JP2013144051A - Electrode for acquiring biological signal - Google Patents

Electrode for acquiring biological signal Download PDF

Info

Publication number
JP2013144051A
JP2013144051A JP2012006056A JP2012006056A JP2013144051A JP 2013144051 A JP2013144051 A JP 2013144051A JP 2012006056 A JP2012006056 A JP 2012006056A JP 2012006056 A JP2012006056 A JP 2012006056A JP 2013144051 A JP2013144051 A JP 2013144051A
Authority
JP
Japan
Prior art keywords
electrode
biological signal
biosignal
biosignal acquisition
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012006056A
Other languages
Japanese (ja)
Inventor
Yusaku Nakajima
悠策 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2012006056A priority Critical patent/JP2013144051A/en
Publication of JP2013144051A publication Critical patent/JP2013144051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for acquiring a biological signal, that is inexpensive and capable of accurate acquisition of the biological signal.SOLUTION: An electrode for acquiring a biological signal includes an electrode material and an electroplate. As for the electrode material, an amino acid or an organic salt is dissolved to an electrolyte solution. The electroplate consists of an electrically conductive material, and comes in electrical contact with the electrode material. The electrode material impregnates a water absorbing member in contact with the electroplate or is hardened to a gel or solid state. The electroplate consists of a carbon material. The electrode is an electrode for measuring a brain wave.

Description

本技術は、生体表面に当接し、生体信号を取得する生体信号取得用電極に関する。   The present technology relates to a biological signal acquisition electrode that contacts a biological surface and acquires a biological signal.

脳波や心電図といった生体信号は、生体(ヒトを含む動物)表面に当接した電極によって測定される。この電極(以下、生体信号取得用電極とする)は、吸水性材料に含浸された電界液、ゲル状電界質あるいは固体電界質等からなる電極材と、電極材に電気的に接触する電板と呼ばれる部材とを備える構造を有するものが一般的である。   A biological signal such as an electroencephalogram or an electrocardiogram is measured by an electrode in contact with the surface of a living body (animal including a human). This electrode (hereinafter referred to as a biological signal acquisition electrode) is composed of an electrode material made of a liquid electrolyte, a gel-like electrolyte, a solid electrolyte, etc. impregnated with a water-absorbing material, and an electrode plate that is in electrical contact with the electrode material What has a structure provided with the member called is common.

電板は、電極材との間で電荷を授受する部材であり、電極材との間で酸化還元反応を生じにくく、かつ生体信号の周波数に対してインピーダンスが安定しているものが好適である。例えば、特許文献1に開示されている「生体用電極」は、導電性粘着剤組成物と導電用ターミナルが接合された構成となっているが、導電用ターミナルにはAg/AgClのコーティングが施されている。   The electric plate is a member that exchanges electric charges with the electrode material, and preferably has a stable impedance with respect to the frequency of the biological signal and hardly causes an oxidation-reduction reaction with the electrode material. . For example, the “biological electrode” disclosed in Patent Document 1 has a structure in which a conductive adhesive composition and a conductive terminal are joined, and the conductive terminal is coated with Ag / AgCl. Has been.

特開2011−10725号公報JP 2011-10725 A

上記のように、生体信号取得用電極の電板は、生体信号の周波数に対するインピーダンスの変動が小さい材料からなるものとすることによって生体信号の正確な測定が可能となる。しかしそのような材料、例えば銀塩化銀焼結体や白金といった材料は、一般的な導電性材料に比較して高コストである。   As described above, the biological signal acquisition electrode electrode plate is made of a material having a small impedance variation with respect to the frequency of the biological signal, thereby enabling accurate measurement of the biological signal. However, such a material, for example, a material such as a silver-silver chloride sintered body or platinum, is more expensive than a general conductive material.

以上のような事情に鑑み、本技術の目的は、低コストであり、かつ生体信号の正確な取得が可能な生体信号取得用電極を提供することにある。   In view of the circumstances as described above, an object of the present technology is to provide a biological signal acquisition electrode that is low-cost and that can accurately acquire a biological signal.

以上のような事情に鑑み、本技術の一形態に係る生体信号取得用電極は、電極材と、電板とを具備する。
上記電極材は、電界質溶液にアミノ酸又は有機塩が溶解されている。
上記電板は、導電性材料からなり、上記電極材に電気的に接触する。
In view of the circumstances as described above, the biosignal acquisition electrode according to an embodiment of the present technology includes an electrode material and an electric plate.
In the electrode material, an amino acid or an organic salt is dissolved in an electrolyte solution.
The electric plate is made of a conductive material and is in electrical contact with the electrode material.

この構成によれば、電板の材料に係わらず、生体信号の周波数に対するインピーダンスが安定する。したがって、価格の安い材料からなる電板を利用することができ、低コストで正確な生体信号の測定が可能な生体信号取得用電極を作成することが可能である。   According to this configuration, the impedance with respect to the frequency of the biological signal is stabilized regardless of the material of the electric plate. Therefore, it is possible to use an electrode plate made of an inexpensive material, and it is possible to create a biosignal acquisition electrode that can accurately measure a biosignal at low cost.

上記電極材は、上記電板に当接する吸水性部材に含浸され、若しくはゲル状又は固体状に固められていてもよい。   The electrode material may be impregnated in a water-absorbing member in contact with the electric plate, or may be solidified in a gel form or a solid form.

この構成によれば、電極材を生体表面に当接させることにより、電極材に含まれる電界質による生体信号の取得が可能となる。   According to this configuration, by bringing the electrode material into contact with the surface of the living body, it is possible to acquire a biological signal using the electric field contained in the electrode material.

上記電板は、炭素材料からなるものであってもよい。   The electric plate may be made of a carbon material.

炭素材料(グラッシーカーボン、等方性黒鉛、バイオカーボン等)は、電極材との間で酸化還元反応を生じにくく、生体信号の正確な測定が可能となる。本技術に係る生体信号取得用電極では、電板の材料に係わらずインピーダンスが安定するため、炭素材料からなる電板を用いることが可能となる。   A carbon material (glassy carbon, isotropic graphite, biocarbon, etc.) hardly causes an oxidation-reduction reaction with an electrode material, and an accurate measurement of a biological signal is possible. In the biosignal acquisition electrode according to the present technology, since the impedance is stable regardless of the material of the electric plate, an electric plate made of a carbon material can be used.

上記生体信号取得用電極は、脳波測定用電極であってもよい。   The biological signal acquisition electrode may be an electroencephalogram measurement electrode.

脳波は、他の生体信号(心電等)に比較して低周波数であるが、インピーダンスは低周波帯域において変動し易い。本技術に係る生体信号測定用電極は、低周波数帯域のインピーダンスも安定しているため、脳波の測定にも好適である。   The electroencephalogram has a lower frequency than other biological signals (such as an electrocardiogram), but the impedance is likely to fluctuate in the low frequency band. The biosignal measurement electrode according to the present technology is also suitable for measuring an electroencephalogram because the impedance in the low frequency band is stable.

上記アミノ酸は、グリシンであってもよい。   The amino acid may be glycine.

グリシンは、分子内のカルボキシル基とアミン基の電気陰性度が同程度であり、電極材に含有させることにより、他のアミノ酸と比べてもインピーダンスを十分に安定させることが可能となる。   Glycine has the same degree of electronegativity between the carboxyl group and the amine group in the molecule, and when it is contained in the electrode material, the impedance can be sufficiently stabilized as compared with other amino acids.

以上のように、本技術によれば、低コストであり、かつ生体信号の正確な取得が可能な生体信号取得用電極を提供することが可能である。   As described above, according to the present technology, it is possible to provide a biological signal acquisition electrode that is low-cost and that can accurately acquire a biological signal.

本技術の実施形態に係る生体信号取得用電極の断面図である。It is sectional drawing of the electrode for biosignal acquisition which concerns on embodiment of this technique. 同生体信号取得用電極の斜視図である。It is a perspective view of the biosignal acquisition electrode. 比較に係る生体信号取得用電極による、生体信号周波数に対するインピーダンスを示すグラフである。It is a graph which shows the impedance with respect to the biosignal frequency by the electrode for biosignal acquisition which concerns on a comparison. 本技術の実施形態に係る生体信号取得用電極(クエン酸ナトリウム含有)による、生体信号周波数に対するインピーダンスを示すグラフである。It is a graph which shows the impedance with respect to the biosignal frequency by the electrode for biosignal acquisition (containing sodium citrate) concerning the embodiment of the present technology. 本技術の実施形態に係る生体信号取得用電極(グリシン含有)による、生体信号周波数に対するインピーダンスを示すグラフである。It is a graph which shows the impedance with respect to the biological signal frequency by the biological signal acquisition electrode (glycine containing) which concerns on embodiment of this technique.

本技術の実施形態に係る生体信号取得用電極について説明する。   A biosignal acquisition electrode according to an embodiment of the present technology will be described.

[生体信号取得用電極の構成]
図1は生体信号取得用電極1の構成を示す断面図であり、図2は生体信号取得用電極1の斜視図である。図2(a)は生体信号取得用電極1を一方から、図2(b)は生体信号取得用電極1をその反対方向からみた図である。これらの図に示すように、生体信号取得用電極1は、支持部材11、電極材12、電板13、端子14及び押さえリング15を有する。
[Configuration of electrode for biosignal acquisition]
FIG. 1 is a cross-sectional view showing the configuration of the biosignal acquisition electrode 1, and FIG. 2 is a perspective view of the biosignal acquisition electrode 1. 2A is a view of the biosignal acquisition electrode 1 from one side, and FIG. 2B is a view of the biosignal acquisition electrode 1 from the opposite direction. As shown in these drawings, the biological signal acquisition electrode 1 includes a support member 11, an electrode material 12, an electric plate 13, a terminal 14, and a pressing ring 15.

支持部材11は、合成樹脂等の非導電性材料からなり、電極材12、電板13及び端子14を支持する。支持部材11の形状は特に限定されないが、容器形状とすることができる。図1に示す支持部材11は、第1部材11aと第2部材11bからなり、第1部材11aに収容された電板13を第2部材11bが押さえリング15を介して押さえ付ける構造である。   The support member 11 is made of a nonconductive material such as synthetic resin, and supports the electrode material 12, the electric plate 13, and the terminal 14. The shape of the support member 11 is not particularly limited, but can be a container shape. The support member 11 shown in FIG. 1 includes a first member 11 a and a second member 11 b, and has a structure in which the second member 11 b presses the electric plate 13 accommodated in the first member 11 a through a pressing ring 15.

電極材12は、電界質溶液にアミノ酸又は有機塩の少なくとも何れか一方が溶解されたものであり、電板13に当接する。電極材12は、電界質溶液にアミノ酸又は有機塩が溶解された溶液がスポンジ等の吸水性部材に含浸されたものとすることができ、また、当該溶液がゲル状又は固体状に固められたものとすることもできる。   The electrode material 12 is obtained by dissolving at least one of an amino acid and an organic salt in an electrolyte solution and abuts on the electric plate 13. The electrode material 12 can be obtained by impregnating a water-absorbing member such as a sponge with a solution in which an amino acid or an organic salt is dissolved in an electrolytic solution, and the solution is solidified in a gel or solid state. It can also be.

電界質溶液は、塩化ナトリウム溶液、塩化カリウム溶液等、一般的に用いられる電界質溶液とすることができる。電界質溶液に溶解されるアミノ酸は、グリシン、ロイシン、トリプトファン等から選択することができるが、アミノ酸内のカルボキシル基とアミン基の電気陰性度が同程度であるグリシンが、インピーダンスがより安定し、好適である。   The electrolyte solution can be a commonly used electrolyte solution such as sodium chloride solution or potassium chloride solution. The amino acid dissolved in the electrolyte solution can be selected from glycine, leucine, tryptophan, etc., but glycine having the same electronegativity of the carboxyl group and the amine group in the amino acid has a more stable impedance, Is preferred.

電界質溶液に溶解される有機塩は、有機酸の塩である有機酸塩または有機塩基の塩である有機塩基塩である。有機酸塩は、クエン酸ナトリウム、リンゴ酸ナトリウム、サリチル酸ナトリウム、ベンゼンスルホン酸ナトリウム等が挙げられる。有機酸塩はこの他にも、カルボキシル基、スルホン基、ヒドロキシル基、チオール基、エノール基等の酸性基を有する有機酸と有機塩基または無機塩基の塩とすることができる。有機塩基塩は、アミン基等の塩基性基を有する有機塩基又は複素環式化合物等の有機塩基と有機酸または無機酸の塩とすることができる。アミノ酸または有機塩の濃度は、高い方が電極材12の導電性が高くなり好適であるが、数%程度でもよい。   The organic salt dissolved in the electrolyte solution is an organic acid salt that is a salt of an organic acid or an organic base salt that is a salt of an organic base. Examples of the organic acid salt include sodium citrate, sodium malate, sodium salicylate, and sodium benzenesulfonate. In addition, the organic acid salt can be a salt of an organic acid and an organic base or an inorganic base having an acidic group such as a carboxyl group, a sulfone group, a hydroxyl group, a thiol group, and an enol group. The organic base salt can be a salt of an organic base having a basic group such as an amine group or an organic base such as a heterocyclic compound and an organic acid or an inorganic acid. A higher amino acid or organic salt concentration is preferable because the conductivity of the electrode material 12 is higher, but it may be several percent.

電板13は、導電性材料からなり、電極材12に当接する。生体信号用取得用電極の電板は従来、生体信号の周波数に対するインピーダンスの変動が小さいとされる材料、例えば銀塩化銀焼結体や白金等からなるものとする必要があった。しかし、本実施形態においては後述する理由により、種々の導電性材料を利用することができる。具体的には、電板13は、(焼結体ではなく)メッキにより作成された銀塩化銀、等方性黒鉛、グラッシーカーボンあるいはバイオカーボン(モミ殻再生カーボン)等からなるものとすることができる。この中でも等方性黒鉛やグラッシーカーボン等の炭素材料は、電極材12に含有される電界質との酸化還元反応を生じにくく、電板13の材料として好適である。   The electric plate 13 is made of a conductive material and contacts the electrode material 12. Conventionally, an electrode plate for a biosignal acquisition electrode has been required to be made of a material whose impedance variation with respect to the frequency of the biosignal is small, such as a silver-silver chloride sintered body or platinum. However, in the present embodiment, various conductive materials can be used for the reasons described later. Specifically, the electric plate 13 is made of silver-silver chloride, isotropic graphite, glassy carbon, biocarbon (fir shell regenerated carbon) or the like prepared by plating (not a sintered body). it can. Among these, carbon materials such as isotropic graphite and glassy carbon are less likely to cause an oxidation-reduction reaction with the electrolyte contained in the electrode material 12 and are suitable as a material for the electric plate 13.

端子14は、電板13に導通し、測定装置の配線等が接続される端子である。端子14は導電性を有するものであればよく、材料、形状等は特に限定されない。   The terminal 14 is a terminal that is electrically connected to the electric plate 13 and to which the wiring of the measuring device is connected. The terminal 14 only needs to have conductivity, and the material, shape, and the like are not particularly limited.

生体信号取得用電極1は以上のような構成を有する。生体信号取得用電極1は、脳波計や心電計等のような測定装置に接続され、生体表面に当接されて用いられる。生体信号取得用電極1は例えば、生体に装着される装具や、生体に貼付されるパッドに取り付けられ、生体表面に当接されるものとすることができる。   The biosignal acquisition electrode 1 has the above-described configuration. The biosignal acquisition electrode 1 is connected to a measurement device such as an electroencephalograph or an electrocardiograph and is used in contact with the surface of the living body. The biosignal acquisition electrode 1 can be attached to, for example, a device attached to a living body or a pad attached to the living body and brought into contact with the surface of the living body.

[生体信号取得用電極の動作]
生体信号取得用電極1の動作について説明する。
[Operation of biosignal acquisition electrode]
The operation of the biosignal acquisition electrode 1 will be described.

上述のように、本実施形態に係る生体信号取得用電極1は、電界質溶液にアミノ酸又は有機塩が溶解されたものを電極材12として用いる。これにより、電極材が従来の電極材(塩化ナトリウム、塩化カリウム等)である場合に、生体信号の周波数に応じてインピーダンスが変動する材料(炭素材料等)からなる電板13を用いても、インピーダンスの変動を防止することが可能となる。   As described above, the biosignal acquisition electrode 1 according to the present embodiment uses an electrode material 12 in which an amino acid or an organic salt is dissolved in an electrolyte solution. Thereby, when the electrode material is a conventional electrode material (sodium chloride, potassium chloride, etc.), even if the electric plate 13 made of a material (carbon material, etc.) whose impedance varies according to the frequency of the biological signal is used, Impedance fluctuations can be prevented.

図3は比較として、従来の電極材(塩化ナトリウム溶液)と、種々の材料からなる電板を有する生体信号取得用電極によって信号を測定した場合の、信号周波数に対する生体信号取得用電極のインピーダンスを示したグラフである。図3(a)と図3(b)は縦軸の目盛が異なる。   For comparison, FIG. 3 shows the impedance of the biological signal acquisition electrode with respect to the signal frequency when the signal is measured by a conventional electrode material (sodium chloride solution) and a biological signal acquisition electrode having an electrode plate made of various materials. It is the shown graph. 3A and 3B are different in the scale of the vertical axis.

このグラフに示すように、銀塩化銀焼結体(Ag−AgCl)からなる電板の場合には、広い周波数帯域においてインピーダンスがフラットであり、信号周波数に対してインピーダンスが安定しているといえる。しかしながら、バイオカーボン、等方性黒鉛及びグラッシーカーボンからなる電板の場合は、信号周波数に応じてインピーダンスが変動し、特に低い周波数帯域においては、インピーダンスが増大していることがわかる。   As shown in this graph, in the case of an electric plate made of a silver-silver chloride sintered body (Ag-AgCl), it can be said that the impedance is flat in a wide frequency band and the impedance is stable with respect to the signal frequency. . However, in the case of an electric plate made of biocarbon, isotropic graphite, and glassy carbon, it can be seen that the impedance fluctuates according to the signal frequency, and the impedance increases particularly in a low frequency band.

図4及び図5は、本実施形態に係る生体信号取得用電極1において、電板13を種々の材料からなるものとした場合の、信号周波数に対する生体信号取得用電極のインピーダンスを示したグラフである。図4は電極材12として電界質溶液にクエン酸ナトリウムを溶解させた溶液を用い、図5は電極材12として電解質溶液にグリシンを溶解させた溶液を用いた場合である。   4 and 5 are graphs showing the impedance of the biological signal acquisition electrode with respect to the signal frequency when the electrode plate 13 is made of various materials in the biological signal acquisition electrode 1 according to the present embodiment. is there. FIG. 4 shows a case where a solution in which sodium citrate is dissolved in an electrolyte solution is used as the electrode material 12, and FIG. 5 is a case in which a solution in which glycine is dissolved in the electrolyte solution is used as the electrode material 12.

図4及び図5に示すように、電界質溶液にアミノ酸又は有機塩が溶解されたものを電極材12とした場合には、広い周波数帯域にわたってインピーダンスが安定していることがわかる。即ち、生体信号取得用電極1を用いることにより、生体信号の周波数に対してインピーダンスが安定し、正確な生体信号の測定が可能であるといえる。   As shown in FIGS. 4 and 5, when the electrode material 12 is formed by dissolving an amino acid or an organic salt in an electrolyte solution, it can be seen that the impedance is stable over a wide frequency band. That is, by using the biosignal acquisition electrode 1, it can be said that the impedance is stable with respect to the frequency of the biosignal, and an accurate biosignal can be measured.

特に、低い周波数帯域(10Hz程度以下)は脳波の周波数に相当するため、生体信号取得用電極1は脳波測定において特に有効である。この他にも、生体信号取得用電極1は、周波数帯域が広い生体信号の測定にも適している。   In particular, since the low frequency band (about 10 Hz or less) corresponds to the frequency of the electroencephalogram, the biological signal acquisition electrode 1 is particularly effective in the electroencephalogram measurement. In addition, the biological signal acquisition electrode 1 is also suitable for measuring biological signals having a wide frequency band.

電界質溶液にアミノ酸又は有機塩を溶解させることにより、生体信号取得用電極1のインピーダンスが安定する理由については、アミノ酸又は有機塩はプロトン(H)を授受できるためであると考えられる。 The reason why the impedance of the biological signal acquisition electrode 1 is stabilized by dissolving the amino acid or organic salt in the electrolyte solution is considered to be because the amino acid or organic salt can exchange protons (H + ).

以上のように、本実施形態に係る生体信号取得用電極1は、電板13の材料に係わらず生体信号の周波数に対して安定したインピーダンスを有するため、電板13を安価な材料からなるものとすることが可能である。したがって、本実施形態に係る生体信号取得用電極1は、低コストで生体信号の正確な取得が可能なものである。   As described above, since the biological signal acquisition electrode 1 according to the present embodiment has a stable impedance with respect to the frequency of the biological signal regardless of the material of the electrical plate 13, the electrical plate 13 is made of an inexpensive material. Is possible. Therefore, the biological signal acquisition electrode 1 according to the present embodiment can accurately acquire a biological signal at low cost.

本技術は、上記各実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において変更することが可能である。   The present technology is not limited only to the above-described embodiments, and can be changed without departing from the gist of the present technology.

なお、本技術は以下のような構成も採ることができる。   In addition, this technique can also take the following structures.

(1)
電界質溶液にアミノ酸又は有機塩が溶解された電極材と、
導電性材料からなり、上記電極材に電気的に接触する電板と
を具備する生体信号取得用電極。
(1)
An electrode material in which an amino acid or an organic salt is dissolved in an electrolyte solution;
An electrode for biosignal acquisition, comprising: an electroplate made of a conductive material and in electrical contact with the electrode material.

(2)
上記(1)に記載の生体信号取得用電極であって、
上記電極材は、上記電板に当接する吸水性部材に含浸され、若しくはゲル状又は固体状に固められている
生体信号取得用電極。
(2)
The biosignal acquisition electrode according to (1) above,
The electrode for biosignal acquisition, wherein the electrode material is impregnated in a water-absorbing member in contact with the electric plate, or is solidified in a gel or solid state.

(3)
上記(1)又は(2)に記載の生体信号取得用電極であって、
上記電板は、炭素材料からなる
生体信号取得用電極。
(3)
The biosignal acquisition electrode according to (1) or (2) above,
The electrode plate is a biosignal acquisition electrode made of a carbon material.

(4)
上記(1)から(3)のうちいずれか一つに記載の生体信号取得用電極であって、
上記生体信号取得用電極は、脳波測定用電極である
生体信号取得用電極。
(4)
The biological signal acquisition electrode according to any one of (1) to (3) above,
The biosignal acquisition electrode is an electroencephalogram measurement electrode.

(5)
上記(1)から(4)のうちいずれか一つに記載の生体信号取得用電極であって、
上記アミノ酸は、グリシンである
生体信号取得用電極。
(5)
The biosignal acquisition electrode according to any one of (1) to (4) above,
The amino acid is glycine.

1…生体信号取得用電極
12…電極材
13…電板
DESCRIPTION OF SYMBOLS 1 ... Electrode for biological signal acquisition 12 ... Electrode material 13 ... Electroplate

Claims (5)

電界質溶液にアミノ酸又は有機塩が溶解された電極材と、
導電性材料からなり、前記電極材に電気的に接触する電板と
を具備する生体信号取得用電極。
An electrode material in which an amino acid or an organic salt is dissolved in an electrolyte solution;
An electrode for biosignal acquisition, comprising: an electroplate made of a conductive material and in electrical contact with the electrode material.
請求項1に記載の生体信号取得用電極であって、
前記電極材は、前記電板に当接する吸水性部材に含浸され、若しくはゲル状又は固体状に固められている
生体信号取得用電極。
The biosignal acquisition electrode according to claim 1,
The electrode for biosignal acquisition, wherein the electrode material is impregnated in a water-absorbing member in contact with the electric plate, or is solidified in a gel or solid state.
請求項1に記載の生体信号取得用電極であって、
前記電板は、炭素材料からなる
生体信号取得用電極。
The biosignal acquisition electrode according to claim 1,
The electrode plate is a biosignal acquisition electrode made of a carbon material.
請求項1に記載の生体信号取得用電極であって、
前記生体信号取得用電極は、脳波測定用電極である
生体信号取得用電極。
The biosignal acquisition electrode according to claim 1,
The biosignal acquisition electrode is an electroencephalogram measurement electrode.
請求項1に記載の生体信号取得用電極であって、
前記アミノ酸は、グリシンである
生体信号取得用電極。
The biosignal acquisition electrode according to claim 1,
The amino acid is glycine.
JP2012006056A 2012-01-16 2012-01-16 Electrode for acquiring biological signal Pending JP2013144051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006056A JP2013144051A (en) 2012-01-16 2012-01-16 Electrode for acquiring biological signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006056A JP2013144051A (en) 2012-01-16 2012-01-16 Electrode for acquiring biological signal

Publications (1)

Publication Number Publication Date
JP2013144051A true JP2013144051A (en) 2013-07-25

Family

ID=49040259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006056A Pending JP2013144051A (en) 2012-01-16 2012-01-16 Electrode for acquiring biological signal

Country Status (1)

Country Link
JP (1) JP2013144051A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080396A1 (en) 2018-10-17 2020-04-23 Nok株式会社 Bioelectrode and bioelectrode production method
WO2020080395A1 (en) 2018-10-17 2020-04-23 Nok株式会社 Bioelectrode and bioelectrode production method
WO2020121777A1 (en) 2018-12-10 2020-06-18 Nok株式会社 Biological electrode and biological electrode production method
WO2021029100A1 (en) * 2019-08-13 2021-02-18 アルプスアルパイン株式会社 Electrode for measuring biological information

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080396A1 (en) 2018-10-17 2020-04-23 Nok株式会社 Bioelectrode and bioelectrode production method
WO2020080395A1 (en) 2018-10-17 2020-04-23 Nok株式会社 Bioelectrode and bioelectrode production method
WO2020121777A1 (en) 2018-12-10 2020-06-18 Nok株式会社 Biological electrode and biological electrode production method
WO2021029100A1 (en) * 2019-08-13 2021-02-18 アルプスアルパイン株式会社 Electrode for measuring biological information

Similar Documents

Publication Publication Date Title
JP5720047B2 (en) Electroencephalogram measurement electrode, cap with electroencephalogram measurement electrode, and electroencephalogram measurement apparatus
US8825128B2 (en) Sensor for measuring biosignals
US9757049B2 (en) Electrode and device for detecting biosignal and method of using the same
US10736528B2 (en) Dry electrode for bio-potential and skin impedance sensing and method of use
US20070015984A1 (en) Electrode for measuring biosignal
JP6003437B2 (en) Biological signal measuring electrode and biological signal measuring apparatus
Li et al. Microneedle-based potentiometric sensing system for continuous monitoring of multiple electrolytes in skin interstitial fluids
KR20120078843A (en) Electrode for living body and device for measuring living body signal
JP2013144051A (en) Electrode for acquiring biological signal
US10980465B2 (en) Sensor assembly
WO2013054498A1 (en) Organism signal measurement device and method for measuring signal of organism
CN105232035A (en) Bioelectric signal sensor
Zhou et al. Nanochannel templated iridium oxide nanostructures for wide-range pH sensing from solutions to human skin surface
US3420223A (en) Electrode for biological recording
JP2016047194A (en) Biological signal acquisition electrode, biological signal acquisition device and method
JP2013034699A (en) Bioelectric signal measuring electrode, method of using the same and manufacturing method
JP2022137320A (en) Biological information measurement electrode
CN212546944U (en) Minimally invasive levodopa detection sensor
CN109875555B (en) Non-invasive electroencephalogram recording electrode and manufacturing method thereof
CN209059195U (en) A kind of conduction pad pasting and electrocardiograph monitoring device
CN111387993B (en) Sensor for minimally invasive detection of levodopa and detection system thereof
KR20080063932A (en) Electrode for living body and device for detecting living signal
RU2234851C2 (en) Electrode device
CN203493637U (en) Electroencephalogram lug electrode
WO2020121777A1 (en) Biological electrode and biological electrode production method