JP2013148022A - Wind power generation device and operation control method thereof - Google Patents

Wind power generation device and operation control method thereof Download PDF

Info

Publication number
JP2013148022A
JP2013148022A JP2012009404A JP2012009404A JP2013148022A JP 2013148022 A JP2013148022 A JP 2013148022A JP 2012009404 A JP2012009404 A JP 2012009404A JP 2012009404 A JP2012009404 A JP 2012009404A JP 2013148022 A JP2013148022 A JP 2013148022A
Authority
JP
Japan
Prior art keywords
conductive composite
electrodes
composite material
wind turbine
operation mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012009404A
Other languages
Japanese (ja)
Inventor
Takehiro Naka
丈博 名嘉
Kohei Kawazoe
浩平 川添
Hideyasu Fujioka
秀康 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012009404A priority Critical patent/JP2013148022A/en
Publication of JP2013148022A publication Critical patent/JP2013148022A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind power generation device and an operation control method thereof, capable of monitoring a damage state of a conductive composite material, while reducing failure risk of a damage detecting system by a lightning current.SOLUTION: A wind power generation device includes a wind turbine blade 1 at least a part of which is constituted of conductive composite materials 12, a plurality of measuring electrodes 20installed in the conductive composite materials 12, and a resistance measuring instrument 24 connected to the respective measuring electrodes 20via first switches 22. When operating the wind power generation device by an ordinary operation mode, the first switches 22are opened, and the resistance measuring instrument 24 is separated from the measuring electrodes 20. When an operation mode of the wind power generation device is switched to a damage detecting mode from the ordinary operation mode, first switches 22and 22are closed, the resistance measuring instrument 24 is electrically connected with a pair of electrodes 20and 20, and electric resistance between the pair of electrodes 20and 20is measured by the resistance measuring instrument 24 in this state. Damage of the conductive composite material 12 is detected based on a measuring result of the resistance measuring instrument 24.

Description

本発明は、風力発電装置及びその運転制御方法に係り、具体的には、少なくとも一部が導電性複合材により構成された風車翼を有する風力発電装置及びその運転制御方法に関する。   The present invention relates to a wind turbine generator and an operation control method thereof, and more particularly, to a wind turbine generator having wind turbine blades at least partially made of a conductive composite material and an operation control method thereof.

近年、地球環境の保全の観点から、再生エネルギーとしての風を利用して発電を行う風力発電装置の普及が進んでいる。   In recent years, wind power generators that generate power using wind as a renewable energy have been widely used from the viewpoint of conservation of the global environment.

従来、風車翼はGFRP(Glass Fiber Reinforced Plastic:ガラス繊維強化プラスチック)で構成されるのが通常であったが、風力発電装置の大型化に伴い風車翼の重量や撓みを軽減する必要に迫られ、GFRPよりも比強度及び比剛性に優れるCFRP(Carbon Fiber Reinforced Plastic:炭素繊維強化プラスチック)を風車翼の主要構造部材として採用するケースが増えている。   Conventionally, wind turbine blades are usually made of GFRP (Glass Fiber Reinforced Plastic). However, as wind turbine generators become larger, it is necessary to reduce the weight and deflection of wind turbine blades. In many cases, CFRP (Carbon Fiber Reinforced Plastic), which is more excellent in specific strength and rigidity than GFRP, is adopted as a main structural member of a wind turbine blade.

ところが、風車翼のCFRPは、雷撃による損傷や飛翔体の衝突による層間剥離を生じて強度低下に至るリスクがあるから、CFRPの損傷状態を定期的に把握することが重要である。CFRPの損傷状態を把握するには、目視点検が最も簡単であるが、目視点検ではCFRP内部の層間剥離を発見するのは困難である。よって、CFRP内部の層間剥離を含むCFRPの損傷状態を把握しうる損傷検出方法の開発が望まれている。   However, since the CFRP of a windmill blade has a risk of causing strength reduction due to damage caused by lightning strikes or delamination due to collision of flying objects, it is important to periodically grasp the damage state of the CFRP. Visual inspection is the simplest way to grasp the damage state of CFRP, but it is difficult to find delamination inside the CFRP by visual inspection. Therefore, development of a damage detection method that can grasp the damage state of CFRP including delamination inside the CFRP is desired.

一般的なCFRPの損傷検出方法として、特許文献1には、導電性を有する複合材料に設けた電極間の電気抵抗を計測し、その計測結果から複合材料の剥離の位置及び大きさを検出する方法が開示されている。このように、CFRPの電気抵抗の変化によりCFRPの損傷を検出する方法は電気抵抗変化法と称される。
また、非特許文献1には、CFRPをジュール熱により加熱し、CFRPの温度上昇による電気抵抗の変化率からCFRPの損傷を検出する方法が開示されている。この方法は、電極の欠損がCFRPの損傷検出精度に影響し得るという電気抵抗変化法の問題を回避するため、CFRPの温度変化による電気抵抗の変化率を利用してCFRPの損傷を検出するものである。
As a general CFRP damage detection method, Patent Document 1 measures the electrical resistance between electrodes provided on a conductive composite material, and detects the position and size of the composite material peeling from the measurement result. A method is disclosed. As described above, the method of detecting the damage of the CFRP by the change of the electrical resistance of the CFRP is referred to as an electrical resistance change method.
Non-Patent Document 1 discloses a method of detecting CFRP damage from the rate of change in electrical resistance caused by the temperature rise of CFRP by heating CFRP with Joule heat. This method detects the damage of CFRP by using the rate of change of electric resistance due to the temperature change of CFRP in order to avoid the problem of the electric resistance change method that the defect of the electrode may affect the accuracy of damage detection of CFRP. It is.

特開2001−318070号公報JP 2001-318070 A

高橋航圭、他2名、「ジュール発熱による電気抵抗変化を利用したCFRP構造物の層間はく離検知」、日本機械学会論文集、2008年12月、第74巻、第748号、p.81−88Takahashi, K. and two others, “Detection of delamination of CFRP structure using electrical resistance change due to Joule heating”, Transactions of the Japan Society of Mechanical Engineers, December 2008, Vol. 74, No. 748, p. 81-88

風力発電装置は発電効率向上の観点から大型化が進められており、ロータ直径が百数十mを超える巨大な風力発電装置も実用化されつつある。そのため、風車翼の先端部はロータ回転時に地表から大きく離れた位置(高所)を通過することになり、風車翼は雷撃の対象になりやすい。そして、導電性を有するCFRPは、風車翼における雷撃電流の経路になり得る。
したがって、CFRPを備えた風車翼に特許文献1や非特許文献1に記載された一般的なCFRP損傷検出方法を適用すると、CFRPに設けた電極を介して抵抗計測器等の損傷検出システムに雷撃電流が流れ込み、損傷検出システムが故障する可能性がある。
The size of wind power generators has been increased from the viewpoint of improving power generation efficiency, and huge wind power generators having a rotor diameter of more than a few tens of meters are being put into practical use. Therefore, the tip of the wind turbine blade passes through a position (high place) far away from the ground surface when the rotor rotates, and the wind turbine blade is likely to be a target of lightning strike. And CFRP which has electroconductivity can become a path | route of the lightning strike current in a windmill blade.
Therefore, when a general CFRP damage detection method described in Patent Document 1 or Non-Patent Document 1 is applied to a wind turbine blade equipped with CFRP, a lightning strike is applied to a damage detection system such as a resistance measuring instrument via an electrode provided on the CFRP. Current can flow and damage detection systems can fail.

本発明は、上述の事情に鑑みてなされたものであり、雷撃電流による損傷検出システムの故障リスクを低減しながら、CFRPのような導電性複合材の損傷状態を監視可能な風力発電装置及びその運転制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a wind turbine generator capable of monitoring a damaged state of a conductive composite material such as CFRP while reducing the failure risk of a damage detection system caused by a lightning strike current, and its An object is to provide an operation control method.

本発明に係る風力発電装置の運転制御方法は、少なくとも一部が導電性複合材により構成される風車翼と、前記導電性複合材に取り付けられた複数の計測用電極と、各計測用電極に第1開閉器を介して接続される抵抗計測器を備えた風力発電装置の運転制御方法であって、前記第1開閉器を開いて前記抵抗計測器を前記計測用電極から切り離した状態で、前記風力発電装置を通常運転モードにより運転するステップと、前記風力発電装置の運転モードが前記通常運転モードから損傷検出モードに切替えられたとき、前記第1開閉器を閉じて前記抵抗計測器を前記計測用電極のうち一対の電極に導通させるステップと、前記第1開閉器を閉じて前記抵抗計測器を前記一対の電極に導通させた状態で、前記一対の電極間の電気抵抗を前記抵抗計測器により計測するステップと、前記電気抵抗の計測値に基づいて、前記導電性複合材の損傷を検出するステップとを備えることを特徴とする。
なお、風車翼の少なくとも一部を構成する導電性複合材は、樹脂マトリックスを導電性繊維で強化した繊維強化プラスチックであってもよく、例えば炭素繊維強化プラスチックであってもよい。
An operation control method for a wind turbine generator according to the present invention includes a wind turbine blade at least partly composed of a conductive composite material, a plurality of measurement electrodes attached to the conductive composite material, and each measurement electrode. In the operation control method of a wind turbine generator having a resistance measuring instrument connected via a first switch, the first measuring instrument is opened and the resistance measuring instrument is disconnected from the measurement electrode. A step of operating the wind turbine generator in a normal operation mode; and when the operation mode of the wind turbine generator is switched from the normal operation mode to a damage detection mode, the first switch is closed and the resistance measuring instrument is Conducting a pair of electrodes among the measurement electrodes, and measuring the resistance between the pair of electrodes in a state where the first switch is closed and the resistance measuring instrument is connected to the pair of electrodes. A step of measuring by, based on the measurement values of the electrical resistance, characterized in that it comprises the steps of detecting damage to the electrically conductive composite.
The conductive composite material constituting at least a part of the wind turbine blade may be a fiber reinforced plastic obtained by reinforcing a resin matrix with conductive fibers, and may be a carbon fiber reinforced plastic, for example.

上記風力発電装置の運転制御方法によれば、損傷検出モードの選択時に第1開閉器を閉じて抵抗計測器を一対の電極に導通させて該一対の電極間の電気抵抗を計測するようにしたので、電気抵抗変化法により導電性複合材の損傷を把握できる。一方、通常運転モード選択時には、第1開閉器を開いて抵抗計測器を計測用電極から切り離すようにしたので、雷撃電流による抵抗計測器(損傷検出システム)の故障リスクを低減できる。   According to the wind turbine generator operation control method, when the damage detection mode is selected, the first switch is closed and the resistance measuring instrument is connected to the pair of electrodes to measure the electrical resistance between the pair of electrodes. Therefore, the damage of the conductive composite material can be grasped by the electric resistance change method. On the other hand, when the normal operation mode is selected, the first switch is opened and the resistance measuring device is disconnected from the measurement electrode, so that the risk of failure of the resistance measuring device (damage detection system) due to the lightning current can be reduced.

上記風力発電装置の運転制御方法において、前記風力発電装置は、前記導電性複合材に取り付けられた一対の加熱用電極と、前記加熱用電極に第2開閉器を介して接続される電圧印加器とをさらに備え、前記風力発電装置の運転モードとして前記損傷検出モードが選択されたとき、前記第2開閉器を閉じて前記電圧印加器を前記加熱用電極に導通させて、前記導電性複合材をジュール熱により加熱するステップをさらに備え、前記通常運転モードでは、前記第2開閉器を開いて前記電圧印加器を前記加熱用電極から切り離した状態を維持してもよい。
このように、通常運転モード選択時に第2開閉器を開いて電圧印加器を加熱用電極から切り離すことで、非特許文献2のように導電性複合材の温度変化による電気抵抗の変化率を利用して損傷検出を行う場合において、電圧印加器の故障リスクを低減できる。
In the wind power generator operation control method, the wind power generator includes a pair of heating electrodes attached to the conductive composite material, and a voltage applicator connected to the heating electrodes via a second switch. And when the damage detection mode is selected as the operation mode of the wind turbine generator, the second switch is closed and the voltage applicator is conducted to the heating electrode, and the conductive composite material In the normal operation mode, the second switch is opened to keep the voltage applicator disconnected from the heating electrode.
In this way, when the normal operation mode is selected, the second switch is opened and the voltage applicator is disconnected from the heating electrode, so that the rate of change in electrical resistance due to the temperature change of the conductive composite material is used as in Non-Patent Document 2. Thus, when performing damage detection, the risk of failure of the voltage applicator can be reduced.

上記風力発電装置の運転制御方法において、前記導電性複合材は前記風車翼の翼長方向に延在し、異なる翼長方向位置に3個以上の前記計測用電極が取り付けられており、前記電気抵抗を計測するステップでは、複数組の前記一対の電極について前記電気抵抗をそれぞれ計測し、前記損傷を検出するステップでは、各組の前記電気抵抗に基づいて、前記導電性複合材の損傷箇所を特定してもよい。
これにより、翼長方向に延在する導電性複合材の損傷箇所を知ることができ、風車翼のメンテナンスを効率的に行うことができる。
In the wind turbine generator operation control method, the conductive composite material extends in the blade length direction of the wind turbine blade, and three or more measurement electrodes are attached to different blade length direction positions, In the step of measuring resistance, the electrical resistance is measured for each of the pair of electrodes in a plurality of sets, and in the step of detecting damage, the damaged portion of the conductive composite material is determined based on the electrical resistance of each set. You may specify.
Thereby, the damaged part of the electroconductive composite material extended in a blade length direction can be known, and a windmill blade can be maintained efficiently.

また上記風力発電装置の運転制御方法は、前記導電性複合材に埋め込まれた光ファイバに光を入射するステップと、前記光ファイバに入射された前記光の散乱光又は透過光を検出するステップとをさらに備え、前記損傷を検出するステップでは、前記電気抵抗の計測値および前記散乱光又は透過光に基づいて前記導電性複合材の損傷を検出してもよい。
このように、導電性複合材に取り付けた計測用電極間の電気抵抗だけでなく、導電性複合材に埋め込まれた光ファイバに入射された光の散乱光又は透過光をも考慮することで、導電性複合材の損傷をより高精度に検出できる。
The operation control method of the wind power generator includes a step of entering light into an optical fiber embedded in the conductive composite material, and a step of detecting scattered light or transmitted light of the light incident on the optical fiber; In the step of detecting the damage, the damage of the conductive composite material may be detected based on the measured value of the electrical resistance and the scattered light or transmitted light.
Thus, by considering not only the electrical resistance between the measurement electrodes attached to the conductive composite material, but also the scattered light or transmitted light of the light incident on the optical fiber embedded in the conductive composite material, Damage to the conductive composite can be detected with higher accuracy.

なお、導電性複合材に埋め込んだ光ファイバを導電性複合材の損傷検出に利用する具体的手法として、例えば、光ファイバに入射された光のブリルアン散乱光の周波数シフトから光ファイバの歪み量を求め、該歪み量を所定の閾値と比較して導電性複合材の損傷の有無を判定してもよい。   As a specific method of using the optical fiber embedded in the conductive composite material for detecting damage to the conductive composite material, for example, the distortion amount of the optical fiber is calculated from the frequency shift of the Brillouin scattered light of the light incident on the optical fiber. Then, the amount of distortion may be compared with a predetermined threshold value to determine whether or not the conductive composite material is damaged.

導電性複合材に埋め込んだ光ファイバを導電性複合材の損傷検出に利用する場合、前記散乱光に基づいて前記導電性複合材の損傷箇所を特定してもよい。例えば、光ファイバの歪み発生部分において周波数がシフトしたブリルアン散乱光が計測器(BOTDR方式の計測器)に戻るまでの時間から、光ファイバの歪み発生位置(すなわち導電性複合材の損傷箇所)を特定してもよい。   When an optical fiber embedded in a conductive composite material is used for detecting damage to the conductive composite material, the damaged portion of the conductive composite material may be specified based on the scattered light. For example, from the time until the Brillouin scattered light whose frequency is shifted in the strain generation portion of the optical fiber returns to the measuring instrument (BOTDR type measuring instrument), the strain generating position of the optical fiber (that is, the damaged portion of the conductive composite material) is determined. You may specify.

上記風力発電装置の運転制御方法において、前記導電性複合材の損傷が検出された場合、前記風力発電装置の停止および警報出力の少なくとも一方を行ってもよい。   In the wind power generator operation control method, when damage to the conductive composite material is detected, at least one of stopping the wind power generator and outputting an alarm may be performed.

また本発明に係る風力発電装置は、少なくとも一部が導電性複合材により構成される風車翼を備えた風力発電装置であって、前記導電性複合材に取り付けられた複数の計測用電極と、前記計測用電極に第1開閉器を介して接続される抵抗計測器と、前記第1開閉器を開閉制御する第1開閉制御部と、前記抵抗計測器を制御する計測器制御部と、前記抵抗計測器の計測結果に基づいて、前記導電性複合材の損傷を検出する損傷検出部と、前記風力発電装置の運転モードとして、通常運転モードおよび損傷検出モードの何れか一方を選択する運転モード選択部とを備え、前記運転モード選択部によって前記通常運転モードが選択されたとき、前記第1開閉制御部は、前記抵抗計測器を前記計測用電極から切り離した状態を維持するように前記第1開閉器を開き、前記運転モード選択部によって前記損傷検出モードが選択されたとき、前記第1開閉制御部は、前記抵抗計測器が前記計測用電極のうち一対の電極に導通するように前記第1開閉器を閉じるとともに、前記計測器制御部が前記抵抗計測器により前記一対の電極間の電気抵抗を取得し、前記損傷検出部が前記電気抵抗の計測値に基づいて前記導電性複合材の損傷を検出することを特徴とする。   Further, the wind power generator according to the present invention is a wind power generator provided with a wind turbine blade at least partially composed of a conductive composite material, and a plurality of measurement electrodes attached to the conductive composite material, A resistance measuring instrument connected to the measuring electrode via a first switch; a first switching control section for controlling the opening and closing of the first switch; a measuring instrument control section for controlling the resistance measuring instrument; Based on the measurement result of the resistance measuring instrument, a damage detection unit that detects damage of the conductive composite material, and an operation mode that selects one of a normal operation mode and a damage detection mode as the operation mode of the wind turbine generator And when the normal operation mode is selected by the operation mode selection unit, the first opening / closing control unit maintains the state in which the resistance measuring instrument is disconnected from the measurement electrode. 1 When the closure is opened and the damage detection mode is selected by the operation mode selection unit, the first opening / closing control unit is configured to cause the resistance measuring instrument to conduct to a pair of electrodes among the measurement electrodes. 1 The switch is closed, the measuring instrument control unit acquires the electrical resistance between the pair of electrodes by the resistance measuring instrument, and the damage detecting unit It is characterized by detecting damage.

この風力発電装置によれば、損傷検出モードの選択時に第1開閉制御部によって第1開閉器を閉じて抵抗計測器を一対の電極に導通させて該一対の電極間の電気抵抗を計測するようにしたので、電気抵抗変化法により導電性複合材の損傷状態を把握できる。一方、通常運転モード選択時には、第1開閉制御部によって第1開閉器を開いて抵抗計測器を計測用電極から切り離すようにしたので、雷撃電流による抵抗計測器(損傷検出システム)の故障リスクを低減できる。   According to this wind turbine generator, when the damage detection mode is selected, the first switch is closed by the first opening / closing controller, and the resistance measuring instrument is connected to the pair of electrodes to measure the electrical resistance between the pair of electrodes. Therefore, the damaged state of the conductive composite material can be grasped by the electric resistance change method. On the other hand, when the normal operation mode is selected, the first switch is opened by the first switching control unit so that the resistance measuring instrument is disconnected from the measuring electrode, so the risk of failure of the resistance measuring instrument (damage detection system) due to lightning current is reduced. Can be reduced.

上記風力発電装置において、前記風車翼は、前記風車翼の腹側面および背側面にそれぞれ設けられて、翼長方向に延在するスパーキャップと、前記腹側面および前記背側面の前記スパーキャップを接続するスパーとを有し、前記導電性複合材は前記スパーキャップであり、前記計測用電極は、前記スパーキャップの内側表面のうち前記スパーとの接合部を除く領域に配置されていてもよい。
これにより、計測用電極の取付けによる風車翼の強度や製造性の低下を防止するとともに、計測用電極が雷撃電流による影響を受けることを避けることができる。
In the wind turbine generator described above, the wind turbine blades are respectively provided on the belly side surface and the back side surface of the wind turbine blade, and connect the spar caps extending in the blade length direction and the spar caps on the belly side surface and the back side surface. The conductive composite material may be the spar cap, and the measurement electrode may be disposed in a region of the inner surface of the spar cap excluding the junction with the spar.
As a result, it is possible to prevent the windmill blade strength and manufacturability from being lowered due to the attachment of the measurement electrode, and to avoid the measurement electrode from being affected by the lightning strike current.

本発明によれば、損傷検出モードの選択時に第1開閉器を閉じて抵抗計測器を一対の電極に導通させて該一対の電極間の電気抵抗を計測するようにしたので、電気抵抗変化法により導電性複合材の損傷状態を把握できる。一方、通常運転モード選択時には、第1開閉器を開いて抵抗計測器を計測用電極から切り離すようにしたので、雷撃電流による抵抗計測器の故障リスクを低減できる。   According to the present invention, when the damage detection mode is selected, the first switch is closed and the resistance measuring instrument is connected to the pair of electrodes to measure the electrical resistance between the pair of electrodes. Can grasp the damaged state of the conductive composite material. On the other hand, when the normal operation mode is selected, the first switch is opened and the resistance measuring instrument is disconnected from the measurement electrode, so that the risk of failure of the resistance measuring instrument due to the lightning current can be reduced.

風車翼の構成例を示す図である。It is a figure which shows the structural example of a windmill blade. 図1のA−A断面図である。It is AA sectional drawing of FIG. 第1実施形態に係る風車翼の損傷検出システムの構成例を示す図である。It is a figure which shows the structural example of the damage detection system of the windmill blade which concerns on 1st Embodiment. 計測用電極の取付け位置の例を示す図であり、(a)は風車翼の断面図(図2とは異なる翼長方向位置における断面図)、(b)は図4(a)におけるB部で示した領域の拡大図である。It is a figure which shows the example of the attachment position of the electrode for a measurement, (a) is sectional drawing of a windmill blade (sectional drawing in the blade length direction position different from FIG. 2), (b) is the B section in FIG. 4 (a). It is an enlarged view of the area | region shown by. 第1実施形態における損傷検出システム及び風車コントローラの構成例を示す図である。It is a figure which shows the structural example of the damage detection system and windmill controller in 1st Embodiment. CFRPの加熱終了後の自然冷却中における抵抗変化率ΔR/Rの経時変化を示すグラフである。It is a graph showing the time course of the rate of change in resistance [Delta] R c / R 1 in the natural cooling of the finished heating CFRP. 第1実施形態に係る風力発電装置の運転制御方法を示すフローチャートである。It is a flowchart which shows the operation control method of the wind power generator which concerns on 1st Embodiment. 第2実施形態における風車翼の損傷検出システムの構成例を示す図である。It is a figure which shows the structural example of the damage detection system of the windmill blade in 2nd Embodiment. 第2実施形態における損傷検出システム及び風車コントローラの構成例を示す図である。It is a figure which shows the structural example of the damage detection system in 2nd Embodiment, and a windmill controller. BOTDR方式の計測器とブラッグ格子センサを併用した光ファイバ計測装置の構成例を示す図である。It is a figure which shows the structural example of the optical fiber measuring device which used the BOTDR type measuring device and the Bragg grating sensor together. ブリルアン周波数シフトとブラッグ反射波長シフトの歪み依存性の一例を示すグラフである。It is a graph which shows an example of distortion dependence of Brillouin frequency shift and Bragg reflection wavelength shift. ブリルアン周波数シフトとブラッグ反射波長シフトの温度依存性の一例を示すグラフである。It is a graph which shows an example of the temperature dependence of Brillouin frequency shift and Bragg reflection wavelength shift.

以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

[第1実施形態]
図1は、風車翼の構成例を示す図である。図2は図1のA−A断面図である。
図1に示すように、風車翼1は、風力発電装置のハブに接続される翼根部2から先端部4に亘って翼長方向に延在している。風車翼1は、図2に示すように、内側層10a及び外側層10bを有する外皮(シェル)10と、翼長方向に延在するように外皮10の内側層10aに設けられたスパーキャップ12と、背側と腹側のスパーキャップ12間に設けられたスパー(シアウェブ)14とを備えている。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration example of a wind turbine blade. 2 is a cross-sectional view taken along the line AA in FIG.
As shown in FIG. 1, the wind turbine blade 1 extends in the blade length direction from the blade root portion 2 connected to the hub of the wind turbine generator to the tip portion 4. As shown in FIG. 2, the wind turbine blade 1 includes an outer skin (shell) 10 having an inner layer 10a and an outer layer 10b, and a spar cap 12 provided on the inner layer 10a of the outer skin 10 so as to extend in the blade length direction. And a spar (shear web) 14 provided between the dorsal and ventral spar caps 12.

外皮10は、例えばGFRPやバルサ材等の絶縁体で形成されている。これに対し、強度部材であるスパーキャップ12はCFRP(導電性複合材)で形成されている。そのため、CFRP製のスパーキャップ12に対する直接的な雷撃を防止する観点から、各スパーキャップ12はCFRP保護導体(複合材保護導体)16によって覆われている。
なお、CFRP保護導体16の一端は、先端部4の内部に設けたベースプレート8を介して、レセプタ6と電気的に接続されている。また、CFRP保護導体16の他端は、翼根部2において不図示の導電部材を介してハブ内のアース線に電気的に接続されている。すなわち、CFRP保護導体16は、スパーキャップ12への直接的な雷撃防止に加えて、レセプタ6で捕捉した雷撃電流を翼根部2まで導くダウンコンダクタとしての機能も兼ね備える。このような耐雷設計では、殆んど全ての雷撃がレセプタ6で捕捉され、残りの雷撃は先端部4周辺のCFRP保護導体16によって捕捉され、CFRP12が直接雷撃を受けることがない。そして、レセプタ6又は先端部4周辺のCFRP保護導体16で捕捉された雷撃電流は、CFRP保護導体16によって翼根部2に導かれる。
また、CFRP保護導体16とスパーキャップ12とは、翼長方向の複数箇所において、導体18で相互に接続されて等電位化されている。なお、背側のスパーキャップ12と腹側のスパーキャップ12を等電位化するために、スパー14をCFRPで構成してもよい。
The outer skin 10 is formed of an insulator such as GFRP or balsa material. On the other hand, the spar cap 12 which is a strength member is formed of CFRP (conductive composite material). Therefore, each spar cap 12 is covered with a CFRP protective conductor (composite protective conductor) 16 from the viewpoint of preventing direct lightning strike on the CFRP spar cap 12.
Note that one end of the CFRP protective conductor 16 is electrically connected to the receptor 6 via a base plate 8 provided inside the distal end portion 4. The other end of the CFRP protective conductor 16 is electrically connected to the ground wire in the hub via a conductive member (not shown) at the blade root portion 2. That is, the CFRP protective conductor 16 has a function as a down conductor that guides the lightning current captured by the receptor 6 to the blade root 2 in addition to preventing lightning directly to the spar cap 12. In such a lightning protection design, almost all lightning strikes are captured by the receptor 6, and the remaining lightning strikes are captured by the CFRP protective conductor 16 around the tip 4, so that the CFRP 12 is not directly subjected to lightning strikes. Then, the lightning current captured by the CFRP protective conductor 16 around the receptor 6 or the tip 4 is guided to the blade root 2 by the CFRP protective conductor 16.
In addition, the CFRP protective conductor 16 and the spar cap 12 are connected to each other by the conductor 18 at a plurality of locations in the blade length direction to be equipotential. Note that the spar 14 may be made of CFRP in order to make the dorsal spar cap 12 and the ventral spar cap 12 equipotential.

図3は、風車翼の損傷検出システムの構成例を示す図である。同図に示す損傷検出システム100では、CFRP(スパーキャップ)12に複数の計測用電極20(i=1,2,…m。ただし、mは2以上の整数。)が取り付けられ、これら計測用電極20にはそれぞれ対応する第1開閉器22を介して抵抗計測器24が接続されている。また、CFRP12の両端部には加熱用電極26A及び26Bが取り付けられており、各加熱用電極26A,26Bには第2開閉器28A,28Bを介して電圧印加器29が接続されていてもよい。
なお、損傷検出システム100の各部(第1開閉器22、第2開閉器28A,28B、抵抗計測器24及び電圧印加器29)は風車コントローラ30の制御下で動作する。風車コントローラ30の詳細については後述する。
FIG. 3 is a diagram illustrating a configuration example of a wind turbine blade damage detection system. In the damage detection system 100 shown in the figure, a plurality of measurement electrodes 20 i (i = 1, 2,... M, where m is an integer of 2 or more) are attached to a CFRP (spar cap) 12 and these measurements are performed. A resistance measuring instrument 24 is connected to each of the electrodes 20 i via a corresponding first switch 22 i . Further, heating electrodes 26A and 26B are attached to both ends of the CFRP 12, and a voltage applicator 29 may be connected to the heating electrodes 26A and 26B via second switches 28A and 28B. .
In addition, each part (1st switch 22 i , 2nd switch 28A, 28B, the resistance measuring device 24, and the voltage applicator 29) of the damage detection system 100 operate | moves under control of the windmill controller 30. FIG. Details of the windmill controller 30 will be described later.

図4は計測用電極20の取付け位置の例を示す図であり、図4(a)は風車翼1の断面図(図2とは異なる翼長方向位置における断面図)、図4(b)は図4(a)におけるB部で示した領域の拡大図である。
CFRP12の外側表面12B(図4(b)参照)に計測用電極20を取り付けると雷撃電流の影響を受けやすいだけでなく、外皮10のしわの原因になる。また、CFRP12の側面12CはGFRPやバルサ材等で形成された外皮10の内側層10aとの境界であるから、風車翼1の製造性の観点からCFRP12の側面12Cは計測用電極20の取付け位置として望ましくない。さらに、CFRP12の内側表面12Aのうちスパー14との接合部13は、風車翼1の強度を確保する上で重要な箇所であるから、計測用電極20の取付け位置として望ましいと言えない。
そこで、図4(a)及び(b)に示すように、計測用電極20は、CFRP(スパーキャップ)12の内側表面12Aのうちスパー14との接合部13を除く領域に取り付けることが好ましい。これにより、計測用電極20の取付けによる風車翼1の強度や製造性の低下を防止するとともに、計測用電極20が雷撃電流による影響を受けることを避けることができる。
なお、加熱用電極26A及び26Bについても、計測用電極20と同様にCFRP(スパーキャップ)12の内側表面12Aのうちスパー14との接合部13を除く領域に取り付けることが好ましい。
FIG. 4 is a view showing an example of the attachment position of the measurement electrode 20 i , and FIG. 4A is a cross-sectional view of the wind turbine blade 1 (a cross-sectional view at a blade length direction position different from FIG. 2), FIG. ) Is an enlarged view of a region indicated by a portion B in FIG.
If the measurement electrode 20 i is attached to the outer surface 12 B of the CFRP 12 (see FIG. 4B), it is not only susceptible to lightning current, but also causes wrinkles of the outer skin 10. Further, since the side surface 12C of CFRP12 is a boundary between the inner layer 10a of the outer skin 10 made of GFRP and balsa wood, etc., mounting the side 12C of CFRP12 view of the production of the wind turbine blade 1 measurement electrodes 20 i Undesirable location. Furthermore, the joint 13 between spar 14 of the inner surface 12A of the CFRP12, since an important point for ensuring the strength of the wind turbine blade 1 can not be said to be desirable as a mounting position of the measurement electrode 20 i.
Therefore, as shown in FIGS. 4A and 4B, the measurement electrode 20 i is preferably attached to a region of the inner surface 12 </ b> A of the CFRP (spar cap) 12 excluding the joint portion 13 with the spar 14. . As a result, the strength and manufacturability of the wind turbine blade 1 due to the attachment of the measurement electrode 20 i can be prevented, and the measurement electrode 20 i can be prevented from being affected by the lightning current.
Note that the heating electrodes 26A and 26B are also preferably attached to a region of the inner surface 12A of the CFRP (spar cap) 12 excluding the joint portion 13 with the spar 14 like the measurement electrode 20 i .

図5は、損傷検出システム100及び風車コントローラ30の構成例を示す図である。同図に示すように、風車コントローラ30は、風力発電装置の運転モードを選択する運転モード選択部38と、第1開閉器22を開閉制御する第1開閉制御部31と、抵抗計測器24を制御する計測器制御部32と、第2開閉器28A,28Bを開閉制御する第2開閉制御部33と、電圧印加器29を制御する電圧印加制御部34と、CFRP12の損傷の有無を判定する損傷検出部36とを備える。 FIG. 5 is a diagram illustrating a configuration example of the damage detection system 100 and the windmill controller 30. As shown in the figure, the windmill controller 30 includes an operation mode selection unit 38 that selects an operation mode of the wind turbine generator, a first opening / closing control unit 31 that controls opening / closing of the first switch 22 i , and a resistance measuring device 24. A controller 32 for controlling the switching, a second switching controller 33 for controlling the opening / closing of the second switches 28A and 28B, a voltage applying controller 34 for controlling the voltage applicator 29, and the presence or absence of damage to the CFRP 12 And a damage detection unit 36.

運転モード選択部38は、風力発電装置の運転モードとして、通常運転モードおよび損傷検出モードの何れか一方を選択する。ここで、通常運転モードはCFRP12の損傷検出を行わず発電のみを目的とした運転モードであり、風速がカットイン風速以上である場合に発電を行い、風速がカットイン風速未満の場合には待機する運転モードである。これに対し、損傷検出モードはCFRP12の損傷検出を行う運転モードである。なお、損傷検出モードの選択時、風力発電装置は発電を行ってもよいし、発電を行わずに待機してもよい。   The operation mode selection unit 38 selects either the normal operation mode or the damage detection mode as the operation mode of the wind turbine generator. Here, the normal operation mode is an operation mode only for power generation without detecting damage of the CFRP 12, and generates power when the wind speed is equal to or higher than the cut-in wind speed, and waits when the wind speed is lower than the cut-in wind speed. It is an operation mode to do. In contrast, the damage detection mode is an operation mode in which damage detection of the CFRP 12 is performed. Note that when the damage detection mode is selected, the wind turbine generator may generate power or may stand by without generating power.

運転モード選択部38は、定期検査時、雷雨や台風などの悪天候時、または、雷撃監視装置により風車翼1への落雷が検知されたときに、通常運転モードから損傷検出モードに切り替えてもよい。なお、運転モード選択部38による運転モードの切替えは自動又は手動によって行われる。例えば、ウィンドファーム制御室からの指令に応じて運転モード選択部38が運転モードを自動で切り替えてもよい。あるいは、メンテナンス員が、風力発電装置内の制御盤を手動で直接操作したり、遠隔地から無線又は有線を介して遠隔操作したりして、運転モード選択部38による運転モードの切替えを行ってもよい。   The operation mode selection unit 38 may switch from the normal operation mode to the damage detection mode during periodic inspections, in bad weather such as thunderstorms and typhoons, or when a lightning strike to the wind turbine blade 1 is detected by the lightning strike monitoring device. . The operation mode switching by the operation mode selection unit 38 is performed automatically or manually. For example, the operation mode selection unit 38 may automatically switch the operation mode in accordance with a command from the wind farm control room. Alternatively, the maintenance person manually operates the control panel in the wind turbine generator or remotely operates from a remote place via wireless or wired, and performs switching of the operation mode by the operation mode selection unit 38. Also good.

第1開閉制御部31は、通常運転モード選択時に、抵抗計測器24を計測用電極20から切り離した状態を維持するように全ての第1開閉器22(i=1,2,…m。ただし、mは2以上の整数。)を開く。これにより、通常運転モード選択中における風車翼1への着雷に起因した雷撃電流の抵抗計測器24への流入を防止できる。
同様に、第2開閉制御部33は、通常モード選択時に、電圧印加器29を加熱用電極26A,26Bから切り離した状態を維持するように第2開閉器28A,28Bを開く。これにより、通常運転モード選択中における風車翼1への着雷に起因した雷撃電流の電圧印加器29への流入を防止できる。
The first opening / closing controller 31 selects all the first switches 22 i (i = 1, 2,... M) so as to maintain the state where the resistance measuring device 24 is disconnected from the measuring electrode 20 i when the normal operation mode is selected. However, m is an integer of 2 or more.) As a result, it is possible to prevent the lightning current from flowing into the resistance measuring instrument 24 due to lightning strike on the wind turbine blade 1 during the normal operation mode selection.
Similarly, the second switch control unit 33 opens the second switches 28A and 28B so as to maintain the state where the voltage applicator 29 is disconnected from the heating electrodes 26A and 26B when the normal mode is selected. Thereby, it is possible to prevent the lightning current from flowing into the voltage applicator 29 due to the lightning strike on the wind turbine blade 1 during the normal operation mode selection.

これに対し、損傷検出モード選択時には、第1開閉制御部31は一対の第1開閉器22,22を閉じて、これらに対応する電極20,20を抵抗計測器24に導通させる。この状態で、抵抗計測器24は、計測器制御部31の制御下で、一対の電極20,20間の電気抵抗を計測する。そして、損傷検出部36は、抵抗計測器24により計測した電極20,20間の電気抵抗を、既知であるCFRP損傷前の電極20,20間の電気抵抗と比較することで、電極20,20間におけるCFRP12の損傷の有無を判定する。 On the other hand, when the damage detection mode is selected, the first switching control unit 31 closes the pair of first switches 22 k and 22 l and causes the corresponding electrodes 20 k and 20 l to conduct to the resistance measuring device 24. . In this state, the resistance measuring instrument 24 measures the electrical resistance between the pair of electrodes 20 k and 20 l under the control of the measuring instrument control unit 31. The damage detector 36, resistor measuring 24 the electrical resistance between the electrodes 20 k, 20 l as measured by, by comparing the electrical resistance between the electrodes 20 k before CFRP injury is known, 20 l, Whether the CFRP 12 is damaged between the electrodes 20 k and 20 l is determined.

ところで、電極20,20間の電気抵抗は、計測用電極20,20の欠損状態にも依存する。そこで、計測用電極20,20の欠損によるCFRP12の損傷検出精度の低下を避けるため、CFRP12の温度変化による電極20,20間の電気抵抗の変化率を用いてCFRP12の損傷を検出してもよい。この際、CFRP12に温度変化を付与するために、電圧印加器29を用いてCFRP12をジュール熱で加熱してもよい。すなわち、運転モード選択部38によって損傷検出モードが選択されると、第2開閉制御器33が第2開閉器28A,28Bを閉じて電圧印加器29を加熱用電極26A,26Bに導通させて、電圧印加制御部34の制御下で電圧印加器29がCFRP12に電圧を印加してもよい。
なお、CFRP12の損傷検出は、CFRP12の温度上昇時における抵抗変化率に基づいて行ってもよいし、CFRP12の温度低下時における抵抗変化率に基づいて行ってもよい。例えば、CFRP12の加熱開始時における電極20,20の電気抵抗をRとし、CFRP12の加熱中における電気抵抗の変化ΔRとしたとき、抵抗変化率ΔR/Rの挙動からCFRP12の損傷を検出してもよい。あるいは、CFRP12の加熱終了時の電極20,20の電気抵抗をRとし、CFRP12の加熱終了後の自然冷却中における電気抵抗の変化ΔRとしたとき、抵抗変化率ΔR/Rの挙動からCFRP12の損傷を検出してもよい。
Meanwhile, the electrical resistance between the electrodes 20 k, 20 l also depends on the defect state of the measurement electrodes 20 k, 20 l. Therefore, in order to avoid deterioration of the damage detection accuracy of the CFRP 12 due to the loss of the measurement electrodes 20 k , 20 l , the damage of the CFRP 12 is detected using the change rate of the electrical resistance between the electrodes 20 k , 20 l due to the temperature change of the CFRP 12. May be. At this time, in order to apply a temperature change to the CFRP 12, the CFRP 12 may be heated with Joule heat using the voltage applicator 29. That is, when the damage detection mode is selected by the operation mode selection unit 38, the second switching controller 33 closes the second switches 28A and 28B and causes the voltage applicator 29 to conduct to the heating electrodes 26A and 26B. The voltage applicator 29 may apply a voltage to the CFRP 12 under the control of the voltage application control unit 34.
The damage detection of the CFRP 12 may be performed based on the resistance change rate when the temperature of the CFRP 12 is increased, or may be performed based on the resistance change rate when the temperature of the CFRP 12 is decreased. For example, when the electric resistance of the electrodes 20 k and 20 l at the start of heating of the CFRP 12 is R 0 and the change in electric resistance ΔR h during the heating of the CFRP 12, the behavior of the CFRP 12 is determined from the behavior of the resistance change rate ΔR h / R 0. Damage may be detected. Alternatively, when the electric resistance of the electrodes 20 k and 20 l at the end of heating of the CFRP 12 is R 1 and the change in electric resistance ΔR c during natural cooling after the heating of the CFRP 12 is finished, the resistance change rate ΔR c / R 1 The damage of the CFRP 12 may be detected from the above behavior.

図6は、CFRP12の加熱終了後の自然冷却中における抵抗変化率ΔR/Rの経時変化を示すグラフである。
同図に示すように、CFRP12の損傷の有無を問わず、いずれ場合にも自然冷却中のCFRP12の温度低下に伴い電気抵抗が回復して増加するが、電気抵抗の増加速度及び最終的な電気抵抗の増加量はCFRP12に損傷がある場合はCFRP12に損傷がない場合に比べて小さい。これに対し、電極20,20の欠損は、抵抗変化率ΔR/Rに殆んど影響しないことが分かっている。そのため、抵抗変化率ΔR/Rの挙動からCFRP12の損傷を高精度に検出できる。
FIG. 6 is a graph showing the change over time of the rate of change in resistance ΔR c / R 1 during natural cooling after the heating of the CFRP 12.
As shown in the figure, regardless of whether the CFRP 12 is damaged or not, in any case, the electrical resistance recovers and increases as the temperature of the CFRP 12 during natural cooling decreases. The amount of increase in resistance is smaller when the CFRP 12 is damaged than when the CFRP 12 is not damaged. On the other hand, it has been found that the loss of the electrodes 20 k and 20 l hardly affects the resistance change rate ΔR c / R 1 . Therefore, the damage of the CFRP 12 can be detected with high accuracy from the behavior of the resistance change rate ΔR c / R 1 .

また、損傷検出モード選択時、複数組の電極間の電気抵抗を抵抗計測器24で計測し、各組の電気抵抗に基づいてCFRP12の損傷箇所を特定してもよい。例えば、翼長方向に複数の計測用電極20(i=1,2,…m。ただし、mは3以上の整数。)を設けておき、複数組の隣接する電極20j−1,20間の電気抵抗R(j=2,…m。)からCFRP12の損傷箇所を特定してもよい。 Further, when the damage detection mode is selected, the electrical resistance between a plurality of sets of electrodes may be measured by the resistance measuring device 24, and the damaged portion of the CFRP 12 may be specified based on the electrical resistance of each set. For example, a plurality of measurement electrodes 20 i (i = 1, 2,... M, where m is an integer of 3 or more) are provided in the blade length direction, and a plurality of sets of adjacent electrodes 20 j−1 , 20 are provided. electrical resistance R j (j = 2, ... m.) between j from may identify damaged portion of the CFRP 12.

次に、本実施形態の風力発電装置の運転制御方法について説明する。図7は、本実施形態の風力発電装置の運転制御方法を示すフローチャートである。   Next, an operation control method for the wind turbine generator of this embodiment will be described. FIG. 7 is a flowchart showing an operation control method for the wind turbine generator of this embodiment.

最初に、ステップS2において、運転モード選択部38によって風力発電装置の運転モードとして通常運転モード及び損傷検出モードのいずれか一方が選択される。例えば、定期検査時、雷雨や台風などの悪天候時、または、雷撃監視装置により風車翼1への落雷が検知されたときに、通常運転モードから損傷検出モードに切り替えてCFRP12の損傷検出を行ってもよい。
そして、風力発電装置の運転モードとして通常運転モードが選択された場合(ステップS4のNO判定)、第1開閉制御器31が全ての第1開閉器22を開いて抵抗計測器24を計測用電極20から切り離すとともに(ステップS6)、第2開閉制御器33が第2開閉器28A,28Bを開いて電圧印加器29を加熱用電極26A,26Bから切り離し(ステップS8)、この状態で風力発電装置の運転を行う。その後、ステップS2に戻って風力発電装置の運転モードの選択を再度行う。
一方、風力発電装置の運転モードとして損傷検出モードが選択された場合(ステップS4のYES判定)、ステップS10において第2開閉制御器33が第2開閉器28A,28Bを閉じて電圧印加器29を加熱用電極26A,26Bに導通させる。そして、電圧印加制御部34の制御下で電圧印加器29がCFRP12に電圧を印加して、ジュール熱によりCFRP12を加熱する。そして、ステップS14に進んで、計測用電極20(i=1,2,…m。ただし、mは3以上の整数。)のうち一対の電極20j−1,20が抵抗計測器24に導通するように、第1開閉制御部31によって第1開閉器22j−1,22を閉じる。この状態で抵抗計測器24は、CFRP12の温度変化中における電極20j−1,20間の電気抵抗Rを計測する(ステップS16)。ステップS18では、計測予定の全ての電極20j−1,20の組合せについて電気抵抗Rが計測されたか否かが判定され、計測予定の全ての電極組についての計測が終了していない場合(ステップS18のNO判定)、計測対象の電極を異ならせてステップS10〜S16を繰り返す。計測予定の全ての電極組についての計測が終了したら(ステップS18のYES判定)、損傷検出部36は、抵抗計測器24から取得したCFRP12の温度変化による電気抵抗Rの変化率に基づいてCFRP12の損傷検出と損傷箇所の特定を行う(ステップS20)。そして、CFRP12に損傷が有ると判断された場合(ステップS22のYES判定)、ステップS24に進んで、風力発電装置の停止および警報出力の少なくとも一方を行う。これに対し、CFRP12に損傷が無いと判断された場合(ステップS22のNO判定)、ステップS2に戻って風力発電装置の運転モードの選択を再度行う。
First, in step S2, either one of the normal operation mode and the damage detection mode is selected as the operation mode of the wind turbine generator by the operation mode selection unit 38. For example, when a lightning strike on the wind turbine blade 1 is detected by a thunderstorm or a typhoon, or when a lightning strike is detected by the lightning strike monitoring device, the normal operation mode is switched to the damage detection mode to detect the damage of the CFRP 12. Also good.
When the normal operation mode as the operation mode of the wind turbine generator has been selected (NO determination at step S4), and for measuring the resistance measuring instrument 24 first closing controller 31 opens all of the first switch 22 i with disconnected from the electrode 20 i (step S6), and the second on-off controller 33 is disconnected from the second switch 28A, the voltage applicator 29 open 28B heating electrode 26A, 26B (step S8), and the wind in this condition Operate the generator. Then, it returns to step S2 and selects the operation mode of a wind power generator again.
On the other hand, when the damage detection mode is selected as the operation mode of the wind turbine generator (YES determination in step S4), the second switching controller 33 closes the second switches 28A and 28B in step S10 and turns on the voltage applicator 29. Conduction is conducted to the heating electrodes 26A and 26B. Then, under the control of the voltage application control unit 34, the voltage applicator 29 applies a voltage to the CFRP 12 and heats the CFRP 12 by Joule heat. And it progresses to step S14 and a pair of electrode 20j-1 and 20j is resistance measuring instrument 24 among measurement electrodes 20i (i = 1, 2, ... m. However, m is an integer greater than or equal to 3). The first switches 22 j-1 and 22 j are closed by the first opening / closing control unit 31 so as to be electrically connected to each other. In this state, the resistance measuring instrument 24 measures the electrical resistance R j between the electrodes 20 j-1 and 20 j during the temperature change of the CFRP 12 (step S16). At step S18, whether the electric resistance R j are measured for the combination of all of the electrodes 20 j-1, 20 j of the measurement schedule is determined, if the measurement of all the electrode sets of the measurement will not complete (NO determination at step S18), the electrodes to be measured are changed, and steps S10 to S16 are repeated. When the measurement for all electrode sets scheduled to be measured is completed (YES in step S18), the damage detection unit 36 determines the CFRP 12 based on the rate of change of the electrical resistance R j due to the temperature change of the CFRP 12 acquired from the resistance measuring device 24. Damage detection and identification of the damaged part are performed (step S20). When it is determined that the CFRP 12 is damaged (YES determination in step S22), the process proceeds to step S24, and at least one of the stop of the wind power generator and the alarm output is performed. On the other hand, when it is determined that the CFRP 12 is not damaged (NO determination in step S22), the process returns to step S2 and the operation mode of the wind turbine generator is selected again.

本実施形態によれば、損傷検出モードの選択時に第1開閉制御部31によって第1開閉器22,22を閉じて抵抗計測器24を一対の電極22,22に導通させて該一対の電極22,22間の電気抵抗を計測するようにしたので、電気抵抗変化法によりCFRP12の損傷状態を把握できる。一方、通常運転モード選択時には、第1開閉制御部31によって全ての第1開閉器22を開いて抵抗計測器24を計測用電極20から切り離すようにしたので、雷撃電流による抵抗計測器24の故障リスクを低減できる。 According to the present embodiment, when the damage detection mode is selected, the first opening / closing control unit 31 closes the first switches 22 k and 22 l to cause the resistance measuring device 24 to conduct to the pair of electrodes 22 k and 22 l. Since the electrical resistance between the pair of electrodes 22 k and 22 l is measured, the damaged state of the CFRP 12 can be grasped by the electrical resistance change method. On the other hand, when the normal operation mode is selected, all the first switches 22 i are opened by the first opening / closing control unit 31 so as to disconnect the resistance measuring devices 24 from the measuring electrodes 20 i , so that the resistance measuring device 24 based on a lightning current is used. The risk of failure can be reduced.

また本実施形態によれば、通常運転モード選択時に第2開閉器28A,28Bを開いて電圧印加器29を加熱用電極26A,26Bから切り離すことで、CFRP12の温度変化による電気抵抗の変化率ΔR/Rを利用して損傷検出を行う場合において、電圧印加器29の故障リスクを低減できる。   Further, according to the present embodiment, when the normal operation mode is selected, the second switches 28A and 28B are opened and the voltage applicator 29 is disconnected from the heating electrodes 26A and 26B, whereby the rate of change ΔR in electrical resistance due to the temperature change of the CFRP 12 is achieved. When performing damage detection using / R, the failure risk of the voltage applicator 29 can be reduced.

また、異なる翼長方向位置に3個以上の計測用電極20(i=1,2,…m。ただし、mは3以上の整数。)を取り付け、複数組の電極20j−1,20について電気抵抗Rをそれぞれ計測し、CFRP12の損傷箇所の特定に用いるようにしたので、翼長方向に延在するCFRP12の損傷箇所を知ることができ、風車翼1のメンテナンスを効率的に行うことができる。 Further, three or more measurement electrodes 20 i (i = 1, 2,... M, where m is an integer of 3 or more) are attached to different blade length direction positions, and a plurality of sets of electrodes 20 j−1 , 20 are attached. Since the electrical resistance R j is measured for each of j and used to identify the damaged portion of the CFRP 12, the damaged portion of the CFRP 12 extending in the blade length direction can be known, and the maintenance of the wind turbine blade 1 can be performed efficiently. It can be carried out.

さらに、CFRP(スパーキャップ)12の内側表面12Aのうちスパー14との接合部13を除く領域に計測用電極20及び加熱用電極26A,26Bを取り付けることで、風車翼1の強度や製造性の低下を防止するとともに、雷撃電流による電極への影響を避けることができる。 Furthermore, the strength and manufacturability of the wind turbine blade 1 can be obtained by attaching the measurement electrode 20 i and the heating electrodes 26 A and 26 B to the region of the inner surface 12 A of the CFRP (spar cap) 12 excluding the joint portion 13 with the spar 14. Can be prevented, and the influence of the lightning strike current on the electrode can be avoided.

[第2実施形態]
次に第2実施形態に係る風力発電装置について説明する。本実施形態の風力発電装置は、CFRP12に埋め込まれた光ファイバを用いたヘルスモニタリング機能を損傷検出システムに追加的に持たせたことを除けば、第1実施形態の風力発電装置と同様である。よって、ここでは、第1実施形態と同一の箇所については共通の符号を付してその説明を省略し、第1実施形態と異なる点を中心に説明する。
[Second Embodiment]
Next, a wind turbine generator according to a second embodiment will be described. The wind power generator according to the present embodiment is the same as the wind power generator according to the first embodiment, except that a health monitoring function using an optical fiber embedded in the CFRP 12 is additionally provided in the damage detection system. . Therefore, here, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and the description will be focused on differences from the first embodiment.

図8は、本実施形態における損傷検出システムの構成例を示す図である。図9は、本実施形態における損傷検出システム及び風車コントローラの構成例を示す図である。   FIG. 8 is a diagram illustrating a configuration example of a damage detection system according to the present embodiment. FIG. 9 is a diagram illustrating a configuration example of the damage detection system and the wind turbine controller according to the present embodiment.

図9に示す損傷検出システム110は、CFRP12に埋め込まれた光ファイバ44及びこれに接続された光ファイバ計測装置46を第1実施形態における損傷検出システム100(図3参照)に追設したものである。   The damage detection system 110 shown in FIG. 9 is obtained by adding an optical fiber 44 embedded in the CFRP 12 and an optical fiber measuring device 46 connected thereto to the damage detection system 100 (see FIG. 3) in the first embodiment. is there.

光ファイバ44は翼長方向に沿ってCFRP12の略全長に亘って設けられている。光ファイバ計測装置46は、光ファイバ44に光を入射するとともに、その散乱光を検出するようになっている。例えば、光ファイバ計測装置46は、光ファイバ44に入射された光の後方散乱光の減少から光ファイバ44の屈曲を検出するOTDR方式であってもよいし、光ファイバ44に入射された光のブリルアン散乱光の周波数シフトから光ファイバ44の歪みを検出するBOTDR方式であってもよい。光ファイバ計測装置46の計測結果は、図9に示すように、風車コントローラ30の損傷検出部36に送られて、抵抗計測器24の計測結果とともにCFRP12の損傷検出に用いられる。
なお、図8に示す光ファイバ計測装置46に替えて、光ファイバ44の透過光の光量変化から光ファイバ44の変形を検出するMDM方式やOSMOS方式の計測器を用いてもよい。
The optical fiber 44 is provided over substantially the entire length of the CFRP 12 along the blade length direction. The optical fiber measuring device 46 enters the optical fiber 44 and detects the scattered light. For example, the optical fiber measuring device 46 may be an OTDR system that detects the bending of the optical fiber 44 from a decrease in the backscattered light of the light incident on the optical fiber 44, or the optical fiber measuring device 46 A BOTDR system that detects distortion of the optical fiber 44 from the frequency shift of Brillouin scattered light may be used. As shown in FIG. 9, the measurement result of the optical fiber measurement device 46 is sent to the damage detection unit 36 of the windmill controller 30 and is used for the damage detection of the CFRP 12 together with the measurement result of the resistance measuring device 24.
Instead of the optical fiber measuring device 46 shown in FIG. 8, an MDM type or OSMOS type measuring device that detects deformation of the optical fiber 44 from a change in the amount of light transmitted through the optical fiber 44 may be used.

なお、光ファイバ計測装置46がBOTDR方式の計測器である場合、ブリルアン散乱光の周波数シフトは歪み変化と温度変化に依存する。よって、CFRP12が温度上昇する雷撃中に計測を行うのではなく、着雷後から所定時間経過してCFRP12の温度が元に戻った後に、光ファイバ計測装置46による計測を行ってもよい。
これにより、雷撃による光ファイバ44の温度上昇の影響を受けずに、ブリルアン散乱光の周波数シフトから光ファイバ44の歪み量を高精度に検出できる。この歪み量の計測値を損傷判定部42において所定の閾値と比較することで、CFRP12の損傷の有無を適切に判定できる。
また、光ファイバ44の歪み発生部分において周波数がシフトしたブリルアン散乱光が光ファイバ計測装置46に戻るまでの時間から、光ファイバ44の歪み発生位置(すなわちCFRP12の損傷箇所)を特定することも可能である。
When the optical fiber measuring device 46 is a BOTDR measuring instrument, the frequency shift of the Brillouin scattered light depends on the strain change and the temperature change. Therefore, the measurement by the optical fiber measuring device 46 may be performed after the predetermined time has elapsed after the lightning strike, and after the temperature of the CFRP 12 returns to the original, instead of performing the measurement during a lightning stroke in which the temperature of the CFRP 12 rises.
Thereby, the distortion amount of the optical fiber 44 can be detected with high accuracy from the frequency shift of the Brillouin scattered light without being affected by the temperature rise of the optical fiber 44 due to the lightning strike. By comparing the measured value of the distortion amount with a predetermined threshold value in the damage determination unit 42, the presence or absence of damage to the CFRP 12 can be appropriately determined.
It is also possible to specify the strain occurrence position of the optical fiber 44 (that is, the damaged portion of the CFRP 12) from the time until the Brillouin scattered light whose frequency is shifted at the strain occurrence portion of the optical fiber 44 returns to the optical fiber measuring device 46. It is.

また、光ファイバ計測装置46として、BOTDR方式の計測器とブラッグ格子センサ(FBG)を併用し、光ファイバ44の歪み変化と温度変化を独立して検出してもよい。
図10は、BOTDR方式の計測器とブラッグ格子センサを併用した光ファイバ計測装置46の構成例を示す図である。同図に示す例では、光ファイバ計測装置46は、BOTDR計測器52と、BOTDR計測器52を光ファイバ44に接続するWDMカプラ54と、WDMカプラ54及びカプラ55を介して光ファイバ44に接続される光源56及び光スペクトルアナライザ58により構成される。また、光ファイバ44には、FBG計測を行うためのFBGセンサ50が複数設けられている。
光ファイバ計測装置46は、BOTDRに対応した1.55μmの波長帯のレーザ光と、FBGに対応した1.31μmの波長帯のレーザ光とを一本の光ファイバ44に入射し、波長多重技術(WDM:Wavelength Division Multiplexing)を利用して戻り光の波長帯を分離することで、BOTDR及びFBGの両方の計測を行うものである。すなわち、BOTDR計測器52から出力されたレーザ光(1.55μm帯)と光源56から出力されたレーザ光(1.31μm帯)とがWDMカプラ54で合波されて、光ファイバ44に入射される。一方、光ファイバ44からの戻り光は、WDMカプラ54で2つの波長帯の光に分波されて、それぞれBOTDR計測器52及び光スペクトルアナライザ58に導かれるようになっている。そして、BOTDR計測器52においてブリルアン周波数シフトが検出され、光スペクトルアナライザ58においてブラッグ反射波長シフトが検出される。ここで、ブリルアン周波数シフトとブラッグ反射波長シフトとでは、歪みに対する依存性(図11参照)と温度に対する依存性(図12参照)が相違する。そのため、BOTDR計測器52で検出したブリルアン周波数シフトと、光スペクトルアナライザ58で検出したブラッグ反射波長シフトとを用いて、光ファイバ44の歪み変化と温度変化を独立して求めることができる。このようにして得られた光ファイバ44の歪み変化と温度変化は、風車コントローラ30の損傷検出部36に送られて、CFRP12の損傷の判定に用いられる。例えば、損傷検出部36は、光ファイバ44の歪み量を所定の閾値と比較したり、光ファイバ44の温度を所定の閾値と比較したりすることで、CFRP12の損傷の有無を判断してもよい。
Further, as the optical fiber measuring device 46, a BOTDR type measuring instrument and a Bragg grating sensor (FBG) may be used in combination, and the strain change and temperature change of the optical fiber 44 may be detected independently.
FIG. 10 is a diagram showing a configuration example of an optical fiber measuring device 46 using a BOTDR type measuring instrument and a Bragg grating sensor together. In the example shown in the figure, the optical fiber measuring device 46 is connected to the optical fiber 44 through the BOTDR measuring instrument 52, the WDM coupler 54 that connects the BOTDR measuring instrument 52 to the optical fiber 44, and the WDM coupler 54 and the coupler 55. The light source 56 and the optical spectrum analyzer 58 are configured. The optical fiber 44 is provided with a plurality of FBG sensors 50 for performing FBG measurement.
The optical fiber measuring device 46 irradiates a single optical fiber 44 with a laser beam having a wavelength band of 1.55 μm corresponding to BOTDR and a laser beam having a wavelength band of 1.31 μm corresponding to FBG. By measuring the wavelength band of the return light using (WDM: Wavelength Division Multiplexing), both BOTDR and FBG are measured. That is, the laser light (1.55 μm band) output from the BOTDR measuring instrument 52 and the laser light (1.31 μm band) output from the light source 56 are combined by the WDM coupler 54 and incident on the optical fiber 44. The On the other hand, the return light from the optical fiber 44 is demultiplexed into light of two wavelength bands by the WDM coupler 54 and guided to the BOTDR measuring instrument 52 and the optical spectrum analyzer 58, respectively. Then, the BOTDR measuring instrument 52 detects the Brillouin frequency shift, and the optical spectrum analyzer 58 detects the Bragg reflection wavelength shift. Here, the Brillouin frequency shift and the Bragg reflection wavelength shift differ in dependence on strain (see FIG. 11) and dependence on temperature (see FIG. 12). Therefore, using the Brillouin frequency shift detected by the BOTDR measuring instrument 52 and the Bragg reflection wavelength shift detected by the optical spectrum analyzer 58, the strain change and temperature change of the optical fiber 44 can be obtained independently. The strain change and temperature change of the optical fiber 44 obtained in this way are sent to the damage detection unit 36 of the windmill controller 30 and are used to determine the damage of the CFRP 12. For example, the damage detection unit 36 may determine whether the CFRP 12 is damaged by comparing the distortion amount of the optical fiber 44 with a predetermined threshold value or comparing the temperature of the optical fiber 44 with a predetermined threshold value. Good.

本実施形態によれば、CFRP12に取り付けた計測用電極間の電気抵抗だけでなく、CFRP12に埋め込まれた光ファイバ44に入射された光の散乱光をも考慮するようにしたので、CFRP12の損傷をより高精度に検出できる。   According to the present embodiment, not only the electrical resistance between the measurement electrodes attached to the CFRP 12 but also the scattered light of the light incident on the optical fiber 44 embedded in the CFRP 12 is taken into account. Can be detected with higher accuracy.

以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。   As mentioned above, although embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to this, In the range which does not deviate from the summary of this invention, various improvement and deformation | transformation may be performed.

例えば、上述の実施形態では、風力発電装置の風車翼1が図1及び2を用いて説明した構成を有する例について説明したが、本発明において風車翼の構成は特に限定されず、少なくとも一部が導電性複合材により構成される任意の構成の風車翼であってもよい。   For example, in the above-described embodiment, the example in which the wind turbine blade 1 of the wind turbine generator has the configuration described with reference to FIGS. 1 and 2 has been described. However, in the present invention, the configuration of the wind turbine blade is not particularly limited, and is at least partially. May be a wind turbine blade having an arbitrary configuration made of a conductive composite material.

1 風車翼
2 翼根部
4 先端部
6 レセプタ
8 ベースプレート
10 外皮
10a 内側層
10b 外側層
12 CFRP(スパーキャップ)
14 シアウェブ
16 CFRP保護導体
18 導体
20 計測用電極
20 第1開閉器
24 抵抗計測器
26A,26B 加熱用電極
28A,28B 第2開閉器
29 電圧印加器
30 風車コントローラ
31 第1開閉制御部
32 計測器制御部
33 第2開閉制御部
34 電圧印加制御部
36 損傷検出部
38 運転モード選択部
44 光ファイバ
46 光ファイバ計測装置
50 FBGセンサ
52 BOTDR計測器
54 WDMカプラ
55 カプラ
56 光源
58 光スペクトルアナライザ

DESCRIPTION OF SYMBOLS 1 Windmill blade 2 Blade root part 4 Tip part 6 Receptor 8 Base plate 10 Outer skin 10a Inner layer 10b Outer layer 12 CFRP (spar cap)
DESCRIPTION OF SYMBOLS 14 Shear web 16 CFRP protective conductor 18 Conductor 20 i Measuring electrode 20 i 1st switch 24 Resistance measuring device 26A, 26B Heating electrode 28A, 28B 2nd switch 29 Voltage applicator 30 Windmill controller 31 1st switch control part 32 Measuring instrument control section 33 Second switching control section 34 Voltage application control section 36 Damage detection section 38 Operation mode selection section 44 Optical fiber 46 Optical fiber measuring device 50 FBG sensor 52 BOTDR measuring instrument 54 WDM coupler 55 Coupler 56 Light source 58 Optical spectrum analyzer

Claims (9)

少なくとも一部が導電性複合材により構成される風車翼と、前記導電性複合材に取り付けられた複数の計測用電極と、各計測用電極に第1開閉器を介して接続される抵抗計測器を備えた風力発電装置の運転制御方法であって、
前記第1開閉器を開いて前記抵抗計測器を前記計測用電極から切り離した状態で、前記風力発電装置を通常運転モードにより運転するステップと、
前記風力発電装置の運転モードが前記通常運転モードから損傷検出モードに切替えられたとき、前記第1開閉器を閉じて前記抵抗計測器を前記計測用電極のうち一対の電極に導通させるステップと、
前記第1開閉器を閉じて前記抵抗計測器を前記一対の電極に導通させた状態で、前記一対の電極間の電気抵抗を前記抵抗計測器により計測するステップと、
前記電気抵抗の計測値に基づいて、前記導電性複合材の損傷を検出するステップとを備えることを特徴とする風力発電装置の運転制御方法。
Wind turbine blades at least partially made of a conductive composite material, a plurality of measurement electrodes attached to the conductive composite material, and a resistance measuring instrument connected to each measurement electrode via a first switch An operation control method for a wind turbine generator comprising:
Opening the first switch and operating the wind power generator in a normal operation mode in a state where the resistance measuring instrument is disconnected from the measurement electrode;
When the operation mode of the wind power generator is switched from the normal operation mode to the damage detection mode, the step of closing the first switch and causing the resistance meter to conduct to a pair of electrodes among the measurement electrodes;
Measuring the electrical resistance between the pair of electrodes with the resistance meter while the first switch is closed and the resistance meter is connected to the pair of electrodes;
And a step of detecting damage to the conductive composite material based on the measured value of the electrical resistance.
前記風力発電装置は、前記導電性複合材に取り付けられた一対の加熱用電極と、前記加熱用電極に第2開閉器を介して接続される電圧印加器とをさらに備え、
前記風力発電装置の運転モードとして前記損傷検出モードが選択されたとき、前記第2開閉器を閉じて前記電圧印加器を前記加熱用電極に導通させて、前記導電性複合材をジュール熱により加熱するステップをさらに備え、
前記通常運転モードでは、前記第2開閉器を開いて前記電圧印加器を前記加熱用電極から切り離した状態を維持することを特徴とする請求項1に記載の風力発電装置の運転制御方法。
The wind power generator further includes a pair of heating electrodes attached to the conductive composite material, and a voltage applicator connected to the heating electrodes via a second switch,
When the damage detection mode is selected as the operation mode of the wind turbine generator, the second switch is closed, the voltage applicator is conducted to the heating electrode, and the conductive composite material is heated by Joule heat. Further comprising the step of:
2. The operation control method for a wind turbine generator according to claim 1, wherein in the normal operation mode, the state in which the second switch is opened and the voltage applicator is disconnected from the heating electrode is maintained.
前記導電性複合材は前記風車翼の翼長方向に延在し、異なる翼長方向位置に3個以上の前記計測用電極が取り付けられており、
前記電気抵抗を計測するステップでは、複数組の前記一対の電極について前記電気抵抗をそれぞれ計測し、
前記損傷を検出するステップでは、各組の前記電気抵抗に基づいて、前記導電性複合材の損傷箇所を特定することを特徴とする請求項1又は2に記載の風力発電装置の運転制御方法。
The conductive composite material extends in the blade length direction of the wind turbine blade, and three or more measurement electrodes are attached to different blade length direction positions,
In the step of measuring the electrical resistance, the electrical resistance is measured for each of the plurality of sets of the pair of electrodes,
The operation control method for a wind turbine generator according to claim 1 or 2, wherein, in the step of detecting the damage, a damaged portion of the conductive composite material is specified based on the electrical resistance of each set.
前記導電性複合材に埋め込まれた光ファイバに光を入射するステップと、
前記光ファイバに入射された前記光の散乱光又は透過光を検出するステップとをさらに備え、
前記損傷を検出するステップでは、前記電気抵抗の計測値および前記散乱光又は透過光に基づいて前記導電性複合材の損傷を検出することを特徴とする請求項1乃至3のいずれか一項に記載の風力発電装置の運転制御方法。
Injecting light into an optical fiber embedded in the conductive composite;
Detecting the scattered light or transmitted light of the light incident on the optical fiber,
The step of detecting damage detects damage of the conductive composite material based on the measured value of the electrical resistance and the scattered light or transmitted light. The operation control method of the described wind turbine generator.
前記散乱光に基づいて、前記導電性複合材の損傷箇所を特定することを特徴とする請求項4に記載の風力発電装置の運転制御方法。   The operation control method for a wind turbine generator according to claim 4, wherein a damaged portion of the conductive composite material is specified based on the scattered light. 前記導電性複合材の損傷が検出された場合、前記風力発電装置の停止および警報出力の少なくとも一方を行うことを特徴とする請求項1乃至5のいずれか一項に記載の風力発電装置の運転制御方法。   The operation of the wind turbine generator according to any one of claims 1 to 5, wherein, when damage to the conductive composite material is detected, at least one of stopping the wind turbine generator and outputting an alarm is performed. Control method. 前記導電性複合材は炭素繊維強化プラスチックであることを特徴とする請求項1乃至6のいずれか一項に記載の風力発電装置の運転制御方法。   The wind power generator operation control method according to any one of claims 1 to 6, wherein the conductive composite material is carbon fiber reinforced plastic. 少なくとも一部が導電性複合材により構成される風車翼を備えた風力発電装置であって、
前記導電性複合材に取り付けられた複数の計測用電極と、
前記計測用電極に第1開閉器を介して接続される抵抗計測器と、
前記第1開閉器を開閉制御する第1開閉制御部と、
前記抵抗計測器を制御する計測器制御部と、
前記抵抗計測器の計測結果に基づいて、前記導電性複合材の損傷を検出する損傷検出部と、
前記風力発電装置の運転モードとして、通常運転モードおよび損傷検出モードの何れか一方を選択する運転モード選択部とを備え、
前記運転モード選択部によって前記通常運転モードが選択されたとき、前記第1開閉制御部は、前記抵抗計測器を前記計測用電極から切り離した状態を維持するように前記第1開閉器を開き、
前記運転モード選択部によって前記損傷検出モードが選択されたとき、前記第1開閉制御部は、前記抵抗計測器が前記計測用電極のうち一対の電極に導通するように前記第1開閉器を閉じるとともに、前記計測器制御部が前記抵抗計測器により前記一対の電極間の電気抵抗を取得し、前記損傷検出部が前記電気抵抗の計測値に基づいて前記導電性複合材の損傷を検出することを特徴とする風力発電装置。
A wind turbine generator including wind turbine blades at least partially composed of a conductive composite material,
A plurality of measurement electrodes attached to the conductive composite;
A resistance measuring instrument connected to the measuring electrode via a first switch;
A first opening / closing controller for controlling opening / closing of the first switch;
A measuring instrument controller for controlling the resistance measuring instrument;
Based on the measurement result of the resistance measuring instrument, a damage detection unit that detects damage of the conductive composite material,
As an operation mode of the wind power generator, comprising an operation mode selection unit for selecting any one of a normal operation mode and a damage detection mode,
When the normal operation mode is selected by the operation mode selection unit, the first opening / closing control unit opens the first switch so as to maintain the state where the resistance measuring device is disconnected from the measurement electrode,
When the damage detection mode is selected by the operation mode selection unit, the first opening / closing control unit closes the first switch so that the resistance measuring instrument is connected to a pair of electrodes of the measuring electrode. In addition, the measuring instrument control unit acquires the electrical resistance between the pair of electrodes by the resistance measuring instrument, and the damage detection unit detects damage of the conductive composite material based on the measured value of the electrical resistance. Wind power generator characterized by.
前記風車翼は、前記風車翼の腹側面および背側面にそれぞれ設けられて、翼長方向に延在するスパーキャップと、前記腹側面および前記背側面の前記スパーキャップを接続するスパーとを有し、
前記導電性複合材は前記スパーキャップであり、
前記計測用電極は、前記スパーキャップの内側表面のうち前記スパーとの接合部を除く領域に配置されていることを特徴とする請求項8に記載の風力発電装置。


The windmill blade includes a spar cap that is provided on a belly side surface and a back side surface of the windmill blade and extends in the blade length direction, and a spar that connects the spar caps on the belly side surface and the back side surface. ,
The conductive composite is the spar cap;
The wind power generator according to claim 8, wherein the measurement electrode is disposed in a region excluding a joint portion with the spar on an inner surface of the spar cap.


JP2012009404A 2012-01-19 2012-01-19 Wind power generation device and operation control method thereof Pending JP2013148022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009404A JP2013148022A (en) 2012-01-19 2012-01-19 Wind power generation device and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009404A JP2013148022A (en) 2012-01-19 2012-01-19 Wind power generation device and operation control method thereof

Publications (1)

Publication Number Publication Date
JP2013148022A true JP2013148022A (en) 2013-08-01

Family

ID=49045756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009404A Pending JP2013148022A (en) 2012-01-19 2012-01-19 Wind power generation device and operation control method thereof

Country Status (1)

Country Link
JP (1) JP2013148022A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129508A (en) * 2014-01-02 2015-07-16 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Blade control apparatus and method for wind power generator, and wind power generator using the same
JP2015161247A (en) * 2014-02-27 2015-09-07 三菱重工業株式会社 Wind turbine blade damage detection method and wind turbine
JP2018127986A (en) * 2017-02-10 2018-08-16 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Wind power generation equipment and operation method of wind power generation equipment
JP2018146368A (en) * 2017-03-03 2018-09-20 株式会社Subaru Current observation system, method for observing current, and aircraft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129508A (en) * 2014-01-02 2015-07-16 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Blade control apparatus and method for wind power generator, and wind power generator using the same
US10190573B2 (en) 2014-01-02 2019-01-29 DOOSAN Heavy Industries Construction Co., LTD Blade control apparatus and method for wind power generator, and wind power generator using the same
JP2015161247A (en) * 2014-02-27 2015-09-07 三菱重工業株式会社 Wind turbine blade damage detection method and wind turbine
JP2018127986A (en) * 2017-02-10 2018-08-16 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Wind power generation equipment and operation method of wind power generation equipment
US10767629B2 (en) 2017-02-10 2020-09-08 Mhi Vestas Offshore Wind A/S Wind turbine power generation facility and method of operating the same
JP2018146368A (en) * 2017-03-03 2018-09-20 株式会社Subaru Current observation system, method for observing current, and aircraft

Similar Documents

Publication Publication Date Title
JP5535886B2 (en) Lightning strike detection device, wind turbine rotor and wind power generator equipped with the same
US20180258916A1 (en) Blade for wind power generation or wind power generation device
JP2013148022A (en) Wind power generation device and operation control method thereof
EP2590803B1 (en) Turbine blade temperature measurement system and method of manufacture of turbine blades
US11674501B2 (en) Monitoring system for a wind turbine blade, wind turbine arrangement and method for monitoring of a wind turbine blade
JP6628395B2 (en) External lightning protection systems, wind turbine blades and wind turbines
JP6305450B2 (en) Wind power generator blade and wind power generator blade inspection method
Bang et al. Shape estimation and health monitoring of wind turbine tower using a FBG sensor array
JP6778366B2 (en) Double down conductor system, lightning strike determination system using double down conductor system, and wind power generator
US12049871B2 (en) Wind turbine blade anti-ice systems
CN112219029A (en) Sensor device for a wind turbine
CN102878026A (en) Wind driven generator rotor blade with electrothermal deicing devices
JP2013148021A (en) Damage detecting method and damage detecting system of wind turbine blade
JP6300275B2 (en) Wind generator and blade control method
JP2013139734A (en) Wind power generation device, and damage detection device, method and program applied thereto
CN115126665A (en) Fan blade monitoring method and device of wind driven generator, storage medium and wind driven generator
JP2014509705A (en) Wind power generator
JP6420451B2 (en) Wind power generator blade and wind power generator blade inspection method
CN102290159B (en) Optical fiber Bragg grating temperature sensor-based intelligent temperature measuring composite insulator
JP2018145899A (en) Windmill blade or wind power generation device
JP2023542378A (en) Wind turbine monitoring device, wind turbine system, and wind turbine monitoring method
CN202883274U (en) Wind generator rotor blade with electric heating ice melting device
JP2020106032A (en) Double down conductor system, soundness evaluation system for double down conductor system and wind power generation device
JP2020084780A (en) Windmill blade and wind power generation system
CN103807109B (en) A kind of aero-generator rotor blade electro-heat deicing wireless control system