JP2013145161A - Spent fuel storage facility - Google Patents

Spent fuel storage facility Download PDF

Info

Publication number
JP2013145161A
JP2013145161A JP2012005364A JP2012005364A JP2013145161A JP 2013145161 A JP2013145161 A JP 2013145161A JP 2012005364 A JP2012005364 A JP 2012005364A JP 2012005364 A JP2012005364 A JP 2012005364A JP 2013145161 A JP2013145161 A JP 2013145161A
Authority
JP
Japan
Prior art keywords
spent fuel
fuel storage
pool
cylindrical body
pool water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012005364A
Other languages
Japanese (ja)
Inventor
Chikako Iwaki
智香子 岩城
Satoru Abe
覚 阿部
Fumito Shinozaki
史人 篠崎
Yuta Komatsu
裕太 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012005364A priority Critical patent/JP2013145161A/en
Publication of JP2013145161A publication Critical patent/JP2013145161A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To suitably remove decay heat of spent fuel stored in a spent fuel storage pool even when all the power supplies are lost.SOLUTION: A spent fuel storage facility 10 has: a spent fuel storage pool 11 for removing decay heat of spent fuel by allowing spent fuel A to sink in pool water 15; and a pool water cooling purification system 12 provided with a pump 17 and a heat exchanger 19 for leading the pool water to a heat exchanger for cooling by the drive of the pump and returning the pool water to the spent fuel storage pool. The spent fuel storage facility 10 also has: a heat pipe 13 having an evaporating section 21 that is immersed in the pool water 15 in the spent fuel storage pool 11, and a condensing section 22 that is positioned above the water surface of the pool water; and a tube-like object 14 having the condensing section of the heat pipe therein and a passage 23 that is defined between the condensing section and the tube-like object for allowing air to flow.

Description

本発明は、原子炉で使用された使用済燃料を貯蔵する使用済燃料貯蔵設備に関する。   The present invention relates to a spent fuel storage facility for storing spent fuel used in a nuclear reactor.

原子炉で使用された使用済燃料は、通常、冷却水(以下プール水)で満たされた使用済燃料貯蔵プールに一旦保管される。例えば原子力発電所では、図6に示すように、原子炉建屋1内に設置された使用済燃料貯蔵プール2の内部に、使用済燃料3がプール水4に水没して設置されている。使用済燃料3から発生する崩壊熱は、使用済燃料貯蔵プール2内のプール水4に伝達され、このプール水4はスキマサージタンク5に流入し、プール水冷却浄化系6のポンプ7を介してろ過脱塩装置8で不純物が除去され、熱交換器9で使用済み燃料3の崩壊熱が除去された後、使用済燃料貯蔵プール2に再び戻される。尚、熱交換器9で熱交換された熱は、熱交換器9の2次系から原子炉機器冷却系(不図示)を経て海に放出される。   The spent fuel used in the nuclear reactor is usually temporarily stored in a spent fuel storage pool filled with cooling water (hereinafter referred to as pool water). For example, in a nuclear power plant, as shown in FIG. 6, the spent fuel 3 is submerged in the pool water 4 inside the spent fuel storage pool 2 installed in the reactor building 1. The decay heat generated from the spent fuel 3 is transmitted to the pool water 4 in the spent fuel storage pool 2, and the pool water 4 flows into the skimmer surge tank 5 through the pump 7 of the pool water cooling and purification system 6. Then, the impurities are removed by the filtration desalting apparatus 8, the decay heat of the spent fuel 3 is removed by the heat exchanger 9, and then returned to the spent fuel storage pool 2 again. The heat exchanged by the heat exchanger 9 is released from the secondary system of the heat exchanger 9 to the sea through a reactor equipment cooling system (not shown).

このように使用済燃料貯蔵プール2への注水は、プール水4をポンプ7等の動的機器により循環させることによって行われている。なんらかの事象により全電源が喪失した場合には非常用ディーゼル発電機(不図示)が起動し動的機器を作動させるが、さらにそうした設備も動作しなくなった場合には、使用済燃料貯蔵プール2への注水が不可能になり、プール水4が崩壊熱により蒸発し、使用済燃料貯蔵プール2内の水位が低下してプール水4が喪失し、使用済燃料3が損傷する恐れがある。   In this way, water is injected into the spent fuel storage pool 2 by circulating the pool water 4 using a dynamic device such as a pump 7. When all power is lost due to some event, an emergency diesel generator (not shown) is activated and the dynamic equipment is activated. The pool water 4 evaporates due to decay heat, the water level in the spent fuel storage pool 2 decreases, the pool water 4 is lost, and the spent fuel 3 may be damaged.

こうした事象に対して、例えば原子力発電所の原子炉建屋1内では、原子炉によって蒸気も生成されているため、外部電源や非常用ディーゼル発電機に頼らず、生成される蒸気を利用して蒸気インジェクタ(不図示)を動作させて動力源を確保し、動的機器を稼動させるという技術が開示されている(特許文献1参照)。あるいは、蒸気インジェクタを直接利用して使用済燃料貯蔵プール2へ注水するという技術がある。また、原子炉建屋1の屋上に図示しないタンクを設け、非常時にそのタンクから原子炉建屋1の使用済燃料貯蔵プール2に注水する系統を設けるという技術がある。   For such an event, for example, in the reactor building 1 of the nuclear power plant, steam is also generated by the reactor. A technique of operating a dynamic device by operating an injector (not shown) to secure a power source is disclosed (see Patent Document 1). Alternatively, there is a technique in which water is poured into the spent fuel storage pool 2 by directly using a steam injector. Further, there is a technique in which a tank (not shown) is provided on the roof of the reactor building 1 and a system for injecting water from the tank to the spent fuel storage pool 2 of the reactor building 1 in an emergency is provided.

特開平3−229196号公報JP-A-3-229196

前述のように、なんらかの事象により使用済燃料貯蔵プール2に冷却水を循環させる系統(例えばプール水冷却浄化系6)が故障するような非常時の場合でも、使用済燃料の冷却が継続されるように、代替冷却設備を備えておく必要がある。尚、特許文献1で開示された技術は、蒸気が生成されている条件や場所では有効と成り得るが、系統が複雑になると共に、蒸気が生成されていない条件や場所では稼動が困難となる。   As described above, the cooling of the spent fuel is continued even in the case of an emergency in which a system (for example, the pool water cooling and purification system 6) that circulates the cooling water to the spent fuel storage pool 2 fails due to some event. Thus, it is necessary to provide an alternative cooling facility. The technique disclosed in Patent Document 1 can be effective in conditions and places where steam is generated, but the system becomes complicated and operation becomes difficult in conditions and places where steam is not generated. .

本発明の目的は、上述の事情を考慮してなされたものであり、使用済燃料貯蔵プールに貯蔵された使用済燃料の崩壊熱を、全電源の喪失時にも好適に除去できる使用済燃料貯蔵設備を提供することにある。   The object of the present invention has been made in view of the above circumstances, and spent fuel storage that can suitably remove the decay heat of spent fuel stored in the spent fuel storage pool even when the entire power source is lost. To provide facilities.

本発明の実施形態は、使用済燃料をプール水中に水没させて前記使用済燃料の崩壊熱を除去する使用済燃料貯蔵プールと、ポンプ及び熱交換器を備え、前記ポンプの駆動により前記プール水を前記熱交換器へ導いて冷却させ、前記使用済燃料貯蔵プールへ戻すプール水冷却系と、を有する使用済燃料貯蔵設備において、前記使用済燃料貯蔵プールの前記プール水に蒸発部が浸漬され、凝縮部が前記プール水の水面上方に位置づけられたヒートパイプと、前記ヒートパイプの前記凝縮部を内包し、この凝縮部との間に空気を流動させる流路が形成される筒状体と、を有することを特徴とするものである。   An embodiment of the present invention includes a spent fuel storage pool that submerges spent fuel in pool water to remove decay heat of the spent fuel, a pump and a heat exchanger, and the pool water is driven by the pump. In a spent water storage system having a pool water cooling system that guides the heat to the heat exchanger and cools it back to the spent fuel storage pool, wherein an evaporation section is immersed in the pool water of the spent fuel storage pool A heat pipe in which a condensing part is positioned above the water surface of the pool water, and a cylindrical body that encloses the condensing part of the heat pipe and in which a flow path for flowing air is formed between the heat pipe and the condensing part. , Characterized by having.

本発明の実施形態によれば、使用済燃料貯蔵プールのプール水と空気との温度差を利用しヒートパイプを用いてプール水を冷却する際に、ヒートパイプの凝縮部と筒状体との間の流路に空気の密度差による上昇流が発生することで、ヒートパイプの凝縮部からの放熱量を増大させることができる。   According to the embodiment of the present invention, when the pool water is cooled using the heat pipe using the temperature difference between the pool water and the air of the spent fuel storage pool, the condensation portion and the cylindrical body of the heat pipe By generating an upward flow due to the difference in air density in the flow path between them, the amount of heat released from the condensing part of the heat pipe can be increased.

本発明に係る使用済燃料貯蔵設備の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the spent fuel storage equipment which concerns on this invention. 図1の筒状体を示し、(A)は部分縦断面図、(B)は横断面図。The cylindrical body of FIG. 1 is shown, (A) is a partial longitudinal cross-sectional view, (B) is a cross-sectional view. (A)は本発明に係る使用済燃料貯蔵設備の第2実施形態を示す構成図、(B)は図3(A)の使用済燃料貯蔵設備に用いられるカバーを示す斜視図。(A) is a block diagram which shows 2nd Embodiment of the spent fuel storage equipment which concerns on this invention, (B) is a perspective view which shows the cover used for the spent fuel storage equipment of FIG. 3 (A). 本発明に係る使用済燃料貯蔵設備の第3実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the spent fuel storage equipment which concerns on this invention. 図4のダクトの変形形態を示し、(A)は構成図、(B)は図5(A)のV−V線に沿う断面図。The deformation | transformation form of the duct of FIG. 4 is shown, (A) is a block diagram, (B) is sectional drawing which follows the VV line of FIG. 5 (A). 従来の使用済燃料貯蔵設備を示す構成図。The block diagram which shows the conventional spent fuel storage facility.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1、図2)
図1は、本発明に係る使用済燃料貯蔵設備の第1実施形態を示す構成図である。この図1に示す使用済燃料貯蔵設備10は、使用済燃料貯蔵プール11、プール水冷却系としてのプール水冷却浄化系12、ヒートパイプ13及び筒状体14を有して構成される。
Embodiments for carrying out the present invention will be described below with reference to the drawings.
[A] First embodiment (FIGS. 1 and 2)
FIG. 1 is a configuration diagram showing a first embodiment of a spent fuel storage facility according to the present invention. A spent fuel storage facility 10 shown in FIG. 1 includes a spent fuel storage pool 11, a pool water cooling and purification system 12 as a pool water cooling system, a heat pipe 13, and a cylindrical body 14.

使用済燃料貯蔵プール11は、原子力発電所の図示しない原子炉で使用された使用済燃料Aをプール水(冷却水)15中に水没させて、使用済燃料Aの崩壊熱を除去するものである。つまり、使用済燃料貯蔵プール11は、図示しない原子炉建屋に設けられており、プール水15で満たされている。このプール水15中に使用済燃料Aが水没された状態で一旦保管され、この間にプール水15とプール水冷却浄化系12との協働作用により使用済燃料Aの崩壊熱が除熱される。   The spent fuel storage pool 11 removes the decay heat of the spent fuel A by immersing the spent fuel A used in a nuclear reactor (not shown) of the nuclear power plant in pool water (cooling water) 15. is there. That is, the spent fuel storage pool 11 is provided in a reactor building (not shown) and is filled with the pool water 15. The spent fuel A is temporarily stored in the pool water 15 while being submerged. During this time, the collapsing action of the pool water 15 and the pool water cooling and purification system 12 removes the decay heat of the spent fuel A.

プール水冷却浄化系12は、系統配管16にポンプ17、ろ過脱塩装置18及び熱交換器19が順次配設されて構成される。系統配管16は、ポンプ17側の端部がスキマサージタンク20に接続され、熱交換器19側の端部が使用済燃料貯蔵プール11に接続される。   The pool water cooling and purification system 12 is configured by sequentially arranging a pump 17, a filtration desalinator 18, and a heat exchanger 19 in a system pipe 16. The system pipe 16 has an end on the pump 17 side connected to the skimmer surge tank 20 and an end on the heat exchanger 19 side connected to the spent fuel storage pool 11.

使用済燃料貯蔵プール11内のプール水15は、スキマサージタンク20内に流入した後に、ポンプ17の駆動によりろ過脱塩装置18に導かれて不純物が除去され、次に熱交換器19に導かれて冷却され、その後使用済燃料貯蔵プール11に戻される。熱交換器19の2次系が原子炉機器冷却系(不図示)を経て海水に熱を放熱することで、熱交換器19によりプール水15を介して使用済燃料Aの崩壊熱が除去される。   After the pool water 15 in the spent fuel storage pool 11 flows into the skimmer surge tank 20, the pump 17 is driven to guide the filtration demineralizer 18 to remove impurities, and then to the heat exchanger 19. It is then cooled and then returned to the spent fuel storage pool 11. The secondary system of the heat exchanger 19 dissipates heat to seawater through a reactor equipment cooling system (not shown), so that the decay heat of the spent fuel A is removed by the heat exchanger 19 via the pool water 15. The

ヒートパイプ13は、蒸発部21と凝縮部22を有し、使用済燃料貯蔵プール11のプール水15に蒸発部21が浸漬され、凝縮部22がプール水15の水面上方に位置づけられる。ヒートパイプ13は、一般的に、密閉容器内に少量の作動液を真空状態で密閉し、密閉容器の内壁に毛細管構造を備えて構成される。ヒートパイプ13の蒸発部21が加熱されると、作動液は蒸発部21で蒸発し、低温の凝縮部22へ移動して凝縮することにより放熱する。凝縮した作動液は、毛細管現象で蒸発部21へ還流する。このような相変化が連続的に生ずることで熱が移動する。   The heat pipe 13 includes an evaporation unit 21 and a condensing unit 22. The evaporating unit 21 is immersed in the pool water 15 of the spent fuel storage pool 11, and the condensing unit 22 is positioned above the water surface of the pool water 15. The heat pipe 13 is generally configured by sealing a small amount of hydraulic fluid in a sealed container in a vacuum state and providing a capillary structure on the inner wall of the sealed container. When the evaporation section 21 of the heat pipe 13 is heated, the working fluid evaporates in the evaporation section 21, moves to the low-temperature condensation section 22, and condenses to dissipate heat. The condensed working fluid returns to the evaporation unit 21 by capillary action. Heat is transferred by continuously generating such a phase change.

何らかの事情によりプール水冷却浄化系12が故障した場合、使用済燃料貯蔵プール11内のプール水15は、使用済燃料Aの崩壊熱により温度が上昇する。すると、ヒートパイプ13の蒸発部21の内部で作動液が蒸発し、発生した蒸気は、凝縮部22に移動して空気(大気)との温度差により凝縮して液体になり、蒸発部21へ還流する。このように、ヒートパイプ13を用いることによって、使用済燃料貯蔵プール11のプール水15と空気との温度差によって生ずる自然循環により、使用済燃料貯蔵プール11内のプール水15の熱(つまり使用済燃料Aの崩壊熱)が空気へ放熱される。   When the pool water cooling and purification system 12 breaks down for some reason, the temperature of the pool water 15 in the spent fuel storage pool 11 rises due to decay heat of the spent fuel A. Then, the working fluid evaporates inside the evaporation unit 21 of the heat pipe 13, and the generated vapor moves to the condensation unit 22 and is condensed due to a temperature difference from the air (atmosphere) to become a liquid. Reflux. Thus, by using the heat pipe 13, heat (that is, use of the pool water 15 in the spent fuel storage pool 11 is caused by natural circulation caused by a temperature difference between the pool water 15 in the spent fuel storage pool 11 and air. The decay heat of the spent fuel A) is radiated to the air.

しかしながら、使用済燃料貯蔵プール11内のプール水15と空気(大気)との温度差は約30℃と小さいため、プール水15を冷却して使用済燃料Aの崩壊熱を除熱し、プール水15の温度を一定に維持するためには、ヒートパイプ13の凝縮部22と空気(大気)との接触面積が膨大になる。そこで、本実施形態では、ヒートパイプ13の凝縮部22を内包する前記筒状体14が設けられている。   However, since the temperature difference between the pool water 15 in the spent fuel storage pool 11 and the air (atmosphere) is as small as about 30 ° C., the pool water 15 is cooled to remove the decay heat of the spent fuel A, and the pool water In order to keep the temperature of 15 constant, the contact area between the condensing part 22 of the heat pipe 13 and the air (atmosphere) becomes enormous. Therefore, in the present embodiment, the cylindrical body 14 that includes the condensing part 22 of the heat pipe 13 is provided.

この筒状体14は円筒形状に形成され、その下端部がヒートパイプ13の凝縮部22の周囲を囲むことで凝縮部22を内包し、この凝縮部22との間に空気を流動させる流路23を形成する。この流路23内の空気がヒートパイプ13の凝縮部22からの熱により加熱されることで、流路23の上部領域と下部領域とで空気の密度差が生じ、流路23内に空気の上昇が発生して、ヒートパイプ13の凝縮部22からの放熱量が増大する。   The cylindrical body 14 is formed in a cylindrical shape, and the lower end of the cylindrical body 14 encloses the periphery of the condensation portion 22 of the heat pipe 13 to enclose the condensation portion 22, and a flow path for flowing air between the condensation portion 22. 23 is formed. The air in the flow path 23 is heated by the heat from the condensing part 22 of the heat pipe 13, thereby causing a difference in air density between the upper area and the lower area of the flow path 23, and the air in the flow path 23. A rise occurs and the amount of heat released from the condensing part 22 of the heat pipe 13 increases.

ここで、筒状体14の上下方向の長さLは、ヒートパイプ13における凝縮部22の上下方向の長さNの約2倍以上(筒状体14の大型化を避けるために好ましくは約2倍)に設定される。これにより、筒状体14の内側の流路23における上部領域と下部領域とで空気の温度差が大きくなり、この温度差に基づく空気の密度差も大きくなって、流路23内を流れる空気上昇流の流速を増大させることができ、ヒートパイプ13の凝縮部22からの放熱量が増大する。   Here, the length L in the vertical direction of the cylindrical body 14 is at least about twice as long as the length N in the vertical direction of the condensing part 22 in the heat pipe 13 (preferably about the size of the cylindrical body 14 is avoided in order to avoid an increase in size). 2). As a result, the temperature difference between the air in the upper region and the lower region in the flow path 23 inside the cylindrical body 14 increases, and the air density difference based on this temperature difference also increases, so that the air flowing in the flow path 23 The flow rate of the upward flow can be increased, and the amount of heat released from the condensing part 22 of the heat pipe 13 is increased.

また、筒状体14の内面には、図2に示すように、多数の微細突起24が略均一に形成されている。これは、筒状体14の内面で空気の境界層の発達を抑制し、筒状体14の内面による摩擦損失を低減するためである。つまり、筒状体14内の流路23を流れる空気上昇流の流速は、流路23の上部領域と下部領域とで空気の温度差による密度差と、筒状体14内面での摩擦損失とによって決定される。このため、筒状体14の内面に上述の微細突起24を設けることで、上記摩擦損失が低減し、筒状体14の流路23を流れる空気の上昇流速を増大させることが可能になるからである。   Further, as shown in FIG. 2, a large number of fine protrusions 24 are formed substantially uniformly on the inner surface of the cylindrical body 14. This is because the development of the boundary layer of air is suppressed on the inner surface of the cylindrical body 14 and the friction loss due to the inner surface of the cylindrical body 14 is reduced. That is, the flow rate of the air rising flow that flows through the flow path 23 in the cylindrical body 14 is the difference in density due to the temperature difference of the air between the upper region and the lower region of the flow path 23 and the friction loss on the inner surface of the cylindrical body 14. Determined by. For this reason, by providing the above-mentioned fine protrusions 24 on the inner surface of the cylindrical body 14, the friction loss is reduced, and it is possible to increase the rising flow velocity of the air flowing through the flow path 23 of the cylindrical body 14. It is.

以上のように構成されたことから、本実施形態によれば、次の効果(1)〜(3)を奏する。
(1)使用済燃料貯蔵プール11のプール水15にヒートパイプ13の蒸発部21が浸漬され、このヒートパイプ13の凝縮部22が筒状体14に内包され、この筒状体14と凝縮部22との間に空気の流路23が形成されている。このため、使用済燃料貯蔵プール11のプール水15と空気との温度差を利用しヒートパイプ13を用いてプール水15を冷却する際に、ヒートパイプ13の凝縮部22と筒状体14との間の流路23に空気の密度差による空気上昇流が発生することで、ヒートパイプ13の凝縮部22からの放熱量を増大させることができる。この結果、ヒートパイプ13を用いたプール水15の冷却効果が向上し、プール水15中に水没した使用済燃料Aの崩壊熱を、全電源が喪失してプール水冷却浄化系12が作動しなくなった場合にも、好適に除去することができる。
With the configuration as described above, the following effects (1) to (3) are achieved according to the present embodiment.
(1) The evaporating part 21 of the heat pipe 13 is immersed in the pool water 15 of the spent fuel storage pool 11, and the condensing part 22 of the heat pipe 13 is included in the cylindrical body 14, and the cylindrical body 14 and the condensing part An air flow path 23 is formed between the air passage 22 and the air passage 22. For this reason, when cooling the pool water 15 using the heat pipe 13 using the temperature difference between the pool water 15 of the spent fuel storage pool 11 and the air, the condensing part 22 and the cylindrical body 14 of the heat pipe 13 By generating an air upward flow due to the difference in air density in the flow path 23 between them, the amount of heat released from the condensing part 22 of the heat pipe 13 can be increased. As a result, the cooling effect of the pool water 15 using the heat pipe 13 is improved, the decay heat of the spent fuel A submerged in the pool water 15 is lost to the entire power source, and the pool water cooling and purification system 12 is activated. Even when it disappears, it can be suitably removed.

(2)筒状体14の上下方向の長さLがヒートパイプ13における凝縮部22の上下方向の長さNの2倍以上に設定されたので、筒状体14内の流路23における上部領域と下部領域とで空気の温度差による密度差が大きくなり、この流路23を流れる空気の上昇流の流速を増大させることができる。この結果、ヒートパイプ13の凝縮部22からの放熱量が増大して、使用済燃料貯蔵プール11内のプール水15の熱、ひいては使用済燃料Aの崩壊熱の除熱量を増大させることができ、併せてヒートパイプ13の凝縮部22や筒状体14を小型化できる。   (2) Since the vertical length L of the cylindrical body 14 is set to be twice or more the vertical length N of the condensing part 22 in the heat pipe 13, the upper portion of the flow path 23 in the cylindrical body 14. The density difference due to the temperature difference of the air between the region and the lower region becomes large, and the flow rate of the upward flow of air flowing through the flow path 23 can be increased. As a result, the amount of heat released from the condensing part 22 of the heat pipe 13 is increased, and the amount of heat removed from the pool water 15 in the spent fuel storage pool 11 and the decay heat of the spent fuel A can be increased. In addition, the condenser 22 and the cylindrical body 14 of the heat pipe 13 can be downsized.

(3)筒状体14の内面に多数の微細突起24が略均一に形成されたので、この微細突起24により筒状体14の内面に生ずる空気の境界層の発達を抑制でき、筒状体14の内面における摩擦損失を低減できる。これによっても、筒状体14内の流路23を流れる空気の上昇流の流速を増大させることができ、使用済燃料貯蔵プール11のプール水15の熱、ひいては使用済燃料Aの崩壊熱の除熱量を増大でき、併せてヒートパイプ13の凝縮部22や筒状体14の小型化を実現できる。   (3) Since a large number of fine protrusions 24 are formed substantially uniformly on the inner surface of the cylindrical body 14, the development of the boundary layer of air generated on the inner surface of the cylindrical body 14 by the fine protrusions 24 can be suppressed, and the cylindrical body The friction loss on the inner surface of 14 can be reduced. Also by this, the flow rate of the upward flow of the air flowing through the flow path 23 in the cylindrical body 14 can be increased, and the heat of the pool water 15 of the spent fuel storage pool 11 and the decay heat of the spent fuel A can be reduced. The amount of heat removal can be increased, and downsizing of the condensing part 22 and the cylindrical body 14 of the heat pipe 13 can be realized.

[B]第2実施形態(図3)
図3(A)は、本発明に係る使用済燃料貯蔵設備の第2実施形態を示す構成図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIG. 3)
FIG. 3A is a configuration diagram showing a second embodiment of the spent fuel storage facility according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第2実施形態の使用済燃料貯蔵設備30が前記第1実施形態と異なる点は、使用済燃料貯蔵プール11、プール水冷却浄化系12、ヒートパイプ13及び筒状体14のほかに、熱電変換手段としての熱電素子31、送風手段としての送風機32が追加して設けられた点である。   The spent fuel storage facility 30 of the second embodiment differs from the first embodiment in that, in addition to the spent fuel storage pool 11, the pool water cooling and purification system 12, the heat pipe 13, and the tubular body 14, a thermoelectric A thermoelectric element 31 as a conversion means and a blower 32 as a blowing means are additionally provided.

熱電素子31は、使用済燃料貯蔵プール11内のプール水15中に水没した使用済燃料Aの表面に設置され、この使用済燃料Aの表面とプール水15との温度差によって発電する。また、送風機32は、筒状体14の外側下方に配置され、熱電素子31からの電力により駆動されて筒状体14内の流路23へ空気を強制的に送風し、流路23を流れる空気の上昇流の流量を増大させる。
熱電素子31は使用済燃料Aの上面または側面に接触するように設置されていればよい。例えば、図3(B)に示すカバー33を用いて設置する。カバー33は、一端が閉塞され、軸方向に垂直な断面が四角形の筒状に形成されており、内面に熱電素子31が取り付けられている。熱電素子31は複数であってもよい。このカバーを使用済燃料Aの上端に被せるようにして設置する。なお、閉塞側の面(図3(B)においては上面)には、使用済燃料Aのハンドルと干渉しないように穴33aが設けられている。このような構成により、熱電素子31付きのカバーを、燃料交換機等を用いて使用済燃料A上に吊り降ろすだけで熱電素子31を設置することができる。また、カバー33が使用済燃料Aのハンドルを覆うこともないので、その後のオペレーションを阻害することもない。
さらに、このカバー33が地震による浮き上がりで離脱するのを防止するため、蓋33bを設けてもよい。蓋33bは穴33aをわたるように設けられ、例えばヒンジを用いて上方向には自由に回動するように構成されている。この構成によると、カバー33の設置時は、蓋33bは使用済燃料Aのハンドルによって上に持ち上げられて開き、ハンドルが通過すると重力で閉じる。地震時は、カバー33が浮き上がっても、蓋33bとハンドルが干渉するため、カバー33の離脱には至らない。
また、カバー33に、燃料交換機等で吊り下ろせるよう吊り耳を設けてもよいし、専用の治具を用いて設置するものとしてもよい。
また、上記カバー33を用いることなく、使用済燃料Aのハンドルまたはチャンネルボックス側面の上端から熱電素子31を単に吊り下げて使用済燃料Aの表面に接触させる構成としてもよい。
The thermoelectric element 31 is installed on the surface of the spent fuel A submerged in the pool water 15 in the spent fuel storage pool 11, and generates electric power by the temperature difference between the surface of the spent fuel A and the pool water 15. Further, the blower 32 is disposed below the outer side of the cylindrical body 14, is driven by electric power from the thermoelectric element 31, forcibly blows air to the flow path 23 in the cylindrical body 14, and flows through the flow path 23. Increase the flow rate of the upward flow of air.
The thermoelectric element 31 should just be installed so that the upper surface or side surface of the spent fuel A may be contacted. For example, the cover 33 shown in FIG. One end of the cover 33 is closed, the cross section perpendicular to the axial direction is formed in a rectangular tube shape, and the thermoelectric element 31 is attached to the inner surface. There may be a plurality of thermoelectric elements 31. This cover is installed so as to cover the upper end of the spent fuel A. In addition, a hole 33a is provided in the closed side surface (upper surface in FIG. 3B) so as not to interfere with the handle of the spent fuel A. With such a configuration, the thermoelectric element 31 can be installed simply by hanging the cover with the thermoelectric element 31 on the spent fuel A using a fuel exchanger or the like. Further, since the cover 33 does not cover the handle of the spent fuel A, the subsequent operation is not hindered.
Further, a lid 33b may be provided in order to prevent the cover 33 from being lifted off due to an earthquake. The lid 33b is provided so as to cross the hole 33a, and is configured to freely rotate upward using, for example, a hinge. According to this configuration, when the cover 33 is installed, the lid 33b is lifted up and opened by the handle of the spent fuel A, and is closed by gravity when the handle passes. At the time of an earthquake, even if the cover 33 is lifted, the cover 33 b and the handle interfere with each other, so that the cover 33 does not come off.
Further, the cover 33 may be provided with a hanging ear so that it can be suspended by a fuel changer or the like, or may be installed using a dedicated jig.
Further, without using the cover 33, the thermoelectric element 31 may be simply suspended from the handle of the spent fuel A or the upper end of the side of the channel box and brought into contact with the surface of the spent fuel A.

以上のように構成されたことから、本第2実施形態によれば、前記第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。   With the configuration as described above, according to the second embodiment, in addition to the same effects as the effects (1) to (3) of the first embodiment, the following effect (4) is achieved.

(4)使用済燃料貯蔵プール11に水没した使用済燃料Aに熱電素子31が設置され、この熱電素子31が発電した電力を用いて送風機32が作動し、筒状体14の流路23へ筒状体14の下方から空気を強制的に送風するので、流路23を上昇する空気上昇流の流量を増大させることができる。この結果、ヒートパイプ13の凝縮部22による放熱効果が促進されて、使用済燃料Aの崩壊熱をより効果的に除熱でき、併せてヒートパイプ13の凝縮部22や筒状体14を小型化できる。   (4) The thermoelectric element 31 is installed in the spent fuel A submerged in the spent fuel storage pool 11, and the blower 32 is operated using the electric power generated by the thermoelectric element 31, to the flow path 23 of the cylindrical body 14. Since air is forcibly blown from below the cylindrical body 14, the flow rate of the air rising flow that rises in the flow path 23 can be increased. As a result, the heat radiation effect by the condensing part 22 of the heat pipe 13 is promoted, the decay heat of the spent fuel A can be removed more effectively, and the condensing part 22 and the cylindrical body 14 of the heat pipe 13 can be reduced in size. Can be

[C]第3実施形態(図4)
図4は、本発明に係る使用済燃料貯蔵設備の第3実施形態を示す構成図である。この第3実施形態において、前記第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 4)
FIG. 4 is a configuration diagram showing a third embodiment of the spent fuel storage facility according to the present invention. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is simplified or omitted.

本第3実施形態の使用済燃料貯蔵設備40が前記第1実施形態と異なる点は、使用済燃料貯蔵プール11、プール水冷却浄化系12、ヒートパイプ13及び筒状体14のほかに、熱電素子31、送風機32及びダクト41が追加して設けられた点である。このうち、熱電素子31は前記第2実施形態と同様である。   The spent fuel storage facility 40 of the third embodiment differs from the first embodiment in that, in addition to the spent fuel storage pool 11, the pool water cooling and purification system 12, the heat pipe 13, and the tubular body 14, a thermoelectric The element 31, the blower 32, and the duct 41 are additionally provided. Among these, the thermoelectric element 31 is the same as that of the second embodiment.

ダクト41は、筒状体14の外側からこの筒状体14の下端部外側を通って筒状体14の内側へ延び、先端に吹出口42が、基端に導入口43がそれぞれ形成されて構成される。吹出口42は、筒状体14の内側で上方に開口して形成され、また、導入口43は、筒状体14の外側に開口される。   The duct 41 extends from the outside of the tubular body 14 to the inside of the tubular body 14 through the outside of the lower end portion of the tubular body 14, and has an outlet 42 at the tip and an inlet 43 at the base end. Composed. The air outlet 42 is formed to open upward on the inside of the cylindrical body 14, and the introduction port 43 is opened to the outside of the cylindrical body 14.

このダクト41の内部で導入口43付近に送風機32が配置される。この送風機32は、熱電素子31にて発電された電力により駆動し、筒状体14外の空気を導入口43からダクト41内へ導入し、この導入された空気を筒状体14内の流路23へ吹出口42から上方へ向かって噴出させる。   Inside the duct 41, the blower 32 is disposed near the introduction port 43. The blower 32 is driven by the electric power generated by the thermoelectric element 31, introduces air outside the cylindrical body 14 into the duct 41 from the inlet 43, and introduces the introduced air into the duct 14. The air is ejected upward from the air outlet 42 to the passage 23.

ここで、ダクト41の吹出口42は、導入口43よりも開口面積が小さく形成され、吹出口42から噴出する空気の流速が約10m/秒以上の高速になるように吹出口42の開口面積が設定される。このような高速空気が吹出口42から筒状体14の流路23に噴出されることで、流路23の圧力が低下するため、筒状体14の外側下部の空気が筒状体14内に吸引されることになる。この吸引された空気は、ダクト41の吹出口42から噴出する空気流量の数倍の流量となるため、筒状体14の流路23を流れる空気流量を極めて増大させることが可能になる。   Here, the air outlet 42 of the duct 41 is formed to have an opening area smaller than that of the inlet 43, and the air opening speed of the air discharged from the air outlet 42 is about 10 m / second or more. Is set. Since such high-speed air is ejected from the outlet 42 to the flow path 23 of the cylindrical body 14, the pressure in the flow path 23 decreases, so that the air at the outer lower portion of the cylindrical body 14 is in the cylindrical body 14. Will be aspirated. Since this sucked air has a flow rate several times the air flow rate ejected from the air outlet 42 of the duct 41, the flow rate of air flowing through the flow path 23 of the cylindrical body 14 can be extremely increased.

以上のように構成されたことから、本第4実施形態においても、前記第1実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(5)を奏する。   With the configuration as described above, the fourth embodiment also provides the following effect (5) in addition to the same effects as the effects (1) to (3) of the first embodiment.

(5)筒状体14には、この筒状体14の外側から筒状体14の下端部外側を通って筒状体14の内側へ延びるダクト41が設置される。このダクト41には、筒状体14の内側上方へ開口する吹出口42がダクト41の先端に形成されると共に、ダクト41の基端の導入口43側の内部に送風機32が配置される。この送風機32は、使用済燃料貯蔵プール11内のプール水15中に水没した使用済燃料Aの表面に設置された熱電素子31が発生する電力によって駆動される。   (5) A duct 41 that extends from the outside of the tubular body 14 to the inside of the tubular body 14 through the outside of the lower end portion of the tubular body 14 is installed in the tubular body 14. In the duct 41, an air outlet 42 that opens upward inward of the cylindrical body 14 is formed at the distal end of the duct 41, and the blower 32 is disposed inside the proximal end of the duct 41 on the introduction port 43 side. The blower 32 is driven by electric power generated by the thermoelectric element 31 installed on the surface of the spent fuel A submerged in the pool water 15 in the spent fuel storage pool 11.

このように構成されたことから、送風機32の駆動により、筒状体14の外側の空気がダクト41の吹出口42から筒状体14の流路23へ上方へ向かって噴出することで、この流路23内へ筒状体14の外側下方の空気が、ジェットポンプ作用で大量に吸引される。これにより、流路23を下方から上方へ向かって流れる空気上昇流の流量が極めて大きくなるので、ヒートパイプ13の凝縮部22の放熱効果が著しく向上し、使用済燃料貯蔵プール11内のプール水15の熱、ひいては使用済燃料Aの崩壊熱をより一層好適に除熱でき、併せてヒートパイプ13の凝縮部22や筒状体14の小型化を実現できる。   Since the air blower 32 is driven as described above, the air outside the cylindrical body 14 is jetted upward from the air outlet 42 of the duct 41 to the flow path 23 of the cylindrical body 14. A large amount of air below the outside of the cylindrical body 14 is sucked into the flow path 23 by the jet pump action. As a result, the flow rate of the air upward flow flowing from below to above in the flow path 23 becomes extremely large, so that the heat dissipation effect of the condensing part 22 of the heat pipe 13 is remarkably improved, and the pool water in the spent fuel storage pool 11 Thus, the heat of 15 and the decay heat of the spent fuel A can be removed more suitably, and the condensing part 22 and the cylindrical body 14 of the heat pipe 13 can be reduced in size.

以上、本発明を上記実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を種々変形してもよく、また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, A component may be variously deformed in the range which does not deviate from the summary, and it covers different embodiment. You may combine a component suitably.

例えば図5に示すように、第3実施形態の使用済燃料貯蔵設備40におけるダクト41の吹出口42内には、この吹出口42の周方向に沿って旋回羽根45が複数枚配列されて、吹出口42から噴出する空気を旋回流にするよう構成されてもよい。これにより、筒状体14の流路23を流れる空気が撹拌されて、ヒートパイプ13の凝縮部22における放熱効果が更に向上する。従って、使用済燃料貯蔵プール11のプール水15の熱、ひいては使用済燃料Aの崩壊熱の除熱をより一層促進でき、併せてヒートパイプ13の凝縮部22や筒状体14を小型化できる。   For example, as shown in FIG. 5, a plurality of swirl vanes 45 are arranged in the air outlet 42 of the duct 41 in the spent fuel storage facility 40 of the third embodiment along the circumferential direction of the air outlet 42. You may comprise so that the air ejected from the blower outlet 42 may be made into a swirl flow. Thereby, the air which flows through the flow path 23 of the cylindrical body 14 is stirred, and the heat dissipation effect in the condensing part 22 of the heat pipe 13 is further improved. Therefore, the heat removal of the pool water 15 of the spent fuel storage pool 11 and the decay heat of the spent fuel A can be further promoted, and the condensing part 22 and the cylindrical body 14 of the heat pipe 13 can be reduced in size. .

また、第3実施形態の使用済燃料貯蔵設備40において、送風機32はダクト41内ではなく、ダクト41の外側で導入口43付近に配置されてもよい。   Further, in the spent fuel storage facility 40 of the third embodiment, the blower 32 may be disposed not in the duct 41 but in the vicinity of the inlet 43 outside the duct 41.

10 使用済燃料貯蔵設備
11 使用済燃料貯蔵プール
12 プール水冷却浄化系(プール水冷却系)
13 ヒートパイプ
14 筒状体
15 プール水
17 ポンプ
19 熱交換器
21 蒸発部
22 凝縮部
23 流路
24 微細突起
30 使用済燃料貯蔵設備
31 熱電素子(熱電変換手段)
32 送風機(送風手段)
33 カバー
33a 穴
33b 蓋
40 使用済燃料貯蔵設備
41 ダクト
42 吹出口
43 導入口
45 旋回羽根
A 使用済燃料
L、N 長さ
10 Spent Fuel Storage Facility 11 Spent Fuel Storage Pool 12 Pool Water Cooling Purification System (Pool Water Cooling System)
13 Heat pipe 14 Tubular body 15 Pool water 17 Pump 19 Heat exchanger 21 Evaporating part 22 Condensing part 23 Channel 24 Fine protrusion 30 Spent fuel storage equipment 31 Thermoelectric element (thermoelectric conversion means)
32 Blower (Blower means)
33 Cover 33a Hole 33b Lid 40 Spent fuel storage equipment 41 Duct 42 Outlet 43 Inlet 45 Swivel blade A Spent fuel L, N Length

Claims (8)

使用済燃料をプール水中に水没させて前記使用済燃料の崩壊熱を除去する使用済燃料貯蔵プールと、
ポンプ及び熱交換器を備え、前記ポンプの駆動により前記プール水を前記熱交換器へ導いて冷却させ、前記使用済燃料貯蔵プールへ戻すプール水冷却系と、を有する使用済燃料貯蔵設備において、
前記使用済燃料貯蔵プールの前記プール水に蒸発部が浸漬され、凝縮部が前記プール水の水面上方に位置づけられたヒートパイプと、
前記ヒートパイプの前記凝縮部を内包し、この凝縮部との間に空気を流動させる流路が形成される筒状体と、を有することを特徴とする使用済燃料貯蔵設備。
A spent fuel storage pool that submerges spent fuel in pool water to remove decay heat of the spent fuel;
A spent fuel storage facility comprising: a pump and a heat exchanger; and a pool water cooling system for returning the pool water to the spent fuel storage pool by cooling the pool water by guiding the pool water to the heat exchanger by driving the pump;
A heat pipe in which an evaporating part is immersed in the pool water of the spent fuel storage pool, and a condensing part is positioned above the surface of the pool water;
A spent fuel storage facility comprising: a cylindrical body that encloses the condensing part of the heat pipe and in which a flow path for allowing air to flow is formed between the condensing part.
前記筒状体の下部にヒートパイプの凝縮部が内包され、前記筒状体の上下方向長さが前記凝縮部の上下方向長さの2倍以上に設定されたことを特徴とする請求項1に記載の使用済燃料貯蔵設備。 The heat pipe condensing part is included in the lower part of the cylindrical body, and the vertical length of the cylindrical body is set to be twice or more the vertical length of the condensing part. Spent fuel storage equipment described in 1. 前記筒状体の内面には、微細突起が略均一に形成されたことを特徴とする請求項1または2に記載の使用済燃料貯蔵設備。 The spent fuel storage facility according to claim 1 or 2, wherein fine protrusions are formed substantially uniformly on the inner surface of the cylindrical body. 前記使用済燃料貯蔵プールのプール水中に水没した使用済燃料の表面に設置されて発電する熱電変換手段と、筒状体の外側下方に配置され、前記熱電変換手段からの電力により駆動して前記筒状体内へ空気を送風する送風手段と、を有することを特徴とする請求項1乃至3のいずれか1項に記載の使用済燃料貯蔵設備。 Thermoelectric conversion means installed on the surface of the spent fuel submerged in the pool water of the spent fuel storage pool and generating electric power; disposed outside and below the cylindrical body; and driven by electric power from the thermoelectric conversion means The spent fuel storage facility according to claim 1, further comprising a blowing unit that blows air into the cylindrical body. 前記使用済燃料貯蔵プールのプール水中に水没した使用済燃料の表面に設置されて発電する熱電変換手段と、筒状体の外側からこの筒状体の下端部外側を通って前記筒状体の内側へ延び、先端に吹出口が前記筒状体の内側上方に開口して設けられたダクトと、前記熱電変換手段からの電力により駆動して、前記筒状体の外側の空気を前記ダクト内へ導き、この空気を前記吹出口から前記筒状体の内側上方へ噴出させる送風手段と、を有することを特徴とする請求項1乃至3のいずれか1項に記載の使用済燃料貯蔵設備。 Thermoelectric conversion means installed on the surface of the spent fuel submerged in the pool water of the spent fuel storage pool to generate electric power, and from the outside of the tubular body through the outside of the lower end of the tubular body, A duct extending inwardly and having a blower opening at the tip opened above the inner side of the cylindrical body, and driven by electric power from the thermoelectric conversion means, air outside the cylindrical body The spent fuel storage facility according to any one of claims 1 to 3, further comprising a blowing means for guiding the air to the inside and upward of the cylindrical body from the outlet. 前記ダクトの吹出口の開口面積は、前記吹出口から噴出する空気の流速が10m/秒以上となるように設定されたことを特徴とする請求項5に記載の使用済燃料貯蔵設備。 6. The spent fuel storage facility according to claim 5, wherein an opening area of the air outlet of the duct is set so that a flow velocity of air ejected from the air outlet is 10 m / second or more. 前記ダクトの吹出口には、噴出する空気を旋回流とする旋回羽根が配設されたことを特徴とする請求項5または6に記載の使用済燃料貯蔵設備。 The spent fuel storage facility according to claim 5 or 6, wherein swirl vanes using swirling air as a swirling flow are disposed at the outlet of the duct. 前記ダクト内に送風手段が配置されたことを特徴とする請求項5乃至7のいずれか1項に記載の使用済燃料貯蔵設備。 The spent fuel storage facility according to any one of claims 5 to 7, wherein an air blowing means is disposed in the duct.
JP2012005364A 2012-01-13 2012-01-13 Spent fuel storage facility Pending JP2013145161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012005364A JP2013145161A (en) 2012-01-13 2012-01-13 Spent fuel storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012005364A JP2013145161A (en) 2012-01-13 2012-01-13 Spent fuel storage facility

Publications (1)

Publication Number Publication Date
JP2013145161A true JP2013145161A (en) 2013-07-25

Family

ID=49041020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012005364A Pending JP2013145161A (en) 2012-01-13 2012-01-13 Spent fuel storage facility

Country Status (1)

Country Link
JP (1) JP2013145161A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556920B1 (en) * 2014-08-19 2015-10-13 한국원자력연구원 Passive safety system and nuclear power plant having the same
CN106653106A (en) * 2017-01-19 2017-05-10 华南理工大学 Nuclear power station spent fuel pool multistage long-distance passive heat pipe cooling system
CN107180661A (en) * 2017-03-30 2017-09-19 中国核动力研究设计院 A kind of spent fuel transport container residual heat removal facility
KR102067396B1 (en) * 2018-11-02 2020-01-17 한국수력원자력 주식회사 Small modular reactor system equipped with naturally circulating second cooling complex
KR20200033375A (en) * 2018-09-19 2020-03-30 한국수력원자력 주식회사 Apparatus for cooling spent nuclear fuel and method for cooling spent nuclear fuel using the same
KR102286098B1 (en) * 2020-10-08 2021-08-06 한국수력원자력 주식회사 Coolling system for spent fuel pool
WO2023172097A1 (en) * 2022-03-10 2023-09-14 한국수력원자력 주식회사 Small nuclear reactor cooling system and cooling method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556920B1 (en) * 2014-08-19 2015-10-13 한국원자력연구원 Passive safety system and nuclear power plant having the same
WO2016028073A1 (en) * 2014-08-19 2016-02-25 한국원자력연구원 Passive safety system and nuclear power plant comprising same
US10541058B2 (en) * 2014-08-19 2020-01-21 Korea Atomic Energy Research Institute Passive safety system and nuclear power plant comprising same
CN106653106A (en) * 2017-01-19 2017-05-10 华南理工大学 Nuclear power station spent fuel pool multistage long-distance passive heat pipe cooling system
CN107180661A (en) * 2017-03-30 2017-09-19 中国核动力研究设计院 A kind of spent fuel transport container residual heat removal facility
KR20200033375A (en) * 2018-09-19 2020-03-30 한국수력원자력 주식회사 Apparatus for cooling spent nuclear fuel and method for cooling spent nuclear fuel using the same
KR102176826B1 (en) 2018-09-19 2020-11-11 한국수력원자력 주식회사 Apparatus for cooling spent nuclear fuel and method for cooling spent nuclear fuel using the same
KR102067396B1 (en) * 2018-11-02 2020-01-17 한국수력원자력 주식회사 Small modular reactor system equipped with naturally circulating second cooling complex
KR102286098B1 (en) * 2020-10-08 2021-08-06 한국수력원자력 주식회사 Coolling system for spent fuel pool
WO2023172097A1 (en) * 2022-03-10 2023-09-14 한국수력원자력 주식회사 Small nuclear reactor cooling system and cooling method

Similar Documents

Publication Publication Date Title
JP2013145161A (en) Spent fuel storage facility
EP1755129A2 (en) Reactor containment vessel cooling equipment and nuclear power plant
TWI559328B (en) Static storage container cooling filter exhaust system and nuclear power plant
JP2010203858A (en) Reactor container cooling equipment, reactor container, and reactor container cooling method
JP5463196B2 (en) Nuclear power plant with reactor containment cooling equipment
KR101503266B1 (en) Decay Heat Removal System By Using Hybrid Heat Pipe Having Coolant And Neutron Absorber For Cooling A Nuclear Power Plant
JP2015508486A (en) Emergency reactor core cooling system (ECCS) using closed heat transfer path
JP2014526053A (en) Pressurized water reactor with small passive safety system
JP2016014640A5 (en)
JP6071493B2 (en) Hydrogen removal device
JPH06242279A (en) Reactor containment equipment
JP6771402B2 (en) Nuclear plant
JPH05180974A (en) Reactor, reactor cooling system and reactor power plant and its operational method
KR101921406B1 (en) Nuclear reactor system for SMR having improved cooling reliability
KR20170042511A (en) Spent fuel storage rack
KR101677981B1 (en) Safty system for a nuclear power plant and nuclear power plant having the same
JP2017072379A (en) Nuclear Reactor and Nuclear Power Plant
JP2001228280A (en) Reactor
KR20210118626A (en) Passive residual heat removal system
JP2011191080A (en) Steam separator for nuclear reactor
KR102414755B1 (en) Passive residual heat removal system of integral reactor for ship
JP2010145111A (en) Heat removal device of concrete cask and concrete cask
RU2725740C1 (en) Steam-liquid drum for shell-and-tube heat exchanger
JPH0798396A (en) Passive mixer
JP6827293B2 (en) Heat exchanger