JP2013146691A - Solidification method of soil using waste gypsum - Google Patents

Solidification method of soil using waste gypsum Download PDF

Info

Publication number
JP2013146691A
JP2013146691A JP2012009574A JP2012009574A JP2013146691A JP 2013146691 A JP2013146691 A JP 2013146691A JP 2012009574 A JP2012009574 A JP 2012009574A JP 2012009574 A JP2012009574 A JP 2012009574A JP 2013146691 A JP2013146691 A JP 2013146691A
Authority
JP
Japan
Prior art keywords
gypsum
soil
type
waste
hemihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012009574A
Other languages
Japanese (ja)
Other versions
JP5737812B2 (en
Inventor
Kenji Kamei
健史 亀井
Hideto Horai
秀人 蓬莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2012009574A priority Critical patent/JP5737812B2/en
Publication of JP2013146691A publication Critical patent/JP2013146691A/en
Application granted granted Critical
Publication of JP5737812B2 publication Critical patent/JP5737812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/262Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke waste gypsum other than phosphogypsum

Abstract

PROBLEM TO BE SOLVED: To provide a solidification method of soil using waste gypsum in which when gypsum hemihydrate obtained by that a waste gypsum board containing fluorine is shredded and heat-treated is used to perform the solidification process of soil, the elution in soil of fluorine in gypsum can be controlled, and the curing time can be appropriately controlled.SOLUTION: A waste gypsum board spall that contains fluorine is heat-treated at a prescribed temperature and gypsum hemihydrate and a type II anhydrous gypsum are generated, the gypsum hemihydrate of fast curing and the type II anhydrous gypsum of slow curing are added/mixed to/with treatment soil at a prescribed rate and further added and mixed with portland blast furnace cement containing alumina and calcium oxide. At that time, a part of the gypsum hemihydrate of fast curing is substituted by the type II anhydrous gypsum of slow curing, thereby curing progresses comparatively slowly, and solidification can be excellently performed without starting curing at least in the solidification. Moreover, ettringite is generated also by the type II anhydrous gypsum as well as the gypsum hemihydrate, and thereby the elution to soil of fluorine is surely controlled.

Description

本発明は、土壌の固化処理方法に関し、特に建築廃材である廃石膏ボードを破砕・分別処理後、所定温度で加熱処理して得られる半水石膏とII型無水石膏とを土壌に混合して固化処理する廃石膏を用いた土壌の固化処理方法に関する。   The present invention relates to a method for solidifying soil, and in particular, mixing waste water gypsum board obtained by heat treatment at a predetermined temperature and type II anhydrous gypsum after crushing / sorting waste gypsum board, which is a building waste material, into soil. The present invention relates to a method for solidifying soil using waste gypsum to be solidified.

従来、建築物の解体などに伴って多量に発生する廃石膏ボードは、そのほとんどが埋め立てなどによって廃棄処分されていたが、廃棄物処理法の改正によって廃石膏ボードが安定型産業廃棄物から管理型産業廃棄物へ移行したことに伴う処理コストの高騰や、資源の有効活用という観点からも、廃石膏ボードから石膏を分離回収して再利用することが望まれている。   Conventionally, most of the waste gypsum board that is generated in large quantities due to the dismantling of buildings has been disposed of by landfill, etc., but the waste gypsum board is managed from stable industrial waste by the revision of the Waste Disposal Law. From the viewpoint of soaring processing costs associated with the shift to industrial waste and effective utilization of resources, it is desired to separate and recover gypsum from waste gypsum board.

例えば、廃石膏ボードを破砕後、所定温度にて加熱処理して得られる半水石膏は、適宜量の水分との水和反応によって二水石膏に転位して極めて短時間にて硬化するため(速硬性)、例えば、軟弱土壌等の固化処理に有効に利用できる。ただし、石膏ボードの原料には火力発電所等から出される排煙脱硫石膏が多く用いられており、この排煙脱硫石膏には有害物質であるフッ素が含まれているため、廃石膏ボード由来の半水石膏をそのまま土壌固化材として使用した場合には、土壌中に環境基準(0.8mg/l以下)を超える量のフッ素が溶出してしまう懸念がある。   For example, hemihydrate gypsum obtained by crushing waste gypsum board and heat-treating at a predetermined temperature is transferred to dihydrate gypsum by a hydration reaction with an appropriate amount of moisture and hardens in a very short time ( For example, it can be effectively used for solidification treatment of soft soil or the like. However, as the raw material for gypsum board, flue gas desulfurization gypsum emitted from thermal power plants, etc. is often used. Since this flue gas desulfurization gypsum contains fluorine, which is a harmful substance, it is derived from waste gypsum board. When hemihydrate gypsum is used as a soil-solidifying material as it is, there is a concern that fluorine in an amount exceeding the environmental standard (0.8 mg / l or less) is eluted in the soil.

そこで、本発明者らは、特許文献1(特許第4832474号公報)にて開示されるように、フッ素を含有する廃石膏ボードを破砕・加熱処理して得られる半水石膏(CaSO・1/2HO)に対して、アルミナ(Al)と酸化カルシウム(CaO)を含有する高炉セメントを添加材として所定量添加することにより、軟弱土壌中の水分との水和反応によってエトリンガイト(3CaO・Al・3CaSO・32HO)を生成させ、半水石膏から溶出するフッ素イオンを前記エトリンガイトに取り込ませて固定して土壌中へのフッ素の溶出を抑制しながら、好適に軟弱土壌等の固化処理を可能にした土壌の固化処理方法を提案している。なお、前記エトリンガイトは、ホウ素、ヒ素、セレン、鉛、カドミウム、クロム、水銀等の有害物質もフッ素同様に取り込んで固定するため、土壌中の有害物質の浄化処理にも有効である。 Therefore, as disclosed in Patent Document 1 (Japanese Patent No. 4834744), the present inventors have prepared hemihydrate gypsum (CaSO 4 · 1) obtained by crushing and heating waste gypsum board containing fluorine. / 2H 2 O), by adding a predetermined amount of blast furnace cement containing alumina (Al 2 O 3 ) and calcium oxide (CaO) as additives, ettringite by hydration reaction with moisture in soft soil (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) is generated, and fluorine ions eluted from the hemihydrate gypsum are taken in and fixed in the ettringite, which is suitable while suppressing the elution of fluorine into the soil. In addition, we have proposed a method for solidifying soil that enables soft soil to be solidified. The ettringite is also effective for purification of harmful substances in the soil because harmful substances such as boron, arsenic, selenium, lead, cadmium, chromium and mercury are taken in and fixed in the same manner as fluorine.

特許第4832474号公報Japanese Patent No. 4834744

しかしながら、土壌を固化処理するにあたり、上記従来例のように極力早期に硬化させることが必ずしも好ましいとは限らず、例えば、土壌を固化処理している最中に硬化が始まってしまうと作業性やハンドリング性が低下するなど、何らかの不具合を来す可能性がある。   However, when solidifying the soil, it is not always preferable to harden as soon as possible as in the above-mentioned conventional example, for example, if the hardening starts during the solidification of the soil, workability and There is a possibility of causing some troubles such as poor handling.

本発明は上記の点に鑑み、フッ素を含有する廃石膏ボードを破砕・加熱処理して得られる半水石膏を用いて土壌を固化処理する場合に、石膏中のフッ素が土壌中に溶出するのを抑制しつつ、硬化時間を適当に調整可能とした廃石膏を用いた土壌の固化処理方法を提供することを課題とする。   In view of the above points, in the present invention, when the soil is solidified using hemihydrate gypsum obtained by crushing and heat-treating waste gypsum board containing fluorine, the fluorine in the gypsum elutes into the soil. It is an object of the present invention to provide a method for solidifying soil using waste gypsum that can appropriately adjust the curing time while suppressing the above.

本発明者らは、上記課題を解決するために、先ず、処理土壌に対する半水石膏の添加量を減らす一方、その分だけ高炉セメント等の添加材を増やすようにすれば、固化処理した土壌の強度を落とすこともなく、かつ水和反応を緩慢なものとして硬化時間を適度に遅延させることができるのではないかと考えた。しかしながら、この方法では半水石膏の添加量が減ることに伴いエトリンガイトの生成量も減少してしまうため、土壌中へのフッ素イオンの溶出の抑制が難しくなるだけでなく、高炉セメントの添加量の増加に伴い土壌中のpHが高くなるという悪影響が懸念される上、回収資源(石膏)の有効活用という本来の目的からすれば、使用量が抑制される前記方法はあまり好ましいものとは言えない。   In order to solve the above problems, the inventors first reduced the amount of hemihydrate gypsum added to the treated soil, while increasing the amount of additives such as blast furnace cement by that amount, It was thought that the curing time could be moderately delayed without decreasing the strength and by slowing the hydration reaction. However, with this method, the amount of ettringite produced decreases as the amount of hemihydrate gypsum decreases, which not only makes it difficult to suppress the elution of fluorine ions into the soil, but also increases the amount of blast furnace cement added. There is concern about the adverse effect of increasing the pH in the soil with the increase, and from the original purpose of effective utilization of the recovered resources (gypsum), the above method that suppresses the amount of use is not very preferable. .

そこで、鋭意検討を重ねた結果、半水石膏と同様に、高炉セメント等に含まれるアルミナや酸化カルシウムとの水和反応によりエトリンガイトを生成する一方、緩慢な水和反応によって徐々に二水石膏に転位してゆっくりと硬化していく性質(遅硬性)を有する無水石膏であれば、半水石膏の一部と代替させることにより、エトリンガイトの生成量を十分に確保しながらも硬化時間を適当に遅延させることができるのではないかと考えた。   Therefore, as a result of intensive studies, as with hemihydrate gypsum, ettringite is produced by hydration reaction with alumina and calcium oxide contained in blast furnace cement, etc. Anhydrous gypsum that has the property of slowing down after being dislocated (slow-hardening) can be replaced with a part of hemihydrate gypsum to ensure a sufficient curing time while ensuring sufficient ettringite production. I thought it could be delayed.

無水石膏は、二水石膏の状態にある廃石膏ボードなどの石膏を、所定温度で加熱処理することにより生成することができ、約130〜180℃の温度範囲では半水石膏が生成されるが、より高温の約180〜350℃の温度範囲ではIII型無水石膏に、約350〜1000℃の温度範囲ではII型無水石膏に、更に約1100℃以上に加熱処理することによりI型無水石膏にそれぞれ転位するとされている。このうち、III型無水石膏は、大気中の水分を強力に吸湿し、自然に放置しておれば極めて容易に半水石膏に転位してしまうため、半水石膏と代替させるのには適さない。また、I型無水石膏は、加熱処理に1100℃以上もの高温を要するためコスト面で不利と考えられる。一方、II型無水石膏は、加熱処理温度が半水石膏と比較してそれほど高温ではなく処理コストも抑えられるため、このII型無水石膏が実用面等から最も好適に利用できるのではないかと考えた。   Anhydrous gypsum can be produced by heat-treating gypsum such as waste gypsum board in the form of dihydrate gypsum at a predetermined temperature, and hemihydrate gypsum is produced at a temperature range of about 130 to 180 ° C. In the higher temperature range of about 180 to 350 ° C., it is converted into type III anhydrous gypsum, in the temperature range of about 350 to 1000 ° C., type II anhydrous gypsum, and further to about 1100 ° C. Each is supposed to be dislocated. Among these, type III anhydrous gypsum absorbs moisture in the atmosphere strongly, and if left undisturbed, it is very easily transferred to hemihydrate gypsum, so it is not suitable for replacing hemihydrate gypsum. . In addition, type I anhydrous gypsum is considered disadvantageous in terms of cost because heat treatment requires a high temperature of 1100 ° C. or higher. On the other hand, type II anhydrous gypsum has a heat treatment temperature that is not so high compared to hemihydrate gypsum and can reduce the processing cost. It was.

そして、本発明者らは、上記仮定に基づき、速硬性を有する半水石膏と遅硬性を有するII型無水石膏とを適宜割合にて混合したものに所定量の水を添加して水和反応させたところ、両者の混合割合に応じて硬化時間が変化することを見いだし、例えば、処理土壌に対し、半水石膏とII型無水石膏とをそれぞれ適宜割合にて添加させた上、高炉セメント等の添加材を適宜量添加混合させれば、フッ素を固定するエトリンガイトを十分に生成しながらも硬化時間を適当に調整させることができ、好適な固化処理が可能になるとの判断に至った。   Based on the above assumption, the present inventors added a predetermined amount of water to a mixture of hemihydrate gypsum having fast hardening and type II anhydrous gypsum having slow hardening in an appropriate ratio, and hydration reaction As a result, it has been found that the setting time varies depending on the mixing ratio of both, for example, to the treated soil, hemihydrate gypsum and type II anhydrous gypsum were added at an appropriate ratio, respectively, blast furnace cement, etc. When an appropriate amount of these additives were added and mixed, the curing time could be adjusted appropriately while sufficiently producing ettringite that fixes fluorine, and a suitable solidification treatment could be achieved.

即ち、上記課題を解決するために、本発明に係る請求項1記載の廃石膏を用いた土壌の固化処理方法は、フッ素を含有する廃石膏ボードを破砕・加熱処理して得られる半水石膏に対し、該半水石膏中の石膏成分との反応によってフッ素イオンを固定するエトリンガイトを生成させるべく、アルミナと酸化カルシウムを含有する高炉セメントを添加材として所定量添加した後、処理土壌と攪拌・混合し、生成されるエトリンガイトにて、石膏から溶出されるフッ素イオンを固定しながら土壌を固化処理するようにした廃石膏を用いた土壌の固化処理方法において、前記廃石膏ボードを破砕・加熱処理して得られるII型無水石膏を前記半水石膏の一部と代替させて混合すると共に、速硬性の半水石膏と遅硬性のII型無水石膏との混合割合を調整することにより硬化時間を調整し、少なくとも処理土壌を固化処理している間は硬化が始まらないようにしたことを特徴としている。   That is, in order to solve the above-mentioned problem, the soil solidification method using the waste gypsum according to claim 1 according to the present invention is a semi-water gypsum obtained by crushing and heating a waste gypsum board containing fluorine. On the other hand, in order to generate ettringite that fixes fluorine ions by reaction with the gypsum component in the hemihydrate gypsum, after adding a predetermined amount of blast furnace cement containing alumina and calcium oxide as an additive, the treated soil and The waste gypsum board is crushed and heat-treated in the method for solidifying soil using waste gypsum that is mixed and generated to fix the soil while fixing fluorine ions eluted from gypsum. The type II anhydrous gypsum obtained in this way is mixed with a part of the hemihydrate gypsum and mixed, and the mixing ratio of the fast-curing hemihydrate gypsum and the slow-hardening type II anhydrous gypsum is adjusted. This is characterized in that the setting time is adjusted to prevent hardening from starting during at least the solidification of the treated soil.

また、請求項2記載の廃石膏を用いた土壌の固化処理方法は、II型無水石膏を半水石膏の半分以上と代替させて混合するようにしたことを特徴としている。   The soil solidification method using waste gypsum according to claim 2 is characterized in that the type II anhydrous gypsum is substituted with half or more of the half-water gypsum and mixed.

また、請求項3記載の廃石膏を用いた土壌の固化処理方法は、II型無水石膏に対する半水石膏の混合割合を30wt%以下に調整するようにしたことを特徴としている。   The soil solidification method using waste gypsum according to claim 3 is characterized in that the mixing ratio of hemihydrate gypsum to type II anhydrous gypsum is adjusted to 30 wt% or less.

また、請求項4記載の廃石膏を用いた土壌の固化処理方法は、前記添加材として、酸化カルシウムを多く含有する高炉セメント及び/または高炉スラグと、アルミナを多く含有する石炭灰を使用し、エトリンガイト生成にそれぞれに不足する化学成分を補填し合うようにしたことを特徴としている。   Further, in the method for solidifying soil using waste gypsum according to claim 4, blast furnace cement and / or blast furnace slag containing a large amount of calcium oxide and coal ash containing a large amount of alumina are used as the additive. It is characterized by supplementing chemical components that are insufficient for ettringite production.

また、請求項5記載の廃石膏を用いた土壌の固化処理方法は、ホウ素、ヒ素、セレン、鉛、カドミウム、クロム、水銀から選択される1種以上の有害物質を含む土壌に対し、この土壌中の前記有害物質のイオンを前記エトリンガイトにて固定するようにしたことを特徴としている。   Moreover, the soil solidification method using the waste gypsum according to claim 5 is a method for treating soil containing one or more harmful substances selected from boron, arsenic, selenium, lead, cadmium, chromium and mercury. It is characterized in that ions of the harmful substance therein are fixed with the ettringite.

本発明に係る請求項1記載の廃石膏を用いた土壌の固化処理方法によれば、廃石膏ボードを破砕・加熱処理して得られる半水石膏に高炉セメントを添加して、フッ素イオンを固定するエトリンガイトを生成させる一方、前記廃石膏ボードを破砕・加熱処理して得られるII型無水石膏を前記半水石膏の一部と代替させ、少なくとも土壌を固化処理している間は硬化が始まらないように、速硬性の半水石膏に対する遅硬性のII型無水石膏の混合割合を調整することで硬化時間を調整させるようにしたので、石膏からのフッ素溶出を効果的に抑制しながら、土壌を任意の硬化時間にて好適に固化処理することが可能となる。   According to the method for solidifying soil using waste gypsum according to claim 1 of the present invention, fluoric acid cement is fixed by adding blast furnace cement to hemihydrate gypsum obtained by crushing and heating waste gypsum board. While ettringite is produced, type II anhydrous gypsum obtained by crushing and heat-treating the waste gypsum board is replaced with part of the hemihydrate gypsum, and hardening does not start at least during the solidification treatment of the soil As described above, the setting time was adjusted by adjusting the mixing ratio of slow-hardening type II anhydrous gypsum to fast-setting hemihydrate gypsum. It is possible to suitably solidify the treatment at an arbitrary curing time.

また、請求項2記載の廃石膏を用いた土壌の固化処理方法によれば、II型無水石膏を半水石膏の半分以上と代替させて混合するようにしたので、遅硬性のII型無水石膏を主体とした比較的緩慢な固化処理が可能となり、硬化時間の好適な遅延調整が期待できる。   Further, according to the method for solidifying soil using waste gypsum according to claim 2, since type II anhydrous gypsum is substituted with more than half of hemihydrate gypsum and mixed, slow hardening type II anhydrous gypsum Thus, a relatively slow solidification treatment mainly composed of can be achieved, and a suitable delay adjustment of the curing time can be expected.

また、請求項3記載の廃石膏を用いた土壌の固化処理方法によれば、II型無水石膏に対する半水石膏の混合割合を30wt%以下に調整するようにしたので、大半を遅硬性のII型無水石膏に代替させた状態で一層緩慢な固化処理が可能となり、硬化時間の好適な遅延調整が可能となる。   Further, according to the method for solidifying soil using waste gypsum according to claim 3, since the mixing ratio of hemihydrate gypsum to type II anhydrous gypsum is adjusted to 30 wt% or less, most of the hardened II In the state where it is replaced with type anhydrous gypsum, a more gradual solidification treatment becomes possible, and a suitable delay adjustment of the curing time becomes possible.

また、請求項4記載の廃石膏を用いた土壌の固化処理方法によれば、添加材として、酸化カルシウムを多く含有する高炉セメント及び/または高炉スラグと、アルミナを多く含有する石炭灰を使用し、エトリンガイト生成にそれぞれに不足する化学成分を補填し合うようにしたので、添加材量を減じて処理コストを低廉に抑えることができて有利であると共に、工業副産物である高炉スラグや石炭灰を有効活用できて環境面においても有益である。   Further, according to the method for solidifying soil using waste gypsum according to claim 4, blast furnace cement and / or blast furnace slag containing a large amount of calcium oxide and coal ash containing a large amount of alumina are used as additives. The chemical components that are lacking in ettringite production are compensated for each other, so that the amount of additive can be reduced and the processing cost can be kept low, and the blast furnace slag and coal ash, which are industrial byproducts, can be reduced. It can be used effectively and is also beneficial in terms of the environment.

また、請求項5記載の廃石膏を用いた土壌の固化処理方法によれば、ホウ素、ヒ素、セレン、鉛、カドミウム、クロム、水銀から選択される1種以上の有害物質を含む土壌に対し、この土壌中の前記有害物質のイオンを前記エトリンガイトにて固定するようにしたので、土壌の固化処理と併せて土壌中の有害物質の浄化処理も行えて好適である。   Moreover, according to the solidification processing method of the soil using the waste gypsum according to claim 5, for the soil containing one or more harmful substances selected from boron, arsenic, selenium, lead, cadmium, chromium, mercury, Since the ions of the harmful substances in the soil are fixed by the ettringite, the purification of the harmful substances in the soil can be performed together with the solidification treatment of the soil.

半水石膏/II型無水石膏に対する、水和反応時の硬化時間の関係を示すグラフである。It is a graph which shows the relationship of the hardening time at the time of a hydration reaction with respect to hemihydrate gypsum / type II anhydrous gypsum.

本発明の廃石膏を用いた土壌の固化処理方法にあっては、フッ素含有の廃石膏ボードから回収される二水石膏を所定温度、例えば、約130〜180℃の温度範囲で加熱処理して半水石膏に、また約350〜1000℃の温度範囲で加熱処理してII型無水石膏にそれぞれ転位させる。そして、処理土壌に対して、前記加熱処理によって得られた半水石膏とII型無水石膏とをそれぞれ所定割合にて添加し、更にアルミナと酸化カルシウムとを含有する、例えば高炉セメントや、高炉スラグ、石炭灰等の添加材、及び必要に応じて所定量の水をそれぞれ添加し、適宜の攪拌・混合手段、例えば、連続式のミキサ等を用いて攪拌・混合して固化処理する。なお、必ずしもミキサを用いる必要はなく、例えば、処理土壌に対して前記各材料を散布した後、バックホウ等で土壌と共に直接攪拌・混合して固化処理するようにしてもよい。   In the method for solidifying soil using waste gypsum of the present invention, dihydrate gypsum recovered from fluorine-containing waste gypsum board is heat-treated at a predetermined temperature, for example, a temperature range of about 130 to 180 ° C. Heat treatment is carried out on hemihydrate gypsum and in the temperature range of about 350 to 1000 ° C., respectively, to be transferred to type II anhydrous gypsum. Then, hemihydrate gypsum obtained by the heat treatment and type II anhydrous gypsum are respectively added to the treated soil at a predetermined ratio, and further containing alumina and calcium oxide, for example, blast furnace cement or blast furnace slag Then, an additive such as coal ash and a predetermined amount of water are added as necessary, and the mixture is agitated and mixed using an appropriate agitation / mixing means such as a continuous mixer and solidified. In addition, it is not always necessary to use a mixer. For example, after each material is sprayed on the treated soil, it may be solidified by directly stirring and mixing with the soil using a backhoe or the like.

このとき、速硬性の半水石膏単独であれば、処理土壌中の水分や、必要に応じて添加される水と急激に水和反応を生じて極めて短時間にて硬化が始まるため、場合によっては固化処理中に硬化が始まってしまい、作業性やハンドリング性の低下に繋がるなどの不具合を来す可能性があるが、本発明では半水石膏の一部を遅硬性のII型無水石膏と代替させているため、水和反応を比較的緩慢なものにできて硬化時間を遅延させることができ、少なくとも固化処理を行っている間は硬化が始まらないように調整して上記不具合を未然に防止可能としている。   At this time, if it is a fast-setting hemihydrate gypsum alone, it will harden in a very short time due to a rapid hydration reaction with moisture in the treated soil and water added as necessary. However, in the present invention, a part of hemihydrate gypsum is treated with slow-hardening type II anhydrous gypsum. Since it is substituted, the hydration reaction can be made relatively slow, the curing time can be delayed, and at least during the solidification treatment, the above problem can be prevented by adjusting so that curing does not start. It can be prevented.

なお、半水石膏に対するII型無水石膏の割合が多くなるにしたがい硬化時間をより遅延させることができるが、例えば、II型無水石膏を半水石膏の半分以上と代替させ、即ち、II型無水石膏の方が半水石膏よりも多くなるように調整することにより、遅硬性のII型無水石膏を主体とした比較的緩慢な固化処理が可能となり、硬化時間を好適に遅延調整することが可能となる。また、半水石膏とII型無水石膏との割合に対する硬化時間の関係を予め試験等にて確認しておけば、該試験データを参考にして硬化時間を任意に調整することも可能となり、例えば、固化処理中の硬化を確実に防止しながら、処理完了後には速やかに硬化させて所望の強度が得られるようにするといったことも可能となる。   As the ratio of type II anhydrous gypsum to hemihydrate gypsum increases, the curing time can be further delayed.For example, type II anhydrous gypsum is replaced with more than half of hemihydrate gypsum, that is, type II anhydrous gypsum. By adjusting the amount of gypsum to be larger than that of hemihydrate gypsum, it is possible to perform a relatively slow solidification treatment mainly consisting of slow-hardening type II anhydrous gypsum, and it is possible to suitably adjust the setting time with delay. It becomes. In addition, if the relationship of the setting time to the ratio of hemihydrate gypsum and type II anhydrous gypsum is confirmed in advance by testing or the like, it is possible to arbitrarily adjust the setting time with reference to the test data, for example, In addition, it is possible to quickly cure after completion of the treatment so as to obtain a desired strength while reliably preventing the curing during the solidification treatment.

また、上記半水石膏やII型無水石膏に含まれるフッ素イオンは、半水石膏(CaSO・1/2HO)と、高炉セメント中のアルミナ(Al)と酸化カルシウム(CaO)とから反応生成されるエトリンガイト(3CaO・Al・3CaSO・32HO)によって効果的に固定することができるが、II型無水石膏(CaSO)によっても半水石膏と同様にエトリンガイトを生成することができるため、半水石膏の一部をII型無水石膏に代替させて硬化時間を調整しながらも、石膏からの土壌へのフッ素の溶出は確実に抑制することができる。 Fluorine ions contained in the above-mentioned hemihydrate gypsum and type II anhydrous gypsum are hemihydrate gypsum (CaSO 4 · 1 / 2H 2 O), alumina (Al 2 O 3 ) and calcium oxide (CaO) in blast furnace cement. Can be effectively fixed by ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) produced from the reaction with yttrium gypsum, but also with type II anhydrous gypsum (CaSO 4 ) in the same manner as hemihydrate gypsum. Therefore, the elution of fluorine from the gypsum to the soil can be reliably suppressed while adjusting the setting time by substituting part of the hemihydrate gypsum with type II anhydrous gypsum.

このように、フッ素含有の廃石膏ボードから加熱処理温度に応じて半水石膏とII型無水石膏とを再生処理し、こうして得られた速硬性の半水石膏と遅硬性のII型無水石膏、及びアルミナと酸化カルシウムを含有する高炉セメントとを土壌に適宜量ずつ添加・混合することにより、石膏から溶出するフッ素を固定するのに必要な量のエトリンガイトを不足なく生成しながら、硬化時間を適当に調整することができ、土壌毎の性状や用途等に応じた好適な固化処理が可能となる。   Thus, from the fluorine-containing waste gypsum board, reprocessing the hemihydrate gypsum and type II anhydrous gypsum according to the heat treatment temperature, the fast-curing hemihydrate gypsum and the slow-hardening type II anhydrous gypsum obtained in this way, And by adding and mixing alumina and calcium oxide-containing blast furnace cement in appropriate amounts to the soil, the curing time is set appropriately while generating the amount of ettringite necessary to fix the fluorine eluted from the gypsum without a shortage. Therefore, a suitable solidification treatment according to the properties and uses of each soil is possible.

また、添加材として、高炉セメントだけではアルミナ成分が比較的少ないため、高炉セメントに対してアルミナ成分の豊富な適宜量の石炭灰を添加させたり、或いは、高炉セメントの一部または全部を酸化カルシウム成分の豊富な高炉スラグと、アルミナ成分の豊富な石炭灰とに置き換えるようにしてもよく、その場合には、高炉スラグや石炭灰は石膏ボードの原料である排煙脱硫石膏と同様に工業副産物であるため、処理コストを比較的低廉に抑えることができると共に、これらを有効活用できることは環境面において非常に有益であると考えられる。   Also, as the additive, the blast furnace cement alone has a relatively small alumina component, so an appropriate amount of coal ash rich in alumina component is added to the blast furnace cement, or a part or all of the blast furnace cement is calcium oxide. It may be replaced with blast furnace slag rich in components and coal ash rich in alumina components. In that case, blast furnace slag and coal ash are industrial by-products as with flue gas desulfurization gypsum which is the raw material of gypsum board. Therefore, it is considered that it is very beneficial in terms of the environment that the processing cost can be kept relatively low and these can be used effectively.

なお、高炉セメントと置き換える高炉スラグや石炭灰の比率は、高炉スラグ中に含まれる酸化カルシウム量や、石炭灰中に含まれるアルミナ量等を考慮し、半水石膏とII型無水石膏の量に対してエトリンガイトを効率よく生成させるのに適正な酸化カルシウム量とアルミナ量とが確保されるように調整すると好ましく、例えば、アルミナと酸化カルシウムと石膏の化学当量比(mol比)がアルミナ(Al):酸化カルシウム(CaO):石膏(CaSO)=1:3:3となるように調整した場合に、エトリンガイト(3CaO・Al・3CaSO・32HO)が効率よく生成される。 The ratio of blast furnace slag and coal ash to replace blast furnace cement is the amount of hemihydrate gypsum and type II anhydrous gypsum, taking into account the amount of calcium oxide contained in blast furnace slag and the amount of alumina contained in coal ash. On the other hand, it is preferable to adjust the amount of calcium oxide and the amount of alumina suitable for efficiently generating ettringite. For example, the chemical equivalent ratio (mol ratio) of alumina, calcium oxide and gypsum is alumina (Al 2 When adjusted so that O 3 ): calcium oxide (CaO): gypsum (CaSO 4 ) = 1: 3: 3 , ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) is efficiently produced. Is done.

また、処理対象である土壌が、ホウ素、ヒ素、セレン、鉛、カドミウム、クロム、水銀等、重金属を含む様々な有害物質を含有している場合があるが、これら各種有害物質のイオンも同様にエトリンガイトにて固定でき、前記固化処理を施すことにより、半水石膏やII型無水石膏からのフッ素の溶出を抑制しながら、同時に土壌中の有害物質の浄化処理も行えて好適である。   In addition, soil to be treated may contain various harmful substances including heavy metals such as boron, arsenic, selenium, lead, cadmium, chromium, mercury, etc. It can be fixed with ettringite, and by applying the above-mentioned solidification treatment, it is preferable that the toxic substance in the soil can be purified at the same time while suppressing elution of fluorine from hemihydrate gypsum and type II anhydrous gypsum.

なお、エトリンガイトが有するこのような性質を積極的に利用し、例えば、フッ素を含有していない半水石膏を土壌固化材として使用する場合でも、敢えて高炉セメントや高炉スラグ、石炭灰等を添加して固化処理を行うことでエトリンガイトを生成させ、このエトリンガイトには専ら土壌中の有害物質を浄化処理させるようにしてもよい。また、固化処理を必要とするような土壌でなくとも、上記有害物質にて汚染されている土壌に対し、適宜量の半水石膏やII型無水石膏と、高炉セメントや高炉スラグ、石炭灰等を添加すると共に、水和反応に要するだけの水を散布することでエトリンガイトを生成させ、土壌中の有害物質を浄化処理させるといったこともできる。   In addition, by actively utilizing such properties of ettringite, for example, even when hemihydrate gypsum that does not contain fluorine is used as a soil solidifying material, blast furnace cement, blast furnace slag, coal ash, etc. are added. The ettringite may be generated by solidification treatment, and the ettringite may be subjected to purification treatment of harmful substances in the soil exclusively. Also, even if the soil does not require solidification treatment, an appropriate amount of hemihydrate gypsum, type II anhydrous gypsum, blast furnace cement, blast furnace slag, coal ash, etc. It is also possible to produce ettringite by spraying as much water as necessary for the hydration reaction and purifying the harmful substances in the soil.

以下、本発明の一実施例を詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail.

先ず、フッ素を含有する廃石膏ボードを細かく破砕し、紙類等と分別処理して主成分である二水石膏を回収した後、この二水石膏を、例えばロータリーキルン等の加熱装置を用いて、約130〜180℃程度の温度範囲で加熱処理して速硬性の半水石膏を得ると共に、また約350〜1000℃程度の温度範囲で加熱処理して遅硬性のII型無水石膏を得る。   First, after crushing the waste gypsum board containing fluorine finely, collecting the dihydrate gypsum which is the main component by separating from paper and the like, this dihydrate gypsum, for example, using a heating device such as a rotary kiln, Heat treatment is performed in a temperature range of about 130 to 180 ° C. to obtain fast-setting hemihydrate gypsum, and heat treatment is performed in a temperature range of about 350 to 1000 ° C. to obtain slow-hardening type II anhydrous gypsum.

そして、固化処理する土壌、例えば、軟弱土壌や、道路の路盤や路床、盛土等の土質材料を、例えばスタビライザー等の連続式のミキサに投入する一方、前記加熱処理によって得られた半水石膏とII型無水石膏とをそれぞれ所定割合にて前記ミキサに供給すると共に、アルミナと酸化カルシウムとを含有する、例えば高炉セメントや高炉スラグ、石炭灰等の添加材、及び必要に応じて所定量の水をそれぞれ添加し、ミキサにて前記各材料を攪拌・混合して固化処理を行う。   Then, the soil to be solidified, for example, soft soil, or a soil material such as roadbed, roadbed, and embankment, is charged into a continuous mixer such as a stabilizer, while the half-water gypsum obtained by the heat treatment is used. And type II anhydrous gypsum are supplied to the mixer at predetermined ratios, and contain alumina and calcium oxide, for example, blast furnace cement, blast furnace slag, coal ash and other additives, and a predetermined amount as required. Water is added, and the materials are stirred and mixed in a mixer for solidification treatment.

このとき、速硬性の半水石膏単独であれば硬化が不必要に早く始まり過ぎてしまう場合があり、例えば、固化処理中に硬化を生じると作業性やハンドリング性等の低下に繋がるなどの不具合を来す可能性があるが、半水石膏の一部を遅硬性のII型無水石膏に代替させることにより硬化時間を適当に遅延させて前記不具合を回避可能としており、好適な固化処理を可能としている。なお、II型無水石膏によっても半水石膏と同様にエトリンガイトが生成されるため、石膏からの溶出が懸念されるフッ素は安定して固定され確実に抑制することができる。   At this time, if it is a fast-curing hemihydrate gypsum alone, curing may start unnecessarily quickly.For example, if curing occurs during the solidification process, it may lead to deterioration in workability and handling properties. However, by replacing part of hemihydrate gypsum with slow-hardening type II anhydrous gypsum, it is possible to appropriately delay the curing time and avoid the above-mentioned problems, enabling suitable solidification treatment It is said. In addition, since ettringite is produced by II-type anhydrous gypsum as well as hemihydrate gypsum, fluorine that is likely to be eluted from gypsum can be stably fixed and reliably suppressed.

また、前記半水石膏とII型無水石膏との混合割合は適宜決定すればよいが、例えば、半水石膏とII型無水石膏との混合割合を少しずつ変えた複数の試料を用意し、それら各試料に適宜量の水を添加・混合して各試料に硬化が生じるまでの時間を計測するといった試験を予め行っておき、この試験データに基づいて半水石膏とII型無水石膏との混合割合を調整するようにしてもよい。   The mixing ratio of the hemihydrate gypsum and type II anhydrous gypsum may be determined as appropriate. For example, a plurality of samples in which the mixing ratio of hemihydrate gypsum and type II anhydrous gypsum is changed little by little are prepared. Preliminarily conducted a test such as adding and mixing an appropriate amount of water to each sample and measuring the time until hardening occurs in each sample. Based on this test data, mixing hemihydrate gypsum with type II anhydrous gypsum You may make it adjust a ratio.

上記試験として、市販の半水石膏とII型無水石膏とをそれぞれ所定割合にて混合したものを試料として用意し(半水石膏/II型無水石膏:約10〜55wt%の範囲内で複数用意)、これら各試料に含水比で約66wt%程度になるように水道水を添加・混合して水和反応させた後、その混合物の中心付近に棒体を挿し込み、該棒体がそのまま自立可能となるまでの時間を硬化が始まるまでの時間に見立てて計測を行い、その結果を図1のグラフに示す。   As the above test, a sample prepared by mixing commercially available hemihydrate gypsum and type II anhydrous gypsum at a predetermined ratio is prepared (semihydrate gypsum / type II anhydrous gypsum: prepared in a range of about 10 to 55 wt%). ) After adding and mixing tap water to each sample so that the water content is about 66 wt% and mixing it, the rod is inserted near the center of the mixture, and the rod is self-supporting as it is. The measurement is carried out with the time until it becomes possible to be the time until curing starts, and the result is shown in the graph of FIG.

その結果、図1のグラフからも見て取れるように、II型無水石膏に対する半水石膏の割合が約30wt%よりも多い場合では数分程度で硬化が始まってしまったが、約30wt%以下になると徐々に硬化時間が遅くなり、前記割合が約15wt%程度になると硬化時間は約5000秒程度(約1.5時間程度)に、また前記割合が約10wt%程度になると硬化時間は約9000秒程度(約2.5時間程度)に遅延されることが確認された。   As a result, as can be seen from the graph of FIG. 1, when the ratio of hemihydrate gypsum to type II anhydrous gypsum is more than about 30 wt%, curing started in about several minutes, but when it becomes about 30 wt% or less. The curing time is gradually delayed. When the ratio is about 15 wt%, the curing time is about 5000 seconds (about 1.5 hours), and when the ratio is about 10 wt%, the curing time is about 9000 seconds. It was confirmed that it was delayed to the extent (about 2.5 hours).

このように、II型無水石膏の割合が多くなるほど硬化時間を漸次遅くさせることができるが、II型無水石膏を少なくとも半水石膏の半分以上と代替させ、II型無水石膏の方が半水石膏よりも多くなるように調整し、より好ましくは、II型無水石膏に対する半水石膏の割合が約30wt%以下になるようにして、その大部分をII型無水石膏が占めるように調整すれば、遅硬性のII型無水石膏を主体とした比較的緩慢な固化処理が可能となり、硬化時間を好適に遅延調整することが可能となる。   In this way, as the proportion of type II anhydrous gypsum increases, the curing time can be gradually delayed, but type II anhydrous gypsum is replaced with at least half of half water gypsum, and type II anhydrous gypsum is hemihydrate gypsum. More preferably, the ratio of hemihydrate gypsum to type II anhydrous gypsum is about 30 wt% or less, and most of the amount is adjusted so that type II anhydrous gypsum occupies, A relatively slow solidification treatment mainly composed of slow-hardening type II anhydrous gypsum is possible, and the curing time can be suitably adjusted for delay.

また、前記試験データに基づいて半水石膏とII型無水石膏との混合割合を決定するようにすれば、硬化時間の調整が比較的容易なものとなり、少なくとも固化処理中における硬化を確実に回避できると共に、固化処理後には速やかに硬化させて所望の強度が得られるようにすることも可能となる。   In addition, if the mixing ratio of hemihydrate gypsum and type II anhydrous gypsum is determined based on the test data, the adjustment of the curing time becomes relatively easy, and at least curing during the solidification process is surely avoided. In addition, it is possible to quickly cure after the solidification treatment so as to obtain a desired strength.

Claims (5)

フッ素を含有する廃石膏ボードを破砕・加熱処理して得られる半水石膏に対し、該半水石膏中の石膏成分との反応によってフッ素イオンを固定するエトリンガイトを生成させるべく、アルミナと酸化カルシウムを含有する高炉セメントを添加材として所定量添加した後、処理土壌と攪拌・混合し、生成されるエトリンガイトにて、石膏から溶出されるフッ素イオンを固定しながら土壌を固化処理するようにした廃石膏を用いた土壌の固化処理方法において、前記廃石膏ボードを破砕・加熱処理して得られるII型無水石膏を前記半水石膏の一部と代替させて混合すると共に、速硬性の半水石膏と遅硬性のII型無水石膏との混合割合を調整することにより硬化時間を調整し、少なくとも処理土壌を固化処理している間は硬化が始まらないようにしたことを特徴とする廃石膏を用いた土壌の固化処理方法。   In order to produce ettringite that fixes fluorine ions by reaction with gypsum components in the hemihydrate gypsum obtained by crushing and heat treating waste gypsum board containing fluorine, alumina and calcium oxide are used. After adding a predetermined amount of contained blast furnace cement as an additive, it is stirred and mixed with the treated soil, and the waste gypsum is solidified while fixing fluorine ions eluted from the gypsum with the generated ettringite In the method for solidifying soil using a mixture, type II anhydrous gypsum obtained by crushing and heat-treating the waste gypsum board is substituted for part of the hemihydrate gypsum and mixed, and fast-setting hemihydrate gypsum and The setting time was adjusted by adjusting the mixing ratio with slow-hardening type II anhydrous gypsum, so that hardening did not start at least while the treated soil was solidified. A method for solidifying soil using waste gypsum characterized by the above. 請求項1記載の廃石膏を用いた土壌の固化処理方法において、II型無水石膏を半水石膏の半分以上と代替させて混合するようにしたことを特徴とする廃石膏を用いた土壌の固化処理方法。   The solidification method of soil using waste gypsum according to claim 1, wherein type II anhydrous gypsum is substituted with more than half of hemihydrate gypsum and mixed. Processing method. 請求項1記載の廃石膏を用いた土壌の固化処理方法において、II型無水石膏に対する半水石膏の混合割合を30wt%以下に調整するようにしたことを特徴とする廃石膏を用いた土壌の固化処理方法。   The method for solidifying soil using waste gypsum according to claim 1, wherein the mixing ratio of hemihydrate gypsum to type II anhydrous gypsum is adjusted to 30 wt% or less. Solidification method. 請求項1乃至3の何れかに記載の廃石膏を用いた土壌の固化処理方法において、前記添加材として、酸化カルシウムを多く含有する高炉セメント及び/または高炉スラグと、アルミナを多く含有する石炭灰を使用し、エトリンガイト生成にそれぞれに不足する化学成分を補填し合うようにしたことを特徴とする廃石膏を用いた土壌の固化処理方法。   The soil solidification processing method using the waste gypsum according to any one of claims 1 to 3, wherein, as the additive, blast furnace cement and / or blast furnace slag containing a large amount of calcium oxide, and coal ash containing a large amount of alumina. A method for solidifying soil using waste gypsum characterized in that the chemical components that are lacking in ettringite production are compensated for each other. 請求項1乃至4の何れかに記載の廃石膏を用いた土壌の固化処理方法において、ホウ素、ヒ素、セレン、鉛、カドミウム、クロム、水銀から選択される1種以上の有害物質を含む土壌に対し、この土壌中の前記有害物質のイオンを前記エトリンガイトにて固定するようにしたことを特徴とする廃石膏を用いた土壌の固化処理方法。   In the solidification processing method of the soil using waste gypsum in any one of Claims 1 thru | or 4, in the soil containing 1 or more types of harmful substances selected from boron, arsenic, selenium, lead, cadmium, chromium, mercury On the other hand, a method for solidifying soil using waste gypsum characterized in that ions of the harmful substances in the soil are fixed by the ettringite.
JP2012009574A 2012-01-20 2012-01-20 Solidification method of soil using waste gypsum Active JP5737812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009574A JP5737812B2 (en) 2012-01-20 2012-01-20 Solidification method of soil using waste gypsum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009574A JP5737812B2 (en) 2012-01-20 2012-01-20 Solidification method of soil using waste gypsum

Publications (2)

Publication Number Publication Date
JP2013146691A true JP2013146691A (en) 2013-08-01
JP5737812B2 JP5737812B2 (en) 2015-06-17

Family

ID=49044778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009574A Active JP5737812B2 (en) 2012-01-20 2012-01-20 Solidification method of soil using waste gypsum

Country Status (1)

Country Link
JP (1) JP5737812B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141478A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP6345864B1 (en) * 2017-07-04 2018-06-20 宮城石灰工業株式会社 Soil hardening material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105825906B (en) * 2016-03-30 2017-12-08 中国科学院上海应用物理研究所 A kind of fluorine-containing waste liquid cement solidification method of radioactivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300702A (en) * 2003-03-31 2004-10-28 Clay Baan Gijutsu Kenkyusho:Kk Wall body for building or panel material using gypsum, and method of manufacturing the wall body and panel material
JP2006206340A (en) * 2005-01-25 2006-08-10 Clay Baan Gijutsu Kenkyusho:Kk Method of manufacturing calcined gypsum and apparatus for the same
JP2010012442A (en) * 2008-07-07 2010-01-21 Nikko Co Ltd Method of hardening soft soil using waste gypsum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300702A (en) * 2003-03-31 2004-10-28 Clay Baan Gijutsu Kenkyusho:Kk Wall body for building or panel material using gypsum, and method of manufacturing the wall body and panel material
JP2006206340A (en) * 2005-01-25 2006-08-10 Clay Baan Gijutsu Kenkyusho:Kk Method of manufacturing calcined gypsum and apparatus for the same
JP2010012442A (en) * 2008-07-07 2010-01-21 Nikko Co Ltd Method of hardening soft soil using waste gypsum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141478A (en) * 2014-01-27 2015-08-03 アイシン・エィ・ダブリュ株式会社 Automatic driving support system, automatic driving support method, and computer program
JP6345864B1 (en) * 2017-07-04 2018-06-20 宮城石灰工業株式会社 Soil hardening material

Also Published As

Publication number Publication date
JP5737812B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5636718B2 (en) CEMENT COMPOSITION, METHOD FOR PRODUCING THE SAME, AND METHOD FOR TREATING ARS Arsenic-Containing Waste
JP2010037371A (en) Cement-based solidification material for suppressing heavy-metal elution and solidification treatment method
JP2001259570A (en) Treatment technique for stabilizing industrial waste containing fluorine
JP4832474B2 (en) Solidification method of soft soil using waste gypsum
JP2016190752A (en) Cement clinker and cement composition
JP5737812B2 (en) Solidification method of soil using waste gypsum
Wang et al. Preparation of backfill materials by solidifying municipal solid waste incineration fly ash with slag-based cementitious materials
JP4694434B2 (en) By-product processing method
JP2007186360A (en) Cement composition
JP2018158876A (en) Coal ash hardened material
JP2008255171A (en) Fixing agent for inorganic harmful component
JP2004305833A (en) Method for stabilization treatment of waste
JP6922448B2 (en) Coal ash composition
JP2005272546A (en) Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2010195975A (en) Cement-based solidifying material, method for producing the same and method for solidifying soil
JP4475995B2 (en) Sludge treatment using gypsum waste
JP5171350B2 (en) Solid waste treatment method
JP2000129258A (en) Hydraulic material
JP4561190B2 (en) Solidification method of target soil
JP2007176793A (en) Method for manufacturing fired product of incineration ash
JP2007144411A (en) Reclamation treatment method in final disposal site
JP2004105783A (en) Solidification material and solidification method for soil
JP3980109B2 (en) Incineration ash firing method / fired product and method of using the fired product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5737812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250