JP2013146098A - Radio communication system and receiver - Google Patents

Radio communication system and receiver Download PDF

Info

Publication number
JP2013146098A
JP2013146098A JP2013076314A JP2013076314A JP2013146098A JP 2013146098 A JP2013146098 A JP 2013146098A JP 2013076314 A JP2013076314 A JP 2013076314A JP 2013076314 A JP2013076314 A JP 2013076314A JP 2013146098 A JP2013146098 A JP 2013146098A
Authority
JP
Japan
Prior art keywords
frequency
downlink
station
base station
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013076314A
Other languages
Japanese (ja)
Other versions
JP5839608B2 (en
Inventor
Masayuki Takegawa
雅之 竹川
Keigo Hasegawa
圭吾 長谷川
Seiji Sasaki
誠司 佐々木
Keat Beng Toh
キャートベン トウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2013076314A priority Critical patent/JP5839608B2/en
Publication of JP2013146098A publication Critical patent/JP2013146098A/en
Application granted granted Critical
Publication of JP5839608B2 publication Critical patent/JP5839608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make it possible to use a frequency in a TDD system like the IEEE 802.22 even if the frequency is such that only a unidirectional link can be used due to mainly reception quality of a downlink signal becoming to a low SIR by limitation of downlink transmission power of a base station and interference from a primary utilization system in white space.SOLUTION: In a radio communication system 1 performing radio communication by utilizing white space, a receiving station 200 includes: interference suppression processing unit 202 for performing processing to reduce interference inflicted on a signal transmitted by a transmission station 100 at a frequency of white space; a reception quality estimation unit 203 for estimating communication quality of communication using the frequency of white space on the basis of the signal processed by the interference suppression processing unit 202; and a reception quality notification unit 204 for transmitting communication quality information estimated by the reception quality estimation unit 203 to the transmission station 100.

Description

本発明は、ホワイトスペースを利用した無線通信システムに関し、特に、利用する周波数の割当て技術に関する。   The present invention relates to a wireless communication system using a white space, and more particularly to a frequency allocation technique to be used.

近年の情報化社会の進展は実に目覚しく、多くの情報通信機器やサービスにおける通信方法として、有線通信のほかに、無線通信が利用されることも多くなっている。これに伴い、有限な資源である無線周波数の需要も増加の一途をたどっており、割当て可能な周波数の枯渇が世界各国で大きな問題となってきている。一般に、周波数は国がライセンス管理を行い、ライセンスを割当てられた者だけが、特定の場所および時間において、厳格な管理の下、その周波数を利用することができる。しかし、今後も増え続けるであろう周波数需要に対応するためには、これまでの利用方法にとらわれない、新しい周波数の利用方法が求められている。   The progress of the information society in recent years has been remarkably remarkable, and as a communication method in many information communication devices and services, wireless communication is often used in addition to wired communication. Along with this, the demand for radio frequency, which is a finite resource, is constantly increasing, and the depletion of allocatable frequencies has become a major problem in countries around the world. In general, a frequency is license managed by the country, and only those who are assigned a license can use the frequency under strict control at a specific location and time. However, in order to meet the frequency demand that will continue to increase in the future, there is a need for a new frequency utilization method that is not limited to the conventional utilization method.

そこで近年、周波数の枯渇問題を解決するための新たな周波数の利用方法として、既に割当てられているにも関わらず、空間的、時間的に使用されない周波数帯(ホワイトスペース)を利用する方法が研究されている。例えば、ライセンスを受けている利用者(以下、「一次利用者」という。)の既存システムの周波数使用への影響を十分回避しつつ、ライセンスを受けていない利用者(以下、「二次利用者」という。)が柔軟にホワイトスペースの電波を利用するコグニティブ無線通信システムなどの研究開発が行われている(例えば、非特許文献1)。   Therefore, in recent years, as a new frequency utilization method to solve the frequency depletion problem, a method that uses a frequency band (white space) that has not been used spatially and temporally even though it has already been allocated has been studied. Has been. For example, a licensed user (hereinafter referred to as “primary user”) sufficiently avoids the influence on the frequency usage of the existing system, while the unlicensed user (hereinafter referred to as “secondary user”). ") Is being researched and developed for cognitive radio communication systems that flexibly use white space radio waves (for example, Non-Patent Document 1).

例えば、IEEE802.22で標準化が行われている、ホワイトスペースを利用する広域無線通信(WRAN:Wireless Regional Area Network)システムでは、各無線局は、IPネットワーク上のデータベースにアクセスすることで、自局の位置情報に基づく送信可能周波数リストと最大送信可能電力とを取得する。送信可能周波数リストは、戸別に設置される子局や携帯電話等の端末(CPE:Customer Premises Equipment)が接続する基地局(BS:Base
Station)内のスペクトルマネージャ(SM:Spectrum Manager)によって、随時更新されながら一括管理されている。そして、BSは、この送信可能周波数リストに基づき、BSとCPEの間で双方向に通信に利用可能な周波数を使用周波数として決定する。
For example, in a wireless regional area network (WRAN) system using white space, which is standardized by IEEE802.22, each wireless station accesses its own database by accessing a database on the IP network. The transmittable frequency list and the maximum transmittable power based on the position information are acquired. The transmittable frequency list is a base station (BS: Base) connected to a terminal (CPE: Customer Premises Equipment) such as a slave station or a mobile phone installed by each door.
A spectrum manager (SM) in the station) is collectively managed while being updated as needed. And BS determines the frequency which can be utilized for communication bidirectionally between BS and CPE as a use frequency based on this transmittable frequency list.

また、各無線局(BSおよびCPEをいう、以下同様。)は、スペクトルセンシング機能を具備している。各無線局は、このスペクトルセンシングによって、決定された使用周波数が既存システム(一次利用者のシステム)によって使用されていることを検知すると、その情報をSMに通知する。すると、SMは、送信可能周波数リストからこの周波数を除外する。ホワイトスペースを利用する無線通信システムは、このようにして時々刻々と更新される情報に基づきダイナミックなスペクトルアクセスを行うことで、一次利用者の周波数使用への影響を回避すると同時に、二次利用者の通信も実現する。   Each wireless station (BS and CPE, hereinafter the same) has a spectrum sensing function. When each wireless station detects that the determined use frequency is being used by the existing system (primary user's system) by this spectrum sensing, it notifies the SM of the information. Then, the SM excludes this frequency from the transmittable frequency list. The wireless communication system using white space avoids the influence on the frequency use of the primary user by performing dynamic spectrum access based on the information updated every moment in this way, and at the same time, the secondary user. Communication is also realized.

ところで、IEEE802.22では、複信方式として、時分割複信(TDD:Time Division Duplex)のみを規定している。BSとCPEは、TDDによって、データ送信時には同じ周波数を用いるが、異なる送信タイミングで通信を行うことで、双方向の通信を実現する。しかしながら、TDDのみによる複信方法は、双方向の通信に同じ周波数を用いる。よって、無線局ごとに送信可能な周波数が異なる場合や、送信可能な最大送信電力が異なる場合があるホワイトスペースを利用する無線通信システムにとって、TDDは必ずしも効率的な通信方法であるとは言いがたい。例えば、一方の無線局がある周波数で大電力での送信が可能であるが、他方の無線局がその周波数では小電力での送信しかできない場合、双方向の通信品質は非対称となる。よって、このような周波数を割当ててしまうと、通信が効率的に行われなくなる。   By the way, IEEE802.22 specifies only time division duplex (TDD) as a duplex system. The BS and CPE use the same frequency during data transmission by TDD, but realize bidirectional communication by performing communication at different transmission timings. However, the duplex method using only TDD uses the same frequency for bidirectional communication. Therefore, TDD is not necessarily an efficient communication method for a wireless communication system using a white space where the frequency that can be transmitted is different for each wireless station or the maximum transmission power that can be transmitted may be different. I want. For example, when one radio station can transmit with high power at a certain frequency, but the other radio station can only transmit with low power at that frequency, the bidirectional communication quality becomes asymmetric. Therefore, if such a frequency is allocated, communication cannot be performed efficiently.

また、一方の無線局がある周波数でデータ送信可能であるが、他方の無線局がその周波数で受信不可の場合でも、逆方向の送受信が可能な場合もある。この場合、片方向のみの送受信しか行えない片方向リンクとなるが、このような周波数は、IEEE802.22のTDDでは当然のことながら利用することができない。   In addition, although one radio station can transmit data at a certain frequency, even when the other radio station cannot receive at that frequency, transmission and reception in the reverse direction may be possible. In this case, the link becomes a one-way link that can perform only one-way transmission / reception, but such a frequency cannot naturally be used in IEEE802.22 TDD.

藤井宏治、"コグニティブ無線:電波利用のムダなくす、ホワイトスペース活用のコア技術"、[online]、リックテレコム、[平成23年6月9日検索]、インターネットKoji Fujii, “Cognitive Radio: Eliminating Use of Radio Waves, Core Technology for Utilizing White Space”, [online], Rick Telecom, [Search June 9, 2011], Internet 米国電気電子学会(IEEE)Computer Society編、「IEEE Std 802.22-2011 Part 22: Cognitive Wireless RAN Medium AccessControl (MAC) and Physical Layer (PHY)Specifications: Policies and Proceduresfor Operation in the TV Bands」、(米国)、IEEE標準化協会、2011年7月27日"IEEE Std 802.22-2011 Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands", (USA), IEEE Standardization Association, July 27, 2011

前述の通り、IEEE802.22では複信方式としてTDDのみを規定しているため、片方向リンクの通信についてはIEEE802.22の規定対象外である。しかしながら、周波数資源の有効利用の観点から、片方向リンクとなる周波数であっても利用した方がよい場合もある。   As described above, since IEEE802.22 defines only TDD as a duplex method, communication in a one-way link is outside the scope of IEEE802.22. However, from the viewpoint of effective use of frequency resources, there are cases where it is better to use a frequency that is a one-way link.

ここで一般に、BSは鉄塔やビルの屋上等の高い位置にアンテナが設置されることが多いが、CPEは低層の建物等、地上高の低い位置にアンテナが設置されることが多い。また、CPEは指向性アンテナをBSの位置に向けて設置する場合が多いが、BSのアンテナはオムニアンテナを採用することが多い。そのため、BSとCPEが同一の送信電力で信号を送信すると、地理的に離れた位置に存在する一次利用者に対し、CPEの送信する上り信号は干渉とならない場合であっても、BSが送信する下り信号がオーバーリーチして一次利用者に干渉を与えてしまうケースが想定されることから、送信電力制限はBSのほうが厳しい値になる可能性がある。   Here, in general, an antenna is often installed at a high position such as a steel tower or a roof of a building in the BS, but an antenna is often installed at a low position in the ground such as a low-rise building. In addition, CPE often installs a directional antenna toward the BS, but the BS antenna often employs an omni antenna. Therefore, when the BS and the CPE transmit signals with the same transmission power, the BS transmits to the primary user located in a geographically distant location even if the uplink signal transmitted by the CPE does not cause interference. Since it is assumed that the downlink signal to be overreached causes interference to the primary user, the BS may have a stricter transmission power limit.

これに加え、たとえばIEEE802.22で想定される一次利用システムである地上波ディジタルTV放送を考えた場合に、そのようなTV放送では高次の変調方式を使用していることから所要電界強度が高くなっていることや、IEEE802.22WRANシステムのサービスエリア半径よりもTV放送エリアの半径が広いケースが多いことから、TV放送エリア外であっても、WRANシステムの信号対干渉電力比(SIR:Signal to Interference power Ratio)を劣化させるに十分な強度のTV放送信号がWRANサービスエリア内に存在している可能性が高い。   In addition to this, for example, when considering terrestrial digital TV broadcasting, which is a primary usage system assumed in IEEE802.22, the required electric field strength is high because a high-order modulation method is used in such TV broadcasting. Since there are many cases where the radius of the TV broadcast area is wider than the service area radius of the IEEE802.22WRAN system, the signal-to-interference power ratio (SIR :) of the WRAN system is even outside the TV broadcast area. There is a high possibility that a TV broadcast signal having a sufficient strength to degrade the Signal to Interference power Ratio is present in the WRAN service area.

そこで、本発明は上記課題に鑑み、ホワイトスペースを利用する無線通信システムにおいて、前記の状況、すなわちBSの下り送信電力の制限および一次利用システムの信号により主に下り信号の受信品質が低SIRとなることに起因して片方向のリンクしか使用できないような周波数であっても、この周波数を両方向リンクとして利用することにより、IEEE802.22TDDシステムをそのまま使用し、効率的な周波数割当てを可能にすることを目的とする。   Therefore, in view of the above problems, the present invention provides a wireless communication system that uses white space, and the reception quality of the downlink signal is mainly low due to the above situation, that is, the limitation of the downlink transmission power of the BS and the signal of the primary usage system. Even if the frequency is such that only a one-way link can be used, the IEEE802.22TDD system can be used as it is by using this frequency as a two-way link, enabling efficient frequency allocation. For the purpose.

なお、IEEE802.22では、使用する周波数の決定に当たり、一次利用者の既存システムの周波数の占有パターンや干渉電力などといった通信品質に影響を与える指標を用いることを可能としている。しかし、どのような指標をどのように用いるかはIEEE802.22の規定の範囲外としている。   In IEEE802.22, when determining the frequency to be used, it is possible to use an index that affects the communication quality such as the frequency occupation pattern and interference power of the primary user's existing system. However, what index is used and how it is out of the range of IEEE802.22.

前記課題を解決するために、(1)本発明の一態様では、互いに無線通信を行う送信局及び受信局を含んで構成され、ホワイトスペースを利用して前記無線通信を行う無線通信システムであって、前記受信局は、前記ホワイトスペースの第1周波数において前記送信局が送信する信号を受信する信号受信部と、前記信号受信部が受信した信号が受けた干渉を軽減する処理を行う干渉抑圧部と、前記干渉抑圧部が処理した信号を基に、前記第1周波数を用いた通信の通信品質を推定する通信品質推定部と、前記通信品質推定部が推定した通信品質情報を前記送信局に送信する通信品質情報送信部と、を有し、前記送信局は、前記受信局からの前記通信品質情報を受信する通信品質情報受信部と、前記通信品質情報受信部が受信した前記通信品質情報を基に、前記第1周波数を前記受信局への制御信号の送信の際の周波数として割当てる周波数割当処理部と、前記周波数割当処理部での割当て結果を前記受信局に送信する割当結果送信部と、を有することを特徴とする無線通信システムを提供できる。   In order to solve the above problems, (1) an aspect of the present invention is a wireless communication system configured to include a transmitting station and a receiving station that perform wireless communication with each other and perform the wireless communication using a white space. Then, the receiving station receives a signal transmitted by the transmitting station at the first frequency of the white space, and interference suppression for performing processing to reduce interference received by the signal received by the signal receiving unit. A communication quality estimation unit that estimates communication quality of communication using the first frequency based on a signal processed by the interference suppression unit, and communication quality information estimated by the communication quality estimation unit A communication quality information transmitting unit for transmitting to the communication station, wherein the transmitting station receives the communication quality information from the receiving station, and the communication quality received by the communication quality information receiving unit. Based on the information, a frequency allocation processing unit that allocates the first frequency as a frequency at the time of transmission of a control signal to the receiving station, and an allocation result transmission that transmits an allocation result in the frequency allocation processing unit to the receiving station A wireless communication system characterized by comprising:

(2)本発明の一態様では、前記通信品質推定部は、前記第1周波数において受信する信号に対し前記干渉抑圧部による前記軽減する処理を施した場合と前記干渉抑圧部による前記軽減する処理を施さない場合のそれぞれについて通信品質を推定し、その推定した各通信品質のうちの高い品質の通信品質を最終的に得るものであり、前記周波数割当処理部は、前記受信局から受信した前記通信品質情報を基にデータ送信が可能な周波数に決定し、その決定した周波数を前記受信局へのデータ送信の際の周波数として割当てる。   (2) In one aspect of the present invention, the communication quality estimation unit performs the reduction processing by the interference suppression unit on the signal received at the first frequency and the reduction processing by the interference suppression unit. Communication quality is estimated for each of the cases where it is not applied, the communication quality of the quality of the estimated communication quality is finally obtained, the frequency allocation processing unit received from the receiving station A frequency at which data transmission is possible is determined based on the communication quality information, and the determined frequency is assigned as a frequency at the time of data transmission to the receiving station.

(3)本発明の一態様では、OFDMA(Orthogonal Frequency-Division Multiple Access)方式により前記送信局が1又は複数の前記受信局と前記無線通信を行うものであり、前記制御情報は、前記送信局から前記受信局へのデータの送信に比べ所要SINRが低い変調方式で変調されるものであり、前記周波数割当処理部は、前記受信局から受信した前記通信品質情報が、前記第1周波数において干渉を受けており前記制御信号のみ受信が可能であることを示していると判断したときに、前記受信局への前記制御信号の送信の際の周波数を当該第1周波数に割当てるとともに、前記データ送信の際の周波数を当該第1周波数とは異なる第2周波数に割当てる。   (3) In an aspect of the present invention, the transmitting station performs the wireless communication with one or a plurality of the receiving stations according to an OFDMA (Orthogonal Frequency-Division Multiple Access) scheme, and the control information includes the transmitting station The frequency allocation processing unit modulates the communication quality information received from the receiving station with interference at the first frequency by using a modulation scheme having a lower required SINR than data transmission from the receiving station to the receiving station. When the control signal is received and it is determined that only the control signal can be received, the frequency at the time of transmission of the control signal to the receiving station is assigned to the first frequency, and the data transmission Is assigned to a second frequency different from the first frequency.

(4)本発明の一態様では、OFDMA方式により前記送信局が複数の前記受信局と前記無線通信を行うものであり、前記送信局は、前記制御信号と前記データを前記周波数割当処理部により割当てられた複数の周波数で同時に送信する信号送信部を有し、前記周波数割当処理部は、複数の前記受信局の夫々に対して、前記通信品質情報が示す通信品質が高次の変調方式を用いてデータ通信を行うに耐える品質であると判断すると、前記第1周波数を前記送信局からデータ送信が可能な周波数に決定し、前記通信品質情報が示す通信品質が高次の変調方式を用いてデータ通信を行うに耐えられない品質であると判断すると、前記第1周波数以外の第2周波数をデータ送信が可能な周波数に決定し、前記送信局は、前記制御信号と前記データとを前記周波数割当処理部により割当てられた前記第1周波数及び前記第2周波数で同時に送信する。   (4) In one aspect of the present invention, the transmitting station performs the wireless communication with a plurality of receiving stations by OFDMA, and the transmitting station transmits the control signal and the data by the frequency allocation processing unit. A signal transmission unit configured to transmit simultaneously at a plurality of allocated frequencies, and the frequency allocation processing unit applies a modulation scheme having a higher communication quality indicated by the communication quality information to each of the plurality of receiving stations. If it is determined that the quality is enough to withstand data communication, the first frequency is determined to be a frequency at which data transmission is possible from the transmitting station, and the communication quality indicated by the communication quality information uses a high-order modulation scheme. If it is determined that the quality is unbearable for performing data communication, the second frequency other than the first frequency is determined as a frequency at which data transmission is possible, and the transmitting station transmits the control signal, the data, Simultaneously transmitting at the first frequency and the second frequency allocated by the frequency allocation unit.

(5)本発明の一態様では、ホワイトスペースを利用して無線通信を行う無線通信システムにおいて送信局との間で無線通信を行う受信局の受信装置であって、前記ホワイトスペースの第1周波数において前記送信局が送信する信号を受信する信号受信部と、前記信号受信部が受信した信号が受けた干渉を軽減する処理を行う干渉抑圧部と、前記干渉抑圧部が処理した信号を基に、前記第1周波数を用いた通信の通信品質を推定する通信品質推定部と、前記通信品質推定部が推定した通信品質情報を前記送信局に送信する通信品質情報送信部と、を有し、前記受信局からの前記通信品質情報を基に前記送信局によって前記第1周波数が前記受信局への制御信号の送信の際の周波数として割当てられて前記送信局との間で無線通信を行うことを特徴とする受信装置を提供できる。   (5) In one aspect of the present invention, in a wireless communication system that performs wireless communication using a white space, the receiving device of a receiving station that performs wireless communication with a transmitting station, the first frequency of the white space Based on the signal receiving unit that receives the signal transmitted by the transmitting station, the interference suppressing unit that performs processing to reduce interference received by the signal received by the signal receiving unit, and the signal processed by the interference suppressing unit A communication quality estimation unit that estimates communication quality of communication using the first frequency, and a communication quality information transmission unit that transmits the communication quality information estimated by the communication quality estimation unit to the transmission station, Based on the communication quality information from the receiving station, the transmitting station assigns the first frequency as a frequency when transmitting a control signal to the receiving station, and performs wireless communication with the transmitting station. The It can provide a receiving apparatus according to symptoms.

(1)の態様の発明によれば、ホワイトスペースを利用する際に干渉する信号を軽減し受信品質を改善することができるため、ホワイトスペースの第1周波数で下り信号が低SIR環境下となる場合であっても該第1周波数において下り制御信号を受信可能にすることができる。これにより、(1)の態様の発明では、TDDシステムを維持したまま該第1周波数における上りリンクの利用が可能となり、システム全体の周波数の有効利用が実現可能になる。
(2)の態様の発明によれば、データ通信の際の品質を適切に評価する通信品質情報を基にデータ送信の際の周波数の割当てができるようになる。
According to the invention of the aspect of (1), since the interference signal can be reduced and the reception quality can be improved when the white space is used, the downlink signal becomes a low SIR environment at the first frequency of the white space. Even in this case, it is possible to receive the downlink control signal at the first frequency. Thereby, in the invention of the aspect of (1), it is possible to use the uplink at the first frequency while maintaining the TDD system, and it is possible to realize the effective use of the frequency of the entire system.
According to the invention of the aspect of (2), it becomes possible to assign a frequency at the time of data transmission based on communication quality information for appropriately evaluating the quality at the time of data communication.

(3)の態様の発明によれば、OFDMA方式により送信局が1又は複数の受信局と無線通信を行い、制御情報が送信局から受信局へのデータの送信に比べ所要SINRが低い変調方式で変調されるような無線通信システムにおいて、データ送信のための周波数として制御信号を送信するホワイトスペースの第1周波数又はそれ以外の第2周波数を割当てることができるようになる。
(4)の態様の発明によれば、OFDMA方式により送信局が複数の受信局と無線通信を行い、送信局が制御信号とデータを周波数割当処理部により割当てられた複数の周波数で同時に送信する信号送信部を有するような無線通信システムに適用でき、TV放送等の高次の変調方式を用いて行う通信のホワイトスペースを利用してデータ通信を行えるようになる。
According to the invention of the aspect of (3), the modulation method in which the transmitting station performs radio communication with one or a plurality of receiving stations by the OFDMA method, and the control information is lower in the required SINR than the data transmission from the transmitting station to the receiving station. In the wireless communication system that is modulated in (1), the first frequency of the white space for transmitting the control signal or the other second frequency can be allocated as the frequency for data transmission.
According to the invention of the aspect of (4), the transmitting station performs radio communication with a plurality of receiving stations by the OFDMA method, and the transmitting station transmits a control signal and data simultaneously at a plurality of frequencies assigned by the frequency assignment processing unit. The present invention can be applied to a wireless communication system having a signal transmission unit, and data communication can be performed using a white space for communication performed using a high-order modulation method such as TV broadcasting.

(5)の態様の発明によれば、ホワイトスペースを利用する際に干渉する信号を抑圧し受信品質を改善することができるため、ホワイトスペースの第1周波数で下り信号が低SIR環境下となる場合であっても該第1周波数において下り制御信号を受信可能にすることができる。これにより、(5)の態様の発明では、TDDシステムを維持したまま該第1周波数における上りリンクの利用が可能となり、システム全体の周波数の有効利用が実現可能になる。   According to the invention of the aspect of (5), it is possible to suppress the signal that interferes when using the white space and improve the reception quality, so that the downstream signal is in a low SIR environment at the first frequency of the white space. Even in this case, it is possible to receive the downlink control signal at the first frequency. Thereby, in the invention of the aspect of (5), it is possible to use the uplink at the first frequency while maintaining the TDD system, and it is possible to realize the effective use of the frequency of the entire system.

本実施形態に係る無線通信システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the radio | wireless communications system which concerns on this embodiment. 既存システムのサービスエリア半径R2と無線通信システムのサービスエリア半径R1とを比較した説明に使用する図である。It is a figure used for the description which compared service area radius R2 of the existing system, and service area radius R1 of a radio | wireless communications system. TDDフレームの割り当てパターン例を示す図である。It is a figure which shows the example of the allocation pattern of a TDD frame. 本実施形態に係る無線通信システムの送信局及び受信局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmitting station of the radio | wireless communications system which concerns on this embodiment, and a receiving station. BSのより具体的な構成例を示す図である。It is a figure which shows the more specific structural example of BS. CPEのより具体的な構成例を示す図である。It is a figure which shows the more specific structural example of CPE.

本発明の実施形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described with reference to the drawings.

[無線通信システムの概要]
図1は、本実施形態に係る無線通信システムの全体構成の一例を示す図である。本実施形態に係る無線通信システム1は、ホワイトスペースを利用する無線通信システム(ホワイトスペース利用システム、二次利用システム)である。
[Outline of wireless communication system]
FIG. 1 is a diagram illustrating an example of the overall configuration of a wireless communication system according to the present embodiment. The wireless communication system 1 according to the present embodiment is a wireless communication system (white space use system, secondary use system) that uses a white space.

図1に示されるように、無線通信システム1は、戸別に設置される子局や携帯電話等の無線通信端末(加入者局装置)であるCPE21およびCPE22と、これらの無線通信端末が接続する基地局であるBS10と、BS10のバックホール回線30と、インターネット40とを含んで構成される。   As shown in FIG. 1, a wireless communication system 1 is connected to CPE 21 and CPE 22 which are wireless communication terminals (subscriber station devices) such as slave stations and mobile phones installed by each door, and these wireless communication terminals. The base station 10 includes a BS 10, a backhaul line 30 of the BS 10, and the Internet 40.

また、図1に示す通信システム2は、国から周波数使用のライセンスを受けている一次利用者の放送又は通信システム(一次利用システム、以下、「既存システム」という)である。この既存システム2は、送信局50と受信局60とを含んで構成されている。また、既存システム2の一次利用者は、国から周波数f1のライセンスを受けている。以下の説明においては、無線通信システム1において、国から周波数f1の使用ライセンスを受けていない二次利用者が周波数f1をホワイトスペースとして利用するものとする。   The communication system 2 shown in FIG. 1 is a broadcast or communication system (primary use system, hereinafter referred to as “existing system”) of a primary user who is licensed to use a frequency from the country. The existing system 2 includes a transmitting station 50 and a receiving station 60. The primary user of the existing system 2 has a license for the frequency f1 from the country. In the following description, in the wireless communication system 1, a secondary user who has not received a license for using the frequency f1 from the country uses the frequency f1 as a white space.

ここで、図1に示されるように、無線通信システム1は、既存システム2に対し地理的に近い位置に存在する。しかし、無線通信システム1は、既存システム2のサービスエリアから十分な離隔距離を取って無線通信システム1のサービスエリアを配置し、かつ無線通信システム1を構成する無線局の送信電力を十分小さくすれば、周波数f1を用いて送信を行っても、既存システム2に干渉を与えることなく通信を行うことができる。   Here, as shown in FIG. 1, the wireless communication system 1 is located geographically close to the existing system 2. However, in the wireless communication system 1, the service area of the wireless communication system 1 is arranged with a sufficient separation distance from the service area of the existing system 2, and the transmission power of the wireless stations constituting the wireless communication system 1 is sufficiently reduced. For example, even if transmission is performed using the frequency f1, communication can be performed without causing interference to the existing system 2.

ただしこのとき、BS10のアンテナは高い位置に設置されたオムニアンテナ、CPE22のアンテナは低い位置に設置された指向性アンテナであり、図1のような地理的配置では、CPEの送信電力よりもBSの送信電力を小さくしなければ既存システム2への与干渉となるため、CPEは中電力での送信が可能であり、BSは小電力での送信が可能であるとする。   However, at this time, the antenna of the BS 10 is an omni antenna installed at a high position, and the antenna of the CPE 22 is a directional antenna installed at a low position. In the geographical arrangement as shown in FIG. If the transmission power is not reduced, interference with the existing system 2 occurs. Therefore, it is assumed that the CPE can transmit with medium power and the BS can transmit with low power.

このとき、図2に例示されるように、既存システム2のサービスエリア半径R2が無線通信システム1のサービスエリア半径R1よりも十分広い場合、両サービスエリア間の離隔距離をD[m]とすると、以下の例に示す関係から既存システム2の信号が無線通信システム1のサービスエリアに高い強度で存在することとなる。

=5×R
D=R
とすると、無線通信システム1のエリア端に存在するCPEと既存システム2の送信局との最短距離D21は、
21=R+D=5×R+R=6×R=1.2×R
であり、既存システム2のエリア端における送信局からの距離R2の1.2倍となる。
一方、既存システム2のエリア端に存在する受信局と無線通信システム1の基地局との最短距離D12
12=R+D=R+R=2×R
であり、無線通信システム1のエリア端におけるBSからの距離Rの2倍となる。
At this time, as illustrated in FIG. 2, when the service area radius R2 of the existing system 2 is sufficiently wider than the service area radius R1 of the wireless communication system 1, the separation distance between the two service areas is D [m]. From the relationship shown in the following example, the signal of the existing system 2 exists in the service area of the wireless communication system 1 with high strength.
[ Example ]
R 2 = 5 × R 1
D = R 1
Then, the shortest distance D 21 between the CPE existing at the area end of the wireless communication system 1 and the transmitting station of the existing system 2 is
D 21 = R 2 + D = 5 × R 1 + R 1 = 6 × R 1 = 1.2 × R 2
It is 1.2 times the distance R2 from the transmitting station at the area end of the existing system 2.
Meanwhile, the shortest distance D 12 between the receiving station and the wireless communication system 1 of the base station existing in the area edge existing systems 2 D 12 = R 1 + D = R 1 + R 1 = 2 × R 1
It is twice the distance R 1 from the BS at the area end of the wireless communication system 1.

一般に、無線通信における電波伝搬損失は、送信アンテナと受信アンテナとの間の距離のN乗(Nは整数もしくは実数)に比例するとしてモデル化されることが多い(距離のN乗則、自由空間伝搬ではN=2)。すなわち、無線通信システム1の信号が既存システム2への干渉とならないよう両システムのエリアの間に十分な離隔距離を取っても、無線通信システム1よりもサービスエリアの広い既存システム2の信号は、無線通信システム1のサービスエリア内に高い強度のまま到達することになる。   In general, radio wave propagation loss in wireless communication is often modeled as being proportional to the Nth power of the distance between the transmitting antenna and the receiving antenna (N is an integer or real number) (Nth power law of distance, free space) N = 2) for propagation. That is, even if a sufficient separation distance is provided between the areas of both systems so that the signals of the wireless communication system 1 do not interfere with the existing system 2, the signals of the existing system 2 having a wider service area than the wireless communication system 1 Thus, the wireless communication system 1 reaches the service area with high strength.

なお、周波数f2については、無線通信システム1の周辺には周波数f2を利用する既存システムが存在しないため、無線通信システム1の全ての無線局は大電力での送信が可能である。
そして、本実施形態では、ホワイトスペースを利用した無線通信システム1は、自己のサービスエリア内に既存システム2の信号が高い強度のまま到達することがあっても、地理的に使用可能な周波数資源を有効利用できる。
As for the frequency f2, since there is no existing system that uses the frequency f2 around the radio communication system 1, all radio stations in the radio communication system 1 can transmit with high power.
In the present embodiment, the wireless communication system 1 using the white space is a frequency resource that can be used geographically even if the signal of the existing system 2 may reach the service area with high strength. Can be used effectively.

TDDフレームの割り当てパターンの例
ここで、図3を参照しながら、本例のBS10におけるTDDフレームの割り当ての概念を説明する。本例の無線通信システム1は、IEEE802.22に準拠し、アクセス方式としてOFDMA(Orthogonal
Frequency-Division Multiple Access)を用いる。TDDフレームは、TDD比が可変の下りサブフレームと上りサブフレームからなる。そして、下りサブフレームにおける各CPEへのデータ信号や、上りフレームにおける各CPEからのデータ信号は、バーストと呼ばれる単位で周波数と時間の2次元領域で配置される。このバースト(データバースト)の配置をBS10から各CPEに指示するためのMAP情報等を含む制御情報(Control)が、下りサブフレームの先頭寄りに配置される。実際には、制御情報は複数の制御バーストから構成され、それらは、データバーストに比べ所要SINRが低い変調方式(例えば16QAMのデータバーストに対し、QPSKの制御情報)で変調される。
[ Example of TDD frame allocation pattern ]
Here, the concept of TDD frame allocation in the BS 10 of this example will be described with reference to FIG. The wireless communication system 1 of this example conforms to IEEE802.22 and uses OFDMA (Orthogonal) as an access method.
Frequency-Division Multiple Access) is used. The TDD frame includes a downlink subframe and an uplink subframe with a variable TDD ratio. A data signal to each CPE in the downlink subframe and a data signal from each CPE in the uplink frame are arranged in a two-dimensional area of frequency and time in units called bursts. Control information (Control) including MAP information and the like for instructing each CPE from the BS 10 to arrange the burst (data burst) is arranged near the head of the downlink subframe. Actually, the control information is composed of a plurality of control bursts, and they are modulated by a modulation scheme (for example, QPSK control information for a 16QAM data burst) having a lower required SINR than a data burst.

図3(a)は従来通りの基本パターンの例を示し、図3(b)は本実施形態に係る改善パターンの例を示している。なお、図3においても、図1で説明したように周波数f1では下りの被干渉が強い状況を想定する。図3(a)では、周波数f1において、CPE21への下り信号が低SIRとなり片方向リンクとなってしまうため、周波数f1を使用しない。
これに対して、図3(b)では、周波数f1の下りサブフレームには制御情報のみを配置する。CPE21およびCPE22は、周波数f1でも干渉キャンセラ等により制御信号であれば受信(復号)でき、指向性アンテナ等により既存システムの与干渉も抑えながら送信できる。周波数f2は、基本的には図3(a)と同様に利用できる。特に、周波数f1と周波数f2を上りのバースト伝送に利用したことで、周波数f2の上りサブフレームに詰め込むバースト数を減らし周波数f2の下りサブフレームで伝送する制御情報のオーバヘッドを削減できたり、サブフレームの配置に選択肢が増え全体スループットを最適化できたりする効果が期待できる。
FIG. 3A shows an example of a conventional basic pattern, and FIG. 3B shows an example of an improvement pattern according to the present embodiment. 3 also assumes a situation in which downlink interference is strong at the frequency f1 as described in FIG. In FIG. 3A, the frequency f1 is not used because the downstream signal to the CPE 21 becomes a low SIR at the frequency f1 and becomes a one-way link.
On the other hand, in FIG. 3B, only control information is arranged in the downlink subframe of frequency f1. The CPE 21 and CPE 22 can receive (decode) a control signal by an interference canceller or the like even at the frequency f1, and can transmit while suppressing the interference of the existing system by a directional antenna or the like. The frequency f2 can be basically used in the same manner as in FIG. In particular, by using the frequency f1 and the frequency f2 for upstream burst transmission, the number of bursts packed in the upstream subframe of the frequency f2 can be reduced, and the overhead of control information transmitted in the downstream subframe of the frequency f2 can be reduced. It is expected that there will be more choices in the arrangement of and optimization of the overall throughput.

図4は、本実施形態に係る無線通信システム1の送信局100及び受信局200の構成例を示すブロック図である。
図4に示されるように、無線通信システム1は、無線通信によりデータを送信する送信局100と、送信局100から送信されるデータを受信する受信局200とを含んで構成される。本実施形態においては、送信局100は図1のBS10に該当し、受信局200は図1のCPE21、CPE22に該当する。なお、受信局200は、1つでも良いが、図1に示すように複数存在しても良い。また、ホワイトスペースとして使用可能な周波数には、少なくともf1とf2の2つの周波数(チャンネル)が含まれるものとする。
以下、図4を参照しながら、送信局100と受信局200の構成について説明する。
FIG. 4 is a block diagram illustrating a configuration example of the transmitting station 100 and the receiving station 200 of the wireless communication system 1 according to the present embodiment.
As illustrated in FIG. 4, the wireless communication system 1 includes a transmitting station 100 that transmits data by wireless communication, and a receiving station 200 that receives data transmitted from the transmitting station 100. In the present embodiment, the transmitting station 100 corresponds to the BS 10 in FIG. 1, and the receiving station 200 corresponds to the CPE 21 and CPE 22 in FIG. The number of receiving stations 200 may be one, or a plurality of receiving stations 200 may exist as shown in FIG. Further, it is assumed that the frequencies that can be used as the white space include at least two frequencies (channels) f1 and f2.
Hereinafter, the configuration of the transmitting station 100 and the receiving station 200 will be described with reference to FIG.

[受信局200の構成]
受信局(受信局の受信装置又は通信装置)200は、信号受信部201と、干渉抑圧処理部202と、受信品質推定部203と、受信品質通知部204とを備える。
[Configuration of receiving station 200]
The receiving station (receiving device or receiving device of the receiving station) 200 includes a signal receiving unit 201, an interference suppression processing unit 202, a reception quality estimation unit 203, and a reception quality notification unit 204.

信号受信部201は、特定の周波数f1(及びf2)において、送信局100が送信する信号を受信する。本実施形態においては、信号受信部201が受信する信号は、BS10からCPE21、CPE22に送信される下り信号である。信号受信部201で受信された信号は、干渉抑圧処理部202および受信品質推定部203に渡される。ここで、特定の周波数f1とは、受信局200の初期動作(同期確立)やスペクトルセンシング等の過程で判明した、送信局200が送信している周波数(の1つ)である。   The signal receiving unit 201 receives a signal transmitted by the transmitting station 100 at a specific frequency f1 (and f2). In the present embodiment, the signal received by the signal receiving unit 201 is a downlink signal transmitted from the BS 10 to the CPE 21 and CPE 22. The signal received by the signal reception unit 201 is passed to the interference suppression processing unit 202 and the reception quality estimation unit 203. Here, the specific frequency f1 is (one of) frequencies transmitted by the transmitting station 200, which is found in the process of initial operation (establishment of synchronization) of the receiving station 200 and spectrum sensing.

干渉抑圧処理部202は、信号受信部201が受信した信号に干渉する信号を抑圧(軽減)してSIR改善する処理を行う。そして、干渉抑圧処理部202によってSIR改善された信号は、受信品質推定部203に渡される。このとき、干渉抑圧処理部202のSIR改善方法は、繰り返し送信されるプリアンブル等の信号を累積加算するなどの信号処理による干渉抑圧方式であっても良く、マルチアンテナ信号処理による空間的な干渉抑圧方式であっても良い。   The interference suppression processing unit 202 performs processing to suppress (reduce) a signal that interferes with the signal received by the signal receiving unit 201 to improve SIR. Then, the signal whose SIR is improved by the interference suppression processing unit 202 is passed to the reception quality estimation unit 203. At this time, the SIR improvement method of the interference suppression processing unit 202 may be an interference suppression method based on signal processing such as cumulative addition of repeatedly transmitted signals such as a preamble, and spatial interference suppression by multi-antenna signal processing. It may be a method.

受信品質推定部203は、信号受信部201および干渉抑圧処理部202から渡された信号を用いて、特定の周波数f1において、データの受信が可能か否かを検出する。また、本実施形態においては、受信品質推定部203は、特定の周波数f1においてデータを受信する際に干渉抑圧を適用した場合と適用しなかった場合のそれぞれについての受信品質を推定し、品質の良い側を選択する。   Reception quality estimation section 203 detects whether or not data can be received at a specific frequency f1, using signals passed from signal reception section 201 and interference suppression processing section 202. Further, in the present embodiment, the reception quality estimation unit 203 estimates the reception quality for each of the cases where interference suppression is applied when data is received at a specific frequency f1 and when the data is not applied. Choose the good side.

具体的には、受信品質推定部203は、受信品質を以下のようにして判断する。すなわち、受信した信号を復調・復号し、CRC(Cyclic Redundancy Check)符号などの誤り検出符号によって誤りが検出されなかった場合に受信可能な受信品質としても良く、各信号に含まれるパイロット信号などの既知信号を用いてSINRを推定しSINRが閾値以上であった場合に受信可能な受信品質としても良い。また、SINRの推定結果やビット誤り率の履歴を一定期間保持し、その平均値によって受信可能かどうかの判定を行っても良い。さらに、閾値を複数設け、その閾値ごとに通信品質の指標としても良く、あらかじめ記憶しておく表を参照することで通信可能な最大伝送レートを導き、これを通信品質としても良い。   Specifically, the reception quality estimation unit 203 determines the reception quality as follows. That is, the received signal may be demodulated and decoded, and reception quality may be received when no error is detected by an error detection code such as a CRC (Cyclic Redundancy Check) code, such as a pilot signal included in each signal. The SINR is estimated using a known signal, and the received quality may be received when the SINR is equal to or greater than a threshold value. In addition, the SINR estimation result and the bit error rate history may be retained for a certain period, and the average value may be used to determine whether reception is possible. Furthermore, a plurality of threshold values may be provided, and an index of communication quality may be provided for each threshold value. A maximum transmission rate at which communication is possible is derived by referring to a table stored in advance, and this may be used as communication quality.

また、一般に、CPEが最初に受信するBSからの信号は、プリアンブルや制御バースト等のブロードキャスト制御信号であるが、これら信号を基に行う受信品質推定に限定されるものではない。つまり、受信品質推定のための専用のテスト信号の受信による推定であっても良く、ビーコンなどの制御信号やブロードキャストデータ信号の受信による受信品質推定であっても良いし、他局へのユニキャストデータ信号の傍受による受信品質推定であっても良い。   In general, the signal from the BS first received by the CPE is a broadcast control signal such as a preamble or a control burst, but is not limited to the reception quality estimation performed based on these signals. In other words, it may be estimation based on reception of a dedicated test signal for estimation of reception quality, reception quality estimation based on reception of a control signal such as a beacon or a broadcast data signal, or unicast to other stations. The reception quality may be estimated by intercepting the data signal.

受信局200は、前記の手順により送信局100が送信する制御信号の受信が可能と判断されれば、送信局100(すなわちBS)へネットワークエントリを順次開始し、送信局100との間でf1の周波数のまま通信チャネルを確立する。   If it is determined that the control signal transmitted from the transmitting station 100 can be received by the above procedure, the receiving station 200 sequentially starts network entry to the transmitting station 100 (ie, BS), and f1 is transmitted to the transmitting station 100. The communication channel is established with the same frequency.

受信品質通知部204は、前記通信チャネルを通じ、送信局100に受信品質情報を通知する。このとき、下りの品質が良好(受信局200はデータの受信が可能)であると送信局100側において判断されれば、f1の周波数で上りだけでなく下りのデータ通信も行い、下り品質が中程度(受信局200は(干渉を受けているものの)制御信号の受信のみが可能)であると送信局100側において判断されれば、上りのデータ通信をf1の周波数で行い、下りのデータ通信は異なる周波数(たとえばf2)で行うことになる。ここで、受信品質情報は、一例としてCBP(Coexistence Beacon Protocol)バーストとして通知されうる。   The reception quality notification unit 204 notifies the transmission station 100 of reception quality information through the communication channel. At this time, if it is determined on the transmitting station 100 side that the downlink quality is good (the receiving station 200 can receive data), not only uplink data communication but also downlink data communication is performed at the frequency of f1. If it is determined on the transmitting station 100 side that it is moderate (the receiving station 200 can only receive the control signal (although it is subject to interference)), the upstream data communication is performed at the frequency of f1, and the downstream data Communication is performed at a different frequency (for example, f2). Here, the reception quality information can be notified as a CBP (Coexistence Beacon Protocol) burst as an example.

[送信局100の構成]
図4に示されるように、送信局(送信局の送信装置又は通信装置)100は、信号送信部101と、受信品質情報受信部102と、通信品質情報保持部103と、周波数割当処理部104と、割当結果通知部105とを備える。
[Configuration of Transmitting Station 100]
As shown in FIG. 4, the transmitting station (transmitting device or communication device of the transmitting station) 100 includes a signal transmitting unit 101, a reception quality information receiving unit 102, a communication quality information holding unit 103, and a frequency allocation processing unit 104. And an allocation result notifying unit 105.

受信品質受信部102は、受信局200から送信される受信品質情報を受信する。前述したように、本実施形態において、受信品質情報は受信局200が下り信号を受信する際の通信品質である。なお、上り品質についても、送信局100が受信品質情報を受信したときの受信品質として、送信局100で保持するのが通常である。   The reception quality receiving unit 102 receives the reception quality information transmitted from the receiving station 200. As described above, in this embodiment, the reception quality information is communication quality when the receiving station 200 receives a downlink signal. Note that the uplink quality is usually held by the transmission station 100 as the reception quality when the transmission station 100 receives the reception quality information.

通信品質情報保持部103は、受信局200から送信される受信品質情報を受信して保持する。通信品質情報保持部103は、具体的には、例えば、複数存在する受信局200をそれぞれ識別するための識別子(Device ID)と受信品質情報とを関連づけてデータベース等の形式にて自局のハードディスク等の記憶装置に記憶して保持する。また、受信品質情報は、通信品質を判定した周波数の情報も関連づけられて保持されても良い。   The communication quality information holding unit 103 receives and holds reception quality information transmitted from the receiving station 200. Specifically, the communication quality information holding unit 103, for example, associates an identifier (Device ID) for identifying each of a plurality of receiving stations 200 with the received quality information in the form of a database or the like in its own hard disk. Stored in a storage device. Further, the reception quality information may be held in association with information on the frequency for which the communication quality is determined.

周波数割当処理部104は、通信品質情報保持部103に保持されている受信品質情報を参照して下りの制御信号の送信やデータ送信が可能な周波数を決定し、これらを受信局200への制御信号の送信やデータ送信の際の周波数としてそれぞれ割当てる。例えば、周波数割当処理部104は、受信品質情報を参照して受信局200が制御信号を受信可能と判断した場合において、f1の周波数における受信局200の受信品質が高次の変調方式(所要SINRが高い変調方式)を用いたデータ通信を行うに耐える品質と判断すればf1で下りデータ伝送も行うこととし、高次の変調方式を用いたデータ通信に耐えられないと判断すれば、その受信局200に対しては下り制御信号の伝送のみをf1で行い、下りデータ伝送は品質のより良い別の周波数(たとえばf2)で行うこととする。その時点でf1以外の周波数を良好に使用していればその周波数をf2にでき、使用していなければ候補周波数やバックアップ周波数(チャンネル)から選定する。これらの判断及び割当ては、複数の受信局200夫々に対して為される。つまり、f1の下りサブフレームに一部の受信局200への下りデータを配置し、残りの受信局200への下りデータをf2の下りサブフレームに配置してもよい。これにより、データ通信は、上り方向及び下り方向の夫々について、上り品質及び下り品質のよりよい方の周波数に優先的に割当てられるようになる。
割当結果通知部105は、周波数割当処理部104での割当て結果を信号送信部101を通じて受信局200に送信する。割当て結果は、一例として、制御情報やスーパーフレーム制御ヘッダ(SCH)等により送信される。もし、周波数f1において高次の変調方式を用いたデータ通信に耐えられない品質よりも更に悪い下り品質を示す受信品質情報を応答した受信局や、受信品質情報を応答しない受信局が存在する場合や、大多数の受信局が上り品質下り品質共に良好でない場合は、f1は既存システム等から干渉を受け或いは与えている可能性が高く、或いはf1の有効利用が困難なため、f1の使用を中止することが望ましい。
The frequency allocation processing unit 104 refers to the reception quality information held in the communication quality information holding unit 103, determines frequencies at which downlink control signals can be transmitted and data transmission, and controls these to the receiving station 200. The frequency is assigned for signal transmission and data transmission. For example, when the frequency allocation processing unit 104 refers to the reception quality information and determines that the reception station 200 can receive the control signal, the reception quality of the reception station 200 at the frequency of f1 is a high-order modulation scheme (required SINR). If it is determined that the quality can withstand data communication using a high modulation method), downlink data transmission is also performed at f1, and if it is determined that the data communication using a high-order modulation method cannot be performed, the reception is performed. For the station 200, only the downlink control signal is transmitted at f1, and the downlink data transmission is performed at another frequency (for example, f2) with better quality. If a frequency other than f1 is used well at that time, that frequency can be set to f2, and if not used, it is selected from candidate frequencies and backup frequencies (channels). These determinations and assignments are made for each of the plurality of receiving stations 200. That is, the downlink data to some of the receiving stations 200 may be arranged in the downlink subframe of f1, and the downlink data to the remaining receiving stations 200 may be arranged in the downlink subframe of f2. As a result, the data communication is preferentially assigned to the higher frequency of the uplink quality and the downlink quality for each of the uplink direction and the downlink direction.
The allocation result notification unit 105 transmits the allocation result in the frequency allocation processing unit 104 to the receiving station 200 through the signal transmission unit 101. As an example, the allocation result is transmitted by control information, a super frame control header (SCH), or the like. If there is a receiving station that has responded to reception quality information indicating downlink quality that is worse than the quality that cannot withstand data communication using a higher-order modulation method at frequency f1, or a receiving station that does not respond to reception quality information. If the majority of the receiving stations are not good in uplink quality and downlink quality, it is highly likely that f1 is receiving or giving interference from an existing system or the like, or it is difficult to use f1 effectively. It is desirable to cancel.

BS10(送信局100)の具体的構成
次に、図5を参照しながら、BS10のより具体的な構成について説明する。なお、本実施形態においては、BS10は前述した送信局100に該当する
図5に示されるように、BS10は、電波を送信及び受信するアンテナ151と、無線信号(データ、制御情報等を含む)の送受信を行うデータ伝送部152と、自局全体の制御を行う主制御部153と、CPE21およびCPE22の利用可能周波数を管理するスペクトルマネージャ(SM)154と、バックホール回線30や外部装置とのインターフェースとなるインターフェース部155と、バックホール回線30や外部装置と接続するための端子156とを備える。
[ Specific configuration of BS 10 (transmitting station 100) ]
Next, a more specific configuration of the BS 10 will be described with reference to FIG. In the present embodiment, the BS 10 corresponds to the transmission station 100 described above .
As shown in FIG. 5, the BS 10 has an antenna 151 that transmits and receives radio waves, a data transmission unit 152 that transmits and receives radio signals (including data, control information, and the like), and a main controller that controls the entire local station. The control unit 153, the spectrum manager (SM) 154 that manages the usable frequencies of the CPE 21 and the CPE 22, the interface unit 155 serving as an interface with the backhaul line 30 and an external device, and the backhaul line 30 and the external device are connected. Terminal 156.

SM154は、前述した通信品質情報保持部103と、周波数割当処理部104とを備える。つまり、SM154は、受信局200ごとの通信品質情報を保持し、受信局200から周波数割当ての要求があった場合には周波数割当ての処理を行う。
データ伝送部152は、RF部161と、ベースバンド(BB:Baseband)信号処理部162と、MAC処理部163とを備える。
RF部161は、ベースバンドから無線周波数帯への周波数変換および無線周波数帯からベースバンドへの周波数変換や、信号増幅等の処理を行う。
BB信号処理部162は、誤り訂正符号化、復号処理、および変復調処理等を行う。データ伝送部152は、同時に複数の周波数(チャンネル)でOFDM信号を送受信できるよう、FFTサイズ可変構成或いはmulti radio構成とする。
The SM 154 includes the communication quality information holding unit 103 and the frequency allocation processing unit 104 described above. That is, the SM 154 holds communication quality information for each receiving station 200, and performs frequency assignment processing when a frequency assignment request is received from the receiving station 200.
The data transmission unit 152 includes an RF unit 161, a baseband (BB) signal processing unit 162, and a MAC processing unit 163.
The RF unit 161 performs frequency conversion from the baseband to the radio frequency band, frequency conversion from the radio frequency band to the baseband, signal amplification, and the like.
The BB signal processing unit 162 performs error correction coding, decoding processing, modulation / demodulation processing, and the like. The data transmission unit 152 has an FFT size variable configuration or a multi radio configuration so that OFDM signals can be simultaneously transmitted and received at a plurality of frequencies (channels).

MAC処理部163は、自局が使用する周波数チャネルやデータ送受信タイミングの制御、パケットへの自局識別子の付加、およびデータ送信元の無線装置の認識等の処理を行う。   The MAC processing unit 163 performs processing such as control of the frequency channel and data transmission / reception timing used by the local station, addition of the local station identifier to the packet, and recognition of the wireless device that is the data transmission source.

また、前述した信号送信部101、受信品質情報受信部102、および割当結果通知部105の機能は、主制御部153の制御によって、アンテナ151およびデータ伝送部152が受信品質情報を受信したり、割当結果を送信したりすることで実現される。   The functions of the signal transmission unit 101, the reception quality information reception unit 102, and the allocation result notification unit 105 described above are such that the antenna 151 and the data transmission unit 152 receive reception quality information under the control of the main control unit 153. This is realized by transmitting the allocation result.

なお、主制御部153は、例えば、プロセッサとメモリ上に定義されたデータ記憶領域とソフトウェアで構成することが可能である。また、BB信号処理部162、MAC処理部163、およびSM154における処理は、例えば、主制御部153のプロセッサがハードディスク等のデータ記憶装置に記憶されているプログラムをメモリ上に読み出して実行することにより実現することが可能である。   The main control unit 153 can be configured by, for example, a processor, a data storage area defined on the memory, and software. The processing in the BB signal processing unit 162, the MAC processing unit 163, and the SM 154 is performed, for example, by the processor of the main control unit 153 reading a program stored in a data storage device such as a hard disk on the memory and executing it. It is possible to realize.

CPE21、CPE22(受信局200)の具体的構成
次に、図6を参照しながら、CPE21、CPE22のより具体的な構成について説明する。なお、本実施形態においては、CPE21、CPE22は前述した受信局200に該当する。
[ Specific configuration of CPE21 and CPE22 (receiving station 200) ]
Next, a more specific configuration of the CPE 21 and CPE 22 will be described with reference to FIG. In the present embodiment, CPE 21 and CPE 22 correspond to the receiving station 200 described above.

図6に示されるように、CPE21、CPE22は、電波を送信及び受信するアンテナ251と、データの送受信を行うデータ伝送部252と、自局全体の制御を行う主制御部253と、BS10からの信号を受信した時の通信品質の推定を行う受信品質推定部203と、外部回線や外部装置とのインターフェースとなるインターフェース部255と、外部回線や外部装置と接続するための端子256とを備える。
データ伝送部252は、RF部261と、ベースバンド(BB)信号処理部262と、MAC処理部263とを備える。
RF部261は、ベースバンドから無線周波数帯への周波数変換および無線周波数帯からベースバンドへの周波数変換や、信号増幅等の処理を行う。
BB信号処理部262は、誤り訂正符号化、復号処理、および変復調処理等を行う。
As shown in FIG. 6, the CPE 21 and the CPE 22 include an antenna 251 that transmits and receives radio waves, a data transmission unit 252 that transmits and receives data, a main control unit 253 that controls the entire local station, and a BS 10. A reception quality estimation unit 203 that estimates communication quality when a signal is received, an interface unit 255 serving as an interface with an external line or an external device, and a terminal 256 for connecting to the external line or the external device are provided.
The data transmission unit 252 includes an RF unit 261, a baseband (BB) signal processing unit 262, and a MAC processing unit 263.
The RF unit 261 performs processing such as frequency conversion from the baseband to the radio frequency band, frequency conversion from the radio frequency band to the baseband, and signal amplification.
The BB signal processing unit 262 performs error correction coding, decoding processing, modulation / demodulation processing, and the like.

MAC処理部263は、自局が使用する周波数チャネルやデータ送受信タイミングの制御、パケットへの自局識別子の付加、およびデータ送信元の無線装置の認識等の処理を行う。   The MAC processing unit 263 performs processing such as control of the frequency channel and data transmission / reception timing used by the local station, addition of the local station identifier to the packet, and recognition of the wireless device that is the data transmission source.

また、前述した信号受信部201、干渉抑圧処理部202、受信品質推定部203、および受信品質通知部204の機能は、主制御部253の制御によって、アンテナ251およびデータ伝送部252が各種の信号処理やデータの送受信を行うことで実現される。   Further, the functions of the signal receiving unit 201, the interference suppression processing unit 202, the reception quality estimation unit 203, and the reception quality notification unit 204 described above are controlled by the main control unit 253 so that the antenna 251 and the data transmission unit 252 can perform various signals. This is realized by performing processing and data transmission / reception.

なお、主制御部253は、例えば、プロセッサとメモリ上に定義されたデータ記憶領域とソフトウェアで構成することも可能である。また、BB信号処理部262、MAC処理部263、および受信品質推定部203における処理は、例えば、主制御部253のプロセッサがフラッシュメモリ等のデータ記憶装置に記憶されているプログラムをメモリ上に読み出して実行することにより実現することが可能である。   Note that the main control unit 253 can be configured by, for example, a processor, a data storage area defined on the memory, and software. The processing in the BB signal processing unit 262, the MAC processing unit 263, and the reception quality estimation unit 203 is performed, for example, by the processor of the main control unit 253 reading a program stored in a data storage device such as a flash memory onto the memory. It can be realized by executing.

本実施形態における効果
以上のとおり、本実施形態によれば、ホワイトスペースを利用した無線通信システム1において、下り信号のSIRが低い環境において下り制御信号を受信し、TDDシステムを適用することが可能となる。
[ Effect in this embodiment ]
As described above, according to this embodiment, in the wireless communication system 1 using the white space, it is possible SIR of the downlink signal is received by signal a Ri control signal under Te low environmental odor, to apply the TDD system .

さらに、各周波数における受信局ごとの受信品質情報(下り品質)を収集し、双方向の通信それぞれに対して効率的な周波数の割当が可能となる。具体的には、データ通信は、上り方向及び下り方向の夫々について、上り品質及び下り品質のよりよいほうの周波数に優先的に割当てるようにし、品質が良好でない周波数であっても、下り品質が中程度(制御信号を受信できる程度)確保できれば併用するようにした。これにより、下りと上りで品質が非対称になるような環境において、システム全体の周波数利用効率が改善される。   Furthermore, reception quality information (downlink quality) for each receiving station at each frequency is collected, and efficient frequency allocation can be performed for each bidirectional communication. Specifically, in the data communication, the uplink quality and the downlink direction are preferentially assigned to the higher frequency of the uplink quality and the downlink quality, and even if the frequency is not good, the downlink quality is low. If it is possible to secure a moderate level (a level that can receive a control signal), it is used together. This improves the frequency utilization efficiency of the entire system in an environment where the quality is asymmetric between downlink and uplink.

なお、本実施形態のように、BS10が複数の周波数で送信を行うマルチチャネル方式としては、種々のものが使用でき、物理層としてはチャネルボンディングやチャネルアグリゲーション等、MACではマルチチャネルMAC拡張等が知られる。   Note that, as in this embodiment, various types of multi-channel schemes in which the BS 10 transmits at a plurality of frequencies can be used, such as channel bonding and channel aggregation for the physical layer, and multi-channel MAC extension for the MAC. known.

[本実施形態の変形例]
本実施形態の説明では、最初の使用(運用)周波数f1において被干渉を察知してから運用周波数をf2に変更する状況を想定したが、始めから送信可能周波数リストからf2を選ぶことができ、その後CPEからの帯域要求に応じて(リストにない)周波数f1も使用するような状況にも適用できる。その場合、BS10は、周波数f1での送信をoutband
broadcasting等により行い、各CPEがこれを受信して受信品質推定部203により既存システム等からの干渉の度合いを推定する。受信品質情報は、BS10との間で通信チャネルを確立済みであればf1以外の周波数でも通知できる。
[Modification of this embodiment]
In the description of the present embodiment, it is assumed that the operation frequency is changed to f2 after detecting the interference at the first use (operation) frequency f1, but f2 can be selected from the transmittable frequency list from the beginning. Thereafter, the present invention can be applied to a situation in which the frequency f1 (not in the list) is also used in response to a bandwidth request from the CPE. In that case, the BS 10 outbands transmission at the frequency f1.
Broadcasting or the like is performed, and each CPE receives this, and the reception quality estimation unit 203 estimates the degree of interference from the existing system or the like. The reception quality information can be notified at a frequency other than f1 if a communication channel has been established with the BS 10.

また、被干渉の周波数f1は、近隣の既存システムが用いる周波数と同じものとして説明したが、隣接周波数からの不要輻射も干渉源になり得るため、隣接周波数の使用を控えるアプリケーションも想定される。その場合でも、BS10は、上述の周波数f1を隣接周波数に割り当てて、受信品質情報の応答を各CPEに求めることができる。
また、BSとCPEとの間で通信するものとして説明したが、BSのチェーン接続に適用することもできる。その場合、BS10をマスターBSとし、CPE21又は22の少なくとも1つをスレーブBSと読み替えるものとする。
Further, although the interference frequency f1 has been described as the same as the frequency used by the neighboring existing system, since unnecessary radiation from the adjacent frequency can also be an interference source, an application that refrains from using the adjacent frequency is also assumed. Even in that case, the BS 10 can allocate the above-mentioned frequency f1 to the adjacent frequency and obtain a response of the reception quality information from each CPE.
Moreover, although it demonstrated as what communicates between BS and CPE, it is applicable also to the chain connection of BS. In that case, BS 10 is assumed to be a master BS, and at least one of CPE 21 or 22 is read as a slave BS.

また、被干渉の周波数f1は、端末間直接通信や異種システムとの連絡等に応用することもできる。端末間直接通信では、周波数f1やf2の下りサブフレームで指定されたバースト配置に従い、各CPEが上りサブフレームにおいて送受信しあう。異種システムとの連絡等とは、送信可能周波数などの情報を共有したり隠れ既存システムの発見を容易にしたりするためもので、帯域外ブロードキャスト、ランデブーチャンネル等としての用途がある。
また、BS10が被干渉の周波数f1で送信する制御情報等は、下りサブフレームに複数回繰り返し配置することができ、CPE側でこれらを加算することでSINRを改善できる。
The interfered frequency f1 can also be applied to direct communication between terminals, communication with different systems, and the like. In the direct communication between terminals, each CPE transmits and receives in the uplink subframe according to the burst arrangement specified in the downlink subframe of the frequencies f1 and f2. The communication with different systems is for sharing information such as transmittable frequencies and facilitating discovery of hidden existing systems, and has applications such as out-of-band broadcasting and rendezvous channels.
Also, the control information transmitted by the BS 10 at the interfered frequency f1 can be repeatedly arranged in the downlink subframe, and the SINR can be improved by adding them on the CPE side.

本実施形態に係る無線通信システム1は、IEEE802.22で規定されている無線通信システムに対して特に好適であるが、これに限定されるものではない。1つの基地局が1つの周波数(チャンネル)でしか端末にデータ送信できないようなシステムに適用する場合、本実施形態のBS10は、周波数ごとに(つまりf1とf2の夫々に対応して)基地局IDを有する、同じ場所に設置された複数の基地局として振舞えばよい。   The wireless communication system 1 according to the present embodiment is particularly suitable for a wireless communication system defined by IEEE802.22, but is not limited thereto. When applied to a system in which one base station can transmit data to a terminal only on one frequency (channel), the BS 10 of this embodiment is a base station for each frequency (that is, corresponding to each of f1 and f2). What is necessary is just to behave as several base stations installed in the same place which has ID.

1 無線通信システム、2 既存システム、10 BS、21,22 CPE、30 バックホール回線、40 インターネット、100 送信局、101 信号送信部、102 受信品質情報受信部、103 通信品質情報保持部、104 周波数割当処理部、105 割当結果通知部、151 アンテナ、152 データ伝送部、153 主制御部、154 スペクトルマネージャ、155 インターフェース部、156 端子、161 RF部、162 ベースバンド信号処理部、163 MAC処理部、200 受信局、201 信号受信部、202 干渉抑圧処理部、203 受信品質推定部、204 受信品質通知部、251 アンテナ、252 データ伝送部、253 主制御部、255 インターフェース部、256 端子、261 RF部、262 ベースバンド信号処理部、263 MAC処理部   1 wireless communication system, 2 existing system, 10 BS, 21 and 22 CPE, 30 backhaul line, 40 Internet, 100 transmitting station, 101 signal transmitting unit, 102 received quality information receiving unit, 103 communication quality information holding unit, 104 frequency Allocation processing unit, 105 Allocation result notification unit, 151 antenna, 152 data transmission unit, 153 main control unit, 154 spectrum manager, 155 interface unit, 156 terminal, 161 RF unit, 162 baseband signal processing unit, 163 MAC processing unit, 200 reception station, 201 signal reception unit, 202 interference suppression processing unit, 203 reception quality estimation unit, 204 reception quality notification unit, 251 antenna, 252 data transmission unit, 253 main control unit, 255 interface unit, 256 terminal, 261 RF unit , 26 2 Baseband signal processor, 263 MAC processor

Claims (4)

ホワイトスペースの周波数を利用し、基地局と複数の子局とが所定の周期で交互に送信して通信を行う無線通信方法であって、  A wireless communication method in which a base station and a plurality of slave stations perform communication by alternately transmitting at a predetermined cycle using a white space frequency,
該複数の子局が、前記ホワイトスペースの第1周波数及び第2周波数において前記基地局が送信する信号を受信する第1ステップと、  A first step in which the plurality of slave stations receive signals transmitted by the base station at the first frequency and the second frequency of the white space;
該複数の子局が、前記第1ステップで処理した信号を基に、少なくとも前記第1周波数を用いた下り通信品質を推定する第2ステップと、  A second step in which the plurality of slave stations estimate downlink communication quality using at least the first frequency based on the signal processed in the first step;
該複数の子局が、前記第2ステップで推定した下り通信品質情報を前記送信局に送信する第3ステップと、  A third step in which the plurality of slave stations transmit the downlink communication quality information estimated in the second step to the transmitting station;
前記基地局が、該複数の子局からの前記下り通信品質情報をそれぞれ受信する第4ステップと、  A fourth step in which the base station respectively receives the downlink communication quality information from the plurality of slave stations;
該基地局が、前記第4ステップで受信した前記下り通信品質情報を基に、該子局への制御情報と下りデータの送信を前記第1周波数と第2周波数のどちらに割当てるかを、該子局毎に決定する第5ステップと、  Based on the downlink communication quality information received in the fourth step, the base station allocates control information and downlink data transmission to the slave station to the first frequency or the second frequency, A fifth step for each slave station;
該基地局が、該複数の子局から受信した信号を元に、前記第1周波数と第2周波数の少なくとも一方を用いた上り通信品質をそれぞれ推定する第6ステップと、  A sixth step in which the base station estimates uplink communication quality using at least one of the first frequency and the second frequency based on signals received from the plurality of slave stations, and
該基地局が、前記第6ステップで受信した前記上り通信品質情報を基に、該子局から上りデータの送信を、前記第1周波数と第2周波数のどちらに割当てるかを決定する第7ステップと、  Seventh step for determining whether the base station allocates transmission of uplink data from the slave station to the first frequency or the second frequency based on the uplink communication quality information received in the sixth step When,
該基地局が、前記第5ステップ及び前記第7ステップでの割当て結果を、前記周期毎に、前記第1周波数と第2周波数の少なくとも一方によって前記受信局に送信する第8ステップと、を有し、  And an eighth step in which the base station transmits the allocation results in the fifth step and the seventh step to the receiving station by at least one of the first frequency and the second frequency for each period. And
前記第5ステップにおいて該基地局は、該複数の子局の夫々について、前記第1周波数での前記下り通信品質情報が第1の品質を満たす場合は、前記制御情報と前記下りデータの両方の送信を前記第1周波数に割当てられるものとし、前記第1周波数での前記下り通信品質情報が前記第1の品質より悪い第2の品質を満たす場合は、前記制御情報の送信を前記第1周波数に割当て、下りデータの送信を第2周波数に割当てられるものとし、  In the fifth step, when the downlink communication quality information at the first frequency satisfies the first quality for each of the plurality of slave stations, the base station determines both the control information and the downlink data. When transmission is assigned to the first frequency and the downlink communication quality information at the first frequency satisfies a second quality that is worse than the first quality, transmission of the control information is performed at the first frequency. And transmission of downlink data is assigned to the second frequency,
前記第8ステップにおいて該基地局は、前記第1周波数にいずれの該子局への下りデータが割当てられていない場合でも、前記上り通信品質情報に基づき該第1周波数に上りデータを割当てることを特徴とする無線通信方法。  In the eighth step, the base station allocates uplink data to the first frequency based on the uplink communication quality information even when downlink data to any of the slave stations is not allocated to the first frequency. A wireless communication method.
前記基地局と前記複数の子局は、TDD方式により通信を行い、  The base station and the plurality of slave stations communicate by the TDD method,
前記第8ステップで送信する前記制御情報は、該制御情報が送信される周波数における上りデータ及び下りデータの前記割当て結果を示す情報を含み、前記下りデータの送信に比べ所要SINRが低い変調方式で変調されるか、下りサブフレームの内で複数回繰り返し配置されて送信されることを特徴とする請求項1記載の無線通信方法。  The control information transmitted in the eighth step includes information indicating the allocation result of uplink data and downlink data at a frequency at which the control information is transmitted, and is a modulation scheme having a lower required SINR than transmission of the downlink data. The radio communication method according to claim 1, wherein the radio communication method is modulated or repeatedly arranged and transmitted a plurality of times in a downlink subframe.
前記基地局と前記複数の子局は、OFDMA(Orthogonal  The base station and the plurality of slave stations are connected with OFDMA (Orthogonal
Frequency-Division Multiple Access)方式及びTDD比が可変である前記TDD方式により通信を行い、Frequency-Division Multiple Access) and the TDD method with a variable TDD ratio,
前記制御情報が含む前記割当て結果を示す情報は、下りサブフレーム及び上りサブフレームにおける下りデータ及び上りデータの夫々のバーストの、周波数と時間の2次元領域での配置を示すMAP情報であることを特徴とする請求項2記載の無線通信方法。  The information indicating the allocation result included in the control information is MAP information indicating an arrangement of each burst of downlink data and uplink data in a downlink subframe and an uplink subframe in a two-dimensional region of frequency and time. The wireless communication method according to claim 2, wherein:
前記第5ステップ及び第7ステップのそれぞれの割当ては、該複数の子局毎に、上りデータ及び下りデータの夫々について、上り品質及び下り品質のよりよい方の周波数に優先的に割当てて行なうことを特徴とする請求項1記載の無線通信方法。  The allocation of each of the fifth step and the seventh step is performed with priority given to the frequency having the better uplink quality and downlink quality, for each of the uplink data and downlink data, for each of the plurality of slave stations. The wireless communication method according to claim 1.
JP2013076314A 2013-04-01 2013-04-01 Wireless communication system and receiving apparatus Active JP5839608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076314A JP5839608B2 (en) 2013-04-01 2013-04-01 Wireless communication system and receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076314A JP5839608B2 (en) 2013-04-01 2013-04-01 Wireless communication system and receiving apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012004985A Division JP5244246B1 (en) 2012-01-13 2012-01-13 Wireless communication system and receiving apparatus

Publications (2)

Publication Number Publication Date
JP2013146098A true JP2013146098A (en) 2013-07-25
JP5839608B2 JP5839608B2 (en) 2016-01-06

Family

ID=49041631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076314A Active JP5839608B2 (en) 2013-04-01 2013-04-01 Wireless communication system and receiving apparatus

Country Status (1)

Country Link
JP (1) JP5839608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163174A (en) * 2015-03-02 2016-09-05 パナソニック株式会社 Communication terminal and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189636A (en) * 2006-01-16 2007-07-26 Toshiba Corp Radio communication system, and base station device and mobile radio terminal device used in the system
WO2009022473A1 (en) * 2007-08-14 2009-02-19 Panasonic Corporation Radio communication system, scheduling method, radio base station device, and radio terminal
WO2010067773A1 (en) * 2008-12-08 2010-06-17 株式会社トヨタIt開発センター Method for adjusting the frequency band used in a cognitive wireless system and wireless communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189636A (en) * 2006-01-16 2007-07-26 Toshiba Corp Radio communication system, and base station device and mobile radio terminal device used in the system
WO2009022473A1 (en) * 2007-08-14 2009-02-19 Panasonic Corporation Radio communication system, scheduling method, radio base station device, and radio terminal
WO2010067773A1 (en) * 2008-12-08 2010-06-17 株式会社トヨタIt開発センター Method for adjusting the frequency band used in a cognitive wireless system and wireless communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016163174A (en) * 2015-03-02 2016-09-05 パナソニック株式会社 Communication terminal and communication method

Also Published As

Publication number Publication date
JP5839608B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
CN110492982B (en) Method, apparatus and system for coexistence of new radio and long term evolution wireless network
JP6450488B2 (en) Management of communication resources between devices
US10382969B2 (en) Resource allocation design for low cost machine-type communication UE
US8326309B2 (en) Resource allocation in co-existence mode
JP5866661B2 (en) Resource allocation in wireless relay systems
US9036518B2 (en) Wireless base station apparatus, wireless communication system, wireless communication method, and program
US9107089B2 (en) Method, apparatus, and computer program product for location based query for interferer discovery in coexistence management system
CN106465471B (en) System and method for wireless transmission communication across licensed and unlicensed spectrum
JP2011066874A (en) Communication system, communication apparatus, communication method, and computer program
US20150063139A1 (en) Apparatus and Method for Interference Management between Cellular and Local Area Networks
KR20190058628A (en) Uplink transmission bandwidth control and support
WO2014027135A1 (en) Method, apparatus, and computer program product for transferring responsibility between network controllers managing coexistence in radio frequency spectrum
WO2015166792A1 (en) Base-station device, terminal device, and communication method
JP5688332B2 (en) Wireless communication system
CN106658725B (en) data transmission method and device
KR101189806B1 (en) Resource allocation method and device
US8971277B2 (en) Wireless communication system and receiving device
JP6153273B2 (en) Wireless communication system
JP5839608B2 (en) Wireless communication system and receiving apparatus
JP5244246B1 (en) Wireless communication system and receiving apparatus
JP5726649B2 (en) Heterogeneous system exchange and heterogeneous system exchange method
WO2013105274A1 (en) Wireless communication system and receiving device
CN115883039A (en) Indication method of demodulation reference signal DMRS port
KR20150007233A (en) Apparatus and method for grouping on LTE D2D communications
JP2020123815A (en) Wireless base station and wireless communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151106

R150 Certificate of patent or registration of utility model

Ref document number: 5839608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250