JP2013148468A - Pressure measuring device - Google Patents

Pressure measuring device Download PDF

Info

Publication number
JP2013148468A
JP2013148468A JP2012009260A JP2012009260A JP2013148468A JP 2013148468 A JP2013148468 A JP 2013148468A JP 2012009260 A JP2012009260 A JP 2012009260A JP 2012009260 A JP2012009260 A JP 2012009260A JP 2013148468 A JP2013148468 A JP 2013148468A
Authority
JP
Japan
Prior art keywords
pressure
strain gauge
measuring device
pipe
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009260A
Other languages
Japanese (ja)
Inventor
Fumio Utsue
文夫 宇津江
Masaru Utsue
勝 宇津江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012009260A priority Critical patent/JP2013148468A/en
Publication of JP2013148468A publication Critical patent/JP2013148468A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure measuring device which can accurately measure pressure by the strain of a pipeline accompanied by a slight pressure change of fluid in the pipeline in spite of using a strain gauge.SOLUTION: In an inline type pressure measuring device 1 which measures a pressure of fluid flowing in a pipeline, a part 20 having smaller curvature than other parts is formed at least at one place in a circumferential direction of a measuring pipe 2 forming a part of the pipeline, and a strain gauge G1 is provided on a surface of the part 20 having the smaller curvature.

Description

本発明は、圧力計測装置に関し、特に、管路内を流れる流体の圧力を計測する圧力計測装置の改良に関するものである。   The present invention relates to a pressure measuring device, and more particularly to an improvement of a pressure measuring device that measures the pressure of a fluid flowing in a pipe line.

従来、管路内を流れる流体の圧力を計測する圧力計測装置としては、流体と接する薄膜状の受圧部の背後に受圧流体を封入し、この受圧流体が受ける圧力を圧力計で検出するものが一般的に汎用されている(例えば、特許文献1参照)。
しかし、受圧流体を用いるため、万一、管路内を流れる流体と接する薄膜状の受圧部が破損した場合、受圧流体が管路内に漏出し、流体を含む管路を汚染するという問題があった。
Conventionally, as a pressure measuring device for measuring the pressure of a fluid flowing in a pipe, a pressure receiving fluid is sealed behind a thin film pressure receiving portion in contact with the fluid, and a pressure gauge detects the pressure received by the pressure receiving fluid. Generally used for general purposes (see, for example, Patent Document 1).
However, since the pressure receiving fluid is used, in the unlikely event that the thin film pressure receiving portion in contact with the fluid flowing in the pipe is damaged, the pressure receiving fluid leaks into the pipe and contaminates the pipe containing the fluid. there were.

かかる問題に対処するため、管路そのものを感圧部とし、その表面に歪みゲージを配設し、管路内を流れる流体の圧力の変化によって生じる管路の歪みを歪みゲージによって計測することで、管路内を流れる流体の圧力を計測するようにした圧力計測装置が提案されている(例えば、特許文献2〜3参照)。   In order to deal with such problems, the pipe itself is used as a pressure-sensitive part, a strain gauge is provided on the surface thereof, and the distortion of the pipe caused by a change in the pressure of the fluid flowing in the pipe is measured by the strain gauge. A pressure measuring device that measures the pressure of a fluid flowing in a pipeline has been proposed (see, for example, Patent Documents 2 to 3).

ところで、この圧力計測装置は、歪みゲージによって、内圧変化に伴った管路の歪みを計測するものであるが、管路を流れる流体の圧力が低圧の場合には、管路の歪み量が小さく、歪みゲージによって正確に計測することができず、また、十分な歪み量を得るために管路の歪みゲージを配設する部分の肉厚を薄くしようとしても管路の薄肉化には限界があり、正確な計測を行うことが困難であるという問題があった。   By the way, this pressure measuring device measures strain of a pipeline accompanying a change in internal pressure with a strain gauge. However, when the pressure of the fluid flowing through the pipeline is low, the strain amount of the pipeline is small. However, it cannot be measured accurately with a strain gauge, and even if it is attempted to reduce the thickness of the portion of the pipe where the strain gauge is disposed in order to obtain a sufficient amount of strain, there is a limit to reducing the thickness of the pipe. There is a problem that it is difficult to perform accurate measurement.

特開平10−153505号公報JP-A-10-153505 特開平10−132676号公報Japanese Patent Laid-Open No. 10-132676 特開2005−148002号公報JP 2005-148002 A

本発明は、上記従来の圧力計測装置の有する問題点に鑑み、歪みゲージを用いた圧力計測装置であっても、管路内の流体の僅かな圧力変化に伴った管路の歪みで、正確な圧力を計測することができる圧力計測装置を提供することを目的とする。   In view of the problems of the conventional pressure measuring device described above, the pressure measuring device using a strain gauge is accurate because of distortion of the pipeline accompanying a slight pressure change of the fluid in the pipeline. An object of the present invention is to provide a pressure measuring device capable of measuring a proper pressure.

上記目的を達成するため、本発明の圧力計測装置は、管路内を流れる流体の圧力を計測するインライン型の圧力計測装置において、管路の一部を構成する計測用管の円周方向の少なくとも1箇所に他の箇所よりも曲率の小さい箇所を形成し、該曲率の小さい箇所の表面に歪みゲージを配設してなることを特徴とする。   In order to achieve the above object, a pressure measuring device according to the present invention is an in-line type pressure measuring device that measures the pressure of a fluid flowing in a pipe, and is arranged in the circumferential direction of a measuring pipe that forms a part of the pipe. A portion having a smaller curvature than other portions is formed in at least one portion, and a strain gauge is disposed on the surface of the portion having the small curvature.

この場合において、前記計測用管の厚みを100〜500μmとすることができる。   In this case, the thickness of the measurement tube can be set to 100 to 500 μm.

また、前記計測用管に、温度補償歪みゲージを配設することができる。   Moreover, a temperature compensation strain gauge can be provided in the measurement tube.

さらに、前記計測用管の外周側に、計測用管の両軸方向端部の外周面が接合される内周面を備えた計測用管の肉厚よりも大きな肉厚を有する外管を設けることができる。   Furthermore, an outer tube having a wall thickness greater than the wall thickness of the measuring tube is provided on the outer peripheral side of the measuring tube. be able to.

本発明の圧力計測装置によれば、管路の一部を構成する計測用管の円周方向の少なくとも1箇所に他の箇所よりも曲率の小さい箇所を形成し、該曲率の小さい箇所の表面に歪みゲージを配設するようにして、管路内の流体の圧力変化によって生じる歪み量がより大きくなる箇所の歪みを計測することで、精度よく歪み量の計測を行って、流体の圧力を測定することができる。   According to the pressure measuring device of the present invention, a portion having a smaller curvature than the other portions is formed in at least one place in the circumferential direction of the measuring pipe constituting a part of the pipe, and the surface of the place having the small curvature is formed. A strain gauge is installed in the pipe to measure the strain at the location where the strain amount caused by the pressure change of the fluid in the pipeline becomes larger, so that the strain amount can be accurately measured and the fluid pressure can be measured. Can be measured.

また、計測用管の厚みを100〜500μmとすることにより、流体が流れる管路として十分な強度を確保するとともに、流体の圧力変化によって、十分な歪みを発生させることができる。   In addition, by setting the thickness of the measurement tube to 100 to 500 μm, it is possible to ensure sufficient strength as a conduit through which the fluid flows and to generate sufficient distortion due to a change in the pressure of the fluid.

また、計測用管に、温度補償歪みゲージを配設することにより、管路を流れる流体の温度が変動し、計測用管に熱による歪みが生じても、温度補償歪みゲージによって熱による歪みのみを計測し、歪みゲージによって計測した歪み量から熱によって生じた歪み量を加減することで圧力変化によって生じる歪み量のみを正確に計測することができる。   In addition, by installing a temperature-compensated strain gauge in the measurement tube, even if the temperature of the fluid flowing through the pipe fluctuates and the strain due to heat occurs in the measurement tube, only the strain due to heat is caused by the temperature-compensated strain gauge. , And by adjusting the amount of strain caused by heat from the amount of strain measured by the strain gauge, only the amount of strain caused by the pressure change can be accurately measured.

また、計測用管の外周側に、計測用管の両軸方向端部の外周面が接合される内周面を備えた計測用管の肉厚よりも大きな肉厚を有する外管を設けることにより、計測用管を外部からの衝撃から保護することができる。   In addition, an outer tube having a wall thickness larger than the wall thickness of the measuring tube having an inner peripheral surface to which the outer peripheral surfaces of both ends in the axial direction of the measuring tube are joined is provided on the outer peripheral side of the measuring tube. As a result, the measurement tube can be protected from external impact.

本発明の圧力計測装置の一実施例を示す正面断面図である。It is front sectional drawing which shows one Example of the pressure measuring device of this invention. 同圧力計測装置の計測用管を示し、(a)は計測用管素材の断面平面図を、(b)は計測用管素材を金型に嵌着し、押圧用金型によって押圧・挟持して他の箇所よりも曲率の小さい箇所を形成している状態の断面平面図、(c)は同断面側面図、(d)は内圧を変化させて歪み計測を行ったときの歪みゲージの配設箇所を示す側面図、(e)は歪みゲージ及び温度補償歪みゲージを配設した状態の斜視図である。The measurement tube of the same pressure measuring device is shown. (A) is a cross-sectional plan view of the measurement tube material. (B) is a measurement tube material fitted into a mold and pressed and clamped by a pressing mold. Sectional plan view in a state where a portion having a smaller curvature than other portions is formed, (c) is a side view of the same section, and (d) is an arrangement of strain gauges when strain measurement is performed by changing the internal pressure. The side view which shows an installation location, (e) is a perspective view of the state which has arrange | positioned the strain gauge and the temperature compensation strain gauge. 内圧と歪みの関係を示すグラフである。It is a graph which shows the relationship between internal pressure and distortion. 本発明の圧力計測装置の使用例を示し、(a)は正面図、(b)は側面図である。The usage example of the pressure measuring device of this invention is shown, (a) is a front view, (b) is a side view.

以下、本発明の圧力計測装置の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of a pressure measuring device of the present invention will be described with reference to the drawings.

図1〜図3に、本発明の圧力計測装置の一実施例を示す。
この圧力計測装置1は、管路T内を流れる流体の圧力を計測するインライン型の圧力計測装置であって、管路Tの一部を構成する計測用管2の円周方向の少なくとも1箇所に他の箇所よりも曲率の小さい箇所20を形成し、この曲率の小さい箇所20の表面に歪みゲージG1を配設するようにしている。
1 to 3 show an embodiment of the pressure measuring device of the present invention.
This pressure measuring device 1 is an in-line type pressure measuring device that measures the pressure of a fluid flowing in a pipe T, and is at least one place in the circumferential direction of a measuring pipe 2 that constitutes a part of the pipe T. A portion 20 having a smaller curvature than the other portions is formed on the surface, and a strain gauge G1 is disposed on the surface of the portion 20 having the smaller curvature.

そして、本実施例においては、図1に示すように、計測用管2の外周側に、計測用管2の両軸方向端部21、21の外周面が接合される内周面を備えた計測用管2の肉厚t1よりも大きな肉厚t2を有する外管3を設け、両端部を溶接により接合するようにしている。
これにより、計測用管2を外部からの衝撃、管路Tから伝わる負荷等から保護することができる。
In the present embodiment, as shown in FIG. 1, the outer peripheral side of the measuring tube 2 is provided with an inner peripheral surface to which the outer peripheral surfaces of both axial ends 21 and 21 of the measuring tube 2 are joined. An outer tube 3 having a thickness t2 larger than the thickness t1 of the measuring tube 2 is provided, and both ends are joined by welding.
Thereby, the measuring pipe 2 can be protected from an impact from the outside, a load transmitted from the pipe T, and the like.

ここで、この計測用管2の円周方向の少なくとも1箇所に形成する、他の箇所よりも曲率の小さい箇所20は、曲率の小さい曲面のほか、平坦面も含み、これを排除するものではない。   Here, the portion 20 having a smaller curvature than the other portions formed in at least one place in the circumferential direction of the measuring tube 2 includes a curved surface having a small curvature and a flat surface, and this is not excluded. Absent.

歪みゲージG1は、バルク型、真空蒸着、プラズマCVD等の薄膜製造具術を用いて製造された半導体歪みゲージを用い、曲率の小さい箇所20に接着固定(バルク方式)して配設するようにしている。
また、曲率の小さい箇所20に、歪みゲージG1を直接スパッタリング等の成膜技術を用いて形成することもできる。
The strain gauge G1 is a semiconductor strain gauge manufactured by using a thin film manufacturing tool such as a bulk type, vacuum deposition, plasma CVD, etc., and is disposed by being bonded and fixed (bulk method) to a portion 20 having a small curvature. ing.
Moreover, the strain gauge G1 can also be formed in the location 20 with a small curvature using film-forming techniques, such as direct sputtering.

次に、本実施例における、計測用管2の製造方法について説明する。
計測用管2の材質は、医薬バイオ・サニタリー・食品関係に使用しても容易に腐食することのない耐食性を有し、靭性に富み析出硬化タイプの材料を用いることが好ましく、本実施例においては、SUS630H1150材を用い、例えば、削り出しによって円筒状(曲率の小さい箇所20を形成していない状態)の計測用管素材2Aを製造することで、材料の削減と可逆性を求めるようにしている。
このときの計測用管素材2Aの寸法は、計測対象となる配管によって異なるものであるが、本実施例においては、図2(a)に示すように、内径14mm、厚み100〜500μm、長さ80mm、外管3の内周面と溶接される両軸方向端部21、21のみ外径が15mmとなるように形成する。
このように、計測用管素材2A(曲率の小さい箇所20を形成した計測用管2)の厚みを100〜500μmとすることにより、流体が流れる管路Tとして十分な強度を確保するとともに、流体の圧力変化によって、必要な歪みを発生させることができる。
Next, a method for manufacturing the measurement tube 2 in this embodiment will be described.
The material of the measuring tube 2 is preferably a precipitation-hardening type material that has corrosion resistance that does not corrode easily even when used in pharmaceutical bio, sanitary, and food-related applications. Uses a SUS630H1150 material and, for example, by manufacturing the cylindrical tube material 2A in a cylindrical shape (a state where the portion 20 having a small curvature is not formed) by cutting, the reduction of the material and the reversibility are obtained. Yes.
At this time, the dimensions of the measurement pipe material 2A differ depending on the pipe to be measured. In this embodiment, as shown in FIG. 2A, the inner diameter is 14 mm, the thickness is 100 to 500 μm, and the length. Only the axial ends 21 and 21 welded to the inner peripheral surface of the outer tube 3 are 80 mm, and the outer diameter is 15 mm.
As described above, by setting the thickness of the measurement tube material 2A (measurement tube 2 in which the portion 20 having a small curvature is formed) to 100 to 500 μm, sufficient strength is ensured as the conduit T through which the fluid flows, and the fluid Necessary strain can be generated by a change in pressure.

そして、一端が計測用管素材2Aの内径より大径となる挟持部分H1と、かかる挟持部分H1と段差をもって形成した、計測用管素材2Aの内径より若干小径で計測用管素材2Aの端部が嵌入可能な取付部分D1と、取付部分D1から延設され、計測用管素材2Aの内径よりも小径な押圧受け部分Uとからなる金型Kに、削り出しによって製造した計測用管素材2Aを嵌入し、他端から計測用管素材2Aの内径より若干小径で計測用管素材2Aの端部が嵌入可能な取付部分D2と、金型Kに取り付けた計測用管素材2Aを金型Kの挟持部分H1との間で挟持して固定する挟持部分H2を有する固定金具Cとによって、挟持し固定する。
金型Kの押圧受け部分Uの外径は、計測用管素材2Aの内径よりも小径であれば、特に限定されるものではないが、本実施例においては、計測用管素材2Aの内径14mmに対して12mmとなるようにしている。
Then, the end of the measuring tube material 2A is formed with a sandwiching portion H1 whose one end is larger than the inner diameter of the measuring tube material 2A and a step with the sandwiching portion H1 and having a slightly smaller diameter than the inner diameter of the measuring tube material 2A. 2A, a measuring tube material 2A manufactured by cutting out into a mold K comprising a mounting portion D1 into which can be inserted, and a pressure receiving portion U extending from the mounting portion D1 and having a diameter smaller than the inner diameter of the measuring tube material 2A. Is inserted into the mold K, and the measurement tube material 2A attached to the mold K is attached to the mold K. The mounting portion D2 has a diameter slightly smaller than the inner diameter of the measurement tube material 2A from the other end. It is clamped and fixed by a fixture C having a clamping part H2 that is clamped and fixed with the clamping part H1.
The outer diameter of the pressure receiving portion U of the mold K is not particularly limited as long as it is smaller than the inner diameter of the measurement tube material 2A, but in this embodiment, the inner diameter of the measurement tube material 2A is 14 mm. 12 mm.

次に、金型Kに取り付けた計測用管素材2Aの円周方向の少なくとも1箇所に他の箇所よりも曲率の小さい箇所20を成形する。
本実施例においては、図2(b)に示すように、対となる押圧用金型Pによって、金型Kに取り付けた計測用管素材2Aの中央部分を挟み込むようにして計測用管素材2Aを変形させることで、曲率の小さい箇所20を対となるように2箇所に形成する。
計測用管素材2Aの材質によって異なるものの、計測用管素材2Aの表面は、押圧されることによって平坦面となって保持される場合と素材の性質(スプリングバック)によって極僅かな曲率を有する場合とがあるが、いずれの場合においても、他の箇所の曲率よりも小さく、歪みゲージによって計測される値が大きく表示される。
Next, a portion 20 having a smaller curvature than other portions is formed in at least one place in the circumferential direction of the measurement tube material 2A attached to the mold K.
In this embodiment, as shown in FIG. 2 (b), the measuring tube material 2A is sandwiched between the central portion of the measuring tube material 2A attached to the mold K by a pair of pressing dies P. By deforming, the portions 20 having a small curvature are formed at two locations so as to form a pair.
Although the surface of the measurement tube material 2A differs depending on the material of the measurement tube material 2A, the surface of the measurement tube material 2A is held flat as a result of being pressed, and the surface of the measurement tube material 2A has a slight curvature due to the nature of the material (spring back). In either case, the value measured by the strain gauge is displayed larger than the curvature of other portions.

この曲率の小さい箇所20の形成箇所は、特に限定されるものではないが、本実施例においては、計測用管素材2Aの中央部、より具体的には、長さ80mmの計測用管素材2Aにおいては、両端から軸方向に約20mmずつの距離をあけて中央部に軸方向の長さが約40mmの長さとなるようにしている。
また、曲率の小さい箇所20の周方向の長さは、金型Kの押圧受け部分Uの外径、計測用管素材2Aの内径及び計測用管素材2Aの厚みによって必然的に決定される長さで、本実施例のように、押圧受け部分Uの外径12mm、計測用管素材2Aの内径14mm、厚み100〜500μmの場合には約7.2mmとなる。
押圧用金型Pは、上述した曲率の小さい箇所20の軸方向及び周方向の長さを形成することができる押圧面を有するものであればよく、本実施例においては、接触面の端部をR面取りした軸方向長さが40mm、周方向の長さを形成するための幅(7.2mm以上の幅であればよい)が20mm、厚み10mmとなるようにしている。
The place where the small curvature portion 20 is formed is not particularly limited. In this embodiment, the central portion of the measurement tube material 2A, more specifically, the measurement tube material 2A having a length of 80 mm is used. In this case, the distance in the axial direction is about 20 mm from both ends so that the axial length is about 40 mm in the central portion.
The circumferential length of the portion 20 having a small curvature is inevitably determined by the outer diameter of the pressure receiving portion U of the mold K, the inner diameter of the measuring tube material 2A, and the thickness of the measuring tube material 2A. As in this embodiment, when the outer diameter of the pressure receiving portion U is 12 mm, the inner diameter of the measurement tube material 2A is 14 mm, and the thickness is 100 to 500 μm, the thickness is about 7.2 mm.
The pressing mold P only needs to have a pressing surface that can form the axial and circumferential lengths of the portion 20 having the small curvature described above, and in this embodiment, the end of the contact surface. R-chamfered axial length is 40 mm, a width for forming a circumferential length (a width of 7.2 mm or more) is 20 mm, and a thickness is 10 mm.

こうして製造された計測用管2は、その円周方向の中心部に、図2(b)〜(c)に示すように、対向して2箇所に他の箇所よりも曲率の小さい箇所20が形成され、形成された曲率の小さい箇所20に歪みゲージG1を配設するとともに、歪みゲージG1の配設箇所と異なる箇所に、温度補償歪みゲージG2を配設するようにしている。
温度補償歪みゲージG2を配設することによって、管路を流れる流体の温度が変動し、計測用管2に熱による歪みが生じても、温度補償歪みゲージによって熱による歪みのみを計測し、歪みゲージG1によって計測した歪み量から熱によって生じた歪み量を加減することで圧力変化によって生じる歪み量のみを正確に計測することができる。
また、歪みゲージG1の配設箇所を計測用管2の長手方向の略中央(図2(e)に示す、範囲A)とすることで、管路Tの一部を構成する計測用管2の範囲で、最も大きな歪みが生じる箇所となり、歪みゲージによって、誤差の影響が少ない大きな値としてその歪みを計測することができる。
As shown in FIGS. 2 (b) to 2 (c), the measurement tube 2 manufactured in this way has a portion 20 having a smaller curvature than the other portions at two locations facing each other, as shown in FIGS. The strain gauge G1 is disposed at the formed portion 20 having a small curvature, and the temperature compensation strain gauge G2 is disposed at a location different from the location where the strain gauge G1 is disposed.
By disposing the temperature compensated strain gauge G2, even if the temperature of the fluid flowing through the pipeline fluctuates and the strain due to heat occurs in the measurement tube 2, only the strain due to heat is measured by the temperature compensated strain gauge. By adjusting the strain amount caused by heat from the strain amount measured by the gauge G1, only the strain amount caused by the pressure change can be accurately measured.
Further, the measurement pipe 2 constituting a part of the pipe T is formed by arranging the strain gauge G1 at a substantially center in the longitudinal direction of the measurement pipe 2 (range A shown in FIG. 2 (e)). In this range, the largest strain occurs, and the strain gauge can measure the strain as a large value with little influence of error.

温度補償歪みゲージG2の配設箇所は、本実施例においては、図2(e)に示すように外管3の内周面に接合される両軸方向端部21、21の近傍(図2(e)に示す、範囲B)に配設するようにしている。
中心部から離れ、外管3の内周面に近い箇所に温度補償歪みゲージG2を配設することで、温度補償歪みゲージG2は、内圧変化によって生じる歪みの影響を受けにくい。
In the present embodiment, the temperature-compensated strain gauge G2 is disposed in the vicinity of the two axial end portions 21 and 21 joined to the inner peripheral surface of the outer tube 3 as shown in FIG. It arrange | positions in the range B) shown to (e).
By disposing the temperature-compensated strain gauge G2 at a location that is away from the center and close to the inner peripheral surface of the outer tube 3, the temperature-compensated strain gauge G2 is less susceptible to strain caused by changes in internal pressure.

また、温度補償歪みゲージG2を配設することなく、歪みゲージG1として、温度補正回路を集積した半導体歪みゲージを使用することもできる。   Further, a semiconductor strain gauge in which a temperature correction circuit is integrated can be used as the strain gauge G1 without providing the temperature compensation strain gauge G2.

歪みゲージG1の歪みによる抵抗の変化は極めて小さいため、本実施例においては、周知のホイーストンブリッジ回路を利用し、抵抗の変化の値を電圧に変換して測定するようにしている。この際、求められる出力電圧は、抵抗変化分に比例して、つまり、歪みに比例した出力電圧(微少電圧)が得られることとなり、この微少電圧を増幅器で拡大するようにし、歪みを測定するようにしている。   Since the change in resistance due to the strain of the strain gauge G1 is very small, in this embodiment, a well-known Wheatstone bridge circuit is used to convert the resistance change value into a voltage for measurement. At this time, the required output voltage is proportional to the resistance change, that is, an output voltage (minute voltage) proportional to the distortion is obtained, and the distortion is measured by expanding the minute voltage with an amplifier. I am doing so.

次に、歪みゲージG1を、曲率の小さい箇所20に配設した場合の内圧変化によって生じる歪みと、他の箇所(本実施例においては、外径が14mmの計測用管2であって曲率が1/0.014の箇所)に配設した場合に生じる歪みを計測した結果を表1に示すとともに、表1に基づいて作成した内圧と歪みのグラフを図3に示す。
ここで、表1及び図3に示すグラフの計測箇所は、図2(d)に示すS1〜S4の箇所であるが、実際には、後述の理由から、S1及びS3の箇所に歪みゲージG1を貼付するようにする。
Next, the strain caused by a change in internal pressure when the strain gauge G1 is disposed at a portion 20 having a small curvature, and other portions (in this embodiment, the measuring tube 2 having an outer diameter of 14 mm and having a curvature) Table 1 shows the result of measuring the strain generated when the filter is disposed at a location of 1 / 0.014, and FIG. 3 shows a graph of the internal pressure and strain created based on Table 1.
Here, the measurement locations of the graphs shown in Table 1 and FIG. 3 are the locations S1 to S4 shown in FIG. 2D, but actually, the strain gauge G1 is placed at the locations S1 and S3 for reasons described later. Make sure to affix.

Figure 2013148468
Figure 2013148468

表1及び図3から明らかなように、計測用管2の内径及び厚みが一定の場合、計測される歪みの値は内圧に比例しており、歪みから内圧を求めることができる。
特に、曲率の小さい箇所20(計測箇所S1及びS3)に配設した場合、他の箇所(計測箇所S2及びS4)に配設した場合と比べて、計測される歪みが約1.4〜1.8倍と大きな値として計測されることから、計測値の誤差による影響が少なく、他の箇所と比べてより正確な内圧を計測することができる。
As apparent from Table 1 and FIG. 3, when the inner diameter and thickness of the measuring tube 2 are constant, the measured strain value is proportional to the internal pressure, and the internal pressure can be obtained from the strain.
In particular, when it is disposed at a location 20 (measurement locations S1 and S3) with a small curvature, the measured distortion is about 1.4 to 1 compared with the case where it is disposed at other locations (measurement locations S2 and S4). Since it is measured as a large value of .8 times, it is less affected by errors in the measured value, and more accurate internal pressure can be measured as compared to other locations.

そして、図1に示す、計測用管2の外周側に、計測用管2の両軸方向端部21、21の外周面が接合される内周面を備えた計測用管2の肉厚t1よりも大きな肉厚t2を有する外管3を設けた圧力計測装置1は、外管3の端部に形成したフランジ31を介してクランプ(図示省略)を用いて接続するようにするほか、図4に示すように、外管3の両端面30、30をシール部材(図示省略)を介してフランジ板4、4によって挟み込み、両端に雄ねじ部50、50を形成した長尺のボルト部材5と、この雄ねじ部50にナット51を螺合することによって固定するとともに、フランジ板4に形成され、計測用管2と連通する流路40の端部に配設される継手41を、計測する管路Tの端部に配設した継手T1、T1と接続するようにしている。
継手41は、漏れのないシール性を有する継手(例えば、スウェージロック社製のシール性を有する継手)を用いることで、医薬バイオ関係で使用される管路の内圧を測定する際に容易に取り付けを行うことができ、管路内を流れる流体の圧力を計測することができる。
And the thickness t1 of the measuring tube 2 provided with the inner peripheral surface to which the outer peripheral surfaces of both axial direction end parts 21 and 21 of the measuring tube 2 are joined to the outer peripheral side of the measuring tube 2 shown in FIG. The pressure measuring device 1 provided with the outer tube 3 having a larger wall thickness t2 is connected by using a clamp (not shown) via a flange 31 formed at the end of the outer tube 3. As shown in FIG. 4, a long bolt member 5 in which both end faces 30, 30 of the outer tube 3 are sandwiched by flange plates 4, 4 via seal members (not shown) and male screw portions 50, 50 are formed at both ends, A pipe for measuring a joint 41 which is fixed by screwing a nut 51 to the male threaded portion 50 and which is formed on the flange plate 4 and disposed at the end of the flow path 40 communicating with the measuring tube 2. It connects with the joints T1 and T1 disposed at the end of the path T.
The joint 41 can be easily attached when measuring the internal pressure of a pipeline used in pharmaceutical bio-related by using a joint having a leak-proof seal (for example, a joint having a seal made by Swagelok). The pressure of the fluid flowing in the pipe line can be measured.

以上、本発明の圧力計測装置について、実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the pressure measuring device of this invention was demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure is suitably changed in the range which does not deviate from the meaning. It is something that can be done.

本発明の圧力計測装置は、管路内の流体の僅かな圧力変化によって生じる管路の歪みで、正確な圧力を計測することができるという特性を有していることから、歪みゲージを用いた圧力計測装置の用途に好適に用いることができる。   Since the pressure measuring device of the present invention has a characteristic that an accurate pressure can be measured by a distortion of a pipeline caused by a slight pressure change of a fluid in the pipeline, a strain gauge is used. It can use suitably for the use of a pressure measuring device.

1 圧力計測装置
2 計測用管
20 曲率の小さい箇所
3 外管
4 フランジ板
G1 歪みゲージ
G2 温度補償歪みゲージ
T 管路
t1 肉厚
t2 肉厚
DESCRIPTION OF SYMBOLS 1 Pressure measuring device 2 Measurement pipe | tube 20 Small curvature part 3 Outer pipe | tube 4 Flange board G1 Strain gauge G2 Temperature compensation strain gauge T Pipe line t1 Thickness t2 Thickness

Claims (4)

管路内を流れる流体の圧力を計測するインライン型の圧力計測装置において、管路の一部を構成する計測用管の円周方向の少なくとも1箇所に他の箇所よりも曲率の小さい箇所を形成し、該曲率の小さい箇所の表面に歪みゲージを配設してなることを特徴とする圧力計測装置。   In an in-line type pressure measuring device that measures the pressure of a fluid flowing in a pipe, at least one place in the circumferential direction of a measuring pipe that forms part of the pipe is formed with a portion having a smaller curvature than other places. And a strain gauge is provided on the surface of the portion having a small curvature. 前記計測用管の厚みを100〜500μmとしたことを特徴とする請求項1記載の圧力計測装置。   2. The pressure measuring apparatus according to claim 1, wherein the measuring tube has a thickness of 100 to 500 [mu] m. 前記計測用管に、温度補償歪みゲージを配設してなることを特徴とする請求項1又は2記載の圧力計測装置。   The pressure measuring device according to claim 1, wherein a temperature-compensated strain gauge is disposed on the measuring tube. 前記計測用管の外周側に、計測用管の両軸方向端部の外周面が接合される内周面を備えた計測用管の肉厚よりも大きな肉厚を有する外管を設けたことを特徴とする請求項1、2又は3記載の圧力計測装置。   On the outer peripheral side of the measurement tube, an outer tube having a thickness larger than the thickness of the measurement tube provided with an inner peripheral surface to which the outer peripheral surfaces of both axial ends of the measurement tube are joined is provided. The pressure measuring device according to claim 1, 2, or 3.
JP2012009260A 2012-01-19 2012-01-19 Pressure measuring device Pending JP2013148468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009260A JP2013148468A (en) 2012-01-19 2012-01-19 Pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009260A JP2013148468A (en) 2012-01-19 2012-01-19 Pressure measuring device

Publications (1)

Publication Number Publication Date
JP2013148468A true JP2013148468A (en) 2013-08-01

Family

ID=49046089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009260A Pending JP2013148468A (en) 2012-01-19 2012-01-19 Pressure measuring device

Country Status (1)

Country Link
JP (1) JP2013148468A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209799A (en) * 1992-01-30 1993-08-20 Copal Electron Co Ltd Fluid pressure sensor
JPH05273025A (en) * 1992-03-25 1993-10-22 Toshiba Corp Measuring device for pressurized fluid
JP2009098118A (en) * 2007-09-28 2009-05-07 Toray Eng Co Ltd Pressure measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209799A (en) * 1992-01-30 1993-08-20 Copal Electron Co Ltd Fluid pressure sensor
JPH05273025A (en) * 1992-03-25 1993-10-22 Toshiba Corp Measuring device for pressurized fluid
JP2009098118A (en) * 2007-09-28 2009-05-07 Toray Eng Co Ltd Pressure measuring device

Similar Documents

Publication Publication Date Title
US10345180B2 (en) Pressure sensor
US9891124B2 (en) Pressure sensor, and mass flow meter, and mass flow controller using same
US9835508B2 (en) Pressure sensor having strain gauges disposed on a diaphragm
EP3073237B1 (en) Pressure sensor
JP5926858B2 (en) Pressure detector mounting structure
US7263895B2 (en) Strain detector and method of manufacturing the same
JP7157477B2 (en) pressure sensor
JP2017531185A (en) Integrated orifice plate assembly
KR0141559B1 (en) Pressure sensor
CN112204366B (en) Pressure transducer, system and method
JP6231998B2 (en) Gasket integrated ceramic orifice plate
US10451507B2 (en) Pressure sensor
JP2013148468A (en) Pressure measuring device
JP2013040647A (en) Gasket interference measuring method of flange
CN105745521A (en) Pressure sensor arrangement for detecting a pressure of a fluid medium in a measurement chamber
EP2918979B1 (en) Electromagnetic flow meter
JP2014215045A (en) Pressure measuring device
CN100425953C (en) External drum internal target rod flow sensor
JP2009264757A (en) Pressure-measuring device of fluid in passage
CN107290100A (en) Pressure sensor
KR20190069191A (en) Pressure transmitter
KR20140070266A (en) Differential pressure sensor
JP2009168718A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151111