JP2013148263A - Stove - Google Patents

Stove Download PDF

Info

Publication number
JP2013148263A
JP2013148263A JP2012008769A JP2012008769A JP2013148263A JP 2013148263 A JP2013148263 A JP 2013148263A JP 2012008769 A JP2012008769 A JP 2012008769A JP 2012008769 A JP2012008769 A JP 2012008769A JP 2013148263 A JP2013148263 A JP 2013148263A
Authority
JP
Japan
Prior art keywords
combustion chamber
secondary combustion
gas
exhaust
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008769A
Other languages
Japanese (ja)
Other versions
JP5740683B2 (en
Inventor
Takezo Nozaki
武三 野崎
Akira Hoshi
朗 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOZAKI SHOKO KK
Institute of National Colleges of Technologies Japan
Original Assignee
NOZAKI SHOKO KK
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOZAKI SHOKO KK, Institute of National Colleges of Technologies Japan filed Critical NOZAKI SHOKO KK
Priority to JP2012008769A priority Critical patent/JP5740683B2/en
Publication of JP2013148263A publication Critical patent/JP2013148263A/en
Application granted granted Critical
Publication of JP5740683B2 publication Critical patent/JP5740683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve efficiency of combustion in a secondary combustion chamber by minimizing a flow resistance of combustion gas to produce a swirl flow of combustion gas, while preventing unburnt gas from being mixed with exhaust gas in the secondary combustion chamber.SOLUTION: A stove includes a primary combustion chamber 10A for burning a solid fuel W; a secondary combustion chamber 20A for burning combustion gas led out of the primary combustion chamber 10A through a conduction path 30A; and an exhaust path 40A exhausting exhaust gas generated in a secondary combustion chamber 20A. The secondary combustion chamber 20A is formed in inverted truncated cone shape, and the conduction path 30A is formed such that combustion gas flows in along a circumferential direction centering on a center axis of the secondary combustion chamber 20A. A core member 50 formed in inverted truncated cone shape centering on the center axis of the secondary combustion chamber 20A to form a guide passage 51 for guiding combustion gas between itself and a wall surface of the secondary combustion chamber 20A is provided in the secondary combustion chamber 20A.

Description

本発明は、薪や廃木材等の固形燃料を燃焼させるストーブに係り、特に、一次燃焼室からの燃焼ガスを更に燃焼させる二次燃焼室を備えるとともにこの二次燃焼室での燃焼効率の向上を図ったストーブに関する。   The present invention relates to a stove that burns solid fuel such as firewood and waste wood, and in particular, includes a secondary combustion chamber that further burns combustion gas from the primary combustion chamber and improves combustion efficiency in the secondary combustion chamber. About the stove.

従来から、ストーブとして、薪等の固形燃料を投入する開閉可能な投入口を有し投入口から投入された固形燃料を燃焼させる一次燃焼室と、一次燃焼室に水平方向に併設されこの一次燃焼室からの燃焼ガスを燃焼させる二次燃焼室と、二次燃焼室で生じた排ガスを排気する煙突とを備えたものが知られている(例えば、実用新案登録第3152010号公報(特許文献1)参照)。
この種のストーブにおいては、二次燃焼室での燃焼効率を向上させるため、種々の工夫がなされるものがあるが、例えば、上記の特許文献1記載のストーブにおいては、一次燃焼室と二次燃焼室との間に燃焼ガスが通過する多数の小孔を有した隔壁を設けている。
Conventionally, a primary combustion chamber that has an openable and closable inlet for charging solid fuel such as soot as a stove and burns the solid fuel input from the inlet, and this primary combustion is provided horizontally in the primary combustion chamber There is known one having a secondary combustion chamber for burning combustion gas from a chamber and a chimney for exhausting exhaust gas generated in the secondary combustion chamber (for example, Utility Model Registration No. 3152010 (Patent Document 1)). )reference).
In this type of stove, various devices are made in order to improve the combustion efficiency in the secondary combustion chamber. For example, in the stove described in Patent Document 1, the primary combustion chamber and the secondary combustion chamber are provided. A partition wall having a large number of small holes through which combustion gas passes is provided between the combustion chamber and the combustion chamber.

また、二次燃焼室での燃焼効率を向上させるための技術としては、ストーブの技術ではないが、焼却炉の技術には、例えば、図8に示すように、一次燃焼室(図示せず)からの燃焼ガスを二次燃焼室100の中心軸101を中心とする円周方向に沿って二次燃焼室100へ流入するように二次燃焼室100の下側に開口102を形成し、燃焼ガスを二次燃焼室100内で旋回流にして上部の排気口102から排気するようにしたものがある(特開2000−18534号公報(特許文献2)参照)。
また、同様に焼却炉の技術ではあるが、例えば、図9に示すように、二次燃焼室100にその軸線に沿って固定軸105を設け、この固定軸105に螺旋状の旋回羽根106を設け、燃焼ガスの螺旋状流路107を形成している。旋回羽根106は、螺旋状流路107の間で排ガスのバイパス(ショートパス)が生じないように構成されている(特開2001−330222号公報(特許文献3)参照)。図9中108は燃焼ガスを加温するガスバーナである。
Further, as a technique for improving the combustion efficiency in the secondary combustion chamber, although not the stove technique, the incinerator technique includes, for example, a primary combustion chamber (not shown) as shown in FIG. An opening 102 is formed on the lower side of the secondary combustion chamber 100 so that the combustion gas from the gas flows into the secondary combustion chamber 100 along the circumferential direction centering on the central axis 101 of the secondary combustion chamber 100, and combustion There is one in which gas is swirled in the secondary combustion chamber 100 and exhausted from the upper exhaust port 102 (see Japanese Patent Laid-Open No. 2000-18534 (Patent Document 2)).
Similarly, as shown in FIG. 9, for example, as shown in FIG. 9, the secondary combustion chamber 100 is provided with a fixed shaft 105 along its axis, and a spiral swirl blade 106 is provided on the fixed shaft 105. A helical flow path 107 of combustion gas is provided. The swirl vane 106 is configured such that no exhaust gas bypass (short path) occurs between the spiral flow paths 107 (see Japanese Patent Laid-Open No. 2001-330222 (Patent Document 3)). In FIG. 9, reference numeral 108 denotes a gas burner for heating the combustion gas.

実用新案登録第3152010号公報Utility Model Registration No.3152010 特開2000−18534号公報JP 2000-18534 A 特開2001−330222号公報JP 2001-330222 A

ところで、上記特許文献1記載のストーブにあっては、一次燃焼室と二次燃焼室との間に燃焼ガスが通過する多数の小孔を有した隔壁を設けているが、隔壁があることから流動抵抗が大きくなってしまい、むしろ、燃焼ガスの燃焼効率を低下させることがある。これを解決するためには、例えば、煙突を長くし、あるいは、吸引ファンを別途設けて燃焼ガスの吸引力を高めることを行うとよいが、それだけ、構造が複雑になりコスト高になる。
また、図8に示す特許文献2記載の燃焼炉の技術の適用も考えられるが、図8に示すように、旋回流を生じさせるようにしても、二次燃焼室100は広くなっているので、燃焼ガスの流れに乱れが生じ、未燃ガスと排ガスとが混合して燃焼効率を損ねることがあるという問題がある。
By the way, in the stove described in Patent Document 1, a partition wall having a large number of small holes through which combustion gas passes is provided between the primary combustion chamber and the secondary combustion chamber. This may increase the flow resistance, and rather reduce the combustion efficiency of the combustion gas. In order to solve this, for example, the chimney is lengthened or a suction fan is separately provided to increase the suction force of the combustion gas. However, the structure becomes complicated and the cost is increased.
Although the application of the technology of the combustion furnace described in Patent Document 2 shown in FIG. 8 is also conceivable, as shown in FIG. 8, the secondary combustion chamber 100 is wide even if a swirl flow is generated. There is a problem in that the flow of combustion gas is disturbed, and unburned gas and exhaust gas are mixed to impair combustion efficiency.

更に、図9に示す特許文献3記載の燃焼炉の技術の適用も考えられるが、図9に示すように、排ガスはショートパスしないように螺旋状流路107を通過して燃焼していくので、未燃ガスと排ガスとが混合する事態はないが、流動抵抗が大きくなるので、上記のストーブと同様に、むしろ、燃焼ガスの燃焼効率を低下させることがある。これを解決するためには、ガスバーナ108(図9)を設けたり、あるいは、吸引ファンを別途設けて燃焼ガスの吸引力を高めることを行わなければならないことから、それだけ、構造が複雑になりコスト高になるという問題がある。   Furthermore, although the application of the technology of the combustion furnace described in Patent Document 3 shown in FIG. 9 is also conceivable, as shown in FIG. 9, the exhaust gas burns through the spiral flow path 107 so as not to cause a short path. Although there is no situation where unburned gas and exhaust gas are mixed, flow resistance is increased, so that the combustion efficiency of the combustion gas may be lowered rather than the above stove. In order to solve this, a gas burner 108 (FIG. 9) must be provided, or a suction fan must be provided separately to increase the suction force of the combustion gas. There is a problem of becoming high.

本発明は、このような問題点に鑑みてなされたもので、二次燃焼室内において未燃ガスと排ガスとが混合しないように、且つ、燃焼ガスの流動抵抗を極力低下させて、燃焼ガスの旋回流を生成できるようにし、二次燃焼室での燃焼効率の向上を図ったストーブを提供することを目的とする。   The present invention has been made in view of such a problem, and the flow resistance of the combustion gas is reduced as much as possible so that the unburned gas and the exhaust gas are not mixed in the secondary combustion chamber. An object of the present invention is to provide a stove capable of generating a swirl flow and improving combustion efficiency in a secondary combustion chamber.

このような目的を達成するため、本発明のストーブは、固形燃料を投入する開閉可能な投入口を有し該投入口から投入された固形燃料を燃焼させる一次燃焼室と、該一次燃焼室に水平方向に併設され該一次燃焼室からの燃焼ガスを燃焼させる二次燃焼室と、上記一次燃焼室の燃焼ガスを該一次燃焼室側の下側に設けた導入口から導入して上記二次燃焼室の下側に設けた導出口から導出する導通路と、上記二次燃焼室で生じた排ガスを該二次燃焼室の上側に設けた排入口を通して排出口から排気する排気路とを備えたストーブにおいて、
上記二次燃焼室の少なくとも上記導出口と排入口との間を逆円錐台状に形成し、上記導通路を、上記導出口からの燃焼ガスが上記二次燃焼室の中心軸を中心とする円周方向に沿って該二次燃焼室へ流入するように形成し、上記二次燃焼室内に、該二次燃焼室の中心軸を中心とする逆円錐状若しくは逆円錐台状に形成され該二次燃焼室の壁面との間に上記導通路の導出口から流入した燃焼ガスをガイドするガイド通路を形成するコア部材を設けた構成としている。排気口には、適宜、煙突を設ける。
In order to achieve such an object, the stove of the present invention has an openable and closable inlet for charging solid fuel, a primary combustion chamber for burning the solid fuel input from the inlet, and the primary combustion chamber. A secondary combustion chamber that is disposed in the horizontal direction and burns combustion gas from the primary combustion chamber, and the combustion gas of the primary combustion chamber is introduced from an inlet provided on the lower side of the primary combustion chamber and the secondary combustion chamber is introduced. A conduction path led out from the outlet provided on the lower side of the combustion chamber, and an exhaust path for exhausting the exhaust gas generated in the secondary combustion chamber from the outlet through the exhaust inlet provided on the upper side of the secondary combustion chamber In the stove
At least the outlet and the outlet of the secondary combustion chamber are formed in an inverted truncated cone shape, and the combustion gas from the outlet is centered on the central axis of the secondary combustion chamber in the conduction path. It is formed so as to flow into the secondary combustion chamber along the circumferential direction, and is formed in an inverted conical shape or an inverted frustoconical shape centering on the central axis of the secondary combustion chamber in the secondary combustion chamber. A core member is provided between the wall of the secondary combustion chamber and a guide member that forms a guide passage for guiding the combustion gas flowing in from the outlet of the conduction path. A chimney is appropriately provided at the exhaust port.

これにより、固形燃料を燃焼させるときは、投入口から固形燃料を一次燃焼室に投入して着火する。一次燃焼室では固形燃料が燃焼していき、燃焼ガスが導通路の導入口に導入され導出口から二次燃焼室に導出され、二次燃焼室へ流入する。導通路は、導出口からの燃焼ガスが二次燃焼室の中心軸を中心とする円周方向に沿って二次燃焼室へ流入するように形成されているので、二次燃焼室を旋回して上昇していく。この旋回,上昇過程において、未燃ガスが更に燃焼し、排ガスとなって排気路の排入口を通して排出口から排気されていく。   Thus, when the solid fuel is burned, the solid fuel is charged into the primary combustion chamber from the charging port and ignited. Solid fuel burns in the primary combustion chamber, combustion gas is introduced into the introduction port of the conduction path, is led out from the outlet to the secondary combustion chamber, and flows into the secondary combustion chamber. The conduction path is formed so that the combustion gas from the outlet port flows into the secondary combustion chamber along the circumferential direction centering on the central axis of the secondary combustion chamber. Will rise. In this turning and ascending process, the unburned gas further burns and becomes exhaust gas, which is exhausted through the exhaust port through the exhaust port.

この場合、二次燃焼室においては、二次燃焼室は逆円錐状に形成され、その中心に逆円錐状若しくは逆円錐台状に形成されたコア部材が設けられ、二次燃焼室の壁面とコア部材との間に燃焼ガスをガイドするガイド通路が形成されているので、導通路の導出口から流入した燃焼ガスがこのガイド通路にガイドされる。そのため、燃焼ガスは二次燃焼室の壁面に沿って旋回,上昇するので、流れが乱れることがなく燃焼していき、未燃ガスと排ガスとが混合して燃焼効率を損ねる事態を防止することができる。
また、ガイド通路を構成する二次燃焼室の壁面には、燃焼ガスの流れを妨げる部材が突出していないので、燃焼ガスの流動抵抗が大きくなることがなく、燃焼ガスの旋回,上昇を円滑に行わせることができる。
In this case, in the secondary combustion chamber, the secondary combustion chamber is formed in an inverted cone shape, and a core member formed in an inverted cone shape or an inverted truncated cone shape is provided at the center thereof, and the wall surface of the secondary combustion chamber is Since the guide passage for guiding the combustion gas is formed between the core member and the core member, the combustion gas flowing in from the outlet of the conduction path is guided by the guide passage. For this reason, the combustion gas swirls and rises along the wall of the secondary combustion chamber, preventing the flow from being disturbed and preventing the unburned gas and exhaust gas from mixing and impairing the combustion efficiency. Can do.
In addition, since the member that obstructs the flow of the combustion gas does not protrude from the wall of the secondary combustion chamber that constitutes the guide passage, the flow resistance of the combustion gas does not increase, and the combustion gas can be smoothly swirled and raised. Can be done.

特に、二次燃焼室は逆円錐台状に形成されているので、上昇するに従って周長が長くなっていることから、流速が減少して遠心力が落ち、そのため、上下で圧力差が生じるので、上側への引っ張り力が生じ、この点でも、燃焼ガスの旋回,上昇を円滑に行わせることができる。
即ち、煙突の長さを長くしたり、別途バーナを設けたり、あるいは、吸引ファンを設けなくてもよく、コア部材を設ける単純な構造で、二次燃焼室内において未燃ガスと排ガスとが混合しないように、且つ、燃焼ガスの流動抵抗を極力低下させて、燃焼ガスの旋回流を生成できるようにし、二次燃焼室での燃焼効率の向上を図ることができる。
In particular, since the secondary combustion chamber is formed in the shape of an inverted truncated cone, the circumferential length becomes longer as it rises, so the flow velocity decreases and the centrifugal force drops, so a pressure difference occurs between the upper and lower sides. An upward pulling force is generated, and the combustion gas can be swirled and raised smoothly also in this respect.
In other words, the chimney length is increased, a separate burner is not provided, or a suction fan is not required, and a simple structure is provided in which a core member is provided. Unburned gas and exhaust gas are mixed in the secondary combustion chamber. In addition, the flow resistance of the combustion gas can be reduced as much as possible to generate a swirling flow of the combustion gas, and the combustion efficiency in the secondary combustion chamber can be improved.

そして、必要に応じ、上記コア部材の外周面に、上記二次燃焼室の壁面から離間するとともに上記コア部材の中心軸を中心とする螺旋状の螺旋羽根を設けた構成としている。燃焼ガスはガイド通路にガイドされるが、螺旋羽根によってもガイドされて旋回,上昇するので、より一層、流れが乱れることがなく燃焼させることができる。この場合、燃焼ガスは遠心力により二次燃焼室の壁面に沿うように上昇するので、この螺旋羽根による流動抵抗はそれほど大きくなることがないことから、流動を阻害する事態が防止される。   And as needed, it is set as the structure which provided in the outer peripheral surface of the said core member the spiral blade which is spaced apart from the wall surface of the said secondary combustion chamber, and centering | focusing on the central axis of the said core member. Although the combustion gas is guided by the guide passage, it is also guided by the spiral blade and swirls and rises, so that it can be burned without further disturbing the flow. In this case, the combustion gas rises along the wall of the secondary combustion chamber due to the centrifugal force, so that the flow resistance due to the spiral blade does not increase so much, so that the situation of hindering the flow is prevented.

また、必要に応じ、上記排気路を、上記二次燃焼室からの排気ガスがその旋回方向に略沿って排入口から流出するように形成した構成としている。これにより、二次燃焼室で生じた排ガスが、旋回方向に略沿って流出していくので、燃焼ガスの旋回流の旋回力を増すことができ、旋回流がより一層円滑になり、二次燃焼室での燃焼効率の向上を図ることができる。   If necessary, the exhaust path is formed so that the exhaust gas from the secondary combustion chamber flows out from the exhaust port substantially along the swirl direction. Thereby, since the exhaust gas generated in the secondary combustion chamber flows out substantially along the swirl direction, the swirl force of the swirl flow of the combustion gas can be increased, the swirl flow becomes even smoother, and the secondary flow The combustion efficiency in the combustion chamber can be improved.

更に、必要に応じ、上記導通路の導出口と上記排気路の排入口とを、平面から見て上記一次燃焼室の中心軸と上記二次燃焼室の中心軸とを結ぶ結線に直交し該二次燃焼室の中心軸を通る直交線よりも該一次燃焼室の中心軸側に位置させた構成としている。これにより、もし、導通路の導出口と排気路の排入口とが、二次燃焼室の中心軸を通る直交線を跨いで、互いに対向する位置にある場合には、燃焼ガスの旋回流が回転しきれずに、燃焼ガスがショートカットして流出して行くことがあるが、導通路の導出口と排気路の排入口とを、直交線に対して同じ側に位置させたので、旋回流が回転しきって燃焼ガスが流出するようになることから、この点でも、燃焼ガスの旋回流の旋回力を増すことができ、旋回流がより一層円滑になり、二次燃焼室での燃焼効率の向上を図ることができる。   Further, if necessary, the outlet of the conduction path and the exhaust inlet of the exhaust path are orthogonal to the connection connecting the central axis of the primary combustion chamber and the central axis of the secondary combustion chamber when viewed from above. The configuration is such that it is positioned closer to the central axis of the primary combustion chamber than the orthogonal line passing through the central axis of the secondary combustion chamber. As a result, if the outlet of the conduction path and the exhaust outlet of the exhaust path are across the orthogonal line passing through the central axis of the secondary combustion chamber and are at positions facing each other, the swirling flow of the combustion gas is Combustion gas may flow out as a shortcut without being able to rotate, but because the outlet of the conduction path and the outlet of the exhaust path are located on the same side with respect to the orthogonal line, the swirling flow is Since the combustion gas flows out due to the rotation, the swirl force of the swirl flow of the combustion gas can be increased also in this point, the swirl flow becomes smoother, and the combustion efficiency in the secondary combustion chamber is improved. Improvements can be made.

更にまた、必要に応じ、上記一次燃焼室を有する第一炉体,上記二次燃焼室を有する第二炉体,上記第一炉体及び第二炉体間に架設され上記導通路を有する導通路体,上記第二炉体に連設され上記排気路を有した排気路体を備えた金属製の本体を備え、該本体の底部の下方に、該底部からの熱を受ける金属製の受板を設けた構成としている。これにより、本体からの熱が直接床に及ぶことがなく、受板で受けて発散させることができ、熱の放射効率が向上させられる。   In addition, if necessary, the first furnace body having the primary combustion chamber, the second furnace body having the secondary combustion chamber, and the conductor having the conduction path provided between the first furnace body and the second furnace body. A metal body having an exhaust passage body connected to the passage body and the second furnace body and having the exhaust passage is provided, and a metal receiver for receiving heat from the bottom portion is provided below the bottom portion of the main body. It is set as the structure which provided the board. Thereby, the heat from the main body does not reach the floor directly, but can be received and diffused by the receiving plate, and the heat radiation efficiency is improved.

また、この場合、上記本体から金属製の熱放射板を突設したことが有効である。熱放射板によっても、熱を発散させることができるので、この点でも熱の放射効率が向上させられる。   In this case, it is effective to project a metal heat radiation plate from the main body. Since the heat radiation plate can also dissipate heat, the heat radiation efficiency can be improved also in this respect.

本発明によれば、二次燃焼室においては、二次燃焼室は逆円錐状に形成され、その中心に逆円錐状若しくは逆円錐台状に形成されたコア部材が設けられ、二次燃焼室の壁面とコア部材との間に燃焼ガスをガイドするガイド通路が形成されているので、導通路の導出口から流入した燃焼ガスがこのガイド通路にガイドされる。そのため、燃焼ガスは二次燃焼室の壁面に沿って旋回,上昇するので、流れが乱れることがなく燃焼していき、未燃ガスと排ガスとが混合して燃焼効率を損ねる事態を防止することができる。
また、ガイド通路を構成する二次燃焼室の壁面には、燃焼ガスの流れを妨げる部材が突出していないので、燃焼ガスの流動抵抗が大きくなることがなく、燃焼ガスの旋回,上昇を円滑に行わせることができる。
According to the present invention, in the secondary combustion chamber, the secondary combustion chamber is formed in an inverted cone shape, and a core member formed in an inverted cone shape or an inverted truncated cone shape is provided at the center thereof, and the secondary combustion chamber is provided. Since the guide passage for guiding the combustion gas is formed between the wall surface and the core member, the combustion gas flowing in from the outlet of the conduction passage is guided by this guide passage. For this reason, the combustion gas swirls and rises along the wall of the secondary combustion chamber, preventing the flow from being disturbed and preventing the unburned gas and exhaust gas from mixing and impairing the combustion efficiency. Can do.
In addition, since the member that obstructs the flow of the combustion gas does not protrude from the wall of the secondary combustion chamber that constitutes the guide passage, the flow resistance of the combustion gas does not increase, and the combustion gas can be smoothly swirled and raised. Can be done.

特に、二次燃焼室は逆円錐台状に形成されているので、上昇するに従って周長が長くなっていることから、流速が減少して遠心力が落ち、そのため、上下で圧力差が生じるので、上側への引っ張り力が生じ、この点でも、燃焼ガスの旋回,上昇を円滑に行わせることができる。
即ち、煙突の長さを長くしたり、別途バーナを設けたり、あるいは、吸引ファンを設けなくてもよく、コア部材を設ける単純な構造で、二次燃焼室内において未燃ガスと排ガスとが混合しないように、且つ、燃焼ガスの流動抵抗を極力低下させて、燃焼ガスの旋回流を生成できるようにし、二次燃焼室での燃焼効率の向上を図ることができる。
In particular, since the secondary combustion chamber is formed in the shape of an inverted truncated cone, the circumferential length becomes longer as it rises, so the flow velocity decreases and the centrifugal force drops, so a pressure difference occurs between the upper and lower sides. An upward pulling force is generated, and the combustion gas can be swirled and raised smoothly also in this respect.
In other words, the chimney length is increased, a separate burner is not provided, or a suction fan is not required, and a simple structure is provided in which a core member is provided. Unburned gas and exhaust gas are mixed in the secondary combustion chamber. In addition, the flow resistance of the combustion gas can be reduced as much as possible to generate a swirling flow of the combustion gas, and the combustion efficiency in the secondary combustion chamber can be improved.

本発明の実施の形態に係るストーブを示す断面斜視図である。It is a section perspective view showing the stove concerning an embodiment of the invention. 本発明の実施の形態に係るストーブを示す全体斜視図である。1 is an overall perspective view showing a stove according to an embodiment of the present invention. 本発明の実施の形態に係るストーブを示す正面図である。It is a front view which shows the stove concerning embodiment of this invention. 本発明の実施の形態に係るストーブを示す平面図である。It is a top view which shows the stove concerning embodiment of this invention. 本発明の実施の形態に係るストーブを示す側面部分断面図である。It is side surface fragmentary sectional view which shows the stove concerning embodiment of this invention. 本発明の実施の形態に係るストーブを示す平面断面図である。It is a plane sectional view showing a stove concerning an embodiment of the invention. 本発明の実施の形態に係るストーブにおいて、コア部材の別の例を示す断面図である。It is sectional drawing which shows another example of a core member in the stove concerning embodiment of this invention. 従来の燃焼炉において二次燃焼室の一例を示す図である。It is a figure which shows an example of a secondary combustion chamber in the conventional combustion furnace. 従来の燃焼炉において二次燃焼室の他の例を示す図である。It is a figure which shows the other example of a secondary combustion chamber in the conventional combustion furnace.

以下、添付図面に基づいて本発明の実施の形態に係るストーブについて詳細に説明する。
図1乃至図6に示すように、本発明の実施の形態に係るストーブSは、薪や廃木材等の固形燃料Wを燃焼させるものであり、鉄等の金属板で形成された本体1を備えて構成されている。本体1は、第一炉体10,これに併設される第二炉体20,第一炉体10及び第二炉体20間に架設される導通路体30及び第二炉体20に連設された排気路体40を備えて構成されている。
Hereinafter, a stove according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIGS. 1 to 6, the stove S according to the embodiment of the present invention burns solid fuel W such as firewood and waste wood, and has a main body 1 formed of a metal plate such as iron. It is prepared for. The main body 1 is connected to the first furnace body 10, the second furnace body 20 attached to the first furnace body 10, the conduction path body 30 and the second furnace body 20 installed between the first furnace body 10 and the second furnace body 20. The exhaust path body 40 is provided.

第一炉体10には、固形燃料Wを投入する開閉可能な投入口11を有し投入口11から投入された固形燃料Wを燃焼させる一次燃焼室10Aが設けられている。第二炉体20には、一次燃焼室10Aに水平方向に併設され一次燃焼室10Aからの燃焼ガスを燃焼させる二次燃焼室20Aが設けられている。導通路体30には、一次燃焼室10Aの燃焼ガスを一次燃焼室10A側の下側に設けた導入口31から導入して二次燃焼室20Aの下側に設けた導出口32から導出する導通路30Aが設けられている。排気路体40には、二次燃焼室20Aで生じた排ガスを二次燃焼室20Aの上側に設けた排入口41を通して排出口42から排気する排気路40Aが設けられている。   The first furnace body 10 is provided with a primary combustion chamber 10 </ b> A that has an openable / closable inlet 11 for introducing solid fuel W and burns the solid fuel W introduced from the inlet 11. The second furnace body 20 is provided with a secondary combustion chamber 20A that is disposed side by side with the primary combustion chamber 10A in the horizontal direction and burns the combustion gas from the primary combustion chamber 10A. In the conduction path body 30, the combustion gas in the primary combustion chamber 10 </ b> A is introduced from an inlet 31 provided on the lower side of the primary combustion chamber 10 </ b> A, and is led out from an outlet 32 provided on the lower side of the secondary combustion chamber 20 </ b> A. A conduction path 30A is provided. The exhaust passage body 40 is provided with an exhaust passage 40A for exhausting the exhaust gas generated in the secondary combustion chamber 20A from the exhaust port 42 through the exhaust port 41 provided on the upper side of the secondary combustion chamber 20A.

詳しくは、第一炉体10は、底部12のある円筒状に形成され、上側の開放口を投入口11として構成し、内部を一次燃焼室10Aとして構成している。投入口11には着脱可能な開閉蓋13が設けられている。開閉蓋13には開閉可能なのぞき窓14が設けられている。また、開閉蓋13には開閉蓋13を着脱するための把手15が設けられている。更に、第一炉体10には、一次燃焼室10A内に空気を供給可能な空気供給部16が設けられている。この空気供給部16は、上側に一次燃焼室10Aに連通する開口17aを有した突部17と、該突部17の開口17aにスライド可能に設けられスライドさせることによりこの開口17aの開度調整をして供給する空気量を調整する調整蓋18とを備えてなる。底部12には、ロストル19が設けられる。尚、第一炉体10には底部12に溜まった灰を取り出す灰取出口を適宜設けてよい。   Specifically, the first furnace body 10 is formed in a cylindrical shape with a bottom portion 12, and the upper opening is configured as the input port 11 and the interior is configured as the primary combustion chamber 10 </ b> A. The insertion port 11 is provided with a detachable opening / closing lid 13. The open / close lid 13 is provided with a peep window 14 that can be opened and closed. The opening / closing lid 13 is provided with a handle 15 for attaching / detaching the opening / closing lid 13. Further, the first furnace body 10 is provided with an air supply unit 16 capable of supplying air into the primary combustion chamber 10A. The air supply unit 16 is provided with a protrusion 17 having an opening 17a communicating with the primary combustion chamber 10A on the upper side, and an opening 17a of the protrusion 17 is slidably provided and adjusted by opening the opening 17a. And an adjustment lid 18 for adjusting the amount of air to be supplied. A rooster 19 is provided at the bottom 12. The first furnace body 10 may be appropriately provided with an ash removal outlet for taking out the ash accumulated on the bottom 12.

第二炉体20は、下側部21が底壁22のある円筒状に形成され、上側部23が上壁24のある中空の逆円錐台状に形成されている。図5に示すように、逆円錐台状に形成した部分は、70%以上あるのが望ましい。実施の形態では、下側部21の高さH1と、上側部23の高さH2の比は、H1:H2=3:7に形成されている。
この第二炉体20内が二次燃焼室20Aとして構成されている。第二炉体20の下側部21に、導通路30Aの導出口32が形成されている。第二炉体20の上側部23の上側に排気路40Aの排入口41が形成されている。これにより、二次燃焼室20Aにおいては、少なくとも導出口32と排入口41との間が逆円錐台状に形成され、実施の形態では、導出口32の直上から排入口41を含む上端までが逆円錐台状に形成されている。第二炉体20の上壁24中央には、後述のコア部材50を出し入れ可能にする開口25が設けられており、この開口25には開閉可能な蓋26が設けられている。
The second furnace body 20 has a lower side portion 21 formed in a cylindrical shape with a bottom wall 22, and an upper side portion 23 formed in a hollow inverted truncated cone shape with an upper wall 24. As shown in FIG. 5, it is desirable that the portion formed in the inverted truncated cone shape is 70% or more. In the embodiment, the ratio of the height H1 of the lower side portion 21 to the height H2 of the upper side portion 23 is formed as H1: H2 = 3: 7.
The inside of the second furnace body 20 is configured as a secondary combustion chamber 20A. A lead-out port 32 for the conduction path 30 </ b> A is formed in the lower portion 21 of the second furnace body 20. An exhaust port 41 of the exhaust passage 40 </ b> A is formed on the upper side of the upper portion 23 of the second furnace body 20. As a result, in the secondary combustion chamber 20A, at least the space between the outlet 32 and the outlet 41 is formed in an inverted truncated cone shape, and in the embodiment, from the position directly above the outlet 32 to the upper end including the outlet 41. It is formed in an inverted truncated cone shape. An opening 25 is provided in the center of the upper wall 24 of the second furnace body 20 so that a core member 50 described later can be taken in and out. A lid 26 that can be opened and closed is provided in the opening 25.

導通路体30は、内部を導通路30Aとするダクト状に形成されており、導通路30Aが、導出口32からの燃焼ガスが二次燃焼室20Aの中心軸P2(図6)を中心とする円周方向に沿って二次燃焼室20Aへ流入するように形成されている。詳しくは、第一炉体10の底部12よりやや上側に、図6に示すように、平面から見て一次燃焼室10Aの中心軸P1と二次燃焼室20Aの中心軸P2とを結ぶ結線Qに直交し一次燃焼室10Aの中心軸P1を通る直交線R1よりも二次燃焼室20A側の半周部分に、導通路30Aの導入口31が形成されている。一方、第二炉体20の下側部21に、図6に示すように、平面から見て一次燃焼室10Aの中心軸P1と二次燃焼室20Aの中心軸P2とを結ぶ結線Qに直交し二次燃焼室20Aの中心軸P2を通る直交線R2よりも一次燃焼室10A側の半周部分のうち、その半分(全体の(1/4)周部分)に、導通路30Aの導出口32が形成されている。図5に示すように、導出口32の高さは、第二炉体20の下側部21と略同じ高さに設定されている。図6に示すように、平面から見て、ダクト状の導通路体30の一方壁33は、一次燃焼室10Aと二次燃焼室20Aの接線方向に沿って設けられ、他方壁34は、導通路30Aの開口断面が二次燃焼室20Aに向かうに従って徐々に狭くなるように傾斜形成されている。   The conduction path body 30 is formed in a duct shape having a conduction path 30A inside, and the conduction path 30A has combustion gas from the outlet 32 centered on the central axis P2 (FIG. 6) of the secondary combustion chamber 20A. It is formed so as to flow into the secondary combustion chamber 20A along the circumferential direction. Specifically, as shown in FIG. 6, a connection line Q connecting the central axis P1 of the primary combustion chamber 10A and the central axis P2 of the secondary combustion chamber 20A slightly above the bottom 12 of the first furnace body 10 as viewed from above. The inlet 31 of the conduction path 30A is formed in a half-circumferential part on the secondary combustion chamber 20A side with respect to the orthogonal line R1 passing through the central axis P1 of the primary combustion chamber 10A. On the other hand, as shown in FIG. 6, the second furnace body 20 has a lower portion 21 orthogonal to a connection Q connecting the central axis P1 of the primary combustion chamber 10A and the central axis P2 of the secondary combustion chamber 20A as viewed from above. Of the half-circumferential portion on the primary combustion chamber 10A side with respect to the orthogonal line R2 passing through the central axis P2 of the secondary combustion chamber 20A, the lead-out port 32 of the conduction path 30A is half of that (the entire (¼) circumferential portion). Is formed. As shown in FIG. 5, the height of the outlet 32 is set to be substantially the same as the lower side portion 21 of the second furnace body 20. As shown in FIG. 6, when viewed from the top, one wall 33 of the duct-like conduction path body 30 is provided along the tangential direction of the primary combustion chamber 10A and the secondary combustion chamber 20A, and the other wall 34 is guided. The opening cross section of the passage 30A is formed so as to be gradually narrowed toward the secondary combustion chamber 20A.

排気路体40は、内部を排気路40Aとするダクト状に形成されており、排気路40Aが、二次燃焼室20Aからの排気ガスがその旋回方向に略沿って排入口41から流出するように形成されている。詳しくは、排気路40Aの排入口41が、第二炉体20の上側部23の側壁であって、第一炉体10側に形成されている。即ち、導通路30Aの導出口32と排気路40Aの排入口41とが、図6に示すように、平面から見て一次燃焼室10Aの中心軸P1と二次燃焼室20Aの中心軸P2とを結ぶ結線Qに直交し二次燃焼室20Aの中心軸P2を通る直交線R2よりも一次燃焼室10Aの中心軸P1側に位置させられている。図6に示すように、平面から見て、ダクト状の排気路体40は、その軸線R3が結線Qに対して略45℃(θ)傾斜しており、排入口41が二次燃焼室20Aの(1/4)周の長さに形成されている。排気路体40の一方壁43及び他方壁44は、排気路40Aの開口断面が排入口41から排出口42に向かうに従って徐々に狭くなるように傾斜形成されている。排出口42は上側に向けて開放し、煙突(図示せず)が接続可能な筒状に形成されている。   The exhaust path body 40 is formed in a duct shape having an exhaust path 40A inside, and the exhaust path 40A allows the exhaust gas from the secondary combustion chamber 20A to flow out from the exhaust port 41 substantially along the swirl direction. Is formed. Specifically, the exhaust port 41 of the exhaust passage 40 </ b> A is formed on the side of the upper portion 23 of the second furnace body 20 on the first furnace body 10 side. That is, as shown in FIG. 6, the outlet 32 of the conduction path 30A and the outlet 41 of the exhaust path 40A have a central axis P1 of the primary combustion chamber 10A and a central axis P2 of the secondary combustion chamber 20A as viewed from above. Is positioned closer to the central axis P1 side of the primary combustion chamber 10A than the orthogonal line R2 passing through the central axis P2 of the secondary combustion chamber 20A and orthogonal to the connection line Q. As shown in FIG. 6, the duct-shaped exhaust passage body 40 has an axis R3 inclined at about 45 ° C. (θ) with respect to the connection Q as viewed from above, and the exhaust port 41 has a secondary combustion chamber 20A. (1/4) circumference. The one wall 43 and the other wall 44 of the exhaust passage body 40 are inclined so that the opening cross section of the exhaust passage 40A gradually becomes narrower from the exhaust port 41 toward the discharge port 42. The discharge port 42 is open upward and is formed in a cylindrical shape to which a chimney (not shown) can be connected.

また、二次燃焼室20A内には、コア部材50が設けられている。コア部材50は、鉄等の金属製であり、二次燃焼室20Aの中心軸P2を中心とする逆円錐状若しくは逆円錐台状に形成され、実施の形態では中空状の逆円錐台状に形成され、二次燃焼室20Aの壁面との間に導通路30Aの導出口32から流入した燃焼ガスをガイドするガイド通路51を形成する。このコア部材50の外周面には、二次燃焼室20Aの壁面から離間するとともにコア部材50の中心軸P2を中心とする螺旋状の螺旋羽根52が溶接等で設けられている。螺旋羽根52は、コア部材50に対して略4巻付設されている。詳しくは、コア部材50の下端は、第二炉体20の底壁22に立設される支柱53に支持されている。図5に示すように、実施の形態では、支柱53の高さH3が、H3≒H1で、コア部材50の高さH4が、H4≒(2/3)H2に設定されている。即ち、コア部材50のほとんどの部分は、逆円錐台状の二次燃焼室20Aに対応して設けられている。コア部材50と二次燃焼室20Aの壁部との間隔は、図5に示すように、任意の平断面Saにおいて、コア部材50(螺旋羽根52の外周まで含む)の直径をD1、二次燃焼室20Aの直径をD2としたとき、2D1≦D2となるように設定されている。
尚、コア部材50は支柱53と一体になっており、支柱53は第二炉体20の底壁22に対して、例えば、着脱可能に差し込み固定される。第二炉体20の上壁24中央に設けた蓋26を開閉することにより、コア部材50は出し入れ可能になっている。
A core member 50 is provided in the secondary combustion chamber 20A. The core member 50 is made of metal such as iron, and is formed in an inverted cone shape or an inverted truncated cone shape centering on the central axis P2 of the secondary combustion chamber 20A. In the embodiment, the core member 50 is formed in a hollow inverted truncated cone shape. A guide passage 51 is formed between the wall of the secondary combustion chamber 20A and guides the combustion gas flowing in from the outlet 32 of the conduction passage 30A. On the outer peripheral surface of the core member 50, a spiral spiral blade 52 that is spaced from the wall surface of the secondary combustion chamber 20A and that has the central axis P2 of the core member 50 as the center is provided by welding or the like. The spiral blade 52 is attached to the core member 50 with approximately four turns. Specifically, the lower end of the core member 50 is supported by a support column 53 erected on the bottom wall 22 of the second furnace body 20. As shown in FIG. 5, in the embodiment, the height H3 of the support column 53 is set to H3≈H1, and the height H4 of the core member 50 is set to H4≈ (2/3) H2. That is, most of the core member 50 is provided corresponding to the inverted frustoconical secondary combustion chamber 20A. As shown in FIG. 5, the distance between the core member 50 and the wall of the secondary combustion chamber 20A is D1, the diameter of the core member 50 (including the outer periphery of the spiral blade 52) in an arbitrary flat section Sa. When the diameter of the combustion chamber 20A is D2, 2D1 ≦ D2 is set.
The core member 50 is integrated with the support column 53, and the support column 53 is detachably inserted and fixed to the bottom wall 22 of the second furnace body 20, for example. The core member 50 can be taken in and out by opening and closing the lid 26 provided at the center of the upper wall 24 of the second furnace body 20.

更にまた、本体1の底部2は、脚体3で支持されている、脚体3は、第一炉体10の左右を支持するよう前側に一対設けられるとともに、第二炉体20を支持するように後側に一対設けられている。
本体1の底部2の下方には、底部2からの熱を受ける金属製の受板4が設けられている。受板4は、第一炉体10,導通路体30及び第二炉体20に対応した形状に形成され、本体1の底部2に対して所定の間隔を隔てて、上記の前後にある脚体3に支持されている。
また、本体1から金属製の熱放射板5が突設されている。この熱放射板5は、導通路体30の上面から左右に夫々突設されている。
Furthermore, the bottom 2 of the main body 1 is supported by the legs 3. The legs 3 are provided on the front side so as to support the left and right sides of the first furnace body 10 and also support the second furnace body 20. Thus, a pair is provided on the rear side.
Below the bottom 2 of the main body 1, a metal receiving plate 4 that receives heat from the bottom 2 is provided. The receiving plate 4 is formed in a shape corresponding to the first furnace body 10, the conduction path body 30 and the second furnace body 20. Supported by the body 3.
Further, a metal heat radiation plate 5 projects from the main body 1. The heat radiation plate 5 is provided so as to protrude from the upper surface of the conduction path body 30 to the left and right.

従って、このストーブSにより、薪等の固形燃料Wを燃焼させるときは、図1に示すように、投入口11から固形燃料Wを一次燃焼室10Aに投入して着火する。空気供給部16からは一次燃焼室10Aに燃焼空気が供給されるので、一次燃焼室10Aで固形燃料Wが燃焼していき、燃焼ガスが導通路30Aの導入口31に導入され導出口32から二次燃焼室20Aに導出され、二次燃焼室20Aへ流入する。導通路30Aは、導出口32からの燃焼ガスが二次燃焼室20Aの中心軸P2を中心とする円周方向に沿って二次燃焼室20Aへ流入するように形成されているので、二次燃焼室20Aを旋回して上昇していく。この旋回,上昇過程において、未燃ガスが更に燃焼し、排ガスとなって排気路40Aの排入口41を通して排出口42から排気されていく。   Therefore, when the solid fuel W such as soot is burned by the stove S, as shown in FIG. 1, the solid fuel W is introduced into the primary combustion chamber 10A from the inlet 11 and ignited. Since the combustion air is supplied from the air supply unit 16 to the primary combustion chamber 10A, the solid fuel W is combusted in the primary combustion chamber 10A, and the combustion gas is introduced into the introduction port 31 of the conduction path 30A and from the outlet 32. It is led out to the secondary combustion chamber 20A and flows into the secondary combustion chamber 20A. The conduction path 30A is formed so that the combustion gas from the outlet 32 flows into the secondary combustion chamber 20A along the circumferential direction around the central axis P2 of the secondary combustion chamber 20A. It turns around the combustion chamber 20A and rises. In this turning and ascending process, the unburned gas further burns and becomes exhaust gas, which is exhausted from the exhaust port 42 through the exhaust port 41 of the exhaust passage 40A.

この際、二次燃焼室20Aにおいては、二次燃焼室20Aは逆円錐状に形成され、その中心に逆円錐状若しくは逆円錐台状に形成されたコア部材50が設けられ、二次燃焼室20Aの壁面とコア部材50との間に燃焼ガスをガイドするガイド通路51が形成されているので、導通路30Aの導出口32から流入した燃焼ガスがこのガイド通路51にガイドされる。そのため、燃焼ガスは二次燃焼室20Aの壁面に沿って旋回,上昇するので、流れが乱れることがなく燃焼していき、未燃ガスと排ガスとが混合して燃焼効率を損ねる事態を防止することができる。   At this time, in the secondary combustion chamber 20A, the secondary combustion chamber 20A is formed in an inverted conical shape, and a core member 50 formed in the shape of an inverted cone or an inverted truncated cone is provided at the center thereof. Since the guide passage 51 for guiding the combustion gas is formed between the wall surface of 20A and the core member 50, the combustion gas flowing in from the outlet 32 of the conduction passage 30A is guided by the guide passage 51. Therefore, the combustion gas swirls and rises along the wall surface of the secondary combustion chamber 20A, so that the combustion is performed without disturbing the flow, and the situation where the unburned gas and the exhaust gas are mixed to impair the combustion efficiency is prevented. be able to.

また、コア部材50の外周面には、螺旋羽根52が設けられているので、燃焼ガスはガイド通路51にガイドされるが、螺旋羽根52によってもガイドされて旋回,上昇するので、より一層、流れが乱れることがなく燃焼させることができる。この場合、燃焼ガスは遠心力により二次燃焼室20Aの壁面に沿うように上昇するので、この螺旋羽根52による流動抵抗はそれほど大きくなることがないことから、流動を阻害する事態が防止される。即ち、ガイド通路51を構成する二次燃焼室20Aの壁面には、燃焼ガスの流れを妨げる部材が突出していないので、燃焼ガスの流動抵抗が大きくなることがなく、燃焼ガスの旋回,上昇を円滑に行わせることができる。   Further, since the spiral blade 52 is provided on the outer peripheral surface of the core member 50, the combustion gas is guided by the guide passage 51. However, the combustion gas is also guided by the spiral blade 52 and turns and rises. It can be burned without disturbing the flow. In this case, since the combustion gas rises along the wall surface of the secondary combustion chamber 20A due to centrifugal force, the flow resistance by the spiral blade 52 does not increase so much, and the situation of hindering the flow is prevented. . That is, the wall of the secondary combustion chamber 20A that constitutes the guide passage 51 does not protrude a member that obstructs the flow of the combustion gas, so that the flow resistance of the combustion gas does not increase and the combustion gas swirls and rises. It can be performed smoothly.

特に、二次燃焼室20Aは逆円錐台状に形成されているので、上昇するに従って周長が長くなっていることから、流速が減少して遠心力が落ち、そのため、上下で圧力差が生じるので、上側への引っ張り力が生じ、この点でも、燃焼ガスの旋回,上昇を円滑に行わせることができる。
即ち、煙突の長さを長くしたり、別途バーナを設けたり、あるいは、吸引ファンを設けなくてもよく、コア部材50を設ける単純な構造で、二次燃焼室20A内において未燃ガスと排ガスとが混合しないように、且つ、燃焼ガスの流動抵抗を極力低下させて、燃焼ガスの旋回流を生成できるようにし、二次燃焼室20Aでの燃焼効率の向上を図ることができる。
In particular, since the secondary combustion chamber 20A is formed in the shape of an inverted truncated cone, the circumferential length becomes longer as it rises, so that the flow velocity decreases and the centrifugal force drops, so that a pressure difference occurs between the upper and lower sides. Therefore, an upward pulling force is generated, and the combustion gas can be smoothly swung and raised also in this respect.
That is, the length of the chimney is increased, a separate burner is not provided, or a suction fan is not provided, and the core member 50 is provided in a simple structure, and the unburned gas and exhaust gas in the secondary combustion chamber 20A. And the flow resistance of the combustion gas is reduced as much as possible so that the swirling flow of the combustion gas can be generated, and the combustion efficiency in the secondary combustion chamber 20A can be improved.

そしてまた、排気路40Aは、二次燃焼室20Aからの排気ガスがその旋回方向に略沿って排入口41から流出するように形成されているので、二次燃焼室20Aで生じた排ガスが、旋回方向に略沿って流出していくことになり、そのため、燃焼ガスの旋回流の旋回力を増すことができ、旋回流がより一層円滑になり、二次燃焼室20Aでの燃焼効率の向上を図ることができる。   Further, since the exhaust passage 40A is formed so that the exhaust gas from the secondary combustion chamber 20A flows out from the exhaust port 41 substantially along the swirl direction, the exhaust gas generated in the secondary combustion chamber 20A is As a result, the swirling force of the swirling flow of the combustion gas can be increased, the swirling flow becomes smoother, and the combustion efficiency in the secondary combustion chamber 20A is improved. Can be achieved.

また、導通路30Aの導出口32と排気路40Aの排入口41とが、二次燃焼室20Aの中心軸P2を通る直交線R2よりも一次燃焼室10Aの中心軸P1側に位置しているので、即ち、導通路30Aの導出口32と排気路40Aの排入口41とが、直交線R2に対して同じ側に位置しているので、旋回流が回転しきって燃焼ガスが流出するようになることから、この点でも、燃焼ガスの旋回流の旋回力を増すことができ、旋回流がより一層円滑になり、二次燃焼室20Aでの燃焼効率の向上を図ることができる。もし、導通路30Aの導出口32と排気路40Aの排入口41とが、二次燃焼室20Aの中心軸P2を通る直交線R2を跨いで、互いに対向する位置にある場合には、燃焼ガスの旋回流が回転しきれずに、燃焼ガスがショートカットして流出して行くことがあり、それだけ燃焼効率を損ねる。   Further, the outlet 32 of the conduction path 30A and the exhaust 41 of the exhaust path 40A are located closer to the central axis P1 side of the primary combustion chamber 10A than the orthogonal line R2 passing through the central axis P2 of the secondary combustion chamber 20A. That is, since the outlet 32 of the conducting path 30A and the outlet 41 of the exhaust path 40A are located on the same side with respect to the orthogonal line R2, the swirling flow is completely rotated so that the combustion gas flows out. Therefore, also in this respect, the swirling force of the swirling flow of the combustion gas can be increased, the swirling flow becomes smoother, and the combustion efficiency in the secondary combustion chamber 20A can be improved. If the lead-out port 32 of the conduction path 30A and the exhaust port 41 of the exhaust path 40A are at positions facing each other across the orthogonal line R2 passing through the central axis P2 of the secondary combustion chamber 20A, the combustion gas However, the combustion gas may flow out as a shortcut because the swirl flow cannot be rotated, and the combustion efficiency is reduced accordingly.

この燃焼により、本体1からは熱が放射され、暖房に供される。この場合、本体1の底部の下方に、底部からの熱を受ける金属製の受板4が設けられているので、本体1からの熱が直接床に及ぶことがなく、受板4で受けて発散させることができ、熱の放射効率が向上させられる。
また、本体1から金属製の熱放射板5が突設されているので、熱放射板5によっても、熱を発散させることができ、この点でも熱の放射効率が向上させられる。
Due to this combustion, heat is radiated from the main body 1 and is used for heating. In this case, since the metal receiving plate 4 that receives heat from the bottom portion is provided below the bottom portion of the main body 1, the heat from the main body 1 does not directly reach the floor and is received by the receiving plate 4. The heat radiation efficiency can be improved.
In addition, since the metal heat radiation plate 5 protrudes from the main body 1, heat can be dissipated also by the heat radiation plate 5, and the heat radiation efficiency is also improved in this respect.

図7には、コア部材50の別の例を示す、これは、上記と異なって、支柱53の高さが第二炉体20の下側部21の高さよりも低くなっており、コア部材50の下端が下側部21内に臨み、上端が排入口41の下端と同位に位置するように形成されている。また、螺旋羽根52のピッチが上記のもの(コア部材50に対してほぼ4巻付設)よりも小さく(コア部材50に対して略8巻付設)形成されている。作用,効果は上記と同様である。   FIG. 7 shows another example of the core member 50, which differs from the above in that the height of the support column 53 is lower than the height of the lower side portion 21 of the second furnace body 20. The lower end of 50 faces the lower portion 21, and the upper end is formed so as to be located at the same level as the lower end of the discharge port 41. Further, the pitch of the spiral blades 52 is smaller than that described above (approx. 4 turns attached to the core member 50) (approx. 8 turns attached to the core member 50). The operation and effect are the same as above.

尚、上記実施の形態において、一次燃焼室10A,二次燃焼室20A及びコア部材50の大きさは、上記に限定されるものではなく、適宜変更して差し支えない。   In the embodiment described above, the sizes of the primary combustion chamber 10A, the secondary combustion chamber 20A, and the core member 50 are not limited to the above, and may be changed as appropriate.

S ストーブ
W 固形燃料
1 本体
2 底部
3 脚体
4 受板
5 熱放射板
10 第一炉体
10A 一次燃焼室
11 投入口
12 底部
13 開閉蓋
16 空気供給部
19 ロストル
20 第二炉体
20A 二次燃焼室
21 下側部
22 底壁
23 上側部
24 上壁
25 開口
26 蓋
30 導通路体
30A 導通路
31 導入口
32 導出口
P1 一次燃焼室10Aの中心軸
P2 二次燃焼室20Aの中心軸
Q 結線
R1 中心軸P1を通る直交線
R2 中心軸P2を通る直交線
40 排気路体
40A 排気路
41 排入口
42 排出口
50 コア部材
51 ガイド通路
52 螺旋羽根
53 支柱
S Stove W Solid fuel 1 Body 2 Bottom 3 Leg 4 Receptacle 5 Heat radiation plate 10 First furnace body 10A Primary combustion chamber 11 Input port 12 Bottom portion 13 Opening / closing lid 16 Air supply section 19 Rooster 20 Second furnace body 20A Secondary Combustion chamber 21 Lower side 22 Bottom wall 23 Upper side 24 Upper wall 25 Opening 26 Lid 30 Conducting path body 30A Conducting path 31 Inlet 32 Outlet P1 Central axis P2 of primary combustion chamber 10A Central axis Q of secondary combustion chamber 20A Q Connection R1 Orthogonal line R2 passing through the central axis P1 Orthogonal line 40 passing through the central axis P2 Exhaust passage body 40A Exhaust passage 41 Exhaust port 42 Discharge port 50 Core member 51 Guide passage 52 Spiral blade 53 Strut

Claims (6)

固形燃料を投入する開閉可能な投入口を有し該投入口から投入された固形燃料を燃焼させる一次燃焼室と、該一次燃焼室に水平方向に併設され該一次燃焼室からの燃焼ガスを燃焼させる二次燃焼室と、上記一次燃焼室の燃焼ガスを該一次燃焼室側の下側に設けた導入口から導入して上記二次燃焼室の下側に設けた導出口から導出する導通路と、上記二次燃焼室で生じた排ガスを該二次燃焼室の上側に設けた排入口を通して排出口から排気する排気路とを備えたストーブにおいて、
上記二次燃焼室の少なくとも上記導出口と排入口との間を逆円錐台状に形成し、上記導通路を、上記導出口からの燃焼ガスが上記二次燃焼室の中心軸を中心とする円周方向に沿って該二次燃焼室へ流入するように形成し、上記二次燃焼室内に、該二次燃焼室の中心軸を中心とする逆円錐状若しくは逆円錐台状に形成され該二次燃焼室の壁面との間に上記導通路の導出口から流入した燃焼ガスをガイドするガイド通路を形成するコア部材を設けたことを特徴とするストーブ。
A primary combustion chamber having an openable and closable inlet for charging solid fuel and burning the solid fuel input from the inlet, and a combustion gas from the primary combustion chamber disposed in the horizontal direction in the primary combustion chamber A secondary combustion chamber to be introduced, and a conduction path for introducing combustion gas in the primary combustion chamber from an inlet provided on the lower side of the primary combustion chamber and leading out from an outlet provided on the lower side of the secondary combustion chamber And a stove provided with an exhaust passage for exhausting exhaust gas generated in the secondary combustion chamber from an exhaust port through an exhaust port provided on the upper side of the secondary combustion chamber,
At least the outlet and the outlet of the secondary combustion chamber are formed in an inverted truncated cone shape, and the combustion gas from the outlet is centered on the central axis of the secondary combustion chamber in the conduction path. It is formed so as to flow into the secondary combustion chamber along the circumferential direction, and is formed in an inverted conical shape or an inverted frustoconical shape centering on the central axis of the secondary combustion chamber in the secondary combustion chamber. A stove comprising a core member for forming a guide passage for guiding combustion gas flowing in from the outlet of the conduction path between the wall of the secondary combustion chamber.
上記コア部材の外周面に、上記二次燃焼室の壁面から離間するとともに上記コア部材の中心軸を中心とする螺旋状の螺旋羽根を設けたことを特徴とする請求項1記載のストーブ。   2. The stove according to claim 1, wherein a spiral helix blade is provided on the outer peripheral surface of the core member and spaced apart from the wall surface of the secondary combustion chamber and centering on the central axis of the core member. 上記排気路を、上記二次燃焼室からの排気ガスがその旋回方向に略沿って排入口から流出するように形成したことを特徴とする請求項1または2記載のストーブ。   The stove according to claim 1 or 2, wherein the exhaust passage is formed so that the exhaust gas from the secondary combustion chamber flows out from the exhaust inlet substantially along the swirl direction. 上記導通路の導出口と上記排気路の排入口とを、平面から見て上記一次燃焼室の中心軸と上記二次燃焼室の中心軸とを結ぶ結線に直交し該二次燃焼室の中心軸を通る直交線よりも該一次燃焼室の中心軸側に位置させたことを特徴とする請求項3記載のストーブ。   The lead-out port of the conduction path and the exhaust port of the exhaust path are orthogonal to a connection connecting the central axis of the primary combustion chamber and the central axis of the secondary combustion chamber when viewed from above, and the center of the secondary combustion chamber The stove according to claim 3, wherein the stove is positioned closer to the central axis side of the primary combustion chamber than an orthogonal line passing through the axis. 上記一次燃焼室を有する第一炉体,上記二次燃焼室を有する第二炉体,上記第一炉体及び第二炉体間に架設され上記導通路を有する導通路体,上記第二炉体に連設され上記排気路を有した排気路体を備えた金属製の本体を備え、該本体の底部の下方に、該底部からの熱を受ける金属製の受板を設けたことを特徴とする請求項1乃至4何れかに記載のストーブ。   A first furnace body having the primary combustion chamber; a second furnace body having the secondary combustion chamber; a conduction path body provided between the first furnace body and the second furnace body and having the conduction path; and the second furnace. A metal main body having an exhaust passage body connected to the body and having the exhaust passage is provided, and a metal receiving plate that receives heat from the bottom portion is provided below the bottom portion of the main body. The stove according to any one of claims 1 to 4. 上記本体から金属製の熱放射板を突設したことを特徴とする請求項5記載のストーブ。   6. The stove according to claim 5, wherein a metal heat radiation plate is projected from the main body.
JP2012008769A 2012-01-19 2012-01-19 Stove Expired - Fee Related JP5740683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008769A JP5740683B2 (en) 2012-01-19 2012-01-19 Stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008769A JP5740683B2 (en) 2012-01-19 2012-01-19 Stove

Publications (2)

Publication Number Publication Date
JP2013148263A true JP2013148263A (en) 2013-08-01
JP5740683B2 JP5740683B2 (en) 2015-06-24

Family

ID=49045920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008769A Expired - Fee Related JP5740683B2 (en) 2012-01-19 2012-01-19 Stove

Country Status (1)

Country Link
JP (1) JP5740683B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197379A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Burner and core connection structure for firewood-saving stove
CN104197361A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Stove feed inlet
CN104197377A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Firewood-saving stove
CN104197380A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Burner for firewood-saving stove
KR101486050B1 (en) 2014-04-24 2015-01-29 임재욱 Pellet stove
KR101507778B1 (en) 2014-08-27 2015-04-07 송연희 Pellet stove
JP6360960B1 (en) * 2017-12-13 2018-07-18 聖治 西岡 Combustion device
KR102042354B1 (en) * 2018-08-28 2019-11-08 장상길 Stove with Re-combustion device
KR20220069560A (en) * 2020-11-20 2022-05-27 안동호 Curing pellet stove
KR102413149B1 (en) * 2021-11-30 2022-06-24 주식회사 파이어우드 Wood stove that causes complete combustion
KR102437889B1 (en) * 2021-06-04 2022-08-29 허승 Air circulation type high temperature combustion firewood stove

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486050B1 (en) 2014-04-24 2015-01-29 임재욱 Pellet stove
KR101507778B1 (en) 2014-08-27 2015-04-07 송연희 Pellet stove
CN104197379A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Burner and core connection structure for firewood-saving stove
CN104197361A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Stove feed inlet
CN104197377A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Firewood-saving stove
CN104197380A (en) * 2014-09-17 2014-12-10 凤冈县凤鸣农用机械制造有限公司 Burner for firewood-saving stove
JP6360960B1 (en) * 2017-12-13 2018-07-18 聖治 西岡 Combustion device
KR102042354B1 (en) * 2018-08-28 2019-11-08 장상길 Stove with Re-combustion device
KR20220069560A (en) * 2020-11-20 2022-05-27 안동호 Curing pellet stove
KR102422342B1 (en) * 2020-11-20 2022-07-18 안동호 Curing pellet stove
KR102437889B1 (en) * 2021-06-04 2022-08-29 허승 Air circulation type high temperature combustion firewood stove
KR102413149B1 (en) * 2021-11-30 2022-06-24 주식회사 파이어우드 Wood stove that causes complete combustion

Also Published As

Publication number Publication date
JP5740683B2 (en) 2015-06-24

Similar Documents

Publication Publication Date Title
JP5740683B2 (en) Stove
RU2490544C2 (en) Pulverised-coal concentrator, and pulverised-coal burner containing such concentrator
JPH06506764A (en) Gas burner
BRPI1003968A2 (en) three sector flame burner
CN201126192Y (en) Plasma ignition combustor
JP2010139167A (en) Pellet combustion device, and heater and boiler using the pellet combustion device
US20160209043A1 (en) Combustion furnace
JP2848965B2 (en) Evaporative burners for heating machines
CN103062769B (en) A kind of burner
US6145450A (en) Burner assembly with air stabilizer vane
JP3239142B2 (en) Method of controlling radial stratified flame center burner
CN105841195A (en) Flue gas circulating combustion type coal-fired cooking stove
JP2013104642A (en) Oil-fired burner, solid fuel-fired burner unit, and solid fuel-fired boiler
JP6732960B2 (en) Method for burning fuel and boiler
JP2011242120A (en) Combustion catalyst apparatus, and solid fuel combustor
CN207661763U (en) A kind of New-type Swirl Flow coal burner
JP4103114B2 (en) Burner equipment
JP5529086B2 (en) Combustion device
WO2012124667A1 (en) Top-firing hot blast stove
JP5832624B2 (en) Oil burning burner, solid fuel burning burner unit and solid fuel burning boiler
TW201522864A (en) Gas burner with enhanced flame visibility and safety
JP2006125692A (en) Combustion device implementing swirl combustion
RU2408822C1 (en) Oven, air duct and heat exchanger for it
US4222363A (en) Draft tube for wood burning stoves
JP2021127870A (en) Throat member and contraction flow swirler for burner device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5740683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees