JP2013146652A - Fischer-tropsch synthesis catalyst and method for producing the same - Google Patents

Fischer-tropsch synthesis catalyst and method for producing the same Download PDF

Info

Publication number
JP2013146652A
JP2013146652A JP2012007067A JP2012007067A JP2013146652A JP 2013146652 A JP2013146652 A JP 2013146652A JP 2012007067 A JP2012007067 A JP 2012007067A JP 2012007067 A JP2012007067 A JP 2012007067A JP 2013146652 A JP2013146652 A JP 2013146652A
Authority
JP
Japan
Prior art keywords
activated carbon
fischer
tropsch synthesis
catalyst
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012007067A
Other languages
Japanese (ja)
Inventor
Kaoru Fujimoto
薫 藤元
Kenji Asami
賢二 朝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2012007067A priority Critical patent/JP2013146652A/en
Publication of JP2013146652A publication Critical patent/JP2013146652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Fischer-Tropsch synthesis catalyst the catalytic activity of which is made excellent by oxidizing the surface of a carrier by ozone to increase an average pore from around 2 nm to 3-6 nm and the activity of which can be kept for a long time since active points thereof are hardly covered with wax or the like to be produced by Fischer-Tropsch synthesis.SOLUTION: A catalyst for Fischer-Tropsch synthesis is produced from activated carbon on which iron is deposited at the least. The activated carbon is oxidized by ozone to have pores having 3-6 nm average pore size and such a surface that an amorphous structure is removed.

Description

本発明は、炭化水素選択性の高いフィッシャートロプシュ合成触媒及びその製造方法に関する。   The present invention relates to a Fischer-Tropsch synthesis catalyst having high hydrocarbon selectivity and a method for producing the same.

現在、世界のエネルギー供給の大半は化石燃料に依存しており、石油や石炭,天然ガスを含めた化石燃料依存度は極めて高い。そこで、従来から代替化石燃料の技術としてGTL(Gas to Liquids)技術が注目されており、一酸化炭素と水素の合成ガスから炭化水素を合成する過程でフィッシャートロプシュ合成が用いられている。このフィッシャートロプシュ合成において活性を示す触媒として、Fe,Co,Ni,Ptが用いられ、Feを触媒とする場合は担体を使用しないことが一般的である。
フィッシャートロプシュ合成触媒において、鉄を担体に担持させたものとして、(特許文献1)には「触媒の担体にグラファイトを用い、少なくとも鉄を含むことを特徴とするフィッシャートロプシュ合成触媒」が開示されている。
At present, most of the world's energy supply depends on fossil fuels, and the dependence on fossil fuels including oil, coal and natural gas is extremely high. Thus, GTL (Gas to Liquids) technology has been attracting attention as an alternative fossil fuel technology, and Fischer-Tropsch synthesis is used in the process of synthesizing hydrocarbons from synthesis gas of carbon monoxide and hydrogen. Fe, Co, Ni, and Pt are used as catalysts showing activity in this Fischer-Tropsch synthesis, and when Fe is used as a catalyst, a carrier is generally not used.
As a Fischer-Tropsch synthesis catalyst in which iron is supported on a carrier, (Patent Document 1) discloses "Fischer-Tropsch synthesis catalyst characterized by using graphite as a catalyst carrier and containing at least iron". Yes.

特開2011−45874号公報JP 2011-45874 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、使用を続けると、生成するオイルへのカリウムの流出、炭化鉄の微細化や流出が起こるとともに、ワックスポリマーによる活性点の被覆が起こり、触媒の劣化を惹起するという課題を有していた。また、担体に比較的高価なグラファイトを用いるので、コストがかかり、生産性に欠けるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) When the technology disclosed in (Patent Document 1) continues to be used, the outflow of potassium into the oil to be produced and the refinement and outflow of iron carbide occur, and the active sites are covered with the wax polymer, and the catalyst It had the subject of causing deterioration of the. In addition, since relatively expensive graphite is used for the carrier, there is a problem that it is expensive and lacks productivity.

本発明は上記従来の課題を解決するもので、担体の表面を酸化処理することにより2nm程度の平均細孔が3〜6nmに拡張されるので、触媒活性に優れるとともに、フィッシャートロプシュ合成で生成されるワックス等で活性点が被覆され難いので、触媒の活性を長時間維持することができるフィッシャートロプシュ合成触媒を提供することを目的とする。
また、グラファイトに比べ触媒活性が低い活性炭をオゾンで酸化処理することにより、高活性で且つ活性の持続性に優れたフィッシャートロプシュ合成触媒を低原価で量産できるフィッシャートロプシュ合成触媒の製造方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. By oxidizing the surface of the support, the average pores of about 2 nm are expanded to 3 to 6 nm, so that it has excellent catalytic activity and is produced by Fischer-Tropsch synthesis. It is an object of the present invention to provide a Fischer-Tropsch synthesis catalyst capable of maintaining the activity of the catalyst for a long time because the active sites are not easily covered with wax or the like.
In addition, a method for producing a Fischer-Tropsch synthesis catalyst capable of mass-producing a Fischer-Tropsch synthesis catalyst having high activity and excellent activity sustainability at low cost by oxidizing activated carbon having a lower catalytic activity than graphite with ozone is provided. For the purpose.

上記従来の課題を解決するために、本発明のフィッシャートロプシュ合成触媒及びその製造方法は、以下の構成を有している。
本発明の請求項1に記載のフィッシャートロプシュ合成触媒は、少なくとも鉄が担持された活性炭で作成されたフィッシャートロプシュ合成用触媒であって、前記活性炭がオゾンによる酸化処理により、平均孔径3〜6nmの細孔を有し、表面の非結晶構造が除去されている構成を有している。
この構成により、以下のような作用が得られる。
(1)活性炭の細孔の平均孔径が3〜6nmであるので、フィッシャートロプシュ合成における高沸点生成物であるワックスやポリマーによる活性点の被覆が起き難く、活性の持続性に優れる。
(2)表面の非結晶構造が除去され、グラファイト構造が露出するので、高い触媒活性を有することができる。
In order to solve the above conventional problems, the Fischer-Tropsch synthesis catalyst and the method for producing the same of the present invention have the following configurations.
The Fischer-Tropsch synthesis catalyst according to claim 1 of the present invention is a Fischer-Tropsch synthesis catalyst made of activated carbon supporting at least iron, and the activated carbon has an average pore diameter of 3 to 6 nm by oxidation treatment with ozone. The structure has pores and the surface non-crystalline structure is removed.
With this configuration, the following effects can be obtained.
(1) Since the average pore diameter of the pores of the activated carbon is 3 to 6 nm, it is difficult to cover active sites with waxes or polymers, which are high-boiling products in Fischer-Tropsch synthesis, and the activity persistence is excellent.
(2) Since the amorphous structure on the surface is removed and the graphite structure is exposed, it can have high catalytic activity.

本発明において、フィッシャートロプシュ合成触媒の担体としては活性炭を用いることが望ましい。また、活性炭の原料の種類は特に限定されず石炭や木炭、竹炭、ヤシ殻、石油ピッチ等が用いられる。担体がグラファイトの場合、高価で原価が上がるとともに、多孔体構造ではなく比表面積が小さいので好ましくない。担体には、活性炭のように非結晶構造とグラファイト構造の両方を備える多孔体等の炭素系担体を用いても良い。
酸化処理後の活性炭の物性は特に限定されないが、平均粒径は0.01〜5mm,細孔容積は0.1mL/g以上,比表面積は200m2/g以上であることが好ましい。平均粒径が0.01mmよりも小さくなるにつれ、触媒と生成物との固液分離操作の効率が低下する恐れがあり好ましくない。また、5mmより大きくなるにつれ、比表面積が小さくなり、触媒活性が十分に発揮できない傾向があり好ましくない。尚、平均粒径はレーザー式回折法で測定される。
細孔容積が0.1mL/gより小さくなる又は比表面積が200m2/gより小さくなるにつれ、触媒が合成ガスと接触できる面積が小さくなるので、合成効率が悪くなる傾向にあり好ましくない。
In the present invention, it is desirable to use activated carbon as the carrier of the Fischer-Tropsch synthesis catalyst. Moreover, the kind of raw material of activated carbon is not specifically limited, Coal, charcoal, bamboo charcoal, coconut shell, petroleum pitch, etc. are used. When the support is graphite, it is not preferable because it is expensive and its cost is increased and the specific surface area is small rather than the porous structure. As the support, a carbon-based support such as a porous body having both an amorphous structure and a graphite structure such as activated carbon may be used.
Although the physical properties of the activated carbon after the oxidation treatment are not particularly limited, it is preferable that the average particle diameter is 0.01 to 5 mm, the pore volume is 0.1 mL / g or more, and the specific surface area is 200 m 2 / g or more. As the average particle size becomes smaller than 0.01 mm, the efficiency of the solid-liquid separation operation between the catalyst and the product may be lowered, which is not preferable. Moreover, as it becomes larger than 5 mm, the specific surface area becomes small, and there is a tendency that the catalytic activity cannot be sufficiently exhibited. The average particle diameter is measured by a laser diffraction method.
As the pore volume becomes smaller than 0.1 mL / g or the specific surface area becomes smaller than 200 m 2 / g, the area in which the catalyst can come into contact with the synthesis gas becomes smaller.

表面の酸化処理方法としてはオゾンガスを接触させることが望ましい。酸化力の強いオゾンガスを活性炭に接触させるので、酸素ガスで酸化処理するよりも低温で処理できるとともに、担体が燃焼することもなく安定した処理が行える。加えて、活性炭の表面にある非結晶構造が酸化除去されグラファイト構造が露出することで導電性が増し、細孔の平均孔径が3〜6nm好ましくは3〜4nmとするので、ワックスやポリマーによる活性点の被覆が起き難く高い触媒活性と活性の持続性が得られる。また、ガスなので従来の硝酸酸化と異なり後処理が不要である。
酸化処理方法としては、活性炭表面の非結晶構造を除去できる酸化処理であればオゾンガスによる処理以外の方法を用いても良いが、酸の溶液による酸化処理では、活性炭の非結晶構造が除去されず、触媒の活性や持続性が向上せず好ましくない。
オゾンガスで処理する場合、密閉された反応容器中で350℃以下、好ましくは250〜350℃の雰囲気下でオゾンガスを濃度2g/Nm3以上の条件化で数時間処理することが望ましい。尚、オゾンガスの濃度の上限はオゾン発生装置の性能による。オゾンガスの濃度が2g/Nm3より小さくなるにつれ、表面処理が十分に行われず、表面の非結晶構造が十分に除去できなくなる傾向にあり好ましくない。また、酸化処理時の温度が350℃より高くなるにつれ、酸化が過度に起こり、表面のグラファイト構造が壊れる可能性が高くなるとともに、活性炭が燃焼する可能性があり傾向にあり好ましくなく、250℃より低くなるにつれ、酸化力が低下し、非結晶構造の除去が十分に行えなくなる傾向にあり好ましくない。
As a surface oxidation treatment method, it is desirable to contact ozone gas. Since ozone gas having a strong oxidizing power is brought into contact with activated carbon, it can be processed at a lower temperature than oxidizing with oxygen gas, and stable processing can be performed without burning the carrier. In addition, the amorphous structure on the surface of the activated carbon is oxidized and removed, and the graphite structure is exposed. As a result, the conductivity increases, and the average pore diameter is 3 to 6 nm, preferably 3 to 4 nm. High catalytic activity and long-lasting activity can be obtained because point coating hardly occurs. Moreover, since it is a gas, unlike the conventional nitric acid oxidation, no post-treatment is required.
As the oxidation treatment method, any method other than the treatment with ozone gas may be used as long as it can remove the amorphous structure on the activated carbon surface. However, the oxidation treatment with the acid solution does not remove the amorphous structure of the activated carbon. Further, the activity and sustainability of the catalyst are not improved, which is not preferable.
In the case of treatment with ozone gas, it is desirable to treat ozone gas for several hours in a sealed reaction vessel under conditions of 350 ° C. or less, preferably 250 to 350 ° C., with a concentration of 2 g / Nm 3 or more. The upper limit of the ozone gas concentration depends on the performance of the ozone generator. As the concentration of ozone gas becomes smaller than 2 g / Nm 3 , the surface treatment is not sufficiently performed, and the amorphous structure on the surface tends to be not sufficiently removed, which is not preferable. In addition, as the temperature during the oxidation treatment becomes higher than 350 ° C., oxidation occurs excessively, and there is a high possibility that the graphite structure on the surface is broken, and the activated carbon tends to burn, which is not preferable. As it becomes lower, the oxidizing power is lowered and the amorphous structure tends not to be sufficiently removed.

鉄が担持された活性炭の製造は、鉄と活性炭の配合比として質量比で鉄:活性炭=10:1〜1:5、好ましくは鉄:活性炭=3:1〜1:3が選択される。上記配合比に対して活性炭に担持される鉄の量が多くなるにつれ、鉄表面に形成される鉄カーバイドが電子的に安定化され難くなり、また、粒子成長が大きくなるため分散性が悪くなるとともに、形成される鉄カーバイトの剥離が懸念されるので好ましくない。また、上記配合比に対して活性炭に担持される鉄の量が少なくなるにつれ、触媒の単位質量あたりの活性金属量が減少するので、触媒の単位質量当たりの活性が低下する傾向にあり好ましくない。
また、鉄の他に銅,プラチナ等の貴金属類やアルカリ金属を担持させても良い。これらを担持させることで鉄の還元性を増すとともに、触媒の触媒活性や連鎖成長を促進させ、ディーゼル留分の炭化水素収率を向上させることができる。
鉄は共沈法によって担持されることが好ましいが、含浸法、沈殿法、ゾルゲル法、イオン交換法、混練法、蒸発乾固法等の方法を用いても良い。また、鉄を担持させる場合の前駆体としては硝酸塩、水酸化物、炭酸塩、硫酸塩、ハロゲン化物等の無機化合物でも良く、酢酸塩等の有機化合物でも良いが、中でも硫酸塩を用いることが好ましい。
For the production of activated carbon on which iron is supported, iron: activated carbon = 10: 1 to 1: 5, preferably iron: activated carbon = 3: 1 to 1: 3 is selected by mass ratio as the mixing ratio of iron and activated carbon. As the amount of iron supported on the activated carbon increases with respect to the mixing ratio, the iron carbide formed on the iron surface becomes difficult to be electronically stabilized, and the particle growth increases, resulting in poor dispersibility. At the same time, there is a concern about peeling of the iron carbide formed, which is not preferable. Further, the amount of active metal per unit mass of the catalyst decreases as the amount of iron supported on the activated carbon decreases with respect to the above blending ratio, which is not preferable because the activity per unit mass of the catalyst tends to decrease. .
In addition to iron, noble metals such as copper and platinum and alkali metals may be supported. By carrying these, the reducibility of iron can be increased, the catalytic activity of the catalyst and chain growth can be promoted, and the hydrocarbon yield of the diesel fraction can be improved.
Iron is preferably supported by a coprecipitation method, but methods such as an impregnation method, a precipitation method, a sol-gel method, an ion exchange method, a kneading method, and an evaporation to dryness method may be used. The precursor for supporting iron may be an inorganic compound such as nitrate, hydroxide, carbonate, sulfate, or halide, and may be an organic compound such as acetate. Of these, sulfate is used. preferable.

請求項2に記載の発明は、請求項1に記載の発明であって、前記活性炭に銅又はアルカリ金属の内いずれか1以上が担持されている構成を有している。
この構成により、請求項1の作用に加え以下のような作用が得られる。
(1)銅やアルカリ金属を担持させることにより、触媒活性が向上するとともに、フィッシャートロプシュ合成において生成される炭化水素の連鎖成長を促進させ、ディーゼル留分の炭化水素収率を向上させることができる。
(2)銅が担持されるので、鉄の還元性を維持することができ、触媒の活性化を安定させることができるとともに、他の貴金属よりも低原価の触媒とすることができる。
Invention of Claim 2 is invention of Claim 1, Comprising: It has the structure by which any one or more of copper or an alkali metal is carry | supported by the said activated carbon.
With this configuration, the following operation is obtained in addition to the operation of the first aspect.
(1) By supporting copper or an alkali metal, the catalytic activity is improved and the chain growth of hydrocarbons produced in the Fischer-Tropsch synthesis can be promoted to improve the hydrocarbon yield of the diesel fraction. .
(2) Since copper is supported, the reducibility of iron can be maintained, the activation of the catalyst can be stabilized, and the catalyst can be made at a lower cost than other noble metals.

本発明のフィッシャートロプシュ合成触媒には、鉄とは別に助触媒として銅やアルカリ金属の金属を担持させても良い。これらは、触媒の活性を向上させるとともに、生成される炭化水素の連鎖成長が促進されるので、炭素数の高い炭化水素を得ることができ好ましい。
これらの金属の配合比は、活性金属の鉄に対して質量比で鉄:銅=500:1〜10:1、好ましくは鉄:銅=300:1〜20:1が選択される。また、アルカリ金属の中でもカリウムにおいては鉄:カリウム=100:1〜4:1、好ましくは鉄:カリウム=40:1〜10:1が選択される。上記配合比に対して助触媒の担持量が鉄の担持量よりも多くなるにつれ、鉄や活性炭の含有量が減少するので、触媒の単位質量当たりの触媒活性が低下する傾向にあり好ましくない。また、助触媒の担持量が鉄の担持量よりも少なくなるにつれ、フィッシャートロプシュ合成前に酸化物の状態で存在する触媒中の鉄が、合成ガス雰囲気下で金属鉄又は金属カーバイドへ還元され難くなり、助触媒としての機能が発揮できなくなる傾向にあり好ましくない。
In addition to iron, the Fischer-Tropsch synthesis catalyst of the present invention may carry copper or an alkali metal as a promoter. These improve the activity of the catalyst and promote the chain growth of the hydrocarbons produced, so that a hydrocarbon having a high carbon number can be obtained, which is preferable.
As for the compounding ratio of these metals, iron: copper = 500: 1 to 10: 1, preferably iron: copper = 300: 1 to 20: 1 is selected by mass ratio with respect to iron of the active metal. Among the alkali metals, iron: potassium = 100: 1 to 4: 1, preferably iron: potassium = 40: 1 to 10: 1 is selected for potassium. As the amount of cocatalyst supported is greater than the amount of iron supported relative to the above blending ratio, the content of iron or activated carbon decreases, which is not preferable because the catalyst activity per unit mass of the catalyst tends to decrease. In addition, as the amount of promoter supported becomes smaller than the amount of iron supported, iron in the catalyst existing in the oxide state before Fischer-Tropsch synthesis is less likely to be reduced to metallic iron or metal carbide in a synthesis gas atmosphere. Therefore, the function as a cocatalyst tends not to be exhibited, which is not preferable.

電子供与性を持つアルカリ金属を助触媒として担持させると、活性金属の電子密度を増加させるので、鉄表面に吸着した一酸化炭素のC−O結合を弱めると考えられ、その結果、連鎖成長が起こり易くなるものと推測される。
また、炭素系担体上に存在した場合、アルカリ金属から担体に供与される電子が鉄に供与され、鉄カーバイドの剥離を抑制すると同時に、電子密度の増加した鉄表面上の一酸化炭素にも電子が供与されるので、該一酸化炭素のC−O結合が弱くなり、連鎖成長が起こり易くなる。この効果は、特にπ電子を持つグラファイトにおいて大きくなることが知られており、表面を酸化処理することで表面のグラファイト構造が露出された本件のフィッシャートロプシュ合成触媒においても、生成される炭化水素の連鎖成長が促進され炭素数の大きい炭化水素の生成を期待することができる。
更に、通常は鉄に対して局所的な電子供与が起こるとされているリチウムやナトリウムに関しても、グラファイト構造が露出することで活性炭の導電性が増大するので、担体である活性炭を通して全体的な電子供与が起き、助触媒として有用性を期待することができる。
When an alkali metal having an electron donating property is supported as a co-catalyst, the electron density of the active metal is increased, so it is thought that the CO bond of carbon monoxide adsorbed on the iron surface is weakened. It is assumed that it is likely to occur.
In addition, when present on the carbon-based support, electrons donated from the alkali metal to the support are donated to the iron, and the iron carbide is prevented from peeling, and at the same time, the carbon monoxide on the iron surface having an increased electron density is also electron. Is provided, the CO bond of the carbon monoxide becomes weak and chain growth easily occurs. This effect is known to increase particularly in graphite having π electrons, and even in the present Fischer-Tropsch synthesis catalyst in which the surface graphite structure is exposed by oxidizing the surface, the generated hydrocarbon is Chain growth is promoted and generation of hydrocarbons with a large number of carbon atoms can be expected.
Furthermore, with regard to lithium and sodium, which are normally supposed to cause local electron donation to iron, the conductivity of the activated carbon is increased by exposing the graphite structure. Donation occurs, and usefulness can be expected as a cocatalyst.

請求項3に記載の発明は、請求項1又は2に記載の発明であって、前記アルカリ金属がカリウムである構成を有している。
この構成により、請求項1又は2の作用に加え以下のような作用が得られる。
(1)アルカリ金属がカリウムであるので、他のアルカリ金属よりも触媒の活性に優れ、生成される炭化水素の連鎖成長を促進させ、ディーゼル留分の炭化水素収率を向上させることができる。
The invention described in claim 3 is the invention described in claim 1 or 2, wherein the alkali metal is potassium.
With this configuration, the following operation is obtained in addition to the operation of the first or second aspect.
(1) Since the alkali metal is potassium, the activity of the catalyst is superior to that of other alkali metals, the chain growth of the generated hydrocarbon can be promoted, and the hydrocarbon yield of the diesel fraction can be improved.

アルカリ金属の中でもカリウムは電子供与性が高く、〔0012〕段落に記載されているように連鎖成長が促進され炭素数の大きい炭化水素の生成がより期待されるので、担持させることが望ましい。   Among alkali metals, potassium has a high electron donating property, and as described in paragraph [0012], chain growth is promoted and generation of hydrocarbons having a large number of carbon atoms is expected.

請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載のフィッシャートロプシュ合成触媒の製造方法であって、350℃以下の雰囲気下で活性炭粒子にオゾンを接触させて前記活性炭の表面を酸化処理し細孔の平均孔径を3〜6nmにする表面処理工程と、前記活性炭と鉄を共沈し前記活性炭に鉄を担持させる担持工程と、前記活性炭を乾燥後に不活性ガス雰囲気の下350〜500℃で数時間焼成する焼成工程と、を備える構成を有している。
この構成により、請求項1又は2の作用に加え以下の作用を有している。
(1)活性炭表面をオゾンで酸化処理するので、表面の非結晶構造を除去することができ、2nm程度の細孔が平均3〜6nm、好ましくは3〜4nmとすることができ、フィッシャートロプシュ合成により生成するワックスやポリマーにより細孔が被覆され難く、触媒活性の持続性に優れるとともに、表面のグラファイト構造が残り、導電性が増すので触媒活性に優れたフィッシャートロプシュ合成触媒を提供することができる。
Invention of Claim 4 is a manufacturing method of the Fischer-Tropsch synthesis catalyst of any one of Claim 1 thru | or 3, Comprising: Ozone is made to contact activated carbon particle in the atmosphere of 350 degrees C or less, The said activated carbon A surface treatment step to oxidize the surface of the particles to have an average pore diameter of 3 to 6 nm, a supporting step of co-precipitating the activated carbon and iron and supporting the activated carbon on the iron, and an inert gas atmosphere after drying the activated carbon And a firing step of firing at 350 to 500 ° C. for several hours.
With this configuration, the following actions are provided in addition to the actions of the first or second aspect.
(1) Since the activated carbon surface is oxidized with ozone, the amorphous structure on the surface can be removed, and the pores of about 2 nm can have an average of 3 to 6 nm, preferably 3 to 4 nm. Fischer-Tropsch synthesis It is difficult to cover the pores with the wax or polymer produced by the above, and the catalyst activity is excellent, and the surface graphite structure remains and the conductivity is increased, so that it is possible to provide a Fischer-Tropsch synthesis catalyst having excellent catalytic activity. .

表面処理工程において、活性炭の酸化処理は350℃以下、好ましくは250〜350℃
の雰囲気下で行われる。酸化処理時の温度が350℃より高くなるにつれ、酸化が過度に起こり、表面のグラファイト構造が壊れる可能性が高くなるとともに、活性炭が燃焼する可能性があり傾向にあり好ましくなく、250℃より低くなるにつれ、酸化力が低下し、非結晶構造の除去が十分に行えなくなる傾向にあり好ましくない。
また、表面処理する際のオゾンガス濃度は2g/Nm3以上であることが望ましい。オゾンガス濃度が2g/Nm3より小さくなるにつれ、表面処理が十分に行われず、表面の非結晶構造が十分に除去できなくなる傾向にあり好ましくない。尚、オゾンガスの濃度の上限は、オゾン発生装置の性能による。
表面処理の時間としては、表面の非結晶構造が十分に除去できる時間であれば良い。
In the surface treatment step, the activated carbon is oxidized at 350 ° C. or lower, preferably 250 to 350 ° C.
Performed in an atmosphere of As the temperature during the oxidation treatment becomes higher than 350 ° C., oxidation occurs excessively, and there is a high possibility that the graphite structure on the surface is broken, and the activated carbon tends to burn, which is not preferable. As it becomes, the oxidizing power is lowered, and the amorphous structure tends not to be sufficiently removed.
The ozone gas concentration during the surface treatment is desirably 2 g / Nm 3 or more. As the ozone gas concentration becomes smaller than 2 g / Nm 3 , the surface treatment is not sufficiently performed, and the amorphous structure on the surface tends to be not sufficiently removed, which is not preferable. The upper limit of the ozone gas concentration depends on the performance of the ozone generator.
The surface treatment time may be any time that can sufficiently remove the amorphous structure on the surface.

担持工程において、鉄は共沈法によって担持されることが好ましいが、含浸法、沈殿法、ゾルゲル法、イオン交換法、混練法、蒸発乾固法等の方法を用いても良い。
また、鉄を担持させる場合の前駆体としては硝酸塩、水酸化物、炭酸塩、硫酸塩、ハロゲン化物等の無機化合物でも良く、酢酸塩等の有機化合物でも良いが、中でも硫酸塩を用いることが好ましい。
例えば、鉄を担持する場合、活性炭のスラリーにpHを制御しながら硫酸鉄水溶液と沈殿剤(例えば炭酸ナトリウム水溶液)を70℃に保ちながら滴下することで、鉄と活性炭からなる触媒の前駆体である沈殿物が得られる。硫酸鉄水溶液としては、硫酸第一鉄を水に溶解したFeSO4水溶液や硫酸第二鉄を水に溶解したFe2(SO43水溶液を用いることができるが、FeSO4水溶液を用いると活性に優れた触媒が製造できるため好ましい。滴下中のpHとしては7〜9、好ましくは8.0〜8.2に調節される。得られた沈殿物をイオン交換水を用いて洗浄し、熟成(例えば、70℃で数時間)させ、恒量になるまで乾燥し、焼成工程に移される。
In the supporting step, iron is preferably supported by a coprecipitation method, but methods such as an impregnation method, a precipitation method, a sol-gel method, an ion exchange method, a kneading method, and an evaporation to dryness method may be used.
The precursor for supporting iron may be an inorganic compound such as nitrate, hydroxide, carbonate, sulfate, or halide, and may be an organic compound such as acetate. Of these, sulfate is used. preferable.
For example, when iron is supported, an aqueous solution of iron sulfate and a precipitating agent (for example, an aqueous solution of sodium carbonate) are added dropwise to an activated carbon slurry while maintaining the pH at 70 ° C. A precipitate is obtained. As the iron sulfate aqueous solution, an FeSO 4 aqueous solution in which ferrous sulfate is dissolved in water or an Fe 2 (SO 4 ) 3 aqueous solution in which ferric sulfate is dissolved in water can be used. It is preferable because an excellent catalyst can be produced. The pH during the dropping is adjusted to 7 to 9, preferably 8.0 to 8.2. The obtained precipitate is washed with ion-exchanged water, aged (for example, at 70 ° C. for several hours), dried to a constant weight, and transferred to a firing step.

焼成工程において、焼成温度は350〜500℃であることが好ましい。焼成温度が350℃より低くなるにつれ、担体に担持させた水酸化物の分解が不十分となる傾向にあり好ましくない。また、500℃より高くなるにつれ、焼成によって生成される酸化物の粒子成長により触媒の分散率が低下する傾向にあり好ましくない。また、焼成は数時間で行われる。   In the firing step, the firing temperature is preferably 350 to 500 ° C. As the firing temperature becomes lower than 350 ° C., decomposition of the hydroxide supported on the carrier tends to be insufficient, which is not preferable. Further, as the temperature becomes higher than 500 ° C., the dispersion rate of the catalyst tends to decrease due to the growth of oxide particles produced by firing, which is not preferable. Moreover, baking is performed in several hours.

焼成工程に使用される不活性ガスとしては窒素やアルゴン等の反応性の無いガスであればどのようなものでも良い。不活性ガス雰囲気下で焼成する理由としては、酸素等の酸化性ガスが存在すると担体の酸化が起こるからである。   The inert gas used in the firing process may be any gas as long as it has no reactivity, such as nitrogen or argon. The reason for firing in an inert gas atmosphere is that the oxidation of the carrier occurs when an oxidizing gas such as oxygen is present.

請求項5に記載の発明は、請求項4に記載の発明であって、前記焼成工程後の前記活性炭に銅又はアルカリ金属の内いずれか1以上の水溶液を含浸させる含浸工程と、前記含浸工程に次いで前記活性炭を乾燥する乾燥工程と、を備える構成を有している。
この構成により、以下の作用を有している。
(1)銅、カリウム、ルビジウム、セシウム等を担持させるので、触媒の活性や連鎖成長度に優れたフィッシャートロプシュ合成触媒を提供することができる。
(2)銅により鉄の還元性が維持されるので、触媒の活性化が安定し、触媒の寿命を長くすることができる。
Invention of Claim 5 is invention of Claim 4, Comprising: The impregnation process which makes the said activated carbon after the said baking process impregnate any one or more aqueous solution of copper or an alkali metal, and the said impregnation process And a drying step for drying the activated carbon.
This configuration has the following effects.
(1) Since a copper, potassium, rubidium, cesium or the like is supported, a Fischer-Tropsch synthesis catalyst excellent in catalyst activity and chain growth can be provided.
(2) Since the reducibility of iron is maintained by copper, the activation of the catalyst is stabilized and the life of the catalyst can be extended.

含浸工程において、銅やカリウム等の助触媒は含浸法で担持させるが、担持させる金属によっては鉄と同様に共沈法を用いても良いし、沈殿法、ゾルゲル法、イオン交換法、混練法、蒸発乾固法等の方法を用いても良い。   In the impregnation step, promoters such as copper and potassium are supported by the impregnation method, but depending on the metal to be supported, a coprecipitation method may be used in the same manner as iron, precipitation method, sol-gel method, ion exchange method, kneading method Alternatively, a method such as evaporation to dryness may be used.

乾燥工程において、触媒の乾燥は110℃の不活性ガス雰囲気中で恒量になるまで乾燥させることが好ましい。   In the drying step, the catalyst is preferably dried in an inert gas atmosphere at 110 ° C. until a constant weight is obtained.

請求項1乃至3の内いずれか1に記載のフィッシャートロプシュ合成触媒を使用してフィッシャートロプシュ合成を行った場合、以下の作用が得られる。
(1)触媒の活性が高く、安定性に優れるので、0.5〜5MPaの低圧力下で反応を行うことができ、安全性に優れる。
When Fischer-Tropsch synthesis is performed using the Fischer-Tropsch synthesis catalyst according to any one of claims 1 to 3, the following effects are obtained.
(1) Since the activity of the catalyst is high and the stability is excellent, the reaction can be performed under a low pressure of 0.5 to 5 MPa, and the safety is excellent.

フィッシャートロプシュ合成反応は、合成ガスと触媒を接触させることで炭化水素を製造するが、合成ガス中の水素と一酸化炭素のモル比(水素/一酸化炭素)は、0.5〜4の範囲であることが好ましい。モル比が0.5より小さくなるにつれ、原料ガス中の水素が少なくなり、一酸化炭素の水素化反応が進み難くなるので、炭化水素の生産量が低下する傾向にあり好ましくない。また、モル比が4より大きくなるにつれ、原料ガス中の一酸化炭素が少なくなり、触媒の活性の良し悪しに係わらず、炭化水素の生産量が低下する傾向にあり好ましくない。鉄系の触媒を用いる場合、水素ガスのシフト反応が起こるので、一酸化炭素を多く含む合成ガスを用いることができる。
また、フィッシャートロプシュ合成反応に用いる反応容器の形式としては、固定床や流動床、噴流床、スラリー床のどれを用いても良い。フィッシャートロプシュ合成反応の反応条件としては合成ガスから炭化水素を製造することができれば特に限定しない。一般的には、反応温度は220〜300℃、圧力は0.5〜5MPaの範囲で実施することが好ましい。
Fischer-Tropsch synthesis reaction produces hydrocarbons by bringing synthesis gas into contact with a catalyst, and the molar ratio of hydrogen to carbon monoxide (hydrogen / carbon monoxide) in the synthesis gas is in the range of 0.5-4. It is preferable that As the molar ratio becomes smaller than 0.5, the amount of hydrogen in the raw material gas decreases, and the hydrogenation reaction of carbon monoxide becomes difficult to proceed. This is not preferable because the production amount of hydrocarbon tends to decrease. Moreover, as the molar ratio becomes larger than 4, the amount of carbon monoxide in the raw material gas decreases, and the production amount of hydrocarbons tends to decrease regardless of whether the activity of the catalyst is good or bad. When an iron-based catalyst is used, a shift reaction of hydrogen gas occurs, so that a synthesis gas containing a large amount of carbon monoxide can be used.
Moreover, as a form of the reaction vessel used for the Fischer-Tropsch synthesis reaction, any of a fixed bed, a fluidized bed, a spouted bed, and a slurry bed may be used. The reaction conditions for the Fischer-Tropsch synthesis reaction are not particularly limited as long as hydrocarbons can be produced from synthesis gas. In general, the reaction temperature is preferably 220 to 300 ° C. and the pressure is preferably 0.5 to 5 MPa.

本願のフィッシャートロプシュ合成触媒は、反応前に還元処理によって活性化されるが、還元処理に用いる反応容器の形式は、フィッシャートロプシュ合成反応に用いる反応容器と同じ形式のものを使用することができる。還元処理に用いる還元ガスとしては、特に限定されないが、水素、一酸化炭素などを含有するガスであれば良い。温度や接触時間も特に限定されないが、一般的には300℃程度の温度で5〜12時間程度処理することが好ましい。
また、鉄系の触媒であるため、フィッシャートロプシュ合成反応に用いる合成ガスと同じガスを触媒の還元処理に使用することができるので、還元処理から合成反応に移行する際の手間が掛からない。
The Fischer-Tropsch synthesis catalyst of the present application is activated by reduction treatment before the reaction, and the reaction vessel used for the reduction treatment can be the same type as the reaction vessel used for the Fischer-Tropsch synthesis reaction. Although it does not specifically limit as a reducing gas used for a reduction process, What is necessary is just a gas containing hydrogen, carbon monoxide, etc. Although temperature and contact time are not particularly limited, it is generally preferable to treat at a temperature of about 300 ° C. for about 5 to 12 hours.
Moreover, since it is an iron-based catalyst, the same gas as the synthesis gas used for the Fischer-Tropsch synthesis reaction can be used for the reduction treatment of the catalyst, so that it does not take time to shift from the reduction treatment to the synthesis reaction.

以上のように、本発明のフィッシャートロプシュ合成触媒とその製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)活性点の被覆が起き難く、触媒活性の持続性に優れるとともに、高い触媒活性を有するフィッシャートロプシュ合成触媒を提供することができる。
As described above, according to the Fischer-Tropsch synthesis catalyst and the production method thereof of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) It is possible to provide a Fischer-Tropsch synthesis catalyst that does not easily cover active sites, has excellent catalytic activity, and has high catalytic activity.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)触媒活性が高く、連鎖成長度の高いフィッシャートロプシュ合成触媒を提供することができる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) A Fischer-Tropsch synthesis catalyst having a high catalytic activity and a high degree of chain growth can be provided.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)触媒活性や連鎖成長を促進させ、ディーゼル留分の炭化水素収率を向上させることができるフィッシャートロプシュ合成触媒を提供することができる。
According to the invention described in claim 3, in addition to the effect of claim 1 or 2,
(1) A Fischer-Tropsch synthesis catalyst that can promote catalytic activity and chain growth and improve the hydrocarbon yield of a diesel fraction can be provided.

請求項4に記載の発明によれば、
(1)活性炭の触媒活性を向上させるとともに、活性の持続性にも優れたフィッシャートロプシュ合成触媒を得ることができるフィッシャートロプシュ合成触媒の製造方法を提供することができる。
According to invention of Claim 4,
(1) It is possible to provide a method for producing a Fischer-Tropsch synthesis catalyst that can improve the catalytic activity of activated carbon and obtain a Fischer-Tropsch synthesis catalyst having excellent activity sustainability.

請求項5に記載の発明によれば、請求項4の効果に加え、
(1)活性炭の触媒活性に優れ、生成される炭化水素の連鎖成長を促進させ、ディーゼル留分の炭化水素収率を向上させることができるフィッシャートロプシュ合成触媒を得ることができるフィッシャートロプシュ合成触媒の製造方法を提供することができる。
According to invention of Claim 5, in addition to the effect of Claim 4,
(1) A Fischer-Tropsch synthesis catalyst capable of obtaining a Fischer-Tropsch synthesis catalyst that is excellent in the catalytic activity of activated carbon, promotes chain growth of the produced hydrocarbons, and can improve the hydrocarbon yield of the diesel fraction. A manufacturing method can be provided.

実施例1の活性炭のTG−DTAの結果を示したグラフThe graph which showed the result of TG-DTA of the activated carbon of Example 1 比較例1の活性炭のTG−DTAの結果を示したグラフThe graph which showed the result of TG-DTA of the activated carbon of the comparative example 1 実施例1の活性炭表面の電子顕微鏡写真Electron micrograph of activated carbon surface of Example 1 比較例1の活性炭表面の電子顕微鏡写真Electron micrograph of activated carbon surface of Comparative Example 1 実施例1乃至3の触媒の担体のXRDを示したグラフThe graph which showed XRD of the support | carrier of the catalyst of Examples 1-3 実施例1乃至3の触媒のXRDを示したグラフThe graph which showed XRD of the catalyst of Examples 1-3 実施例1及び2と比較例1乃至4の触媒活性を示したグラフThe graph which showed the catalyst activity of Example 1 and 2 and Comparative Examples 1-4 実施例1の触媒を用いたフィッシャートロプシュ合成の経時変化を示したグラフThe graph which showed the time-dependent change of the Fischer-Tropsch synthesis using the catalyst of Example 1. 比較例1の触媒を用いたフィッシャートロプシュ合成の経時変化を示したグラフGraph showing the time course of Fischer-Tropsch synthesis using the catalyst of Comparative Example 1 実施例1の触媒を用いたフィッシャートロプシュ合成によって生成された炭化水素の炭素数分布を示したグラフThe graph which showed carbon number distribution of the hydrocarbon produced | generated by the Fischer-Tropsch synthesis using the catalyst of Example 1 比較例1の触媒を用いたフィッシャートロプシュ合成によって生成された炭化水素の炭素数分布を示したグラフThe graph which showed carbon number distribution of the hydrocarbon produced | generated by the Fischer-Tropsch synthesis using the catalyst of the comparative example 1

以下、本発明を実施例により具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
(実施例1)
粒径が75μm以下,細孔の平均孔径が1.88nm,細孔容積が0.06mL/g,比表面積が1190m2/gのヤシ殻を原料とした活性炭を3g準備した。酸化処理工程として、準備した活性炭と、空気をオゾン発生器に通して発生させた7g/Nm3のオゾンガスを密閉された石英ガラス管中に封入し、電気炉内で接触させた。この時、電気炉の温度を室温から約1時間で300℃又は330℃まで上昇させ、1時間その状態で保ち、常温まで温度を下げた。この工程を繰り返し、酸化処理をした該活性炭を20g得た。
次に、担持工程として、1M硫酸鉄(II)7水和物溶液(和光純薬工業株式会社製)360mLと0.5M硫酸銅5水和物溶液(和光純薬工業株式会社製)7mLを準備し、重量比で鉄:銅=100:1となるように混合した。この混合液と沈殿剤の2M炭酸ナトリウム溶液(和光純薬工業株式会社製)280mLを、70℃のイオン交換水1000mLに撹拌しながら滴下した。このとき、イオン交換水には重量比で鉄:活性炭=1:1となるように該活性炭を分散させた。また、滴下の際は、pHを8.0〜8.2に保ち、滴下速度は12mL/minとした。
担持工程後、70℃に保ちながら該イオン交換水を3時間撹拌し続け、得られた沈殿物3時間後に遠心分離機にて洗浄した。洗浄は電気伝導度が100mS/m以下になるまで行った。洗浄後、真空乾燥機を用いて窒素雰囲気下で110℃、12時間乾燥した。次に、燃焼行程として、該沈殿物を同じく窒素中で400℃、3時間焼成を行った。
次いで、含浸工程として、1M炭酸カリウム水溶液(和光純薬工業株式会社製)を用いて、重量比で鉄:カリウムが100:5となるように、焼成後の触媒に含浸させ、担持工程後と同様に乾燥させフィッシャートロプシュ合成触媒を得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
3 g of activated carbon made from a coconut shell having a particle size of 75 μm or less, an average pore size of 1.88 nm, a pore volume of 0.06 mL / g, and a specific surface area of 1190 m 2 / g was prepared. As an oxidation treatment step, the prepared activated carbon and 7 g / Nm 3 ozone gas generated by passing air through an ozone generator were sealed in a sealed quartz glass tube and contacted in an electric furnace. At this time, the temperature of the electric furnace was raised from room temperature to 300 ° C. or 330 ° C. in about 1 hour, kept in that state for 1 hour, and lowered to room temperature. This process was repeated to obtain 20 g of oxidized activated carbon.
Next, 360 mL of 1M iron sulfate (II) heptahydrate solution (manufactured by Wako Pure Chemical Industries, Ltd.) and 7 mL of 0.5M copper sulfate pentahydrate solution (manufactured by Wako Pure Chemical Industries, Ltd.) It prepared and mixed so that it might become iron: copper = 100: 1 by weight ratio. 280 mL of a 2M sodium carbonate solution (manufactured by Wako Pure Chemical Industries, Ltd.) of this mixed solution and a precipitant was added dropwise to 1000 mL of 70 ° C. ion-exchanged water while stirring. At this time, the activated carbon was dispersed in the ion-exchanged water so that the weight ratio of iron: activated carbon = 1: 1. Moreover, at the time of dripping, pH was maintained at 8.0-8.2 and the dripping speed | rate was 12 mL / min.
After the supporting step, the ion-exchanged water was continuously stirred for 3 hours while maintaining at 70 ° C., and washed with a centrifuge after 3 hours of the obtained precipitate. The washing was performed until the electric conductivity reached 100 mS / m or less. After washing, it was dried at 110 ° C. for 12 hours under a nitrogen atmosphere using a vacuum dryer. Next, as a combustion process, the precipitate was calcined in nitrogen at 400 ° C. for 3 hours.
Next, as an impregnation step, a 1M potassium carbonate aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) is used to impregnate the calcined catalyst so that the weight ratio of iron: potassium is 100: 5. In the same manner, a Fischer-Tropsch synthesis catalyst was obtained.

(比較例1)
実施例1の活性炭をオゾン処理せずに、鉄と銅とカリウムを担持させた以外は実施例1と同様にした。
実施例1の酸化処理後の活性炭と比較例1の未処理の活性炭のTG−DTAの結果を図1及び図2に示す。
(Comparative Example 1)
Example 1 was carried out in the same manner as Example 1 except that the activated carbon of Example 1 was not subjected to ozone treatment and iron, copper and potassium were supported.
The results of TG-DTA of the activated carbon after the oxidation treatment of Example 1 and the untreated activated carbon of Comparative Example 1 are shown in FIGS.

図1は実施例1の活性炭のTG−DTAの結果を示したグラフであり、図2は比較例1の活性炭のTG−DTAの結果を示したグラフである。
図1より、実施例1のオゾン処理した活性炭は発熱による酸化分解後の重量の減少が5.88%であった。また、図2より比較例1の未処理の活性炭は重量の減少率が13.9%であった。これらの結果から、オゾン処理をした活性炭は、オゾンの酸化力の強さから、空気中の酸素や水素と反応して一酸化炭素や二酸化炭素として分解され、表面の多くの非結晶部分が既に削られていたため、TG−DTAによる重量変化が少なかったものと推測される。
これを確かめるために、実施例1のオゾン処理後の活性炭と比較例1の未処理の活性炭の表面を電子顕微鏡で観察した。その結果を図3及び図4に示す。
FIG. 1 is a graph showing the results of TG-DTA of the activated carbon of Example 1, and FIG. 2 is a graph showing the results of TG-DTA of the activated carbon of Comparative Example 1.
From FIG. 1, the activated carbon treated with ozone in Example 1 had a weight loss of 5.88% after oxidative decomposition due to heat generation. Further, from FIG. 2, the untreated activated carbon of Comparative Example 1 had a weight reduction rate of 13.9%. From these results, activated carbon treated with ozone is decomposed into carbon monoxide and carbon dioxide by reacting with oxygen and hydrogen in the air due to the strong oxidizing power of ozone, and many amorphous parts on the surface have already been obtained. It was presumed that the weight change due to TG-DTA was small because it was cut.
In order to confirm this, the surfaces of the activated carbon after the ozone treatment of Example 1 and the untreated activated carbon of Comparative Example 1 were observed with an electron microscope. The results are shown in FIGS.

図3は実施例1の活性炭表面の電子顕微鏡写真であり、図4は比較例1の活性炭表面の電子顕微鏡写真である。
図3の実施例1の活性炭の表面には、図4の比較例1に見られる非結晶構造がみられず、より凹凸が粗くなっており、また、3〜4nmの細孔が増加していることが分かった。このことからも、オゾン処理により活性炭表面の非結晶構造が除去されたことが確認できた。
3 is an electron micrograph of the activated carbon surface of Example 1, and FIG. 4 is an electron micrograph of the activated carbon surface of Comparative Example 1.
On the surface of the activated carbon of Example 1 in FIG. 3, the non-crystalline structure seen in Comparative Example 1 in FIG. 4 is not observed, the roughness is rougher, and the pores of 3 to 4 nm are increased. I found out. From this, it was confirmed that the amorphous structure on the activated carbon surface was removed by the ozone treatment.

(実施例2)
石炭を原料とした粒径が0.9〜1.1mm,細孔の平均孔径が1.88nm,細孔容積が0.14mL/g,比表面積が1010m2/gの活性炭を準備した以外は実施例1と同様にした。
(Example 2)
Except for preparing activated carbon having a particle size of 0.9 to 1.1 mm, an average pore diameter of 1.88 nm, a pore volume of 0.14 mL / g, and a specific surface area of 1010 m 2 / g using coal as a raw material. Same as Example 1.

(比較例2)
実施例2の活性炭をオゾン処理せずに用いた以外は、比較例1と同様にした。
実施例1及び2、比較例1及び2の活性炭の物性変化を表1に示す。物性は、日本ベル株式会社の自動比表面積/細孔分布測定装置及びガス/蒸気吸着量測定装置を用いてJIS Z8830等に準じて測定した。
(Comparative Example 2)
Comparative Example 1 was the same as that of Example 2 except that the activated carbon of Example 2 was used without ozone treatment.
Table 1 shows changes in physical properties of the activated carbons of Examples 1 and 2 and Comparative Examples 1 and 2. The physical properties were measured according to JIS Z8830 using an automatic specific surface area / pore distribution measuring device and a gas / vapor adsorption amount measuring device of Nippon Bell Co., Ltd.

表1から、比較例1及び2よりも実施例1及び2の細孔径が大きくなり、細孔容積が同じ又は上昇し、比表面積が減少していることから、非結晶構造が除去されたり細孔が削られることで、いくつかの細孔が合体して大きなひとつの細孔となり平均孔径3.75nmの細孔が形成されたものだと推測される。   From Table 1, since the pore diameters of Examples 1 and 2 were larger than Comparative Examples 1 and 2, the pore volume was the same or increased, and the specific surface area was decreased, the amorphous structure was removed or fine It is surmised that the pores were cut, so that several pores were combined into one large pore, and a pore having an average pore diameter of 3.75 nm was formed.

(実施例3)
木炭を原料とした粒径が150μm以下,比表面積が1170m2/gの活性炭を準備した以外は実施例1と同様にした。細孔の平均孔径及び細孔容積については測定しなかった。尚、実施例3におけるオゾン処理後の活性炭の平均細孔径は3.76nm,細孔容積が0.47mL/g,メソ孔容積が0.21mL/g,比表面積は1070m2/gであった。
実施例1乃至3のオゾン処理後の活性炭のXRDと実施例1乃至3で得られたフィッシャートロプシュ合成触媒のXRDをそれぞれ図5及び図6に示す。
(Example 3)
The procedure was the same as Example 1 except that activated carbon having a particle size of 150 μm or less and a specific surface area of 1170 m 2 / g using charcoal as a raw material was prepared. The average pore diameter and pore volume of the pores were not measured. In addition, the average pore diameter of the activated carbon after the ozone treatment in Example 3 was 3.76 nm, the pore volume was 0.47 mL / g, the mesopore volume was 0.21 mL / g, and the specific surface area was 1070 m 2 / g. .
FIGS. 5 and 6 show the XRD of the activated carbon after the ozone treatment in Examples 1 to 3 and the XRD of the Fischer-Tropsch synthesis catalyst obtained in Examples 1 to 3, respectively.

図5は実施例1乃至3の触媒の担体のXRDを示したグラフであり、図6は実施例1乃至3の触媒のXRDを示したグラフである。
図5より、XRDのベースラインに違いが見られず、どの活性炭にも基本的に結晶構造が無いことが分かる。また、実施例2及び3に見られるピークは、活性炭そのもののピークではなく不純物によるものだと推測される。
図6より、実施例1乃至3の触媒は活性炭の種類による表面構造の違いは殆ど見られず、活性炭の種類に関係なく、同様の触媒の効果が得られるものと推測される。
FIG. 5 is a graph showing the XRD of the catalyst carriers of Examples 1 to 3, and FIG. 6 is a graph showing the XRD of the catalysts of Examples 1 to 3.
From FIG. 5, it can be seen that there is no difference in the XRD baseline, and basically no activated carbon has any crystal structure. Moreover, it is estimated that the peak seen in Examples 2 and 3 is not due to the peak of the activated carbon itself but due to impurities.
From FIG. 6, it is estimated that the catalysts of Examples 1 to 3 show almost no difference in the surface structure depending on the type of activated carbon, and the same catalyst effect can be obtained regardless of the type of activated carbon.

(比較例3)
実施例3の活性炭にオゾン処理をせずに用いた以外は、比較例1と同様にした。
(Comparative Example 3)
The same procedure as in Comparative Example 1 was performed except that the activated carbon of Example 3 was used without being subjected to ozone treatment.

(比較例4)
担体として比表面積が17.7m2/gグラファイトを用いた以外は、比較例1と同様にした。粒径及び細孔の平均孔径、細孔容積については測定しなかった。
実施例1及び2と比較例1乃至4の触媒を3g、溶媒のn−ヘキサデカン50mLを混合しスラリー床反応器に入れ、合成ガス(水素48.5%,一酸化炭素48.4%,アルゴン3.1%)を250mL/minの流速で流通下、触媒の還元処理を0.5MPa,300℃で3時間行った後、還元処理と同様の合成ガスと流量で2MPa,260℃の条件で反応を行った。結果を表2及び図7に示す。
尚、触媒の物性は、日本ベル株式会社の自動比表面積/細孔分布測定装置及びガス/蒸気吸着量測定装置を用いてJIS Z8830等に準じて測定した。また、CO転化率、C5+選択率CH4選択率等の触媒活性は、反応容器の出口ガスの各成分濃度から算出した。
(Comparative Example 4)
Comparative Example 1 was performed except that graphite having a specific surface area of 17.7 m 2 / g was used as a carrier. The particle diameter, average pore diameter, and pore volume were not measured.
3 g of the catalysts of Examples 1 and 2 and Comparative Examples 1 to 4 and 50 mL of the solvent n-hexadecane were mixed and placed in a slurry bed reactor, and synthesis gas (hydrogen 48.5%, carbon monoxide 48.4%, argon 3.1%) at a flow rate of 250 mL / min, and after reducing the catalyst for 3 hours at 0.5 MPa and 300 ° C., the same synthesis gas and flow rate as the reduction treatment were used under the conditions of 2 MPa and 260 ° C. Reaction was performed. The results are shown in Table 2 and FIG.
The physical properties of the catalyst were measured according to JIS Z8830 using an automatic specific surface area / pore distribution measuring device and a gas / vapor adsorption amount measuring device of Nippon Bell Co., Ltd. Further, the catalytic activity such as CO conversion rate, C 5 + selectivity CH 4 selectivity and the like was calculated from the concentration of each component of the outlet gas of the reaction vessel.

表2は、実施例1及び2と比較例1乃至4の触媒活性と物性等を示した表であり、図7は実施例1及び2と比較例1乃至4の触媒活性を示したグラフである。
図7より、オゾン処理を行った実施例1及び2はグラファイトを担体とした比較例4に比べCO転化率及びC5+選択率が高く、比較例と比べても触媒活性に優れることが分かった。
また、表2より、細孔容積や比表面積は触媒活性には影響が小さく、平均細孔径が関係しているものと推測される。このことから、本願のフィッシャートロプシュ合成触媒は、グラファイトを担体とする従来の触媒よりも低原価で高い効果を得られると考えられる。
次に触媒の持続性を確かめるために実施例1及び比較例1の触媒を280℃、2MPaの条件で約30時間連続使用した結果を図8及び図9に示す。
Table 2 is a table showing the catalyst activity and physical properties of Examples 1 and 2 and Comparative Examples 1 to 4, and FIG. 7 is a graph showing the catalyst activity of Examples 1 and 2 and Comparative Examples 1 to 4. is there.
From FIG. 7, it can be seen that Examples 1 and 2 subjected to ozone treatment have higher CO conversion and C 5+ selectivity than Comparative Example 4 using graphite as a carrier, and are superior in catalytic activity compared to Comparative Example. It was.
From Table 2, it is presumed that the pore volume and specific surface area have little influence on the catalyst activity, and that the average pore diameter is related. From this, it is considered that the Fischer-Tropsch synthesis catalyst of the present application can obtain a higher effect at a lower cost than a conventional catalyst using graphite as a carrier.
Next, in order to confirm the sustainability of the catalyst, the results of continuous use of the catalyst of Example 1 and Comparative Example 1 under the conditions of 280 ° C. and 2 MPa for about 30 hours are shown in FIGS.

図8は実施例1の触媒を用いたフィッシャートロプシュ合成の経時変化を示したグラフであり、図9比較例1の触媒を用いたフィッシャートロプシュ合成の経時変化を示したグラフである。
図8から、実施例1の触媒は30時間経過後もCO転化率、CO2選択率、CH4選択率に低下が見られず、触媒の活性が維持されていることが分かった。また図9より、比較例1の触媒は15時間を過ぎたあたりからCO転化率やCO2選択率の値が乱れ始めており、CH4選択率は反応開始から徐々に減少傾向が見られることが分かった。
このことから、実施例1の触媒は触媒活性が比較例1に比べても2倍以上維持されていることが示された。
この時、得られた炭化水素の炭素数分布を図10及び図11に示す。
FIG. 8 is a graph showing a change with time of Fischer-Tropsch synthesis using the catalyst of Example 1, and a graph showing a change with time of Fischer-Tropsch synthesis using the catalyst of Comparative Example 1 in FIG.
From FIG. 8, it was found that the catalyst of Example 1 did not show a decrease in CO conversion, CO 2 selectivity, and CH 4 selectivity even after 30 hours had passed, and the activity of the catalyst was maintained. Further, from FIG. 9, the value of the CO conversion rate and CO 2 selectivity began to be disturbed after about 15 hours in the catalyst of Comparative Example 1, and the CH 4 selectivity was gradually decreasing from the start of the reaction. I understood.
From this, it was shown that the catalytic activity of Example 1 was maintained at least twice as high as that of Comparative Example 1.
At this time, the carbon number distribution of the obtained hydrocarbon is shown in FIGS.

図10は実施例1の触媒を用いたフィッシャートロプシュ合成によって生成された炭化水素の炭素数分布を示したグラフであり、図11は比較例1の触媒を用いたフィッシャートロプシュ合成によって生成された炭化水素の炭素数分布を示したグラフである。
図10及び図11より、実施例1で生成された炭化水素は、比較例1に比べて炭素数5未満のものが比較的少なく、炭素数5以上のものが多いことがわかる。また、生成された炭化水素はオレフィンの割合が多く、オゾン処理によってオレフィンの選択率も高くなってことが分かった。
FIG. 10 is a graph showing the carbon number distribution of hydrocarbons produced by Fischer-Tropsch synthesis using the catalyst of Example 1, and FIG. 11 is carbonization produced by Fischer-Tropsch synthesis using the catalyst of Comparative Example 1. It is the graph which showed carbon number distribution of hydrogen.
10 and 11, it can be seen that the hydrocarbons produced in Example 1 have relatively fewer hydrocarbons with fewer than 5 carbons and more hydrocarbons with 5 or more carbons than Comparative Example 1. Moreover, it turned out that the produced | generated hydrocarbon has many ratios of olefin, and the selectivity of olefin became high by ozone treatment.

本発明は、表面の酸化処理により2nm程度の平均細孔が3〜6nmに拡張されるので、触媒活性に優れるとともに、フィッシャートロプシュ合成で生成されるワックス等が活性点を被覆し難いので、触媒の活性を長時間維持することができるフィッシャートロプシュ合成触媒を提供することができる。
また、グラファイトに比べ触媒活性が低い活性炭をオゾン処理することにより、高活性で活性の持続性に優れたフィッシャートロプシュ合成触媒を低原価で量産できるフィッシャートロプシュ合成触媒の製造方法を提供することができる。
In the present invention, since the average pores of about 2 nm are expanded to 3 to 6 nm by the oxidation treatment on the surface, the catalyst activity is excellent and the wax generated by Fischer-Tropsch synthesis is difficult to cover the active site. It is possible to provide a Fischer-Tropsch synthesis catalyst capable of maintaining the activity of
In addition, a method for producing a Fischer-Tropsch synthesis catalyst capable of mass-producing a Fischer-Tropsch synthesis catalyst having high activity and excellent activity sustainability at low cost can be provided by treating the activated carbon having a lower catalytic activity than graphite with ozone. .

Claims (5)

少なくとも鉄が担持された活性炭で作成されたフィッシャートロプシュ合成用触媒であって、前記活性炭がオゾンによる酸化処理により、平均孔径3〜6nmの細孔を有し、表面の非結晶構造が除去されていることを特徴とするフィッシャートロプシュ合成触媒。   A Fischer-Tropsch synthesis catalyst made of activated carbon carrying at least iron, wherein the activated carbon has pores having an average pore diameter of 3 to 6 nm by an oxidation treatment with ozone, and the amorphous structure on the surface is removed. A Fischer-Tropsch synthesis catalyst characterized by comprising: 前記活性炭に銅又はアルカリ金属の内いずれか1以上が担持されていることを特徴とする請求項1に記載のフィッシャートロプシュ合成触媒。   The Fischer-Tropsch synthesis catalyst according to claim 1, wherein at least one of copper and alkali metal is supported on the activated carbon. 前記アルカリ金属がカリウムであることを特徴とする請求項1又は2に記載のフィッシャートロプシュ合成触媒。   The Fischer-Tropsch synthesis catalyst according to claim 1 or 2, wherein the alkali metal is potassium. 350℃以下の雰囲気下で活性炭粒子にオゾンを接触させて前記活性炭の表面を酸化処理し細孔の平均孔径を3〜6nmにする表面処理工程と、前記活性炭と鉄を共沈し前記活性炭に鉄を担持させる担持工程と、前記活性炭を乾燥後に不活性ガス雰囲気の下350〜500℃で数時間焼成する焼成工程と、を備えることを特徴とするフィッシャートロプシュ合成触媒の製造方法。   A surface treatment step of bringing the activated carbon particles into contact with ozone under an atmosphere of 350 ° C. or less to oxidize the surface of the activated carbon so that the average pore diameter is 3 to 6 nm; A method for producing a Fischer-Tropsch synthesis catalyst, comprising: a supporting step of supporting iron; and a firing step of firing the activated carbon after drying for several hours at 350 to 500 ° C. in an inert gas atmosphere. 前記焼成工程後の前記活性炭に銅又はアルカリ金属の内いずれか1以上の水溶液を含浸させる含浸工程と、前記含浸工程に次いで前記活性炭を乾燥する乾燥工程と、を備えることを特徴とする請求項4に記載のフィッシャートロプシュ合成触媒の製造方法。   An impregnation step of impregnating the activated carbon after the firing step with one or more aqueous solutions of copper or alkali metal, and a drying step of drying the activated carbon subsequent to the impregnation step. 5. A process for producing a Fischer-Tropsch synthesis catalyst according to 4.
JP2012007067A 2012-01-17 2012-01-17 Fischer-tropsch synthesis catalyst and method for producing the same Pending JP2013146652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007067A JP2013146652A (en) 2012-01-17 2012-01-17 Fischer-tropsch synthesis catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007067A JP2013146652A (en) 2012-01-17 2012-01-17 Fischer-tropsch synthesis catalyst and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013146652A true JP2013146652A (en) 2013-08-01

Family

ID=49044743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007067A Pending JP2013146652A (en) 2012-01-17 2012-01-17 Fischer-tropsch synthesis catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013146652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182542A (en) * 2015-03-25 2016-10-20 株式会社日本触媒 Method for producing metal catalyst and metal catalyst obtained by the method
CN111747560A (en) * 2020-06-04 2020-10-09 广东益诺欧环保股份有限公司 System and method for treating and recycling J acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355562A (en) * 1999-06-15 2000-12-26 Asahi Chem Ind Co Ltd Production of diol mixture
JP2002509789A (en) * 1998-04-01 2002-04-02 セイソル テクノロジー (プロプライエタリー) リミテッド Heat treated Fischer-Tropsch catalyst particles
JP2003528064A (en) * 2000-03-24 2003-09-24 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing alcohol on rhenium-containing activated carbon supported catalyst
JP2008006406A (en) * 2006-06-30 2008-01-17 Electric Power Dev Co Ltd Iron-based catalyst for fischer-tropsch synsthesis reaction, its manufacturing method and method for manufacturing hydrocarbon using this catalyst
JP2011045874A (en) * 2009-07-28 2011-03-10 Nippon Steel Corp Catalyst for ft synthesis and method of manufacturing the same, and method of manufacturing hydrocarbon using the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509789A (en) * 1998-04-01 2002-04-02 セイソル テクノロジー (プロプライエタリー) リミテッド Heat treated Fischer-Tropsch catalyst particles
JP2000355562A (en) * 1999-06-15 2000-12-26 Asahi Chem Ind Co Ltd Production of diol mixture
JP2003528064A (en) * 2000-03-24 2003-09-24 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing alcohol on rhenium-containing activated carbon supported catalyst
JP2008006406A (en) * 2006-06-30 2008-01-17 Electric Power Dev Co Ltd Iron-based catalyst for fischer-tropsch synsthesis reaction, its manufacturing method and method for manufacturing hydrocarbon using this catalyst
JP2011045874A (en) * 2009-07-28 2011-03-10 Nippon Steel Corp Catalyst for ft synthesis and method of manufacturing the same, and method of manufacturing hydrocarbon using the catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
岩佐愛輝 他: ""炭素担持鉄系触媒によるFT合成"", 第41回石油・石油化学討論会講演要旨, JPN6015036713, 10 November 2011 (2011-11-10), pages 216, ISSN: 0003155159 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182542A (en) * 2015-03-25 2016-10-20 株式会社日本触媒 Method for producing metal catalyst and metal catalyst obtained by the method
CN111747560A (en) * 2020-06-04 2020-10-09 广东益诺欧环保股份有限公司 System and method for treating and recycling J acid

Similar Documents

Publication Publication Date Title
Chen et al. Metal–organic framework-derived porous materials for catalysis
Gao et al. CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid
Tian et al. Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon
Oar-Arteta et al. Metal organic frameworks as precursors for the manufacture of advanced catalytic materials
CN111054416B (en) Nitrogen-doped carbon material supported alloy catalyst and preparation method and application thereof
Foo et al. Non-noble metal Cu-loaded TiO 2 for enhanced photocatalytic H 2 production
Chen et al. Synthetic strategies to nanostructured photocatalysts for CO 2 reduction to solar fuels and chemicals
Saka Surface modification with oxygen doping of g-C3N4 nanoparticles by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol
Hong et al. A new synthesis of carbon encapsulated Fe 5 C 2 nanoparticles for high-temperature Fischer–Tropsch synthesis
Feng et al. AgPd nanoparticles supported on zeolitic imidazolate framework derived N-doped porous carbon as an efficient catalyst for formic acid dehydrogenation
Beltram et al. Making H 2 from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNT/Pd@ TiO 2 hybrid catalysts
KR20120135400A (en) Production of lower olefins from synthesis gas
CN110947388B (en) Graphene aerogel supported nickel catalyst and preparation method and application thereof
JP5610900B2 (en) FT synthesis catalyst production method and hydrocarbon production method using the catalyst
Yang et al. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction
CN113813964B (en) Monoatomic catalyst for preparing synthesis gas by methane dry reforming and preparation method and application thereof
López et al. Multiwalled carbon nanotubes-supported Nickel catalysts for the steam reforming of propane
Wei et al. Loading of Co 3 O 4 onto Pt-modified nitrogen-doped TiO 2 nanocomposites promotes photocatalytic hydrogen production
Lin et al. Preparation of a highly efficient carbon-supported ruthenium catalyst by carbon monoxide treatment
Xu et al. Flame in situ synthesis of metal-anchored CuO nanowires for CO catalytic oxidation and kinetic analysis
Khan et al. Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A “Sweet Spot” for Efficient Photoreduction of Carbon Dioxide
KR20140104636A (en) Cobalt catalyst for fischer tropsh synthesis, preparation method of the same, and method of liqiud hydrocarbon using the same
JP2013146652A (en) Fischer-tropsch synthesis catalyst and method for producing the same
JP4654413B2 (en) Hydrocarbon steam reforming catalyst
JP2009249206A (en) Titanium oxide particle surface-modified by carbon nanotube whose tip is carried with metallic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126