JP2013146699A - Desalination method - Google Patents

Desalination method Download PDF

Info

Publication number
JP2013146699A
JP2013146699A JP2012010256A JP2012010256A JP2013146699A JP 2013146699 A JP2013146699 A JP 2013146699A JP 2012010256 A JP2012010256 A JP 2012010256A JP 2012010256 A JP2012010256 A JP 2012010256A JP 2013146699 A JP2013146699 A JP 2013146699A
Authority
JP
Japan
Prior art keywords
water
seawater
pressure
membrane
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012010256A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2012010256A priority Critical patent/JP2013146699A/en
Publication of JP2013146699A publication Critical patent/JP2013146699A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalination method by which membrane clogging more hardly occurs than the conventional methods.SOLUTION: Water to be treated is filtered via a separation membrane with differential pressure of ≤1 kg/cmand ions in water after filtration is electrically separated by a voltage application mechanism of a diaphragm. Pressure of water to be treated toward the separation membrane can be lowered and membrane clogging more hardly occurs than the conventional methods. Since ions (sodium ion, chlorine ion or the like) in water after filtration are electrically separated by the voltage application mechanism having the diaphragm, seawater can be desalinated and wastewater or the like can be clarified and recycled.

Description

この発明は、海水や排水・廃水その他の淡水化方法に関するものである。   The present invention relates to seawater, drainage / waste water and other desalination methods.

従来、海水淡水化装置に関する提案があった(特許文献1)。
すなわち、世界的に水問題が深刻化する中、水ビジネスを巨大市場と捉え、世界規模で水ビジネス競争が加速している。河川などの表流水や地下水を水源として持たない中東諸国や、国内でも渇水リスクの高い地域では、水源確保のために海水淡水化技術を導入し、大型の海水淡水化プラントを設置している。
従来の海水淡水化技術では、海水を加熱蒸発後に凝縮・回収する蒸発法が主流であった。これに対し、近年は、経済性の観点からRO(reverse osmosis)膜(以下、逆浸透膜という)を用いた方式が拡大しつつある。
逆浸透膜を用いた造水コスト(円/m3)のうち、ランニングコストに関する項目では、電力費(動力費)が約50%を占める。すなわち、動力費を削減することによってランニングコストを効果的に削減することができる。そこで、高圧ポンプの動力を高効率で回収する動力回収装置を適用し、動力用消費エネルギー(電力量)を大幅に改善できる動力回収装置の効率運転点を実現することが求められている。
対象とする原海水の水質の変化、必要な淡水の生産水量、回収率などの運転条件の違いに応じて、単位生産淡水量あたりの電力量が異なるため、適切に運転条件を変更する必要がある。
しかしながら、海水淡水化装置の運転条件が運転当初に決定された条件で不変である場合、電力量を限界まで削減することができなかった。その結果、海水淡水化装置を効率よく運転させることが困難であった。
この提案は、上記事情を鑑みて成されたものであって、適切な運転条件に設定し、電力量を削減する海水淡水化装置を提供することを目的とする。
この提案による海水淡水化装置は、海水を淡水と濃縮海水とに分離して排水する逆浸透膜と、前記逆浸透膜に海水を送出する高圧ポンプと、海水と前記逆浸透膜から排水された濃縮海水とが供給され、前記濃縮海水から回収した圧力エネルギーにより高圧で前記海水を送出するとともに低圧で濃縮海水を排水する動力回収装置と、前記動力回収装置から排水された海水を前記高圧ポンプから排水される海水と同じ圧力となるまで昇圧し、前記高圧ポンプから排水される海水と合流するように排水するブースターポンプと、前記動力回収装置から排水される濃縮海水の量を調整する排水弁と、前記逆浸透膜に供給される海水の圧力を測定する圧力センサと、前記逆浸透膜から排水される淡水の流量を測定する第1流量センサと、前記逆浸透膜から排水される濃縮海水の流量、あるいは、前記ブースターポンプから送出される海水の流量を測定する第2流量センサと、前記動力回収装置に供給される海水の流量を測定する第3流量センサと、前記圧力センサおよび前記第1流量センサで測定された値により前記高圧ポンプの回転数を制御し、前記第2流量センサで測定された値により前記ブースターポンプの回転数を制御し、前記第2流量センサおよび前記第3流量センサで測定された値により前記排水弁の弁開度を制御する制御部と、を備える、というものである。
しかし、膜が詰まり易いという問題があった。
特開2011−240234号公報
Conventionally, there has been a proposal regarding a seawater desalination apparatus (Patent Document 1).
In other words, as water problems become more global, water business is regarded as a huge market, and water business competition is accelerating on a global scale. In Middle Eastern countries that do not have surface water such as rivers or groundwater as a water source, or in regions with a high risk of drought in Japan, seawater desalination technology has been introduced and large-scale seawater desalination plants have been established to secure water sources.
In the conventional seawater desalination technology, the evaporation method in which seawater is condensed and recovered after heating and evaporation has been the mainstream. On the other hand, in recent years, a method using an RO (reverse osmosis) membrane (hereinafter referred to as a reverse osmosis membrane) is expanding from the viewpoint of economy.
Of the fresh water production costs using the reverse osmosis membrane (yen / m 3 ), in terms of running costs, power costs (power costs) account for about 50%. That is, the running cost can be effectively reduced by reducing the power cost. Therefore, it is required to apply a power recovery device that recovers the power of the high-pressure pump with high efficiency to realize an efficient operating point of the power recovery device that can greatly improve power consumption energy (electric power amount).
It is necessary to change the operating conditions appropriately because the amount of power per unit of produced freshwater varies depending on the operating conditions such as changes in the quality of the raw seawater, the amount of freshwater required, and the recovery rate. is there.
However, when the operating conditions of the seawater desalination apparatus are unchanged under the conditions determined at the beginning of operation, the amount of electric power could not be reduced to the limit. As a result, it was difficult to operate the seawater desalination apparatus efficiently.
This proposal has been made in view of the above circumstances, and an object thereof is to provide a seawater desalination apparatus that is set to appropriate operating conditions and reduces the amount of electric power.
The seawater desalination apparatus according to this proposal was separated from fresh water and concentrated seawater, a reverse osmosis membrane that drains water, a high-pressure pump that sends seawater to the reverse osmosis membrane, and seawater and drained from the reverse osmosis membrane Concentrated seawater is supplied, and a power recovery device that sends out the seawater at a high pressure by pressure energy recovered from the concentrated seawater and drains the concentrated seawater at a low pressure; and seawater drained from the power recovery device from the high pressure pump A booster pump that boosts the pressure until it reaches the same pressure as the seawater to be drained and drains the seawater to be drained from the high-pressure pump; and a drain valve that adjusts the amount of concentrated seawater drained from the power recovery device; A pressure sensor for measuring the pressure of seawater supplied to the reverse osmosis membrane, a first flow sensor for measuring a flow rate of fresh water drained from the reverse osmosis membrane, and the reverse osmosis membrane A second flow rate sensor for measuring the flow rate of the concentrated seawater to be drained or the flow rate of the seawater sent from the booster pump, a third flow rate sensor for measuring the flow rate of the seawater supplied to the power recovery device, The rotational speed of the high-pressure pump is controlled by a value measured by a pressure sensor and the first flow sensor, the rotational speed of the booster pump is controlled by a value measured by the second flow sensor, and the second flow sensor And a control unit that controls the valve opening degree of the drainage valve based on the value measured by the third flow rate sensor.
However, there is a problem that the film is easily clogged.
JP 2011-240234 A

そこでこの発明は、従来よりも膜が詰まり難い淡水化方法を提供しようとするものである。   Therefore, the present invention seeks to provide a desalination method in which membranes are less likely to be clogged than in the past.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の淡水化方法は、分離膜を介して被処理水を1kg/cm以下の差圧により濾過し、濾過後の水中のイオンを有隔膜の電圧印加機構で電気的に分離するようにしたことを特徴とする。
前記被処理水として、海水や、工場その他の排水・廃水、廃液などを例示することが出来る。前記分離膜として、MF(精密フィルター)膜、UF(限外濾過)膜、NF(ナノフィルター)膜などを使用することが出来る。前記濾過後の水中のイオンとして、ナトリウムイオンや塩素イオンなどを例示することが出来る。
In order to solve the above problems, the present invention takes the following technical means.
(1) In the desalination method of the present invention, water to be treated is filtered through a separation membrane with a differential pressure of 1 kg / cm 2 or less, and ions in the filtered water are electrically separated by a voltage application mechanism of the diaphragm. It was made to do.
Examples of the water to be treated include seawater, other waste water / waste water, waste liquid, and the like in factories. As the separation membrane, an MF (precision filter) membrane, a UF (ultrafiltration) membrane, an NF (nanofilter) membrane, or the like can be used. Examples of ions in the water after filtration include sodium ions and chlorine ions.

この淡水化方法では、分離膜を介して被処理水を1kg/cm以下の差圧(例えば0.5〜0.6kg/cm)により濾過するようにしたので、分離膜に対する被処理水の圧力を低くすることが出来る。
そして、濾過後の水中のイオン(ナトリウムイオン、塩素イオンなど)を有隔膜の電圧印加機構で電気的に分離するようにしたので、海水を淡水化したり、排水などを浄化して再利用したりすることが出来る。
ここで、分離膜が目詰まりし難いように、ばっ気しながら濾過することが出来る。このようにすると、分離膜に付着した汚れが気泡により離脱して目詰まりがし難い状態で濾過することが出来る。また、電解水で逆洗浄するようにしてもよい。このようにすると、分離膜に付着した有機系の汚れを分解して、目詰まりを好適に解消することが出来る。
被処理水の汚れが激しい場合は、事前に凝集沈殿して固形物などを落としてから行うようにするとよい。
In this desalination method, the water to be treated is filtered through the separation membrane with a differential pressure of 1 kg / cm 2 or less (for example, 0.5 to 0.6 kg / cm 2 ). Can be lowered.
And, since ions in the filtered water (sodium ions, chlorine ions, etc.) are electrically separated by the voltage application mechanism of the diaphragm, the seawater is desalinated or the wastewater is purified and reused. I can do it.
Here, filtration can be performed while aeration is performed so that the separation membrane is not easily clogged. If it does in this way, it can filter in the state where dirt adhering to a separation membrane detached by air bubbles, and clogging is difficult. Moreover, you may make it back-wash with electrolyzed water. If it does in this way, organic dirt which adhered to a separation membrane can be decomposed and clogging can be eliminated suitably.
When the water to be treated is heavily soiled, it is preferable to perform the process after coagulating and precipitating to remove solids.

(2)前記差圧を負圧により掛けるようにしてもよい。
このように構成し、負圧を掛けて吸引により濾過を行うことにより電気代を節約することが出来る。負圧は吸引の真空度によって調製することが出来る。
(2) The differential pressure may be applied by a negative pressure.
By configuring in this way and applying a negative pressure and performing filtration by suction, the electricity bill can be saved. The negative pressure can be adjusted by the vacuum degree of suction.

(3)前記差圧を正圧により掛けるようにしてもよい。
このように構成すると、適度な外圧をかけることにより目詰まりし難い状態で濾過を行うことが出来る。
(3) The differential pressure may be applied by a positive pressure.
If comprised in this way, it can filter in the state which is hard to clog by applying a moderate external pressure.

この発明は上述のような構成であり、次の効果を有する。
分離膜に対する被処理水の圧力を低くすることが出来るので、従来よりも膜が詰まり難い淡水化方法を提供することが出来る。
The present invention is configured as described above and has the following effects.
Since the pressure of the water to be treated against the separation membrane can be lowered, a desalination method in which the membrane is less likely to be clogged than before can be provided.

以下、この発明の実施の形態を説明する。
(実施形態1)
この実施形態の淡水化方法は、分離膜を介して被処理水を1kg/cm以下の差圧(例えば0.5〜0.6kg/cm)により濾過し、濾過後の水中のイオンを有隔膜の電圧印加機構で電気的に分離するようにしたことを特徴とする。
前記被処理水として、海水や、工場その他の排水・廃水、廃液などを例示することが出来る。前記分離膜として、MF(精密フィルター)膜、UF(限外濾過)膜、NF(ナノフィルター)膜などを使用することが出来る。前記濾過後の水中のイオンとして、ナトリウムイオンや塩素イオンなどを例示することが出来る。
Embodiments of the present invention will be described below.
(Embodiment 1)
In the desalination method of this embodiment, water to be treated is filtered through a separation membrane with a differential pressure of 1 kg / cm 2 or less (for example, 0.5 to 0.6 kg / cm 2 ), and ions in the filtered water are separated from the separation membrane. It is characterized in that it is electrically separated by a voltage application mechanism.
Examples of the water to be treated include seawater, other waste water / waste water, waste liquid, and the like in factories. As the separation membrane, an MF (precision filter) membrane, a UF (ultrafiltration) membrane, an NF (nanofilter) membrane, or the like can be used. Examples of ions in the water after filtration include sodium ions and chlorine ions.

前記差圧は、負圧(吸引)により掛けるようにしている。負圧は吸引の真空度によって調製することが出来る。
ここで、分離膜が目詰まりし難いように、ばっ気しながら濾過することが出来る。このようにすると、分離膜に付着した汚れが気泡により離脱して目詰まりがし難い状態で濾過することが出来る。また、電解水で逆洗浄するようにしてもよい。このようにすると、分離膜に付着した有機系の汚れを分解して、目詰まりを好適に解消することが出来る。
被処理水の汚れが激しい場合は、事前に凝集沈殿して固形物などを落としてから行うようにするとよい。
The differential pressure is applied by negative pressure (suction). The negative pressure can be adjusted by the vacuum degree of suction.
Here, filtration can be performed while aeration is performed so that the separation membrane is not easily clogged. If it does in this way, it can filter in the state where dirt adhering to a separation membrane detached by air bubbles, and clogging is difficult. Moreover, you may make it back-wash with electrolyzed water. If it does in this way, organic dirt which adhered to a separation membrane can be decomposed and clogging can be eliminated suitably.
When the water to be treated is heavily soiled, it is preferable to perform the process after coagulating and precipitating to remove solids.

次に、この実施形態の淡水化方法の使用状態を説明する。
この淡水化方法では、分離膜を介して被処理水を1kg/cm以下の差圧(例えば0.5〜0.6kg/cm)により濾過するようにしたので、分離膜に対する被処理水の圧力を低くすることが出来、従来よりも膜が詰まり難いという利点を有する。
そして、濾過後の水中のイオン(ナトリウムイオン、塩素イオンなど)を有隔膜の電圧印加機構で電気的に分離するようにしたので、海水を淡水化したり、排水などを浄化して再利用したりすることが出来る。
さらに、前記差圧を負圧により掛けるようにしており、負圧を掛けて吸引により濾過を行うことにより電気代を節約することが出来る。
Next, the use state of the desalination method of this embodiment is demonstrated.
In this desalination method, the water to be treated is filtered through the separation membrane with a differential pressure of 1 kg / cm 2 or less (for example, 0.5 to 0.6 kg / cm 2 ). It has the advantage that the film can be lowered and the film is less likely to be clogged than before.
And, since ions in the filtered water (sodium ions, chlorine ions, etc.) are electrically separated by the voltage application mechanism of the diaphragm, the seawater is desalinated or the wastewater is purified and reused. I can do it.
Furthermore, the differential pressure is applied by a negative pressure, and electricity charges can be saved by applying a negative pressure and performing filtration by suction.

(実施形態2)
この実施形態では、前記差圧を正圧により掛けるようにしており、適度な外圧(例えば0.5〜0.6kg/cm)をかけることにより目詰まりし難い状態で濾過を行うことが出来るという利点を有する。
(Embodiment 2)
In this embodiment, the differential pressure is applied by a positive pressure, and by applying an appropriate external pressure (for example, 0.5 to 0.6 kg / cm 2 ), it is possible to perform filtration in a state where clogging is difficult. Have.

〔実施例1〕
図1に示すように、この海水淡水化方法の処理のシステムフローは次の工程を有する。
海水→受水槽→「分離膜濾過機構(1kg/cm以下の差圧により濾過)」→中間槽(→ドレン排水)→電解イオンセパレータ装置→処理水槽(→塩濃縮水槽)→RO膜濾過装置→処理水槽→淡水として利用
このようにしたので、「分離膜濾過機構(1kg/cm以下の差圧により濾過)」に、「電解凝集沈殿槽→中間槽→砂濾過装置→中間槽→UF膜濾過装置」の機能(図2参照)を持たせることが出来るという利点を有する。
[Example 1]
As shown in FIG. 1, the processing system flow of this seawater desalination method has the following steps.
Seawater → water tank → "(filtered through 1 kg / cm 2 or less differential pressure) separation membrane filtration mechanism" → intermediate tank (→ drain drainage) → electrolytic ion separator device → treating tank (→ salt concentration water tank) → RO membrane filtering device → Used as treated water tank → fresh water As described above, the “separation membrane filtration mechanism (filtered with a differential pressure of 1 kg / cm 2 or less)” is used as “electrolytic coagulation sedimentation tank → intermediate tank → sand filtration device → intermediate tank → UF This has the advantage that the function of the “membrane filtration device” (see FIG. 2) can be provided.

〔実施例2〕
図3に示すように、この排水再利用方法の処理のシステムフローは次の工程を有する。
排水→受水槽→「分離膜濾過機構(1kg/cm以下の差圧により濾過)」→中間槽(→ドレン排水)→電解イオンセパレータ装置→処理水槽(→塩濃縮水槽)→RO膜濾過装置→処理水槽→再利用水として利用
このようにしたので、「分離膜濾過機構(1kg/cm以下の差圧により濾過)」に、「電解凝集沈殿槽→中間槽→砂濾過装置→中間槽→UF膜濾過装置」の機能(図4参照)を持たせることが出来という利点を有する。
[Example 2]
As shown in FIG. 3, the processing system flow of this wastewater recycling method has the following steps.
Drainage → Receiving tank → “Separation membrane filtration mechanism (filtering with a differential pressure of 1 kg / cm 2 or less)” → Intermediate tank (→ Drain drainage) → Electrolytic ion separator device → Treatment water tank (→ Salt concentrated water tank) → RO membrane filtration device → Treatment water tank → Used as reclaimed water Since this is done, the “separation membrane filtration mechanism (filtering with a differential pressure of 1 kg / cm 2 or less)” is used as “electrolytic coagulation sedimentation tank → intermediate tank → sand filtration device → intermediate tank” It has the advantage that it can have the function of “→ UF membrane filtration device” (see FIG. 4).

電気的に淡水化をすることが出来大きな圧力を必要としないことによって、種々の淡水化方法の用途に好適に適用することができる。   Since it can be desalinated electrically and does not require a large pressure, it can be suitably applied to various desalination methods.

この発明の淡水化方法の実施例1を説明するシステム・フロー図。The system flow figure explaining Example 1 of the desalination method of this invention. この発明の淡水化方法の実施例1を補足するシステム・フロー図。The system flow figure supplementing Example 1 of the desalination method of this invention. この発明の淡水化方法の実施例2を説明するシステム・フロー図。The system flow figure explaining Example 2 of the desalination method of this invention. この発明の淡水化方法の実施例2を補足するシステム・フロー図。The system flow figure supplementing Example 2 of the desalination method of this invention.

Claims (3)

分離膜を介して被処理水を1kg/cm以下の差圧により濾過し、濾過後の水中のイオンを有隔膜の電圧印加機構で電気的に分離するようにしたことを特徴とする淡水化方法。 Water to be treated is filtered through a separation membrane with a differential pressure of 1 kg / cm 2 or less, and the ions in the water after filtration are electrically separated by a voltage application mechanism of the diaphragm. Method. 前記差圧を負圧により掛けるようにした請求項1記載の淡水化方法。   The desalination method according to claim 1, wherein the differential pressure is applied by a negative pressure. 前記差圧を正圧により掛けるようにした請求項1又は2記載の淡水化方法。   The desalination method according to claim 1 or 2, wherein the differential pressure is applied by a positive pressure.
JP2012010256A 2012-01-20 2012-01-20 Desalination method Pending JP2013146699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010256A JP2013146699A (en) 2012-01-20 2012-01-20 Desalination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010256A JP2013146699A (en) 2012-01-20 2012-01-20 Desalination method

Publications (1)

Publication Number Publication Date
JP2013146699A true JP2013146699A (en) 2013-08-01

Family

ID=49044785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010256A Pending JP2013146699A (en) 2012-01-20 2012-01-20 Desalination method

Country Status (1)

Country Link
JP (1) JP2013146699A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07963A (en) * 1993-06-17 1995-01-06 Kubota Corp Pretreatment of ultrahigh treatment of water and device therefor
US20080164209A1 (en) * 2007-01-05 2008-07-10 Orest Zacerkowny Water treatment systems and methods
JP2009095821A (en) * 2007-09-28 2009-05-07 Asahi Kasei Chemicals Corp Method of treating salt water
JP2009190025A (en) * 2008-01-18 2009-08-27 Asahi Kasei Chemicals Corp Method of manufacturing drinking water
US20100140170A1 (en) * 2008-11-20 2010-06-10 Alion Science And Technology Filter cleaning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07963A (en) * 1993-06-17 1995-01-06 Kubota Corp Pretreatment of ultrahigh treatment of water and device therefor
US20080164209A1 (en) * 2007-01-05 2008-07-10 Orest Zacerkowny Water treatment systems and methods
JP2009095821A (en) * 2007-09-28 2009-05-07 Asahi Kasei Chemicals Corp Method of treating salt water
JP2009190025A (en) * 2008-01-18 2009-08-27 Asahi Kasei Chemicals Corp Method of manufacturing drinking water
US20100140170A1 (en) * 2008-11-20 2010-06-10 Alion Science And Technology Filter cleaning method

Similar Documents

Publication Publication Date Title
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
CN104276702B (en) A kind of oil gas field waste water desalination treatment process
CN108383315B (en) Multistage electrically driven ionic membrane's waste water recovery device
CN105000726A (en) Method for treating and recycling high-salt oil-field wastewater
CN105060582A (en) Oil production wastewater processing and recycling method
TWI393678B (en) Desalination system
WO2010017303A3 (en) Reverse osmosis enhanced recovery hybrid process
CN102849879A (en) Treatment technology for recycling reverse osmosis concentrated water
CN105000755A (en) Wastewater zero-emission industrial sewage treatment system and treatment method
CN104276709A (en) Coal chemical industry concentrated brine zero discharge technique and special equipment thereof
CN104609610A (en) Method for treating reverse osmosis concentrated water and circulating wastewater by whole membrane method
CN105084630A (en) Oil refining catalyst wastewater zero-discharging treatment method
CN102897944A (en) System for deeply processing difficultly degradable organic waste water
CN102603106A (en) Composite system and method for treating industrial wastewater by membrane distillation
CN105330060A (en) Graphene wastewater treating and recycling system and treating and recycling technology thereof
CN204281479U (en) A kind for the treatment of system of coating wastewater
CN104291486A (en) High-power reuse technology for coal chemical industry strong brine and special equipment of high-power reuse technology
CN108328836B (en) Water inlet control system based on high-salt-content wastewater reduction process
CN104445714B (en) The peace and quiet waste water high power reuse technology of coal chemical industry and its special purpose device
JP2017012985A (en) Water treatment system and method
CN201785261U (en) Treatment and recovery device for aluminum oxidation rinsing wastewater
CN103253783B (en) Fluorine chemical high-fluorine wastewater treatment process and equipment
CN110002654A (en) A kind of high-salt wastewater discharge treating system
CN105366861A (en) Water-desalting reverse osmosis concentrated-water recycling device
CN204281486U (en) The reverse osmosis concentrated apparatus for recovering of de-salted water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151109