システム10では、移動局14が、その周辺に位置する基地局12(接続中の基地局12を含む)のそれぞれから送信される下り制御チャネルの無線信号を受信しており、受信された無線信号の受信レベル(たとえば、RSSI(Received Signal Strength Indicator、受信信号強度))に基づいて接続先となる基地局12を選択する。たとえば、移動局14は、受信された無線信号の受信レベルが最も高い基地局12を接続先に選択する。そして、移動局14は、上り制御チャネルにおいて、接続先に選択した基地局12に対し、接続要求(リンクチャネル割当要求)を送信し、基地局12と一連の接続処理を行った後、当該基地局12に接続する。   In the mobile communication system 10, the mobile station 14 has received and received a downlink control channel radio signal transmitted from each of the base stations 12 (including the connected base station 12) located in the vicinity thereof. The base station 12 to be connected is selected based on the reception level of the radio signal (for example, RSSI (Received Signal Strength Indicator)). For example, the mobile station 14 selects the base station 12 with the highest reception level of the received radio signal as the connection destination. Then, the mobile station 14 transmits a connection request (link channel allocation request) to the base station 12 selected as the connection destination in the uplink control channel, and after performing a series of connection processes with the base station 12, the base station 12 Connect to station 12.

なお、基地局12から移動局14に対して送信される無線信号には、CCHを介して送信されるBCCH(Broadcasting Control Channel:報知制御チャネル)やPCH(Paging Channel:一斉呼出チャネル)、ICHを介して送信される制御信号や通信信号などがある。これらの無線信号には、タイミング同期用の既知信号が含まれている。そして、移動局14は、基地局12から送信された無線信号と既知信号との相関値を検出し、所定値以上の相関値が検出されたタイミングを、その無線信号の受信タイミングとして取得する。   The radio signal transmitted from the base station 12 to the mobile station 14 includes BCCH (Broadcasting Control Channel), PCH (Paging Channel), and ICH transmitted via the CCH. There are control signals, communication signals, etc. transmitted through the network. These wireless signals include known signals for timing synchronization. Then, the mobile station 14 detects the correlation value between the radio signal transmitted from the base station 12 and the known signal, and acquires the timing when the correlation value equal to or greater than the predetermined value is detected as the reception timing of the radio signal.

これに対し、基地局12は、定期的(例えば、数時間おきに)に周辺に位置する他の基地局12のそれぞれから送信される下り制御チャネルの無線信号を受信する。そして、基地局12は、自局が下り制御チャネルで無線信号を送信するタイミングと同一のタイミングで下り制御チャネルの無線信号を送信する他の基地局12の存在を検出する。そして、同一タイミングの下り制御チャネルで無線信号が送信している他の基地局12を検出すると、基地局12は、自局に接続する移動局14の接続数に基づいて下り制御チャネルで無線信号を送信する際の送信電力を制御する。具体的には、基地局12が、自局への移動局14の接続数の増大に応じて、下り制御チャネルで送信される無線信号の送信電力を低減する制御を行うことにより、移動局14が、下り制御チャネルで送信される無線信号を誤りなく受信できる範囲(自局の実質的なカバー範囲(実効セル))を拡大または縮小する。ここで、一般的に、基地局は、移動局の接続数が多くなると、通信データの伝送に用いられるEXCHを、新規に接続要求を行った移動局14に割り当てることが困難になる。そして、このような状況において、移動局は、基地局に接続要求しても接続することができない。そこで、このように移動局14が接続しにくい状況におかれている基地局12に対し、優先的に、下り制御チャネルで送信する無線信号の送信電力を低減させる制御を行わせることで、周囲に存在する、他の基地局への移動局14の接続容易性を確保しつつ、同一タイミングの下り制御チャネルで送信する無線信号の干渉を低減することができる。   On the other hand, the base station 12 receives the radio signal of the downlink control channel transmitted from each of the other base stations 12 located in the vicinity periodically (for example, every few hours). Then, the base station 12 detects the presence of another base station 12 that transmits the radio signal of the downlink control channel at the same timing as that at which the own station transmits the radio signal on the downlink control channel. When another base station 12 transmitting a radio signal using the downlink control channel at the same timing is detected, the base station 12 transmits the radio signal using the downlink control channel based on the number of connected mobile stations 14 connected to the own station. Controls the transmission power when transmitting. Specifically, the base station 12 performs control to reduce the transmission power of the radio signal transmitted through the downlink control channel in accordance with the increase in the number of connections of the mobile station 14 to the own station, whereby the mobile station 14 However, the range (substantial coverage range (effective cell) of the own station) in which radio signals transmitted on the downlink control channel can be received without error is expanded or reduced. Here, in general, when the number of mobile station connections increases, it becomes difficult for the base station to assign the EXCH used for transmission of communication data to the mobile station 14 that has newly requested a connection. In such a situation, the mobile station cannot connect even if a connection request is made to the base station. Therefore, by causing the base station 12 that is in a situation in which the mobile station 14 is difficult to connect in this way to perform control to reduce the transmission power of the radio signal transmitted through the downlink control channel preferentially, Thus, it is possible to reduce the interference of radio signals transmitted through downlink control channels at the same timing, while ensuring the ease of connection of the mobile station 14 to other base stations.

図3は、同一タイミングの下り制御チャネルで無線信号を送信する他の基地局12を検出した場合における基地局12の、基地局12に対する移動局14の接続数に応じて変動(拡大/縮小)する実効セル半径を示す図である。ある時点で、基地局12の実効セルがセル16−Aで示される範囲になり、セル16−A内に位置する移動局14−1〜14−4が基地局12に接続しているものとする。   FIG. 3 shows fluctuation (enlargement / reduction) depending on the number of connections of the mobile station 14 to the base station 12 in the base station 12 when another base station 12 that transmits a radio signal is detected using the downlink control channel at the same timing. It is a figure which shows the effective cell radius to do. At some point, the effective cell of the base station 12 is in the range indicated by the cell 16-A, and the mobile stations 14-1 to 14-4 located in the cell 16-A are connected to the base station 12. To do.

ここで、基地局12に対する移動局14の接続数が増大した判断されると、基地局12は、その接続数に応じた量だけ、下り制御チャネルで送信する無線信号の送信電力を低減する。これにより、基地局12の実効セルが縮小するので、同一タイミングで周辺基地局から送信される下り制御チャネルの無線信号への干渉の影響を低減することができる。また、たとえば基地局12の実効セルがセル16−Aからセル16−Bで示される範囲に縮小したとすると、それまで基地局12に接続していた移動局14−2,14−3は、他の基地局12にハンドオーバを行うか通信を終了することになる。その結果、基地局12に接続する移動局14の数が減少し、基地局12の通信負荷も減少することになる。   Here, if it is determined that the number of mobile stations 14 connected to the base station 12 has increased, the base station 12 reduces the transmission power of the radio signal transmitted on the downlink control channel by an amount corresponding to the number of connections. Thereby, since the effective cell of the base station 12 is reduced, it is possible to reduce the influence of interference on the radio signal of the downlink control channel transmitted from the neighboring base station at the same timing. For example, if the effective cell of the base station 12 is reduced from the cell 16-A to the range indicated by the cell 16-B, the mobile stations 14-2 and 14-3 connected to the base station 12 until then are A handover to another base station 12 is performed or the communication is terminated. As a result, the number of mobile stations 14 connected to the base station 12 decreases, and the communication load on the base station 12 also decreases.

逆に、基地局12のセル16がセル16−Aで示される範囲にある状態で、基地局12の通信負荷が減少した判断されると、基地局12は、その通信負荷に応じた量だけ、下り制御チャネルで送信する無線信号の送信電力を増加させる。これにより、基地局12の実効セルが拡大する。たとえば移動局14から見た基地局12の実効セルがセル16−Aからセル16−C(初期設定)で示される範囲に拡大したとすると、それまで基地局12の実効セル外にあった移動局14−5〜14−7が新たに基地局12に接続できるようになる。その結果、基地局12に接続する移動局14の数が増大し、基地局12の通信負荷も増大することになる。   Conversely, if it is determined that the communication load of the base station 12 has decreased in a state where the cell 16 of the base station 12 is in the range indicated by the cell 16-A, the base station 12 will only increase the amount corresponding to the communication load. The transmission power of the radio signal transmitted on the downlink control channel is increased. Thereby, the effective cell of the base station 12 is expanded. For example, if the effective cell of the base station 12 viewed from the mobile station 14 is expanded from the cell 16-A to the range indicated by the cell 16-C (initial setting), the movement that has been outside the effective cell of the base station 12 until then is performed. The stations 14-5 to 14-7 can newly connect to the base station 12. As a result, the number of mobile stations 14 connected to the base station 12 increases, and the communication load of the base station 12 also increases.

このように、移動通信システム10では、各基地局12が、自局に対する移動局14の接続数に応じて、下り制御チャネルで無線信号を送信する送信電力を制御することにより、自局の実効セルを拡大または縮小する。このため、各基地局12は、同一タイミングで周辺基地局から送信される下り制御チャネルの無線信号への干渉の影響を低減することができる。   As described above, in the mobile communication system 10, each base station 12 controls the transmission power for transmitting a radio signal on the downlink control channel in accordance with the number of mobile stations 14 connected to the own station. Enlarge or reduce the cell. For this reason, each base station 12 can reduce the influence of the interference with the radio signal of the downlink control channel transmitted from a neighboring base station at the same timing.

以下では、上記処理を実現するために基地局12が備える構成について具体的に説明する。   Below, the structure with which the base station 12 is provided in order to implement | achieve the said process is demonstrated concretely.

図4は、基地局12の機能ブロック図である。同図に示すように、基地局12は、アンテナ20、受信RF部22、受信ベースバンド部24、検出部26、記憶部28、送信電力制御部30、送信ベースバンド部32、および送信RF部34を含んで構成される。   FIG. 4 is a functional block diagram of the base station 12. As shown in the figure, the base station 12 includes an antenna 20, a reception RF unit 22, a reception baseband unit 24, a detection unit 26, a storage unit 28, a transmission power control unit 30, a transmission baseband unit 32, and a transmission RF unit. 34 is comprised.

アンテナ20は、移動局14から送信される無線信号を受信し、受信された無線信号(受信信号)を受信RF部22に出力する。また、アンテナ20は、受信RF部22から供給される無線信号を移動局14に対して送信する。   The antenna 20 receives a radio signal transmitted from the mobile station 14 and outputs the received radio signal (reception signal) to the reception RF unit 22. Further, the antenna 20 transmits a radio signal supplied from the reception RF unit 22 to the mobile station 14.

受信RF部22は、低雑音増幅器、周波数変換器、帯域通過フィルタ、およびA/D変換器を含んで構成される。受信RF部22は、アンテナ20から入力される無線信号を、低雑音増幅器で増幅した後、中間周波数信号にダウンコンバートし、さらにデジタル信号に変換に変換してから、受信ベースバンド部24に出力する。   The reception RF unit 22 includes a low noise amplifier, a frequency converter, a band pass filter, and an A / D converter. The reception RF unit 22 amplifies the radio signal input from the antenna 20 with a low noise amplifier, down-converts it to an intermediate frequency signal, further converts it into a digital signal, and outputs it to the reception baseband unit 24 To do.

受信ベースバンド部24は、直並列変換器、FFT(Fast Fourier Transform)部、並直列変換器、および復調部(図示せず)を含んで構成される。受信ベースバンド部24は、受信RF部22から入力されるデジタル信号に、直並列変換、CP(Cyclic Prefix)の除去、1次復調(高速フーリエ変換)、並直列変換、2次復調(シンボルデマッピング)などを施し、得られた受信データを上位レイヤ(図示せず)に出力する。   The reception baseband unit 24 includes a serial-parallel converter, an FFT (Fast Fourier Transform) unit, a parallel-serial converter, and a demodulation unit (not shown). The reception baseband unit 24 converts the digital signal input from the reception RF unit 22 from serial-to-parallel conversion, CP (Cyclic Prefix) removal, primary demodulation (fast Fourier transform), parallel-serial conversion, secondary demodulation (symbol decoding). Mapping) and the like, and output the received data to an upper layer (not shown).

検出部26は、定期的に、周辺に位置する複数の他の基地局12のそれぞれから送信される下り制御チャネルの無線信号を受信し、自局が下り制御チャネルで無線信号を送信するタイミングと同一のタイミングの下り制御チャネルで無線信号を送信する他の基地局12の存在を検出すると、その旨を、送信電力制御部30に通知する。また、検出部26は、基地局12に対する移動局14の接続数を常時または定期的に検出し、検出された接続数を送信電力制御部30に通知する。より具体的には、検出部26は、基地局12が割り当て可能なPRUを割り当てている移動局14の数に基づいて、基地局12の接続数を検出する。   The detection unit 26 periodically receives a radio signal of a downlink control channel transmitted from each of a plurality of other base stations 12 located in the vicinity, and a timing at which the own station transmits a radio signal on the downlink control channel When the presence of another base station 12 that transmits a radio signal using the downlink control channel at the same timing is detected, the transmission power control unit 30 is notified of this. In addition, the detection unit 26 detects the number of connections of the mobile station 14 to the base station 12 constantly or periodically, and notifies the transmission power control unit 30 of the detected number of connections. More specifically, the detection unit 26 detects the number of connections of the base station 12 based on the number of mobile stations 14 to which PRUs that can be allocated by the base station 12 are assigned.

記憶部28は、たとえば半導体メモリ素子で構成され、基地局12の動作に必要となるプログラム、データ、図5に示すテーブルなどを記憶する。なお、図5に示すテーブルは、基地局12に対する移動局14の接続数と、基地局12が下り制御チャネルで送信する無線信号の送信電力と、の対応関係を定義したテーブルの一例である。   The storage unit 28 is composed of, for example, a semiconductor memory element, and stores a program, data, a table shown in FIG. The table shown in FIG. 5 is an example of a table that defines a correspondence relationship between the number of mobile stations 14 connected to the base station 12 and the transmission power of radio signals transmitted from the base station 12 through the downlink control channel.

送信電力制御部30は、検出部26により検出される同一のタイミングの下り制御チャネルで無線信号を送信する他の基地局12の存在と、および、基地局12に対する移動局14の接続数とに応じて、下り制御チャネルで送信する無線信号の送信電力を制御する。すなわち、送信電力制御部30は、検出部26より検出される基地局12に対する移動局14の接続数に対応する送信電力を、記憶部28に記憶される接続数と送信電力との対応関係を定義したテーブル(図5参照)から読み出す。そして、送信電力制御部30は、読み出された送信電力で下り制御チャネルの無線信号(BCCH、PCHなど)を送信するよう、送信ベースバンド部32に指示する。   The transmission power control unit 30 determines the presence of another base station 12 that transmits a radio signal on the downlink control channel at the same timing detected by the detection unit 26, and the number of mobile stations 14 connected to the base station 12. Accordingly, the transmission power of the radio signal transmitted through the downlink control channel is controlled. That is, the transmission power control unit 30 indicates the transmission power corresponding to the number of connections of the mobile station 14 to the base station 12 detected by the detection unit 26, and the correspondence between the number of connections stored in the storage unit 28 and the transmission power. Read from the defined table (see FIG. 5). Then, the transmission power control unit 30 instructs the transmission baseband unit 32 to transmit the radio signal (BCCH, PCH, etc.) of the downlink control channel with the read transmission power.

このため、たとえば図5に示すテーブルによれば、基地局12に対する移動局14の接続数が7から13に増大すると、下り制御チャネルで送信する無線信号の送信電力がB[dB]からC[dB](B>C)に低減する。   Therefore, according to the table shown in FIG. 5, for example, when the number of mobile stations 14 connected to the base station 12 increases from 7 to 13, the transmission power of the radio signal transmitted on the downlink control channel is changed from B [dB] to C [ dB] (B> C).

逆に、基地局12に対する移動局14の接続数が7から3に減少すると、送信電力がBからAに増大(A>B)する(初期設定である送信電力Aに戻る)ため、基地局12の実効セル半径は拡大する(初期設定の実行セル半径に戻る)。   Conversely, when the number of mobile stations 14 connected to the base station 12 decreases from 7 to 3, the transmission power increases from B to A (A> B) (returns to the initial transmission power A). The effective cell radius of 12 expands (returns to the default execution cell radius).

送信ベースバンド部32は、直並列変換器、IFFT(Inverse Fast Fourier Transform)部、並直列変換器、および変調部(図示せず)を含んで構成される。送信ベースバンド部32は、上位レイヤ(図示せず)から入力される接続中の基地局12または接続先となる基地局12宛ての送信データに、1次変調(シンボルマッピング)、直並列変換、2次変調(逆高速フーリエ変換)、CPの付加、並直列変換などを施し、得られたデジタル信号を送信RF部34に出力する。   The transmission baseband unit 32 includes a serial-parallel converter, an IFFT (Inverse Fast Fourier Transform) unit, a parallel-serial converter, and a modulation unit (not shown). The transmission baseband unit 32 performs primary modulation (symbol mapping), serial-parallel conversion, on transmission data addressed to the connected base station 12 or the connected base station 12 input from an upper layer (not shown). Secondary modulation (inverse fast Fourier transform), addition of CP, parallel serial conversion, and the like are performed, and the obtained digital signal is output to the transmission RF unit 34.

送信RF部34は、電力増幅器、周波数変換器、帯域通過フィルタ、およびD/A変換器を含んで構成される。送信RF部34は、送信ベースバンド部32から入力されるデジタル信号を、アナログ信号に変換した後、無線信号にアップコンバートし、電力増幅器で送信出力レベルまで増幅してから、アンテナ20に供給する。   The transmission RF unit 34 includes a power amplifier, a frequency converter, a band pass filter, and a D / A converter. The transmission RF unit 34 converts the digital signal input from the transmission baseband unit 32 into an analog signal, then up-converts it to a radio signal, amplifies it to a transmission output level with a power amplifier, and then supplies it to the antenna 20 .

次に、図6に基づいて、基地局12の動作の一例を説明する。図6は、基地局12の送信電力制御処理の一例を示す図である。   Next, an example of the operation of the base station 12 will be described based on FIG. FIG. 6 is a diagram illustrating an example of transmission power control processing of the base station 12.

図6に示すように、基地局12は、常時または定期的に、自局に対する移動局14の接続数を監視している(S100)。そして、基地局12は、同一のタイミングの下り制御チャネルで無線信号を送信する他の基地局12を検出すると(S102:Y)、現在の接続数に基づいて、下り制御チャネルにおける無線信号の送信電力を決定する(S104)。そして、基地局12は、S102で決定された送信電力で下り制御チャネルにおける無線信号(BCCH、PCHなど)を送信する(S106)。さらに、自局に対する移動局14の接続数が変化すると(S108:Y)、基地局12は、図5に示すように、その接続数に基づいて、下り制御チャネルにおける無線信号の送信電力を決定する(S104)。すなわち、基地局12は、自局に対する移動局14の接続数の増大に応じて、下り制御チャネルにおける無線信号の送信電力を低減させ、逆に、自局に対する移動局14の減少に応じて、下り制御チャネルにおける無線信号の送信電力を増大する。   As shown in FIG. 6, the base station 12 monitors the number of connections of the mobile station 14 to the own station constantly or periodically (S100). When the base station 12 detects another base station 12 that transmits a radio signal on the downlink control channel at the same timing (S102: Y), the base station 12 transmits the radio signal on the downlink control channel based on the current number of connections. The power is determined (S104). Then, the base station 12 transmits a radio signal (BCCH, PCH, etc.) in the downlink control channel with the transmission power determined in S102 (S106). Further, when the number of connections of the mobile station 14 to the own station changes (S108: Y), the base station 12 determines the transmission power of the radio signal in the downlink control channel based on the number of connections as shown in FIG. (S104). That is, the base station 12 reduces the transmission power of the radio signal in the downlink control channel according to the increase in the number of connections of the mobile station 14 to the own station, and conversely, according to the decrease of the mobile station 14 relative to the own station, The transmission power of the radio signal in the downlink control channel is increased.

これにより、基地局12に対する移動局14の接続数が多い場合には、基地局12の実効セルが縮小し、逆に、基地局12に対する移動局14の接続数が少ない場合には、基地局12の実効セルが拡大する(実行セルが初期設定に戻る)ようになる。   Thereby, when the number of connections of the mobile station 14 to the base station 12 is large, the effective cell of the base station 12 is reduced. Conversely, when the number of connections of the mobile station 14 to the base station 12 is small, the base station 12 12 effective cells are expanded (the execution cell returns to the initial setting).

以上説明した移動通信システム10によれば、各基地局12が、同一タイミングの下り制御チャネルで無線信号を送信する他の基地局12を検出した場合、自局に対する移動局14の接続数に応じて、下り制御チャネルにおける無線信号の送信電力を制御することにより、自局の実効セルを拡大または縮小する。このため、各基地局12は、同一タイミングで周辺基地局から送信される下り制御チャネルの無線信号への干渉の影響を低減することができる。   According to the mobile communication system 10 described above, when each base station 12 detects another base station 12 that transmits a radio signal using the downlink control channel at the same timing, it depends on the number of mobile stations 14 connected to the own station. Thus, the effective cell of the own station is enlarged or reduced by controlling the transmission power of the radio signal in the downlink control channel. For this reason, each base station 12 can reduce the influence of the interference with the radio signal of the downlink control channel transmitted from a neighboring base station at the same timing.

なお、本発明は、上記実施形態に限定されるものではない。   The present invention is not limited to the above embodiment.

たとえば、本発明は、OFDMA方式およびTDMA/TDD方式を採用する移動通信システムに限らず、干渉の影響が問題視される移動通信システム全般に広く適用可能である。   For example, the present invention is not limited to mobile communication systems that employ OFDMA and TDMA / TDD, but can be widely applied to all mobile communication systems in which the influence of interference is problematic.

また、本発明は、基地局に対する移動局の接続数に応じて、下り制御チャネルにて無線信号を送信する際の送信電力を3種類規定したが、これに限られるものではない。さらに、本発明は、基地局に対する移動局の接続数に応じて、下り制御チャネルにて無線信号を送信する際の送信電力を制御したが、移動局の接続数の代わりに、基地局における処理負荷や、サブチャネルの利用率に応じて、制御チャネルにて無線信号を送信する際の送信電力を制御してもよい。   Further, although the present invention defines three types of transmission power when transmitting a radio signal on the downlink control channel according to the number of mobile stations connected to the base station, the present invention is not limited to this. Furthermore, the present invention controls the transmission power when transmitting a radio signal on the downlink control channel according to the number of mobile stations connected to the base station. You may control the transmission power at the time of transmitting a radio signal with a control channel according to load and the utilization factor of a subchannel.

10 移動通信システム、12 基地局、14 移動局、16 セル、20 アンテナ、22 受信RF部、24 受信ベースバンド部、26 検出部、28 記憶部、30 送信電力制御部、32 送信ベースバンド部、34 送信RF部。


10 mobile communication systems, 12 base stations, 14 mobile stations, 16 cells, 20 antennas, 22 reception RF units, 24 reception baseband units, 26 detection units, 28 storage units, 30 transmission power control units, 32 transmission baseband units, 34 Transmitting RF unit.


Claims (4)

無線信号を送信する送信手段と、
自局に接続する移動局の接続数を検出する検出手段と、
自局と同一タイミングの下り制御チャネルで無線信号を送信する他の基地局が存在する場合、前記検出手段により検出される接続数に応じて、前記送信手段による下り制御チャネルにおける無線信号の送信電力を制御する制御手段と、
を含むことを特徴とする基地局。
A transmission means for transmitting a radio signal;
Detection means for detecting the number of mobile stations connected to the own station;
When there is another base station that transmits a radio signal on the downlink control channel at the same timing as the own station, the transmission power of the radio signal on the downlink control channel by the transmission unit depends on the number of connections detected by the detection unit Control means for controlling
A base station comprising:
請求項1に記載の基地局において、
前記制御手段は、前記検出手段により検出される接続数の増大に応じて、前記送信手段による前記下り制御チャネルにおける無線信号の送信電力を低減する、
ことを特徴とする基地局。
In the base station according to claim 1,
The control means reduces the transmission power of the radio signal in the downlink control channel by the transmission means according to the increase in the number of connections detected by the detection means,
A base station characterized by that.
請求項2に記載の基地局において、
前記制御手段は、前記検出手段により検出される接続数の減少に応じて、前記送信手段による前記下り制御チャネルにおける無線信号の送信電力を増大する、
ことを特徴とする基地局。
In the base station according to claim 2,
The control means increases the transmission power of the radio signal in the downlink control channel by the transmission means according to the decrease in the number of connections detected by the detection means.
A base station characterized by that.
基地局が自局に接続する移動局の接続数を検出するステップと、
自局と同一タイミングの下り制御チャネルで無線信号を送信する他の基地局が存在する場合、前記検出した接続数に応じて、前記基地局が下り制御チャネルにおける無線信号の送信電力を制御するステップと、
を含むことを特徴とする通信制御方法。

Detecting the number of mobile stations connected to the base station by the base station;
When there is another base station that transmits a radio signal using a downlink control channel having the same timing as the own station, the base station controls the transmission power of the radio signal in the downlink control channel according to the detected number of connections. When,
The communication control method characterized by including.

JP2012007248A 2012-01-17 2012-01-17 Base station and communication control method Expired - Fee Related JP5981150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007248A JP5981150B2 (en) 2012-01-17 2012-01-17 Base station and communication control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007248A JP5981150B2 (en) 2012-01-17 2012-01-17 Base station and communication control method

Publications (2)

Publication Number Publication Date
JP2013150064A true JP2013150064A (en) 2013-08-01
JP5981150B2 JP5981150B2 (en) 2016-08-31

Family

ID=49047183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007248A Expired - Fee Related JP5981150B2 (en) 2012-01-17 2012-01-17 Base station and communication control method

Country Status (1)

Country Link
JP (1) JP5981150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089789A1 (en) * 2021-11-19 2023-05-25 株式会社Nttドコモ Base station and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023243A (en) * 1998-07-01 2000-01-21 Sanyo Electric Co Ltd Base station device
JP2011166274A (en) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp Mobile wireless communication system
WO2011129447A1 (en) * 2010-04-16 2011-10-20 京セラ株式会社 Wireless communication system, high-power base station, low-power base station, and communication control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023243A (en) * 1998-07-01 2000-01-21 Sanyo Electric Co Ltd Base station device
JP2011166274A (en) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp Mobile wireless communication system
WO2011129447A1 (en) * 2010-04-16 2011-10-20 京セラ株式会社 Wireless communication system, high-power base station, low-power base station, and communication control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089789A1 (en) * 2021-11-19 2023-05-25 株式会社Nttドコモ Base station and communication method

Also Published As

Publication number Publication date
JP5981150B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
US20240129914A1 (en) Method and apparatus for coverage enhancement of msg3
US10374777B2 (en) Control signaling in a shared communication medium
JP4412505B2 (en) Wireless communication system
EP1793635B1 (en) Method for flexibly surporting non-symmetrical service in multi-carrier tdd mobile communication system
EP2717607B1 (en) Wireless resource allocation method, wireless resource allocation device, and communication system
US20100265910A1 (en) Method, system and apparatus for assigning pilot resources
JP2009171288A (en) Scheduling method and wireless base station
WO2012008593A1 (en) Wireless base station and communications control method
JP2010034908A (en) Radio base station and radio communication method
KR20190073506A (en) Signal transmission method, terminal device and network device
US8374211B2 (en) Method for data transmission and communication system
JP2008035288A (en) Wireless communication apparatus and wireless communication method
US8570973B2 (en) Wireless communication system, base station and transmitting method
US12089238B1 (en) Method and system for controlling interference between access nodes operating on adjacent TDD carriers with different TDD configurations
JP2009239778A (en) Base station device, mobile communication system, method of controlling base station, and base station control program
JP5981150B2 (en) Base station and communication control method
KR20200138386A (en) Clear channel listening method, device and device
JP5404355B2 (en) Base station, mobile communication system, and communication load balancing method
JP5378164B2 (en) Mobile station and handover method thereof
JP7542073B2 (en) User terminal, base station and wireless communication method
US11304255B1 (en) Use of frequency band comparison as basis to control configuration of dual-connectivity service
US20230142158A1 (en) Method and a network node for reducing impact of interference
JP5702626B2 (en) Communication apparatus and communication method
JP5306167B2 (en) Mobile station and reception timing adjustment method
JP2011124942A (en) Mobile communication system, base station, mobile station, and radio communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160728

R150 Certificate of patent or registration of utility model

Ref document number: 5981150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees