JP2013149452A - Air battery - Google Patents

Air battery Download PDF

Info

Publication number
JP2013149452A
JP2013149452A JP2012008597A JP2012008597A JP2013149452A JP 2013149452 A JP2013149452 A JP 2013149452A JP 2012008597 A JP2012008597 A JP 2012008597A JP 2012008597 A JP2012008597 A JP 2012008597A JP 2013149452 A JP2013149452 A JP 2013149452A
Authority
JP
Japan
Prior art keywords
air battery
electrolytic solution
electrode
holding container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008597A
Other languages
Japanese (ja)
Inventor
Shin Nagayama
森 長山
Hirotaka Chiba
啓貴 千葉
Yoshiko Tsukada
佳子 塚田
Atsushi Miyazawa
篤史 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012008597A priority Critical patent/JP2013149452A/en
Publication of JP2013149452A publication Critical patent/JP2013149452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that an entire device of a conventional air battery has a very complicated and large structure as an electrolytic solution is circulated at the battery exterior for the battery composed of a number of unit cells.SOLUTION: An air battery C1 includes a positive electrode 1, a metal negative electrode 2, and an electrolytic solution holding container 4 where an electrolytic solution 3 is poured. The electrolytic solution holding container 4 includes: an electrode part 4A disposed between the positive electrode 1 and the metal negative electrode 2; and a heat radiation part 4B extending to the battery exterior. In the air battery C1, the electrolytic solution 3 may be circulated between the electrode part 4A and the heat radiation part 4B. This structure enables a separation of a deposit Q occurring from the electrolytic solution 3 to be conducted in a single battery. Thus, even when an air battery module M is formed by multiple air batteries, the downsizing and the weight reduction of an entire device is realized.

Description

本発明は、酸素を正極活物質として利用する空気電池の改良に関するものである。   The present invention relates to an improvement of an air battery using oxygen as a positive electrode active material.

従来の空気電池としては、例えば、特許文献1に記載されたものがある。特許文献1に記載の空気電池は、多数の単位セルから成る電池を備え、充電時には、貯液タンクの電解液を電池に循環供給すると共に、放電時には、貯液タンクを切り離して電池に付設した排液受槽内の電解液を電池に循環供給するものである。   As a conventional air battery, for example, there is one described in Patent Document 1. The air battery described in Patent Document 1 includes a battery made up of a large number of unit cells. At the time of charging, the electrolytic solution in the liquid storage tank is circulated and supplied to the battery, and at the time of discharging, the liquid storage tank is separated and attached to the battery. The electrolytic solution in the drainage tank is circulated and supplied to the battery.

この空気電池は、貯液タンクと電解液供給用の圧送ポンプとの間に、電解液を通すフィルタを備えており、また、貯液タンク内に、還流液流入パイプが臨む沈澱槽を備えると共に、貯液タンク内の底面に、攪拌用パイプの多数の噴出口を配置している。そして、充電に先立ち、攪拌用パイプから噴出する圧送液により、貯液タンク内に沈降した電解液添加剤を攪拌溶解させ、充電に際して、放電時に電池内に蓄積した脱落亜鉛や酸化亜鉛を沈澱槽内で攪拌溶解させるようにしている。   The air battery includes a filter through which the electrolyte passes between the liquid storage tank and the electrolyte feed pump, and a precipitation tank in which the reflux liquid inflow pipe faces in the liquid storage tank. A large number of spouts for the stirring pipe are arranged on the bottom surface in the liquid storage tank. Prior to charging, the electrolyte additive settled in the liquid storage tank is stirred and dissolved by the pumping liquid ejected from the stirring pipe, and during charging, the falling zinc and zinc oxide accumulated in the battery at the time of discharging are settled. The solution is stirred and dissolved in the inside.

特公昭58−32750号公報Japanese Patent Publication No.58-32750

ところで、この種の空気電池においては、放電に伴って電解液から金属塩が析出するために、その析出物により伝導度の低下が起こり、出力が低下することがある。これに対して、上記従来の空気電池にあっては、析出物をフィルタで除去することが可能であるものの、多数の単位セルから成る電池に対して、圧送ポンプ、貯液タンク、排液受槽、沈殿槽、攪拌用パイプ及び各配管類を夫々配置し、電解液を電池外部に流通させて順環利用しているので、装置全体が非常に複雑で大型になるという問題点があり、このような問題点を解決することが課題であった。   By the way, in this kind of air battery, since a metal salt precipitates from the electrolytic solution along with discharge, the conductivity may decrease due to the precipitate, and the output may decrease. On the other hand, in the conventional air battery, although it is possible to remove precipitates with a filter, the pump including a pump, a storage tank, and a drainage tank is used for a battery composed of many unit cells. In addition, the sedimentation tank, the agitating pipe and each piping are respectively arranged, and the electrolyte is circulated outside the battery and used in the forward direction, so there is a problem that the entire apparatus becomes very complicated and large. It was a problem to solve such problems.

本発明は、上記従来の状況に鑑みて成されたものであって、電解液から生じた析出物の分離を単一の電池内部で行うことができ、多数個を用いて空気電池モジュールを構成した場合でも、装置全体の小型軽量化を実現することができる空気電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and can separate precipitates generated from an electrolyte solution inside a single battery and constitute an air battery module using a large number of them. Even in such a case, it is an object to provide an air battery capable of realizing a reduction in size and weight of the entire apparatus.

本発明の空気電池は、正極と、金属負極と、電解液が注入された電解液保持容器を備えている。そして、空気電池は、電解液保持容器が、正極と金属負極との間に介在する電極部と、電池外側へ延出する放熱部を備えると共に、電極部と放熱部との間で電解液が循環可能である構成としており、上記構成をもって従来の課題を解決するための手段としている。   The air battery of the present invention includes a positive electrode, a metal negative electrode, and an electrolytic solution holding container into which an electrolytic solution is injected. In the air battery, the electrolyte holding container includes an electrode part interposed between the positive electrode and the metal negative electrode, and a heat radiating part extending to the outside of the battery, and the electrolytic solution is provided between the electrode part and the heat radiating part. The configuration is such that it can be circulated, and the above configuration is used as means for solving the conventional problems.

本発明の空気電池は、上記構成を採用したことから、電解液から生じた析出物の分離を単一の電池内部で行うことができる。これにより、当該空気電池を多数個を用いて空気電池モジュールを構成した場合でも、装置全体の小型軽量化を実現することができる。   Since the air battery of the present invention employs the above-described configuration, the precipitate generated from the electrolyte can be separated inside a single battery. Thereby, even when an air battery module is configured by using a large number of the air batteries, the entire apparatus can be reduced in size and weight.

本発明に係る空気電池の一実施形態を説明する断面図(A)及び正極側の正面図(B)である。It is sectional drawing (A) explaining one Embodiment of the air battery which concerns on this invention, and the front view (B) by the side of a positive electrode. 本発明の空気電池の他の実施形態を示す正極側の正面説明図である。It is front explanatory drawing by the side of the positive electrode which shows other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を示す正極側の正面説明図である。It is front explanatory drawing by the side of the positive electrode which shows other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する断面図である。It is sectional drawing explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する断面図である。It is sectional drawing explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する断面図である。It is sectional drawing explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する正面図である。It is a front view explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する正面図である。It is a front view explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する正面図である。It is a front view explaining other embodiment of the air battery of this invention. 本発明の空気電池のさらに他の実施形態を説明する正面図である。It is a front view explaining other embodiment of the air battery of this invention. 本発明の空気電池を備えた空気電池モジュールの一実施形態を説明する断面図である。It is sectional drawing explaining one Embodiment of the air battery module provided with the air battery of this invention.

図1に示す空気電池C1は、正極1(空気極)1と、金属負極2と、電解液3が注入された電解液保持容器4を備えている。そして、空気電池C1は、電解液保持容器4が、正極1と金属負極2との間に介在する電極部4Aと、電池外側へ延出する放熱部4Bを備えると共に、電極部4Aと放熱部4Bとの間で電解液3が循環可能な構造である。   An air battery C1 shown in FIG. 1 includes a positive electrode 1 (air electrode) 1, a metal negative electrode 2, and an electrolytic solution holding container 4 into which an electrolytic solution 3 is injected. The air battery C1 includes an electrode part 4A interposed between the positive electrode 1 and the metal negative electrode 2, and a heat radiating part 4B extending outside the battery, and the electrode part 4A and the heat radiating part. In this structure, the electrolytic solution 3 can be circulated with 4B.

正極1は、詳細な図示を省略したが、正極部材と、最外層に配置した液密通気部材を備えている。正極部材は、例えば、触媒成分、及び触媒成分を担持する導電性の触媒担体を含むものである。   Although not shown in detail, the positive electrode 1 includes a positive electrode member and a liquid-tight ventilation member arranged in the outermost layer. The positive electrode member includes, for example, a catalyst component and a conductive catalyst carrier that supports the catalyst component.

触媒成分としては、具体的には、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)、アルミニウム(Al)等の金属及びこれらの合金などから選択することができる。   Specific examples of the catalyst component include platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), osmium (Os), tungsten (W), lead (Pb), Metals such as iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga), aluminum (Al) and the like An alloy can be selected.

触媒成分の形状や大きさは、特に限定されるものではなく、従来公知の触媒成分と同様の形状及び大きさを採用することができる。ただし、触媒成分の形状は、粒状であることが好ましい。触媒粒子の平均粒子径は、1〜30nmであることが好ましい。触媒粒子の平均粒子径がこのような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスを適切に制御することができる。   The shape and size of the catalyst component are not particularly limited, and the same shape and size as those of conventionally known catalyst components can be employed. However, the shape of the catalyst component is preferably granular. The average particle diameter of the catalyst particles is preferably 1 to 30 nm. When the average particle diameter of the catalyst particles is within such a range, it is possible to appropriately control the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading.

触媒担体は、上述した触媒成分を担持するための担体、及び触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンであることが好ましい。触媒担体としては、具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。触媒担体のサイズについても特に限定されないが、担持の簡便さ、触媒利用率、触媒層の厚みを適切な範囲で制御するなどの観点からは、平均粒子径を5〜200nm程度、好ましくは10〜100nm程度とするとよい。   The catalyst carrier functions as a carrier for supporting the above-described catalyst component, and an electron conduction path involved in the transfer of electrons between the catalyst component and another member. Any catalyst carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersion state and sufficient electron conductivity, and the main component is preferably carbon. Specific examples of the catalyst carrier include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite, and the like. The size of the catalyst carrier is not particularly limited, but from the viewpoint of controlling the ease of loading, the catalyst utilization, and the thickness of the catalyst layer within an appropriate range, the average particle size is about 5 to 200 nm, preferably 10 to 10 nm. About 100 nm is preferable.

正極部材において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10〜80質量%、より好ましくは30〜70質量%であるが、これらに限定されるものではなく、空気電池に適用される従来公知の材料を適用することができる。   In the positive electrode member, the supported amount of the catalyst component is preferably 10 to 80% by mass, more preferably 30 to 70% by mass with respect to the total amount of the electrode catalyst. A conventionally known material applied to the above can be applied.

液密通気部材は、電解液3に対して液密性(水密性)を有し、且つ酸素に対して通気性を有する部材である。この液密通気部材は、電解液3が外部へ漏出するのを阻止し得るように、ポリオレフィンやフッ素樹脂などの撥水膜を用いており、一方、正極部材に酸素を供給し得るように多数の微細孔を有している。   The liquid-tight ventilation member is a member that has liquid-tightness (water-tightness) with respect to the electrolytic solution 3 and has air-permeability with respect to oxygen. This liquid-tight ventilation member uses a water-repellent film such as polyolefin or fluororesin so as to prevent the electrolytic solution 3 from leaking to the outside, and on the other hand, a large number so that oxygen can be supplied to the positive electrode member. Have fine pores.

金属負極2は、標準電極電位が水素より卑な金属単体又は合金から成る負極活物質を含むものである。標準電極電位が水素より卑な金属単体としては、例えば亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)、マンガン(Mn)、ケイ素(Si)、チタン(Ti)、クロム(Cr)、バナジウム(V)などを挙げることができる。また、合金としては、これらの金属元素に1種以上の金属元素又は非金属元素を加えたものを挙げることができる。しかしながら、これらに限定されるものではなく、空気電池に適用される従来公知の材料を適用することができる。   The metal negative electrode 2 includes a negative electrode active material made of a single metal or an alloy whose standard electrode potential is lower than that of hydrogen. Examples of simple metals whose standard electrode potential is lower than that of hydrogen include zinc (Zn), iron (Fe), aluminum (Al), magnesium (Mg), manganese (Mn), silicon (Si), titanium (Ti), and chromium. (Cr), vanadium (V), etc. can be mentioned. Examples of the alloy include those obtained by adding one or more metal elements or non-metal elements to these metal elements. However, the material is not limited to these, and a conventionally known material applied to the air battery can be applied.

電解液3は、例えば塩化カリウム、塩化ナトリウム、水酸化カリウムなどの水溶液を適用することができるが、これらに限定されるものではなく、空気電池に適用される従来公知の電解液を適用することができる。電解液3の量は、当該空気電池C1の放電時間、放電時に生じる金属塩の析出量、電解液保持容器4の空孔の総容積、及び一定の組成を維持し得る流通量などを考慮して決定される。   As the electrolytic solution 3, for example, an aqueous solution of potassium chloride, sodium chloride, potassium hydroxide or the like can be applied, but is not limited thereto, and a conventionally known electrolytic solution applied to an air battery is applied. Can do. The amount of the electrolytic solution 3 takes into consideration the discharge time of the air battery C1, the amount of metal salt deposited during discharge, the total volume of pores in the electrolytic solution holding container 4, and the flow rate capable of maintaining a constant composition. Determined.

電解液保持容器4は、例えば撥水処理を行っていないグラスペーパー、ポリエチレンやポリプロピレン等のポリオレフィンからなる多孔質膜セパレータを含むことができる。しかしながら、これらに限定されるものではなく、空気電池に適用される従来公知の材料を適用することができる。   The electrolyte solution holding container 4 can include, for example, a glass paper that has not been subjected to water repellent treatment, and a porous membrane separator made of polyolefin such as polyethylene or polypropylene. However, the material is not limited to these, and a conventionally known material applied to the air battery can be applied.

また、電解液保持容器4は、正極及び負極以外の構成要素として、とくに電池外側となる放熱部4B、及びケーシング4Cを有している。ケーシング4Cは、その材料が限定されるものではないが、熱抵抗の少ない金属で形成することが望ましく、例えば、銅(Cu)若しくは銅合金や、アルミニウム(Al)若しくはアルミニウム合金を採用することができる。   In addition, the electrolytic solution holding container 4 includes a heat radiating portion 4B and a casing 4C that are particularly outside the battery as components other than the positive electrode and the negative electrode. Although the material of the casing 4C is not limited, it is preferable that the casing 4C be formed of a metal having low thermal resistance. For example, copper (Cu) or a copper alloy, aluminum (Al) or an aluminum alloy may be employed. it can.

この実施形態の空気電池C1は、電解液保持容器4の放熱部4Bがヒートシンク5を備えている。図示例のヒートシンク5は、放熱部4Bを形成するケーシング4Cに一体形成した放熱板であって、複数枚が一定の間隔で設けてある。このヒートシンク5としては、放熱板のほか、棒状などの適宜形状を有するものや、多孔質体から成るものを採用することができる。   In the air battery C <b> 1 of this embodiment, the heat radiating part 4 </ b> B of the electrolytic solution holding container 4 includes a heat sink 5. The heat sink 5 in the illustrated example is a heat radiating plate formed integrally with a casing 4C forming the heat radiating portion 4B, and a plurality of heat sinks are provided at regular intervals. As the heat sink 5, in addition to a heat radiating plate, one having an appropriate shape such as a rod shape or one made of a porous body can be adopted.

また、空気電池C1は、電解液保持容器4が、放電時に電解液3から生じた析出物を放熱部4B内に蓄積する構造を有しており、この実施形態では、前記析出物を放熱部4B内に蓄積する構造として、電極部4Aの下側に放熱部4Bが設けてある。すなわち、図示例の空気電池C1は、析出物をその自重によって放熱部4Bの下部に沈殿させる構造である。   The air battery C1 has a structure in which the electrolytic solution holding container 4 accumulates deposits generated from the electrolytic solution 3 during discharge in the heat radiating portion 4B. In this embodiment, the deposits are stored in the heat radiating portion. As a structure for accumulating in 4B, a heat radiating portion 4B is provided below the electrode portion 4A. That is, the air battery C1 in the illustrated example has a structure in which precipitates are precipitated in the lower portion of the heat radiating portion 4B by its own weight.

さらに、空気電池C1は、図(A)中に仮想線で示すように、正極1、金属負極2及び電解液保持容器4の電極部4Aを保温する電極保温手段6を備えている。電極保温手段6は、その構成がとくに限定されるものではなく、周知の遮熱シート等のように内部を保温し得る適宜の部材を採用することができる。   Furthermore, the air battery C <b> 1 includes an electrode heat retaining means 6 that retains the temperature of the electrode portion 4 </ b> A of the positive electrode 1, the metal negative electrode 2, and the electrolyte solution holding container 4, as indicated by phantom lines in FIG. The configuration of the electrode heat retaining means 6 is not particularly limited, and an appropriate member that can keep the inside warm, such as a well-known heat shield sheet, can be employed.

さらに、空気電池C1は、図示の如く、初期状態において電解液保持容器4に電解液3が充填してある。この場合には、自己放電をしないように、当該電池を図示しないケースに気密的に収容したり、正極1を剥離可能な気密シートで被覆したりして、正極1への酸素供給を遮断しておく必要がある。   Further, as shown in the drawing, the air battery C1 has an electrolyte solution holding container 4 filled with an electrolyte solution 3 in an initial state. In this case, in order not to self-discharge, the battery is hermetically accommodated in a case (not shown), or the positive electrode 1 is covered with a peelable air-tight sheet to cut off the oxygen supply to the positive electrode 1. It is necessary to keep.

上記の構成を備えた空気電池C1は、正極1に空気(酸素)を導入することで放電を開始する。この際、空気電池C1は、放電に伴って電解液3から金属塩(析出物)が析出する。この析出物は、放電反応の低下をもたらす原因になるのであるが、その一方で、電解液3の温度が高いほど溶解量が増加する(析出物が溶け易い)ことが判明している。   The air battery C <b> 1 having the above configuration starts discharging by introducing air (oxygen) into the positive electrode 1. At this time, in the air battery C <b> 1, a metal salt (precipitate) is deposited from the electrolytic solution 3 with discharge. This precipitate causes a decrease in the discharge reaction. On the other hand, it has been found that the higher the temperature of the electrolytic solution 3, the more the amount of dissolution increases (the precipitate is more easily dissolved).

そこで、空気電池C1は、正極1及び負極電極2に挟まれた電極部4Aと、電池外部に延出した放熱部4Bを備えた電解液保持容器4とすることで、電極部4A内の電解液3と放熱部4B内の電解液3とに温度差を設けている。これにより、温度が高い電極部4Aでは、析出物の溶解量が大きく(析出量が少なく)なり、析出物の影響を受けない良好な放電が行われる。また、温度が低く且つ放電に寄与しない放熱部4Bでは、析出物の溶解量が小さく(析出量が多く)なり、図1(A)に示すように、電解液3から析出物Qが分離されることとなる。   Therefore, the air battery C1 is an electrolytic solution holding container 4 including an electrode part 4A sandwiched between the positive electrode 1 and the negative electrode 2 and a heat radiating part 4B extending to the outside of the battery. A temperature difference is provided between the liquid 3 and the electrolytic solution 3 in the heat radiation part 4B. As a result, in the electrode portion 4A having a high temperature, the amount of precipitates dissolved is large (the amount of precipitation is small), and a good discharge that is not affected by the precipitates is performed. In addition, in the heat radiating portion 4B, which has a low temperature and does not contribute to discharge, the amount of precipitate dissolved is small (the amount of precipitation is large), and the precipitate Q is separated from the electrolyte 3 as shown in FIG. The Rukoto.

このようにして、上記の空気電池C1は、電解液3から生じた析出物Qの分離を単一の電池内部で行うことができる。これにより、当該空気電池を多数個を用いて空気電池モジュールを構成した場合でも、装置全体の小型軽量化を実現することができる。   In this manner, the air battery C1 can separate the precipitate Q generated from the electrolyte solution 3 inside a single battery. Thereby, even when an air battery module is configured by using a large number of the air batteries, the entire apparatus can be reduced in size and weight.

また、上記の空気電池C1は、電解液保持容器4の放熱部4Bがヒートシンク5を有していることから、放熱部4Bにおける放熱作用がさらに向上し、電極部4Aと放熱部4Bとの温度差がより大きくなり、析出物Qの析出及び分離をより確実に行うことができる。   Further, in the air battery C1, since the heat radiating part 4B of the electrolyte solution holding container 4 has the heat sink 5, the heat radiating action in the heat radiating part 4B is further improved, and the temperature between the electrode part 4A and the heat radiating part 4B is increased. The difference becomes larger, and the precipitation Q can be more reliably precipitated and separated.

さらに、上記の空気電池C1は、電解液保持容器4の放熱部4B(ケーシング4C)が熱抵抗の少ない銅やアルミニウムなどの金属で形成してあることから、これによっても放熱部4Bにおける放熱作用が向上し、電極部4Aと放熱部4Bとの温度差がより大きくなり、析出物Qの析出及び分離をより確実に行うことができる。   Further, in the air battery C1, the heat radiating part 4B (casing 4C) of the electrolytic solution holding container 4 is formed of a metal such as copper or aluminum having a small thermal resistance. As a result, the temperature difference between the electrode portion 4A and the heat radiating portion 4B becomes larger, and the precipitate Q can be more reliably deposited and separated.

さらに、上記の空気電池C1は、電解液保持容器4における電極部4Aと放熱部4Bとの温度差により、電解液3の対流が発生する。これにより、電極部4Aには、放熱部4Bにおいて析出物Qを分離した電解液3が還流となって循環することとなり、電極部4A側における良好な放電反応と、放熱部4B側における析出物Qの析出及び分離とが継続して行われる。   Further, in the above air battery C1, convection of the electrolytic solution 3 is generated due to a temperature difference between the electrode portion 4A and the heat radiating portion 4B in the electrolytic solution holding container 4. As a result, the electrolytic solution 3 from which the precipitate Q has been separated in the heat radiating portion 4B circulates and circulates in the electrode portion 4A, and a good discharge reaction on the electrode portion 4A side and a precipitate on the heat radiating portion 4B side are circulated. The precipitation and separation of Q are continued.

さらに、上記の空気電池C1は、電解液保持容器4が、電解液3から生じた析出物Qを放熱部4B内に蓄積する構造を有しており、これにより、析出物Qが電極部4Aに流入して放電反応を妨げるような事態を未然に防止する。この実施形態では、析出物Qを放熱部4B内に蓄積する構造として、電極部4Aの下側に放熱部4Bを設け、析出物Qを自重により沈殿させるので、極めて簡単な構造で析出物Qを分離することができる。   Further, the air battery C1 has a structure in which the electrolytic solution holding container 4 accumulates the precipitate Q generated from the electrolytic solution 3 in the heat radiating portion 4B, whereby the precipitate Q is transferred to the electrode portion 4A. To prevent a situation in which the discharge reaction is disturbed. In this embodiment, as the structure for accumulating the precipitate Q in the heat radiating portion 4B, the heat radiating portion 4B is provided on the lower side of the electrode portion 4A, and the precipitate Q is precipitated by its own weight. Can be separated.

さらに、上記の空気電池C1は、正極1、金属負極2及び電解液保持容器4の電極部4Aを保温する電極保温手段6を備えているので、電極部4Aと放熱部4Bとの温度差がより一層大きいものとなり、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。   Further, since the air battery C1 includes the electrode heat retaining means 6 for retaining the electrode part 4A of the positive electrode 1, the metal negative electrode 2, and the electrolyte holding container 4, there is a temperature difference between the electrode part 4A and the heat radiating part 4B. It becomes much larger, so that dissolution of the precipitate Q in the electrode portion 4A can be promoted, and precipitation and separation of the precipitate Q in the heat radiation portion 4B can be more reliably performed.

図2〜図11は、本発明に係る空気電池の他の実施形態を説明する図である。なお、以下の各々の実施形態において、先の実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。   2-11 is a figure explaining other embodiment of the air battery which concerns on this invention. In each of the following embodiments, the same components as those of the previous embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示す空気電池C2は、気体又は液体が流れる流体流路7を備え、この流体流路7内に電解液保持容器4の放熱部4Bを配置したものとなっている。また、この実施形態では、流体流路7に流れる流体が空気であって、流体流路7を通過した空気を正極1に供給する空気供給経路8を備えている。流体流路7の入口には、空気を圧送するためのファン9が設けてある。   An air battery C2 shown in FIG. 2 includes a fluid flow path 7 through which gas or liquid flows, and a heat radiating portion 4B of the electrolyte solution holding container 4 is disposed in the fluid flow path 7. In this embodiment, the fluid that flows through the fluid flow path 7 is air, and the air supply path 8 that supplies the air that has passed through the fluid flow path 7 to the positive electrode 1 is provided. A fan 9 for pumping air is provided at the inlet of the fluid flow path 7.

上記の空気電池C2は、流体である空気で放熱部4Bを冷却することで、電解液保持容器4における電極部4Aの電解液3と放熱部4B電解液3との温度差をより大きくし、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。また、流体流路7においては、放熱部4Bと空気との間で熱交換が行われ、予熱した空気を正極1に供給することで、放電効率をより高めることができる。   The air battery C2 described above has a larger temperature difference between the electrolyte solution 3 of the electrode portion 4A and the heat dissipation portion 4B electrolyte solution 3 in the electrolyte holding container 4 by cooling the heat dissipation portion 4B with air that is a fluid, The dissolution of the precipitate Q in the electrode portion 4A can be promoted, and the precipitation and separation of the precipitate Q in the heat radiation portion 4B can be more reliably performed. Further, in the fluid flow path 7, heat exchange is performed between the heat radiating unit 4 </ b> B and air, and the preheated air is supplied to the positive electrode 1, so that the discharge efficiency can be further increased.

図3に示す空気電池C3は、気体又は液体が流れる流体流路7を備え、この流体流路7内に電解液保持容器4の放熱部4Bを配置したものとなっている。また、この実施形態では、流体流路7に流れる流体が電解液3であって、流体流路7を通過した電解液3を電解液保持容器4に供給する電解液供給経路10を備えている。この場合、流体流路7の入口側には、電解液の供給手段11が設けてあり、また、電解液保持容器4には、電解液3排出手段12が設けてある。供給手段11及び排出手段12には、電解液のタンクや、適宜の配管及びバルブ機構が含まれる。   An air battery C3 shown in FIG. 3 includes a fluid flow path 7 through which gas or liquid flows, and a heat radiating portion 4B of the electrolyte solution holding container 4 is disposed in the fluid flow path 7. Further, in this embodiment, the fluid flowing through the fluid flow path 7 is the electrolytic solution 3, and the electrolytic solution supply path 10 that supplies the electrolytic solution 3 that has passed through the fluid flow path 7 to the electrolytic solution holding container 4 is provided. . In this case, an electrolyte solution supply means 11 is provided on the inlet side of the fluid flow path 7, and an electrolyte solution 3 discharge means 12 is provided in the electrolyte solution holding container 4. The supply unit 11 and the discharge unit 12 include an electrolyte tank, appropriate piping, and a valve mechanism.

上記の空気電池C3は、流体である電解液で放熱部4Bを冷却することで、電解液保持容器4における電極部4Aの電解液3と放熱部4B電解液3との温度差をより大きくし、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。また、流体流路7においては、放熱部4Bと電解液との間で熱交換が行われ、予め加熱した電解液を正極1に供給することで、放電効率をより高めることができる。   In the air battery C3, the temperature difference between the electrolyte solution 3 of the electrode portion 4A and the heat dissipation portion 4B electrolyte solution 3 in the electrolyte holding container 4 is further increased by cooling the heat dissipation portion 4B with the electrolyte that is a fluid. In addition, the dissolution of the precipitate Q in the electrode portion 4A can be promoted, and the precipitation and separation of the precipitate Q in the heat radiation portion 4B can be more reliably performed. Further, in the fluid flow path 7, heat exchange is performed between the heat radiating portion 4 </ b> B and the electrolytic solution, and the discharge efficiency can be further improved by supplying the preheated electrolytic solution to the positive electrode 1.

図4に示す空気電池C4は、電解液保持容器4の放熱部4Bが、複数のヒートパイプ13を備えている。ヒートパイプ13は、パイプ内に揮発性の液体を封入した周知の構造を有するものであって、電解液保持容器4の壁部に貫通状態で設けることにより内部の熱を外部に放出する。   In the air battery C <b> 4 shown in FIG. 4, the heat radiating part 4 </ b> B of the electrolyte solution holding container 4 includes a plurality of heat pipes 13. The heat pipe 13 has a well-known structure in which a volatile liquid is sealed in the pipe, and dissipates internal heat to the outside by being provided through the wall portion of the electrolyte solution holding container 4.

上記も空気電池C4は、放熱部4Bにヒートパイプ13を設けたことで、電解液保持容器4における電極部4Aの電解液3と放熱部4B電解液3との温度差をより大きくし、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。   The air battery C4 is also provided with the heat pipe 13 in the heat radiating part 4B, so that the temperature difference between the electrolytic solution 3 of the electrode part 4A and the heat radiating part 4B electrolytic solution 3 in the electrolytic solution holding container 4 is further increased. The dissolution of the precipitate Q in the part 4A can be promoted, and the precipitation and separation of the precipitate Q in the heat radiation part 4B can be more reliably performed.

図5に示す空気電池C5は、金属負極2が、電池外側へ延出して電解液保持容器4の放熱部4Bに接合状態となる放熱促進部2Aを備えている。また、空気電池C5は、金属負極2と電解液保持容器4の放熱部4B(ケーシング4C)とが、同一金属であるとともに一体化してある。金属負極2及び放熱部4Bの材料としては、アルミニウム(Al)若しくはアルミニウム合金である。また、図示例の金属負極2の放熱促進部2Aには、放熱用の複数のフィン2Bが一体成形してある。   The air battery C5 shown in FIG. 5 includes a heat dissipation promoting part 2A in which the metal negative electrode 2 extends to the outside of the battery and is joined to the heat dissipation part 4B of the electrolyte holding container 4. In the air battery C5, the metal negative electrode 2 and the heat radiating part 4B (casing 4C) of the electrolyte holding container 4 are made of the same metal and integrated. The material of the metal negative electrode 2 and the heat dissipation part 4B is aluminum (Al) or an aluminum alloy. In addition, a plurality of fins 2B for heat dissipation are integrally formed in the heat dissipation promoting portion 2A of the metal negative electrode 2 in the illustrated example.

上記の空気電池C5は、金属負極2の放熱促進部2Aにより、電解液保持容器4の放熱部4Bの放熱機能が向上し、この際、金属負極2と放熱部4B(ケーシング4C)を同一金属で一体化したので、放熱部4Bの放熱機能がさらに向上する。しかも、金属負極2及び放熱部4Bの材料にアルミニウム若しくはアルミニウム合金を採用したので、熱抵抗が小さいものとなり、放熱部4Bの放熱機能のさらなる向上を実現する。   In the air battery C5, the heat dissipation function of the heat dissipation part 4B of the electrolyte holding container 4 is improved by the heat dissipation promoting part 2A of the metal negative electrode 2, and at this time, the metal negative electrode 2 and the heat dissipation part 4B (casing 4C) are made of the same metal. Therefore, the heat radiation function of the heat radiation part 4B is further improved. In addition, since aluminum or an aluminum alloy is adopted as the material of the metal negative electrode 2 and the heat radiating part 4B, the thermal resistance is small, and the heat radiating function of the heat radiating part 4B is further improved.

これにより、空気電池C5は、電解液保持容器4における電極部4Aの電解液3と放熱部4B電解液3との温度差を大きくし、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。   Thereby, the air battery C5 increases the temperature difference between the electrolytic solution 3 of the electrode portion 4A and the heat radiating portion 4B electrolytic solution 3 in the electrolytic solution holding container 4, and promotes dissolution of the precipitate Q in the electrode portion 4A. Precipitation and separation of the precipitate Q in the heat radiation part 4B can be performed more reliably.

図6に示す空気電池C6は、電解液保持容器4の放熱部4Bが、他の固体構造物に対して熱伝導可能に接続してある。固体構造物は、当該電池を収容する外装材14や、当該電池を電源とする機器本体15などである。   In the air battery C6 shown in FIG. 6, the heat radiating portion 4B of the electrolyte solution holding container 4 is connected to other solid structures so as to be able to conduct heat. The solid structure is an exterior material 14 that houses the battery, a device main body 15 that uses the battery as a power source, and the like.

上記の空気電池C6は、先の実施形態では、放熱部4Bの熱を気体や液体である流体に放出するのに対して、放熱部4Bの熱を外装材14や機器本体15である固体(固体構造物)に放出する。これにより、電解液保持容器4における電極部4Aの電解液3と放熱部4B電解液3とに温度差を設け、電極部4Aにおける析出物Qの溶解を促進すると共に、放熱部4Bにおける析出物Qの析出及び分離をより確実に行うことができる。   In the previous embodiment, the air battery C6 releases the heat of the heat radiating part 4B to a fluid that is a gas or a liquid, whereas the heat of the heat radiating part 4B is a solid (the exterior material 14 or the device main body 15). To a solid structure). Thus, a temperature difference is provided between the electrolyte solution 3 of the electrode portion 4A and the heat dissipation portion 4B electrolyte solution 3 in the electrolyte holding container 4, and the dissolution of the precipitate Q in the electrode portion 4A is promoted, and the precipitate in the heat dissipation portion 4B. Q can be more reliably deposited and separated.

図7に示す空気電池C7は、電解液保持容器4が、中央部に、電極部4Aを有すると共に、その両側に、放熱部4Bを有している。放熱部4Bには、放熱板等のヒートシンク5が設けてある。また、空気電池C7は、電解液保持容器4が、電解液3から生じた析出物Qを放熱部4B内に蓄積する構造を有している。   In an air battery C7 shown in FIG. 7, the electrolyte holding container 4 has an electrode portion 4A at the center portion and heat radiating portions 4B on both sides thereof. The heat sink 4B is provided with a heat sink 5 such as a heat sink. In the air battery C7, the electrolytic solution holding container 4 has a structure in which the precipitate Q generated from the electrolytic solution 3 is accumulated in the heat radiation portion 4B.

上記の空気電池C7では、電解液3が、電解液保持容器4における電極部4Aと放熱部4Bとの温度差により対流を生じて、電極部4Aと放熱部4Bとの間を循環する。このような電解液3の循環は、例えば図1に示す空気電池(C1)でも発生する。しかし、図1に示す空気電池(C1)では、電極部4Aと放熱部4Bを上下に配置しているので、例えば、各部の温度分布等に応じて対流が発生する。よって、循環流は一様ではない。   In the air battery C7, the electrolytic solution 3 circulates between the electrode unit 4A and the heat radiating unit 4B by generating convection due to a temperature difference between the electrode unit 4A and the heat radiating unit 4B in the electrolytic solution holding container 4. Such circulation of the electrolytic solution 3 also occurs in the air battery (C1) shown in FIG. 1, for example. However, in the air battery (C1) shown in FIG. 1, since the electrode part 4A and the heat radiating part 4B are arranged vertically, for example, convection occurs according to the temperature distribution of each part. Therefore, the circulation flow is not uniform.

これに対して、上記の空気電池C7は、図中に矢印で示すように、中央の電極部4Aの上部から両側の放熱部4B,4Bに流れて、各放熱部4の下部から電極部4Aに戻る一様の循環流が発生する。これにより、空気電池C7は、電極部4Aでは、析出物Qの溶解を促進すると共に、放熱部4Bでは、析出物Qの析出及び分離を行う。とくに、放熱部4Bでは、析出物Qを自重及び循環流で沈殿させて、電解液3から分離することができる。   On the other hand, the air battery C7 flows from the upper part of the central electrode part 4A to the heat radiating parts 4B and 4B on both sides as shown by arrows in the drawing, and from the lower part of each heat radiating part 4 to the electrode part 4A. A uniform circulating flow is generated that returns to Thus, the air battery C7 promotes dissolution of the precipitate Q in the electrode portion 4A, and precipitates and separates the precipitate Q in the heat dissipation portion 4B. In particular, in the heat radiation part 4B, the precipitate Q can be separated from the electrolyte solution 3 by being precipitated by its own weight and a circulating flow.

図8に示す空気電池C8は、図7に示すものと同様の電解液保持容器4を備えていると共に、電解液保持容器4が、電極部4Aと放熱部4Bとの間で電解液3を循環させる循環流発生手段16を備えている。循環流発生手段16としては、例えば、ポンプ、スクリュー及び各種の攪拌子などを採用することができる。また、空気電池C8は、電解液保持容器4が、電解液3から生じた析出物Qを放熱部4B内に蓄積する構造を有している。   An air battery C8 shown in FIG. 8 includes an electrolyte holding container 4 similar to that shown in FIG. 7, and the electrolyte holding container 4 transfers the electrolyte 3 between the electrode portion 4A and the heat radiating portion 4B. A circulation flow generating means 16 for circulation is provided. As the circulating flow generating means 16, for example, a pump, a screw, various kinds of stirrers and the like can be employed. In the air battery C8, the electrolytic solution holding container 4 has a structure in which the precipitate Q generated from the electrolytic solution 3 is accumulated in the heat radiation part 4B.

上記の空気電池C8は、循環流発生手段16により、図中の矢印で示す循環流を積極的に形成し、電極部4Aにおける析出物Qの溶解や、放熱部4Bにおける析出物Qの析出及び分離の効率をより一層高めることができる。とくに、放熱部4Bでは、析出物Qを自重及び循環流で沈殿させて、電解液3から分離することができる。   In the air battery C8, the circulation flow generating means 16 actively forms a circulation flow indicated by an arrow in the figure, and dissolves the precipitate Q in the electrode portion 4A and deposits the precipitate Q in the heat radiating portion 4B. The efficiency of separation can be further increased. In particular, in the heat radiation part 4B, the precipitate Q can be separated from the electrolyte solution 3 by being precipitated by its own weight and a circulating flow.

図9に示す空気電池C9は、図7に示すものと同様の電解液保持容器4を備えていると共に、電解液保持容器4が、電解液3から生じた析出物Qを放熱部4B内に蓄積する構造を有している。この実施形態では、析出物Qを放熱部4B内に蓄積する構造として、放熱部4B内にフィルタ17が配置してある。図示例のフィルタ17は、放熱部4B内の中央部のやや下位側に配置してあると共に、蓄積した析出物Qが外部に流出しないように、上側を開放した箱形状を成している。   The air battery C9 shown in FIG. 9 includes the same electrolytic solution holding container 4 as that shown in FIG. 7, and the electrolytic solution holding container 4 puts the precipitate Q generated from the electrolytic solution 3 into the heat radiation part 4B. It has a structure to accumulate. In this embodiment, a filter 17 is arranged in the heat dissipation part 4B as a structure for accumulating the precipitate Q in the heat dissipation part 4B. The filter 17 in the illustrated example is disposed on a slightly lower side of the central portion in the heat radiating portion 4B, and has a box shape with the upper side opened so that the accumulated precipitate Q does not flow out.

上記の空気電池C9は、電解液3が、電解液保持容器4における電極部4Aと放熱部4Bとの温度差により対流を生じて、電極部4Aと放熱部4Bとの間を循環する。これにより、空気電池C9は、電極部4Aにおいて析出物Qの溶解を促進すると共に、放熱部4Bにおいて析出物Qの析出及び分離を行う。そして、放熱部4Bでは、循環流及びフィルタ17により、析出物Qを電解液3から確実に分離させて、これを蓄積することができる。   In the air battery C9, the electrolytic solution 3 circulates between the electrode unit 4A and the heat radiating unit 4B by generating convection due to a temperature difference between the electrode unit 4A and the heat radiating unit 4B in the electrolytic solution holding container 4. Thereby, the air battery C9 promotes dissolution of the precipitate Q in the electrode portion 4A and deposits and separates the precipitate Q in the heat dissipation portion 4B. And in the thermal radiation part 4B, the precipitate Q can be reliably isolate | separated from the electrolyte solution 3 with the circulation flow and the filter 17, and this can be accumulate | stored.

図10に示す空気電池C10は、図7に示すものと同様の電解液保持容器4を備えていると共に、電解液保持容器4が、電解液3から生じた析出物Qを放熱部4B内に蓄積する構造を有している。この実施形態では、析出物Qを放熱部4B内に蓄積する構造として、放熱部4B内の下部に、析出物Qの収容空間18が設けてある。   The air battery C10 shown in FIG. 10 includes the same electrolyte solution holding container 4 as that shown in FIG. 7, and the electrolyte solution holding container 4 puts the precipitate Q generated from the electrolyte solution 3 into the heat radiating portion 4B. It has a structure to accumulate. In this embodiment, as a structure for accumulating the precipitate Q in the heat radiating portion 4B, an accommodation space 18 for the precipitate Q is provided in the lower portion in the heat radiating portion 4B.

上記の空気電池C10は、電解液3が、電解液保持容器4における電極部4Aと放熱部4Bとの温度差により対流を生じて、電極部4Aと放熱部4Bとの間を循環する。これにより、空気電池C10は、電極部4Aにおいて析出物Qの溶解を促進すると共に、放熱部4Bにおいて析出物Qの析出及び分離を行う。そして、放熱部4Bでは、析出物Qを自重及び循環流で沈殿させて収容空間18に収容し、析出物Qを電解液3から確実に分離させて蓄積しておくことができる。   In the air battery C10, the electrolytic solution 3 circulates between the electrode unit 4A and the heat radiating unit 4B by causing convection due to a temperature difference between the electrode unit 4A and the heat radiating unit 4B in the electrolytic solution holding container 4. Thereby, the air battery C10 promotes dissolution of the precipitate Q in the electrode portion 4A, and deposits and separates the precipitate Q in the heat dissipation portion 4B. And in the thermal radiation part 4B, the deposit Q can be settled by the dead weight and the circulation flow, and can be accommodated in the accommodation space 18, and the deposit Q can be reliably separated from the electrolyte solution 3 and accumulated.

図11は、本発明に係る空気電池を備えた空気電池モジュールの一実施形態を示す図である。図示の空気電池モジュールMは、図1に示す空気電池C1を複数(図示例では5個)備えており、複数の空気電池C1を直列に接続した構造である。この空気電池モジュールMは、各空気電池C1の放熱部4Bが、複数の放熱板から成るヒートシンク5を備えると共に、気体又は液体が流れる流体流路7を備えている。そして、流体流路7内に各空気電池C1の放熱部4Bを配置している。   FIG. 11 is a diagram showing an embodiment of an air battery module including an air battery according to the present invention. The illustrated air battery module M includes a plurality of air batteries C1 (five in the illustrated example) shown in FIG. 1, and has a structure in which a plurality of air batteries C1 are connected in series. In the air battery module M, the heat radiating portion 4B of each air battery C1 includes a heat sink 5 including a plurality of heat radiating plates and a fluid flow path 7 through which gas or liquid flows. And in the fluid flow path 7, the thermal radiation part 4B of each air battery C1 is arrange | positioned.

上記の流体流路7に流す流体は、とくに限定されることはなく、放熱部4Bを冷却し得るものであれば良い。また、図2及び図3に示した実施形態のように、流体に空気や電解液を用いることも当然可能であり、これにより空気や電解液が予熱されるので、流体に空気や電解液を用いることは放電効率の向上に有効である。   The fluid that flows through the fluid flow path 7 is not particularly limited as long as it can cool the heat radiating portion 4B. Also, as in the embodiment shown in FIG. 2 and FIG. 3, it is naturally possible to use air or an electrolytic solution for the fluid, which preheats the air or the electrolytic solution. The use is effective in improving the discharge efficiency.

上記の空気電池モジュールMでは、個々の空気電池C1において、電極部4Aでの析出物Qの溶解の促進、放熱部4Bでの析出物Qの析出及び分離が行われるので、従来の装置のように電池の外部で電解液を循環させる構成は一切不要になり、装置構造の簡略化や、小型軽量化を実現することができる。   In the air battery module M, in each air battery C1, the dissolution of the precipitate Q at the electrode portion 4A and the precipitation and separation of the precipitate Q at the heat radiating portion 4B are performed. In addition, there is no need to circulate the electrolyte solution outside the battery, and the device structure can be simplified and the size and weight can be reduced.

また、上記の空気電池モジュールMは、自動車、列車及び船舶などの移動体に搭載する原電として用いることができ、上記したように装置構造の簡略化及び型軽量化を実現するので、搭載空間が狭く限られている移動体用電源に非常に好適である。   Further, the air battery module M can be used as a power source mounted on a moving body such as an automobile, a train, and a ship, and as described above, simplification of the device structure and weight reduction of the device can be realized. It is very suitable for a mobile power source that is narrowly limited.

本発明の空気電池及び空気電池モジュールは、その構成が上記の実施形態に限定されるものではなく、各構成部位の材料、形状及び数などの構成の細部を適宜変更することができる。また、空気電池は、各実施形態の特徴的な構成、すなわち、金属負極2の放熱促進部2A、ヒートシンク5、電極保温手段6、ヒートパイプ13、固体構造物(14,15)、循環流発生手段16、フィルタ17及び析出物Qの収容空間18等の構成を適宜組み合わせると共に、システム化することが可能であり、これにより、電極部4Aにおける析出物の溶解を促進、放熱部4Bにおける析出物の析出及び分離の機能のさらなる向上を図ることができる。さらに、空気電池モジュールは、必要に応じて、各空気電池又は空気電池群を互いに並列接続することも可能である。   The configuration of the air battery and the air battery module of the present invention is not limited to the above-described embodiment, and details of the configuration such as the material, shape, and number of each component can be changed as appropriate. In addition, the air battery has a characteristic configuration of each embodiment, that is, a heat dissipation promoting portion 2A of the metal negative electrode 2, a heat sink 5, an electrode heat retaining means 6, a heat pipe 13, a solid structure (14, 15), and a circulation flow generation. The structure of the means 16, the filter 17, the accommodation space 18 for the precipitate Q, and the like can be appropriately combined and systemized, thereby promoting the dissolution of the precipitate in the electrode portion 4A, and the precipitate in the heat radiating portion 4B. It is possible to further improve the function of precipitation and separation. Furthermore, the air battery module can also connect each air battery or air battery group in parallel as needed.

C1〜C10 空気電池
M 空気電池モジュール
1 正極
2 金属負極
2A 放熱促進部
3 電解液
4 電解液保持容器
4A 電極部
4B 放熱部
5 ヒートシンク
7 流体流路
8 空気供給経路
10 電解液供給経路
13 ヒートパイプ
14 外装材(固体構造物)
15 機器本体(固体構造物)
16 循環流発生手段
17 フィルタ
18 収容空間
C1 to C10 Air battery M Air battery module 1 Positive electrode 2 Metal negative electrode 2A Heat radiation promotion part 3 Electrolytic solution 4 Electrolyte holding container 4A Electrode part 4B Heat radiation part 5 Heat sink 7 Fluid flow path 8 Air supply path 10 Electrolyte supply path 13 Heat pipe 14 Exterior material (solid structure)
15 Device body (solid structure)
16 Circulating flow generation means 17 Filter 18 Storage space

Claims (23)

正極と、金属負極と、電解液が注入された電解液保持容器を備え、
電解液保持容器が、正極と金属負極との間に介在する電極部と、電池外側へ延出する放熱部を備えると共に、電極部と放熱部との間で電解液が循環可能であることを特徴とする空気電池。
A positive electrode, a metal negative electrode, and an electrolytic solution holding container into which an electrolytic solution is injected,
The electrolytic solution holding container includes an electrode portion interposed between the positive electrode and the metal negative electrode, and a heat radiating portion extending to the outside of the battery, and that the electrolytic solution can be circulated between the electrode portion and the heat radiating portion. Features an air battery.
気体又は液体が流れる流体流路を備え、この流体流路内に電解液保持容器の放熱部を配置したことを特徴とする請求項1に記載の空気電池。   2. The air battery according to claim 1, further comprising a fluid flow path through which gas or liquid flows, and a heat radiating portion of the electrolyte holding container disposed in the fluid flow path. 前記流体流路に流れる流体が空気であって、流体流路を通過した空気を正極に供給する空気供給経路を備えていることを特徴とする請求項2に記載の空気電池。   The air battery according to claim 2, further comprising an air supply path that supplies air that has passed through the fluid flow path to the positive electrode. 前記流体流路に流れる流体が電解液であって、流体流路を通過した電解液を電解液保持容器に供給する電解液供給経路を備えていることを特徴とする請求項2に記載の空気電池。   3. The air according to claim 2, further comprising an electrolyte solution supply path for supplying the electrolyte solution that has passed through the fluid channel to the electrolyte solution holding container. battery. 前記電解液保持容器の放熱部が、ヒートパイプを備えていることを特徴とする請求項1〜4のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 4, wherein the heat dissipation part of the electrolyte solution holding container includes a heat pipe. 前記電解液保持容器の放熱部が、ヒートシンクを備えていることを特徴とする請求項1〜5のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 5, wherein the heat radiating portion of the electrolyte solution holding container includes a heat sink. 前記電解液保持容器の放熱部が、熱抵抗の少ない金属で形成してあることを特徴とする請求項1〜6のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 6, wherein the heat radiating portion of the electrolyte solution holding container is formed of a metal having a small thermal resistance. 前記金属負極が、電池外側へ延出して電解液保持容器の放熱部に接合状態となる放熱促進部を備えていることを特徴とする請求項1〜7のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 7, wherein the metal negative electrode includes a heat dissipation promoting part that extends to the outside of the battery and is joined to the heat dissipation part of the electrolyte solution holding container. . 前記金属負極と電解液保持容器の放熱部とが、同一金属であるとともに一体化してあることを特徴とする請求項8に記載の空気電池。   The air battery according to claim 8, wherein the metal negative electrode and the heat radiating portion of the electrolytic solution holding container are made of the same metal and integrated. 前記電解液保持容器の放熱部が、他の固体構造物に対して熱伝導可能に接続してあることを特徴とする請求項1〜9のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 9, wherein the heat radiating portion of the electrolyte solution holding container is connected to another solid structure so as to be able to conduct heat. 前記固体構造物が、当該電池体を収容する外装材であることを特徴とする請求項10に記載の空気電池。   The air battery according to claim 10, wherein the solid structure is an exterior material that accommodates the battery body. 前記固体構造物が、当該電池を電源とする機器本体であることを特徴とする請求項10に記載の空気電池。   The air battery according to claim 10, wherein the solid structure is a device main body using the battery as a power source. 前記電解液が、電解液保持容器における電極部と放熱部との温度差により対流を生じて、電極部と放熱部との間を循環することを特徴とする請求項1〜12のいずれか1項に記載の空気電池。   The electrolyte solution circulates between the electrode part and the heat dissipation part by generating convection due to a temperature difference between the electrode part and the heat dissipation part in the electrolyte holding container. The air battery according to item. 前記電解液保持容器が、電極部と放熱部との間で電解液を循環させる循環流発生手段を備えていることを特徴とする請求項1〜13のいずれか1項に記載の空気電池。
The air battery according to any one of claims 1 to 13, wherein the electrolytic solution holding container includes a circulating flow generating means for circulating the electrolytic solution between the electrode portion and the heat radiating portion.
前記電解液保持容器が、電解液から生じた析出物を放熱部内に蓄積する構造を有していることを特徴とする請求項1〜14のいずれか1項に記載の空気電池。   The air battery according to claim 1, wherein the electrolytic solution holding container has a structure in which deposits generated from the electrolytic solution are accumulated in a heat radiation portion. 前記析出物を放熱部内に蓄積する構造として、電極部の下側に放熱部が設けてあることを特徴とする請求項15に記載の空気電池。   The air battery according to claim 15, wherein a heat radiating portion is provided below the electrode portion as a structure for accumulating the precipitate in the heat radiating portion. 前記析出物を放熱部内に蓄積する構造として、放熱部内にフィルタが配置してあることを特徴とする請求項15又は16に記載の空気電池。   The air battery according to claim 15 or 16, wherein a filter is disposed in the heat dissipation part as a structure for accumulating the precipitate in the heat dissipation part. 前記析出物を放熱部内に蓄積する構造として、放熱部内に析出物の収容空間が設けてあることを特徴とする請求項15又は16に記載の空気電池。   The air battery according to claim 15 or 16, wherein an accommodation space for the precipitate is provided in the heat dissipation portion as a structure for accumulating the precipitate in the heat dissipation portion. 前記正極、金属負極及び電解液保持容器の電極部を保温する電極保温手段を備えたことを特徴とする請求項1〜18のいずれか1項に記載の空気電池。   The air battery according to any one of claims 1 to 18, further comprising electrode heat retaining means for retaining the electrode portions of the positive electrode, the metal negative electrode, and the electrolytic solution holding container. 前記金属負極が、アルミニウム若しくはアルミニウム合金であることを特徴とする請求項1〜19のいずれか1項に記載の空気電池。   The air battery according to claim 1, wherein the metal negative electrode is aluminum or an aluminum alloy. 請求項1〜20のいずれか1項に記載の空気電池を複数備えたことを特徴とする空気電池モジュール。  An air battery module comprising a plurality of the air batteries according to any one of claims 1 to 20. 複数の空気電池が直列に接続してあることを特徴とする請求項21に記載の空気電池モジュール。   The air battery module according to claim 21, wherein a plurality of air batteries are connected in series. 移動体に搭載する電源として用いられることを特徴とする請求項22に記載の空気電池モジュール。   The air battery module according to claim 22, wherein the air battery module is used as a power source mounted on a moving body.
JP2012008597A 2012-01-19 2012-01-19 Air battery Pending JP2013149452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008597A JP2013149452A (en) 2012-01-19 2012-01-19 Air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008597A JP2013149452A (en) 2012-01-19 2012-01-19 Air battery

Publications (1)

Publication Number Publication Date
JP2013149452A true JP2013149452A (en) 2013-08-01

Family

ID=49046779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008597A Pending JP2013149452A (en) 2012-01-19 2012-01-19 Air battery

Country Status (1)

Country Link
JP (1) JP2013149452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system
JP2016081575A (en) * 2014-10-10 2016-05-16 日産自動車株式会社 Battery system
CN108172949A (en) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 A kind of metal-air batteries system
CN113555627A (en) * 2020-04-23 2021-10-26 王益成 Metal fuel cell system and heat dissipation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501128A (en) * 1990-09-18 1994-01-27 アルカン・インターナショナル・リミテッド aluminum battery
JP2000260474A (en) * 1999-03-05 2000-09-22 Hitachi Ltd Lithium secondary battery
JP2010244729A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Air battery
WO2011051597A1 (en) * 2009-10-27 2011-05-05 Electricite De France Electrochemical device having a solid alkaline ion-conducting electrolyte and an aqueous electrolyte
JP2011222412A (en) * 2010-04-13 2011-11-04 Aisin Seiki Co Ltd Lithium-air battery system
JP2012003940A (en) * 2010-06-17 2012-01-05 Toyota Motor Corp Metal air battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501128A (en) * 1990-09-18 1994-01-27 アルカン・インターナショナル・リミテッド aluminum battery
JP2000260474A (en) * 1999-03-05 2000-09-22 Hitachi Ltd Lithium secondary battery
JP2010244729A (en) * 2009-04-01 2010-10-28 Toyota Motor Corp Air battery
WO2011051597A1 (en) * 2009-10-27 2011-05-05 Electricite De France Electrochemical device having a solid alkaline ion-conducting electrolyte and an aqueous electrolyte
JP2013508930A (en) * 2009-10-27 2013-03-07 エレクトリシテ・ドゥ・フランス Electrochemical apparatus having solid alkaline ion condition electrolyte and aqueous electrolyte
JP2011222412A (en) * 2010-04-13 2011-11-04 Aisin Seiki Co Ltd Lithium-air battery system
JP2012003940A (en) * 2010-06-17 2012-01-05 Toyota Motor Corp Metal air battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system
JP2016081575A (en) * 2014-10-10 2016-05-16 日産自動車株式会社 Battery system
CN108172949A (en) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 A kind of metal-air batteries system
CN113555627A (en) * 2020-04-23 2021-10-26 王益成 Metal fuel cell system and heat dissipation method thereof
CN113555627B (en) * 2020-04-23 2022-10-04 王益成 Metal fuel cell system and heat dissipation method thereof

Similar Documents

Publication Publication Date Title
JP5751536B2 (en) Injection-type air battery, injection-type air battery assembly battery, and method of using injection-type air battery or injection-type air battery assembly battery
CN103378385B (en) Metal-air battery and energy resource system
JPH06501128A (en) aluminum battery
US20040053132A1 (en) Improved fuel for a zinc-based fuel cell and regeneration thereof
JP2013149452A (en) Air battery
WO2013039159A1 (en) Air cell and assembled cell using same
JP5999316B2 (en) Air battery
US20200036019A1 (en) Air Cell
JP2013222610A (en) Metal-air battery
WO2013133239A1 (en) Assembled battery
WO2015016101A1 (en) Metal-air battery, metal-electrode recycling method, and electrode manufacturing method
JP2015207492A (en) Metal-air battery housing and metal-air battery
JP5999317B2 (en) Air battery
JP6134105B2 (en) Battery anode, metal-air battery, and battery anode manufacturing method
JP5946002B2 (en) Injection air battery
JP5660352B2 (en) Injection air battery
JP2014001117A (en) Hydrogen production apparatus and power generator
JP6183040B2 (en) Air battery system
JP2012028159A (en) Fuel cell system
JP2016024944A (en) Chemical battery
JP2007335326A (en) Fuel cell system
JP2015041499A (en) Air battery and air battery stack
JP6403091B2 (en) Battery system
AU647171B2 (en) Caustic-based metal battery with seeded recirculating electrolyte
JP6409482B2 (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151203