JP2013143290A - Flat cable extrusion mold and method for manufacturing flat cable - Google Patents

Flat cable extrusion mold and method for manufacturing flat cable Download PDF

Info

Publication number
JP2013143290A
JP2013143290A JP2012003362A JP2012003362A JP2013143290A JP 2013143290 A JP2013143290 A JP 2013143290A JP 2012003362 A JP2012003362 A JP 2012003362A JP 2012003362 A JP2012003362 A JP 2012003362A JP 2013143290 A JP2013143290 A JP 2013143290A
Authority
JP
Japan
Prior art keywords
core wire
flat cable
mold
core
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012003362A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Omoto
克祥 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012003362A priority Critical patent/JP2013143290A/en
Priority to PCT/JP2012/076152 priority patent/WO2013105314A1/en
Publication of JP2013143290A publication Critical patent/JP2013143290A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize a shape of a flat cable.SOLUTION: A flat cable extrusion mold includes an inner mold and an outer mold 50. The inner mold has a core wire guide port 34 opened in the tip end thereof and having a shape in which a plurality of core wire passages 35 through which core wires 12 can be passed are arranged in a row so as to communicate with each other in side portions thereof, and has the tip end having a flat shape along a direction in which the plurality of core wire passages 35 are arranged. The outer mold 50 has in the tip end thereof a discharge port 52 opened in a flat shape along the direction in which the plurality of core wire passages 35 are arranged, and has the tip end flush with the tip end of the core wire guide port 34 or positioned on a front side of the tip end, and arranged so as to be spaced from the outer periphery of the inner mold 30 at an interval allowing an insulation coating material to pass therethrough. The inner mold 30 has concave notches 37 formed from the outer periphery toward the communicating portions between the plurality of core wire passages 35, in at least one of two portions in the direction in which the plurality of core wire passages 35 are arranged, of the outer periphery of the tip end thereof.

Description

この発明は、フラットケーブルを製造する技術に関する。   The present invention relates to a technique for manufacturing a flat cable.

特許文献1には、フラットケーブルが開示されている。このようなフラットケーブルは、一般的に、並列状に配列される複数の芯線の外周部を覆う形態で絶縁被覆材料を押出して被覆部を成形することにより製造される。   Patent Document 1 discloses a flat cable. Such a flat cable is generally manufactured by extruding an insulating coating material in a form covering the outer peripheral portions of a plurality of core wires arranged in parallel to form a covering portion.

より具体的には、フラットケーブルの製造は、複数の芯線を芯線案内口を通じて並列状に案内する内金型と、先端部に樹脂吐出口を有し、内金型の外周側に樹脂通過用の隙間をあけて配設される外金型とを有する治具を用いて行う。そして、内金型の芯線案内口から引き出される芯線の外周部を覆う形態で、溶融した或いは軟らかい状態の絶縁被覆材料が内金型と外金型との隙間から樹脂吐出口を通じて吐出される。   More specifically, the manufacture of the flat cable has an inner mold that guides a plurality of core wires in parallel through the core wire guide port, a resin discharge port at the tip, and a resin passage on the outer peripheral side of the inner mold. This is performed using a jig having an outer mold disposed with a gap. Then, in a form that covers the outer periphery of the core wire drawn out from the core wire guide port of the inner mold, the molten or soft insulating coating material is discharged from the gap between the inner mold and the outer mold through the resin discharge port.

特開2011−14449号公報JP 2011-14449 A

ところで、出願人は、フラットケーブルの被覆部の表面を滑らかにするために、樹脂吐出口の先端部を芯線案内口の先端部より前方に設けることによって、樹脂吐出口内でより高い圧力を加えた状態で絶縁被覆材料を吐出する技術を採用することを提案している。   By the way, the applicant applied higher pressure in the resin discharge port by providing the front end portion of the resin discharge port in front of the front end portion of the core wire guide port in order to smooth the surface of the covering portion of the flat cable. It has been proposed to employ a technique for discharging an insulating coating material in a state.

一方で、出願人は、被覆対象となる芯線の材質によっては、樹脂吐出口の先端部を芯線案内口の先端部より前方に設けることによる芯線に対する負荷を軽減するため、樹脂吐出口の先端部を芯線案内口の先端部付近に設ける(面一になる場合も含む)ことにより、樹脂吐出口内における芯線に対する絶縁被覆材料による圧力を軽減する技術を採用することも提案している。   On the other hand, depending on the material of the core wire to be coated, the applicant reduces the load on the core wire by providing the front end portion of the resin discharge port in front of the front end portion of the core wire guide port. It is also proposed to employ a technique for reducing the pressure by the insulating coating material on the core wire in the resin discharge port by providing the wire near the tip of the core wire guide port (including the case where it is flush).

しかしながら、樹脂吐出口の先端部を芯線案内口の先端部の付近に設けると、芯線に対する負荷が軽減されるものの、芯線同士の隙間に絶縁被覆材料が十分に入り込まず、被覆部内で複数の芯線が並列状態からばらけてフラットケーブル自体の形状が崩れてしまう恐れがあった。   However, if the tip of the resin discharge port is provided in the vicinity of the tip of the core wire guide port, the load on the core wire is reduced, but the insulation coating material does not sufficiently enter the gap between the core wires, and a plurality of core wires are formed in the coating portion. However, there was a risk that the shape of the flat cable itself would collapse due to separation from the parallel state.

そこで、本発明は、フラットケーブルの形状を安定化させることを目的とする。   Then, an object of this invention is to stabilize the shape of a flat cable.

第1の態様は、並列状に一列で配置された複数の芯線の外周部を絶縁被覆材料により覆って形成されるフラットケーブルを押出成形するためのフラットケーブル押出金型であって、先端部で円状に開口すると共に前記芯線を延在方向に沿って通過可能な複数の芯線通過路が互いに側部で連通する形態で一列に並んだ形状に形成された芯線案内口を有し、前記先端部が前記複数の芯線通過路が並ぶ方向に沿った扁平形状に形成され、前記複数の芯線を並列状に一列で案内可能な内金型と、先端部で前記複数の芯線通過路が並ぶ方向に沿った扁平形状に開口する樹脂吐出口を有し、前記先端部が前記芯線案内口の先端部に対して面一かそれより前方に位置すると共に前記内金型の外周部に対して前記絶縁被覆材料が通過可能な隙間をあけて配設されている外金型とを備え、前記内金型は、先端部の外周部のうちの前記複数の芯線通過路が並ぶ方向に亘る2部分のうちの少なくとも一方に、前記外周部から前記複数の芯線通過路同士の連通部分に向けて形成された凹状の切込部を有している。   A first aspect is a flat cable extrusion mold for extruding a flat cable formed by covering an outer periphery of a plurality of core wires arranged in a line in parallel with an insulating coating material, A plurality of core wire passages that open in a circular shape and are capable of passing through the core wire along the extending direction have core wire guide ports formed in a line in a form that communicates with each other at the side, and the tip The portion is formed in a flat shape along the direction in which the plurality of core wire passages are arranged, and an inner mold that can guide the plurality of core wires in a line in parallel, and the direction in which the plurality of core wire passages are arranged at the tip portion A resin discharge port that opens in a flat shape along the front end, and the front end portion is flush with or forward of the front end portion of the core wire guide port and the outer peripheral portion of the inner mold is Provided with a gap through which the insulation coating material can pass. An outer mold, and the inner mold is formed on at least one of two portions of the outer peripheral portion of the tip portion extending in the direction in which the plurality of core wire passages are arranged from the outer peripheral portion to the plurality of the outer die. It has a concave cut portion formed toward the communication portion between the core wire passages.

第2の態様は、第1の態様に係るフラットケーブル押出金型であって、前記切込部は、前記内金型の外周部から前記複数の芯線通過路同士の前記連通部分に向けて徐々に幅狭になる形状に形成されている。   A 2nd aspect is a flat cable extrusion metal mold | die which concerns on a 1st aspect, Comprising: The said notch part is gradually toward the said communication part of these core wire passages from the outer peripheral part of the said inner metal mold | die. It is formed in a shape that becomes narrow.

第3の態様は、第1又は第2の態様に係るフラットケーブル押出金型であって、前記切込部は、前記内金型の先端部の外周部のうちの前記複数の芯線通過路が並ぶ方向に亘る2部分の両方にそれぞれ形成されている。   A 3rd aspect is a flat cable extrusion metal mold | die which concerns on a 1st or 2nd aspect, Comprising: The said notch part is the said some core wire passageway in the outer peripheral part of the front-end | tip part of the said inner mold. It is formed in both of the two parts extending in the line-up direction.

第4の態様は、第1〜第3のいずれか一態様に係るフラットケーブル押出金型であって、前記内金型と前記外金型とは、先端部同士が面一となる形態で配設されている。   A fourth aspect is a flat cable extrusion mold according to any one of the first to third aspects, and the inner mold and the outer mold are arranged in a form in which the tip portions are flush with each other. It is installed.

第5の態様は、並列状に一列で配置された複数の芯線の外周部を絶縁被覆材料により覆って形成されるフラットケーブルの製造方法であって、(a)請求項1〜請求項4のいずれか一項に記載のフラットケーブル押出金型において、前記内金型の前記芯線案内口を通じて前記複数の芯線を並列状に一列で下流側に移動させる工程と、(b)前記フラットケーブル押出金型において、前記内金型と前記外金型との隙間を通じて、前記樹脂吐出口から前記絶縁被覆材料を前記工程(a)で下流側に移動される前記複数の芯線の外周部を覆う形態で押し出す工程とを備える。   A fifth aspect is a method of manufacturing a flat cable formed by covering the outer peripheral portions of a plurality of core wires arranged in a line in parallel with an insulating coating material, wherein: (a) claims 1-4 In the flat cable extrusion die according to any one of the above, the step of moving the plurality of core wires in parallel in a row through the core wire guide port of the inner die, and (b) the flat cable extrusion die In the mold, the outer covering portions of the plurality of core wires that are moved downstream from the resin discharge port in the step (a) through the gap between the inner mold and the outer mold are covered with the mold. And an extruding step.

第1の態様に係るフラットケーブル押出金型によると、先端部が複数の芯線通過路が並ぶ方向に沿った扁平形状に形成されている内金型が、先端部の外周部のうちの複数の芯線通過路が並ぶ方向に亘る2部分のうちの少なくとも一方に、外周部から複数の芯線通過路同士の連通部分に向けて形成された凹状の切込部を有している。このため、芯線同士の隙間に対して少なくとも一方から切込部を通じて絶縁被覆材料を入り込ませることができ、フラットケーブルの形状を安定化させることができる。   According to the flat cable extrusion mold according to the first aspect, the inner mold formed in a flat shape along the direction in which the plurality of core wire passages are arranged in the front end portion includes a plurality of outer peripheral portions of the front end portion. At least one of the two portions extending in the direction in which the core wire passages are arranged has a concave notch formed from the outer peripheral portion toward the communication portion between the plurality of core wire passages. For this reason, the insulating coating material can be inserted into the gap between the core wires through at least one of the cut portions, and the shape of the flat cable can be stabilized.

第2の態様に係るフラットケーブル押出金型によると、切込部が、内金型の外周部から複数の芯線通過路同士の連通部分に向けて徐々に幅狭になる形状に形成されている。このため、切込部を複数の芯線通過路の連通部分に対してより近くに達する形状に形成することができる。これにより、芯線案内口を通過して案内される複数の芯線同士の隙間のより奥側にまで絶縁被覆材料を入り込ませることができ、より確実にフラットケーブルの形状を安定化させることができる。   According to the flat cable extrusion die according to the second aspect, the cut portion is formed in a shape that gradually becomes narrower from the outer peripheral portion of the inner die toward the communication portion between the plurality of core wire passages. . For this reason, a cut | notch part can be formed in the shape which reaches nearer with respect to the communication part of a some core wire passage. As a result, the insulating coating material can be inserted deeper into the gaps between the plurality of core wires guided through the core wire guide port, and the shape of the flat cable can be more reliably stabilized.

第3の態様に係るフラットケーブル押出金型によると、切込部が、内金型の先端部の外周部のうちの複数の芯線通過路が並ぶ方向に亘る2部分の両方にそれぞれ形成されている。このため、複数の芯線同士の隙間に対して両側から絶縁被覆材料を入り込ませることができ、より確実にフラットケーブルの形状を安定化させることができる。   According to the flat cable extrusion die according to the third aspect, the cut portions are respectively formed in both of the two portions in the direction in which the plurality of core wire passages are arranged in the outer peripheral portion of the tip portion of the inner die. Yes. For this reason, insulation coating material can be entered from both sides into the gaps between the plurality of core wires, and the shape of the flat cable can be more reliably stabilized.

第4の態様に係るフラットケーブル押出金型によると、内金型と外金型とが、先端部同士が面一となる形態で配設されているため、絶縁被覆材料が複数の芯線に押し付けられることによる複数の芯線に加わる負荷を低減することができる。   According to the flat cable extrusion mold according to the fourth aspect, since the inner mold and the outer mold are arranged in such a manner that the tips are flush with each other, the insulating coating material is pressed against the plurality of core wires. It is possible to reduce the load applied to the plurality of core wires.

第5の態様に係るフラットケーブルの製造方法によると、フラットケーブル押出金型を用いて、複数の芯線を内金型の芯線案内口を通じて下流側に移動させると共に、絶縁被覆材料を内金型と外金型との隙間を通じて樹脂吐出口から複数の芯線の外周部を覆う形態で押し出す。これにより、絶縁被覆材料のうち内金型の切込部を通って押し出される絶縁被覆材料が複数の芯線同士の隙間に入り込むため、形状を安定化させたフラットケーブルを製造することができる。   According to the flat cable manufacturing method of the fifth aspect, the flat cable extrusion mold is used to move the plurality of core wires to the downstream side through the core wire guide port of the inner mold, and the insulating coating material is used as the inner mold. It extrudes in the form which covers the outer peripheral part of a some core wire from a resin discharge port through the clearance gap with an outer metal mold | die. Thereby, since the insulation coating material extruded through the notch part of the inner mold in the insulation coating material enters the gaps between the plurality of core wires, a flat cable having a stabilized shape can be manufactured.

フラットケーブルの斜視図である。It is a perspective view of a flat cable. フラットケーブル押出金型の側断面図である。It is a sectional side view of a flat cable extrusion die. フラットケーブル押出金型の平断面図である。It is a plane sectional view of a flat cable extrusion die. 内金型の正面図である。It is a front view of an inner mold. 外金型の背面図である。It is a rear view of an outer mold. 芯線案内口及び樹脂吐出口の正面図である。It is a front view of a core wire guide port and a resin discharge port.

以下、実施形態に係るフラットケーブル押出金型について説明する。このフラットケーブル押出金型は、フラットケーブルを製造するための部材である。このフラットケーブルは、ハイブリッド電気自動車(HEV)、電気自動車(EV)等の電源供給用ケーブルとして用いられるものである。   Hereinafter, the flat cable extrusion die according to the embodiment will be described. This flat cable extrusion mold is a member for manufacturing a flat cable. This flat cable is used as a power supply cable for a hybrid electric vehicle (HEV), an electric vehicle (EV) or the like.

<フラットケーブルの構成>
説明の便宜上、フラットケーブル10について説明しておく(図1参照)。フラットケーブル10は、導体部11の外周部を絶縁被覆部13が覆った扁平な形状に形成されている絶縁被覆芯線である。
<Configuration of flat cable>
For convenience of explanation, the flat cable 10 will be described (see FIG. 1). The flat cable 10 is an insulating coated core wire formed in a flat shape in which the outer peripheral portion of the conductor portion 11 is covered with the insulating coating portion 13.

導体部11は、並列状に一列で並べられた複数の芯線12によって構成されている。芯線12は、1本又は複数本の素線(図示省略)により構成される線材である。例えば、芯線12として、複数本の素線を撚って形成された撚線を採用することができる。芯線12を構成する素線は、アルミ、アルミ合金、銅又は銅合金等の材料により形成される導線である。また、素線は、スズ又はニッケル等の金属めっき処理が施されていることもある。   The conductor portion 11 is composed of a plurality of core wires 12 arranged in a line in parallel. The core wire 12 is a wire composed of one or more strands (not shown). For example, a stranded wire formed by twisting a plurality of strands can be adopted as the core wire 12. The strand which comprises the core wire 12 is the conducting wire formed with materials, such as aluminum, an aluminum alloy, copper, or a copper alloy. In addition, the wire may be subjected to a metal plating process such as tin or nickel.

より具体的には、導体部11は、隣合う芯線12同士が少なくとも延在方向一箇所で接触している。すなわち、導体部11における複数の芯線12は、電気的に接続されている。   More specifically, as for the conductor part 11, adjacent core wires 12 are contacting at least one place of the extending direction. That is, the plurality of core wires 12 in the conductor portion 11 are electrically connected.

絶縁被覆部13は、溶融させた絶縁被覆材料14を複数の芯線12の外周部を覆う形態で押出成形し、絶縁被覆材料14が固まることにより形成されている。絶縁被覆材料14は、絶縁性を有する合成樹脂材料である。例えば、絶縁被覆材料14として、オレフィン系樹脂又は塩化ビニル系樹脂等の合成樹脂材料を採用することができる。   The insulating coating portion 13 is formed by extruding the melted insulating coating material 14 in a form covering the outer peripheral portions of the plurality of core wires 12 and solidifying the insulating coating material 14. The insulating coating material 14 is a synthetic resin material having insulating properties. For example, a synthetic resin material such as an olefin resin or a vinyl chloride resin can be used as the insulating coating material 14.

より具体的には、絶縁被覆部13は、導体部11の延在方向に直交する断面視において、複数の芯線12が並ぶ方向に沿って長尺に形成されている。また、絶縁被覆部13は、複数の芯線12の外周部に密着し、複数の芯線12同士の隙間にも入り込んだ形態に形成されている。これにより、フラットケーブル10は、複数の芯線12が絶縁被覆部13の内側でばらけることを抑制され、形状が安定化されている。さらに、絶縁被覆部13は、隣合う芯線12同士が接触していない箇所では、隣合う芯線12間に介在していることもある。   More specifically, the insulation coating portion 13 is formed in a long shape along the direction in which the plurality of core wires 12 are arranged in a cross-sectional view orthogonal to the extending direction of the conductor portion 11. Moreover, the insulation coating portion 13 is formed in a form that is in close contact with the outer peripheral portions of the plurality of core wires 12 and enters into the gaps between the plurality of core wires 12. Thereby, as for the flat cable 10, it is suppressed that the some core wire 12 disperses inside the insulation coating part 13, and the shape is stabilized. Furthermore, the insulation coating portion 13 may be interposed between the adjacent core wires 12 in a portion where the adjacent core wires 12 are not in contact with each other.

<フラットケーブル押出金型の構成>
次に、フラットケーブル押出金型20の構成について説明する(図2、図3参照)。このフラットケーブル押出金型20は、形状の安定化したフラットケーブル10を製造するための構造を採用している。より具体的には、フラットケーブル押出金型20は、複数の芯線12同士の隙間に絶縁被覆材料14をより確実に入り込ませることにより、形状の安定化したフラットケーブル10を製造する。
<Configuration of flat cable extrusion mold>
Next, the structure of the flat cable extrusion die 20 will be described (see FIGS. 2 and 3). The flat cable extrusion mold 20 employs a structure for manufacturing the flat cable 10 having a stabilized shape. More specifically, the flat cable extrusion mold 20 manufactures the flat cable 10 having a stabilized shape by allowing the insulating coating material 14 to enter the gaps between the plurality of core wires 12 more reliably.

フラットケーブル押出金型20は、内金型30と、外金型50とを備え、この内金型30と外金型50とが組み合わされることにより構成されている。   The flat cable extrusion mold 20 includes an inner mold 30 and an outer mold 50, and is configured by combining the inner mold 30 and the outer mold 50.

内金型30は、主として複数の芯線12を通過させて案内する部分である(図2〜図4参照)。より具体的には、内金型30は、芯線通過方向Sの後方から前方に向けて、順に基部42、突出部38及び延出部36を有している。そして、内金型30は、全体に亘って芯線通過方向Sに沿って貫通する芯線案内部32と、基部42において芯線通過方向Sに沿って貫通する樹脂導入部44とを有している。   The inner mold 30 is a portion that mainly guides the plurality of core wires 12 through (see FIGS. 2 to 4). More specifically, the inner mold 30 includes a base portion 42, a protruding portion 38, and an extending portion 36 in order from the rear to the front in the core wire passage direction S. And the inner metal mold | die 30 has the core wire guide part 32 penetrated along the core wire passage direction S over the whole, and the resin introduction part 44 penetrated along the core wire passage direction S in the base part.

芯線案内部32は、複数の芯線12を並列状に一列で案内可能に形成された部分である。この芯線案内部32は、芯線通過方向Sに沿って貫通する孔状に形成されている。より具体的には、芯線案内部32は、先端側に芯線案内口34を有すると共に、その後方に芯線案内口34より広い内部空間を有する芯線導入部39を有している。   The core wire guide part 32 is a part formed so that a plurality of core wires 12 can be guided in a line in parallel. The core wire guide portion 32 is formed in a hole shape penetrating along the core wire passage direction S. More specifically, the core wire guide portion 32 has a core wire guide port 34 on the distal end side and a core wire introduction portion 39 having an inner space wider than the core wire guide port 34 on the rear side.

芯線案内口34は、複数の芯線12を並列状に一列で芯線通過方向Sに沿って案内する部分である。この芯線案内口34は、複数の芯線通過路35が互いに側部で連通する形態で芯線通過方向Sに直交する方向に一列に並んだ形状に形成されている(図6参照)。   The core wire guide port 34 is a portion that guides the plurality of core wires 12 in a row in parallel along the core wire passing direction S. The core wire guide ports 34 are formed in a shape in which a plurality of core wire passages 35 are arranged in a line in a direction orthogonal to the core wire passage direction S in a form in which a plurality of core wire passages 35 communicate with each other at the side portions (see FIG. 6).

芯線通過路35は、内金型30(延出部36)の先端部で円状に開口すると共に芯線12を延在方向に沿って通過可能に形成された中空状の部分である。この芯線通過路35は、芯線通過方向Sに沿って延在する形状に形成されている。また、芯線通過路35は、芯線通過方向Sに直交する断面視において、芯線12の外接円かそれより大きい(ここでは僅かに大きい)円に沿った形状に形成されている。また、複数の芯線通過路35同士は、自身が沿う円同士が外接又は重複する箇所で内部空間が連通している。すなわち、隣合う芯線通過路35を通過する各芯線12は、隣合う芯線通過路35の連通部分で接触し得る形態で芯線通過方向S前方に移動可能である。   The core wire passage 35 is a hollow portion that is formed in a circular shape at the tip of the inner mold 30 (extension portion 36) and is formed so as to be able to pass through the core wire 12 along the extending direction. The core wire passage 35 is formed in a shape extending along the core wire passage direction S. The core wire passage 35 is formed in a shape along a circumscribed circle of the core wire 12 or a larger circle (here, slightly larger) in a cross-sectional view orthogonal to the core wire passage direction S. Further, the inner space of the plurality of core wire passages 35 communicates with each other at a place where circles along which the core wires pass are circumscribed or overlapped. That is, each core wire 12 that passes through the adjacent core wire passageway 35 can move forward in the core wire passage direction S in a form that can be contacted at a communicating portion of the adjacent core wire passageway 35.

芯線導入部39は、芯線案内口34の芯線通過方向S後方で、芯線案内口34に向けて移動する複数の芯線12を補助的に案内する部分である。芯線導入部39は、内金型30(基部42)の芯線通過方向S後端部で開口すると共に芯線案内口34に連通している。より具体的には、芯線導入部39は、芯線通過方向Sに沿って直線状に延びる部分と、その前方から芯線通過方向Sに直交する断面視において内部空間が徐々に小さくなるテーパー状に形成された部分とを有している。   The core wire introduction part 39 is a part that auxiliaryly guides the plurality of core wires 12 moving toward the core wire guide port 34 behind the core wire guide port 34 in the core wire passage direction S. The core wire introduction portion 39 opens at the rear end portion in the core wire passing direction S of the inner mold 30 (base portion 42) and communicates with the core wire guide port 34. More specifically, the core wire introduction part 39 is formed in a taper shape in which the internal space gradually decreases in a cross-sectional view perpendicular to the core wire passage direction S from a portion extending linearly along the core wire passage direction S. And a portion that has been made.

内金型30の芯線通過方向S後端部に形成された基部42は、略直方体に形成された部分である。この基部42は、芯線通過方向Sに直交する方向に沿って扁平な形状に形成されている。   The base portion 42 formed at the rear end portion in the core wire passage direction S of the inner mold 30 is a portion formed in a substantially rectangular parallelepiped. The base 42 is formed in a flat shape along a direction orthogonal to the core wire passage direction S.

突出部38は、基部42のうちの芯線通過方向S前方側の面の中央から前方に向けて先細り形状で突出する部分である。より具体的には、突出部38は、芯線通過方向S後端部から延出部36の後端部まで、芯線通過方向Sに直交する断面視において略長方形の断面が徐々に小さくなる形状に形成されている。そして、突出部38の外周面は、主として、延出部36に向けて傾斜する4つの斜面によって構成されている。   The protruding portion 38 is a portion protruding in a tapered shape from the center of the surface on the front side in the core wire passing direction S of the base portion 42 toward the front. More specifically, the projecting portion 38 has a shape in which a substantially rectangular cross section gradually decreases in a cross-sectional view perpendicular to the core wire passing direction S from the rear end portion of the core wire passing direction S to the rear end portion of the extending portion 36. Is formed. And the outer peripheral surface of the protrusion part 38 is mainly comprised by the four slopes which incline toward the extension part 36. As shown in FIG.

延出部36は、突出部38の先端部から芯線通過方向S前方に向けて延出する部分である。内金型30の先端部を成す延出部36は、複数の芯線通過路35が並ぶ方向に沿った扁平形状に形成されている。   The extending part 36 is a part extending from the tip part of the protruding part 38 toward the front in the core wire passing direction S. The extending portion 36 that forms the tip portion of the inner mold 30 is formed in a flat shape along the direction in which the plurality of core wire passages 35 are arranged.

また、延出部36の外周部には、芯線通過方向Sに沿って切込部37が形成されている。この切込部37は、延出部36の外周部のうちの複数の芯線通過路35が並ぶ方向に渡る部分のうちの少なくとも一方(ここでは両方)に、複数の芯線通過路35同士の連通部分に向けて形成されている。より具体的には、切込部37は、内金型30の外周部から内周側に向けて徐々に幅狭になる形状に形成されている。図6には、芯線通過方向Sに直交する断面視において連通部分の両側の各芯線通過路35の開口縁部に沿った弧状部分を両側部に有する形状に形成された切込部37を示している。もっとも、切込部37の形状は、上記形状に限られるものではなく、例えば、略V字状に形成されていてもよい。   A cut portion 37 is formed in the outer peripheral portion of the extending portion 36 along the core wire passing direction S. The cut portion 37 communicates with at least one of the portions of the outer peripheral portion of the extending portion 36 in the direction in which the plurality of core wire passages 35 are arranged (both in this case). It is formed toward the part. More specifically, the cut portion 37 is formed in a shape that gradually becomes narrower from the outer peripheral portion of the inner mold 30 toward the inner peripheral side. In FIG. 6, the cut-out part 37 formed in the shape which has the arc-shaped part along the opening edge part of each core wire passageway 35 of the both sides of a communicating part in the cross-sectional view orthogonal to the core wire passage direction S is shown. ing. But the shape of the notch part 37 is not restricted to the said shape, For example, you may form in substantially V shape.

すなわち、芯線案内口34の開口縁部は、芯線通過路35同士の連通部分で隣合う芯線12の間に介在する形状に形成されているため、切込部37がない場合、延出部36の外周部から芯線12同士の接触部分或いは近接部分までの距離が大きくなってしまう。これに対して、延出部36の外周部から芯線12同士の接触部分或いは近接部分までの距離がより小さくなるように切込部37が形成されることにより、切込部37を通じて隣合う芯線12の隙間に絶縁被覆材料14を送ることが可能となる。   That is, since the opening edge part of the core wire guide port 34 is formed in the shape interposed between the adjacent core wires 12 in the communication part of the core wire passages 35, when there is no notch part 37, it is the extension part 36. The distance from the outer peripheral portion to the contact portion or the proximity portion between the core wires 12 increases. On the other hand, the adjacent core wires through the cut portion 37 are formed by forming the cut portion 37 so that the distance from the outer peripheral portion of the extension portion 36 to the contact portion or the proximity portion between the core wires 12 becomes smaller. The insulating coating material 14 can be fed into the 12 gaps.

樹脂導入部44は、突出部38及び延出部36の外周側の位置に絶縁被覆材料14を案内する部分である。すなわち、溶融された絶縁被覆材料14は、樹脂導入部44を通じて突出部38及び延出部36の外周側の位置に送られる。ここでは、樹脂導入部44は、芯線通過方向Sに沿って貫通する孔部であり、突出部38(延出部36)の長手方向に沿って長尺な形状に開口し、突出部38に隣接して両側(上下)に設けられている。この樹脂導入部44は、長手方向において、突出部38の長手寸法より大きい寸法に設定されている。   The resin introduction portion 44 is a portion that guides the insulating coating material 14 to positions on the outer peripheral side of the protruding portion 38 and the extending portion 36. That is, the melted insulating coating material 14 is sent to a position on the outer peripheral side of the protruding portion 38 and the extending portion 36 through the resin introducing portion 44. Here, the resin introduction portion 44 is a hole portion that penetrates along the core wire passage direction S, opens in a long shape along the longitudinal direction of the protruding portion 38 (extending portion 36), and extends into the protruding portion 38. Adjacent to each other (upper and lower). The resin introducing portion 44 is set to have a dimension larger than the longitudinal dimension of the protruding portion 38 in the longitudinal direction.

外金型50は、内金型30の突出部38及び延出部36の外周側に配設され、内金型30の樹脂導入部44を通じて送られる絶縁被覆材料14を突出部38及び延出部36の外周部との間を通じて芯線通過方向S前方に案内する部分である。より具体的には、外金型50は、芯線案内部32の突出部38及び延出部36の外周部に対して絶縁被覆材料14が通過可能な隙間をあけて配設されている。そして、この外金型50は、芯線通過方向Sに沿って貫通するように内部空間を連通させる樹脂吐出口52と樹脂案内部54とを有している。すなわち、外金型50は、樹脂吐出口52及び樹脂案内部54の内側に内金型30の延出部36及び突出部38を配設可能に形成されている。   The outer mold 50 is disposed on the outer peripheral side of the protruding portion 38 and the extending portion 36 of the inner mold 30, and the insulating coating material 14 sent through the resin introducing portion 44 of the inner mold 30 is extended to the protruding portion 38 and the extending portion 36. This is a portion that guides forward in the core wire passage direction S through the space between the outer periphery of the portion 36. More specifically, the outer mold 50 is disposed with a gap through which the insulating coating material 14 can pass with respect to the projecting portion 38 of the core wire guiding portion 32 and the outer peripheral portion of the extending portion 36. And this outer metal mold | die 50 has the resin discharge port 52 and the resin guide part 54 which connect internal space so that it may penetrate along the core wire passage direction S. As shown in FIG. That is, the outer mold 50 is formed so that the extending part 36 and the protruding part 38 of the inner mold 30 can be disposed inside the resin discharge port 52 and the resin guide part 54.

樹脂吐出口52は、芯線案内部32を通過して並列状に一列で案内される複数の芯線12を通過可能で、先端部で複数の芯線通過路35が並ぶ方向(延出部36の長手方向)に沿った扁平形状に開口する孔部である。この樹脂吐出口52は、芯線通過方向Sに沿って延在する形状に形成されている。   The resin discharge port 52 can pass through a plurality of core wires 12 guided in a line in parallel through the core wire guide portion 32, and a direction in which the plurality of core wire passages 35 are arranged at the tip portion (the length of the extension portion 36). It is a hole that opens in a flat shape along (direction). The resin discharge port 52 is formed in a shape extending along the core wire passage direction S.

ここでは、内金型30と外金型50とは、先端部同士が面一となる形態で配設されている。すなわち、樹脂吐出口52は、延出部36の外周部に対して全周に亘って隙間をあけた形態で、該延出部36を内側に配設可能な形状及び大きさに形成されている。ここでは、樹脂吐出口52は、芯線通過方向Sに直交する断面視において、延出部36の長手方向に沿った一対の直線部と、一対の直線部の各端部を結ぶ略半円形状の一対の曲線部とを有する形状の孔状に形成されている。   Here, the inner mold 30 and the outer mold 50 are arranged in a form in which the tip portions are flush with each other. In other words, the resin discharge port 52 is formed in a shape and size that allows the extended portion 36 to be disposed on the inner side in a form in which a gap is provided over the entire circumference with respect to the outer peripheral portion of the extended portion 36. Yes. Here, the resin discharge port 52 has a substantially semicircular shape connecting a pair of straight portions along the longitudinal direction of the extending portion 36 and each end of the pair of straight portions in a cross-sectional view orthogonal to the core wire passage direction S. It is formed in the shape of a hole having a pair of curved portions.

樹脂案内部54は、樹脂吐出口52の芯線通過方向S後方に形成され、樹脂吐出口52の内部空間に連通して、樹脂吐出口52より大きい内部空間を有する。ここでは、樹脂案内部54は、外金型50の芯線通過方向S後端部において、芯線通過方向Sに直交する断面視において内金型30の突出部38の後端部より大きく且つ一対の樹脂導入部44を含む大きさで略矩形状に開口している。すなわち、樹脂案内部54は、内金型30と外金型50とが組み合わされた状態で、樹脂導入部44と連通する。また、樹脂案内部54は、芯線通過方向Sに直交する断面視において、外金型50の芯線通過方向S後端部から樹脂吐出口52に向けて徐々に内部空間が小さくなる形状に形成されている。   The resin guide portion 54 is formed behind the resin discharge port 52 in the core wire passing direction S, communicates with the internal space of the resin discharge port 52, and has an internal space larger than the resin discharge port 52. Here, the resin guide portion 54 is larger at the rear end portion in the core wire passage direction S of the outer die 50 than the rear end portion of the protrusion 38 of the inner die 30 in a cross-sectional view orthogonal to the core wire passage direction S. The resin inlet 44 has a size that includes the resin introduction portion 44 and opens in a substantially rectangular shape. That is, the resin guide part 54 communicates with the resin introduction part 44 in a state where the inner mold 30 and the outer mold 50 are combined. Further, the resin guide portion 54 is formed in a shape in which the internal space gradually decreases from the rear end portion of the outer die 50 in the core wire passage direction S toward the resin discharge port 52 in a cross-sectional view orthogonal to the core wire passage direction S. ing.

<フラットケーブルの製造方法>
次に、フラットケーブル押出金型20を用いたフラットケーブルの製造方法について説明する。このフラットケーブル押出金型20は、絶縁被覆材料14を溶融させて押し出す押出機にセットして用いられる。
<Flat cable manufacturing method>
Next, a flat cable manufacturing method using the flat cable extrusion mold 20 will be described. The flat cable extrusion mold 20 is used by being set in an extruder that melts and extrudes the insulating coating material 14.

まず、フラットケーブル押出金型20において、内金型30の芯線案内口34を通じて複数の芯線12を並列状に一列で送る(工程(a))。この工程は、例えば、フラットケーブル押出金型20の芯線通過方向S上流側で芯線12を巻取収納した各収納体から複数の芯線12を供給すると共に、下流側で複数の芯線12を引き出すことにより行われるとよい。そして、複数の芯線12は、内金型30の芯線案内部32の芯線通過方向S後方から、芯線導入部39に挿通されると共に各芯線案内口34に挿通され、芯線通過方向S前方へ移動される。これにより、複数の芯線12は、芯線案内口34の隣合う芯線通過路35の連通部分を通じて延在方向において部分的に接触する形態で、並列状に一列で下流側に移動する。   First, in the flat cable extrusion die 20, the plurality of core wires 12 are sent in a line in parallel through the core wire guide port 34 of the inner die 30 (step (a)). In this step, for example, a plurality of core wires 12 are supplied from each storage body in which the core wire 12 is wound and stored on the upstream side in the core wire passing direction S of the flat cable extrusion die 20, and the plurality of core wires 12 are pulled out on the downstream side. It is good to be done. The plurality of core wires 12 are inserted into the core wire introduction portion 39 from the rear side of the core wire guide direction 32 of the core wire guide portion 32 of the inner mold 30 and are inserted into the core wire guide ports 34 to move forward in the core wire passage direction S. Is done. Thereby, the several core wire 12 moves to a downstream in a line in parallel with the form which contacts in the extension direction partially through the communication part of the adjacent core wire passageway 35 of the core wire guide port 34. As shown in FIG.

また、フラットケーブル押出金型20において、内金型30と外金型50との隙間を通じて、樹脂吐出口52から絶縁被覆材料14を上記工程(a)で引き出される複数の芯線12の外周部を覆う形態で押し出す(工程(b))。すなわち、押出機により溶融させた絶縁被覆材料14をフラットケーブル押出金型20を通じて押し出す。まず、溶融された絶縁被覆材料14は、溶融状態又は少なくとも軟らかい状態で、内金型30の樹脂導入部44内に押し流される。樹脂導入部44を通過後、絶縁被覆材料14は、外金型50と突出部38との間、外金型50と延出部36との間の順に押し流される。換言すると、前記順は、内金型30と樹脂案内部54との間、内金型30と樹脂吐出口52との間の順である。ここで、樹脂導入部44から芯線通過方向S前方に押し流される絶縁被覆材料14は、突出部38の両側方における内金型30と外金型50との隙間にも行き亘って、芯線通過方向Sに直交する断面視において環状を成して押し流される。また、絶縁被覆材料14は、延出部36の外周側を通過する際、部分的に切込部37内を通って押し流される。   Further, in the flat cable extrusion mold 20, the outer peripheral portions of the plurality of core wires 12 through which the insulating coating material 14 is drawn from the resin discharge port 52 in the step (a) through the gap between the inner mold 30 and the outer mold 50 are formed. Extrude in a covering form (step (b)). That is, the insulating coating material 14 melted by the extruder is extruded through the flat cable extrusion mold 20. First, the molten insulating coating material 14 is pushed into the resin introduction portion 44 of the inner mold 30 in a molten state or at least a soft state. After passing through the resin introduction portion 44, the insulating coating material 14 is pushed away between the outer mold 50 and the projecting portion 38 and between the outer mold 50 and the extending portion 36. In other words, the order is the order between the inner mold 30 and the resin guide 54 and between the inner mold 30 and the resin discharge port 52. Here, the insulation coating material 14 pushed away from the resin introduction portion 44 forward in the core wire passage direction S also extends to the gap between the inner mold 30 and the outer die 50 on both sides of the projecting portion 38, and passes through the core wire passage direction. In a cross-sectional view orthogonal to S, it is swept in an annular shape. Further, when the insulating coating material 14 passes through the outer peripheral side of the extending portion 36, it is partially pushed through the cut portion 37.

そして、樹脂吐出口52を通じて吐出される絶縁被覆材料14は、芯線案内口34を通じて出てくる複数の芯線12の外周部に付着しつつ、芯線通過方向S前方に向けて移動する。この際、特に切込部37を通って吐出される絶縁被覆材料14は、隣合う芯線12同士の隙間に入り込んで芯線12の外周部に付着する。   The insulating coating material 14 discharged through the resin discharge port 52 moves toward the front of the core wire passing direction S while adhering to the outer peripheral portions of the plurality of core wires 12 coming out through the core wire guide port 34. At this time, in particular, the insulating coating material 14 discharged through the cut portion 37 enters the gap between the adjacent core wires 12 and adheres to the outer peripheral portion of the core wire 12.

この後、絶縁被覆材料14が温度低下して固まることにより、複数の芯線12により構成される導体部11の外周部を被覆する絶縁被覆部13が形成される。なお、絶縁被覆材料14は、水中に浸されること等により冷却されてもよいし、自然に温度低下するのを待ってもよい。   Thereafter, the insulating coating material 14 is formed by covering the outer peripheral portion of the conductor portion 11 constituted by the plurality of core wires 12 by the temperature of the insulating coating material 14 being lowered and solidifying. The insulating coating material 14 may be cooled by being immersed in water or the like, or may wait for the temperature to drop naturally.

なお、上記工程(a)及び(b)は同時に行われる。もっとも、工程の開始時には、工程(a)及び(b)のうちの一方を先に行いつつ、他方を開始してもよい。   In addition, the said process (a) and (b) is performed simultaneously. However, at the start of the process, one of the processes (a) and (b) may be performed first while the other is started.

上記実施形態に係るフラットケーブル押出金型20及びこれを用いたフラットケーブルの製造方法によると、先端部が複数の芯線通過路35が並ぶ方向に沿った扁平形状に形成されている内金型30が、先端部の外周部のうちの複数の芯線通過路35が並ぶ方向に亘る2部分のうちの少なくとも一方に、外周部から複数の芯線通過路35同士の連通部分に向けて形成された凹状の切込部37を有している。このため、芯線12同士の隙間に対して少なくとも一方から切込部37を通じて絶縁被覆材料14を入り込ませることができ、フラットケーブル10の形状を安定化させることができる。   According to the flat cable extrusion die 20 and the flat cable manufacturing method using the same according to the above embodiment, the inner die 30 having a tip formed in a flat shape along the direction in which the plurality of core wire passages 35 are arranged. However, in at least one of the two portions extending in the direction in which the plurality of core wire passages 35 are arranged in the outer peripheral portion of the tip portion, a concave shape is formed from the outer peripheral portion toward the communication portion of the plurality of core wire passages 35. The notch part 37 is provided. For this reason, the insulating coating material 14 can be inserted into the gap between the core wires 12 through at least one of the cut portions 37, and the shape of the flat cable 10 can be stabilized.

また、切込部37が、内金型30の外周部から複数の芯線通過路35同士の連通部分に向けて徐々に幅狭になる形状に形成されている。この構成によると、切込部37を複数の芯線通過路35の連通部分に対してより近くに達する形状に形成することができる。これにより、芯線案内口34を通過して案内される複数の芯線12同士の隙間のより奥側にまで絶縁被覆材料14を入り込ませることができ、より確実にフラットケーブル10の形状を安定化させることができる。   Further, the cut portion 37 is formed in a shape that gradually becomes narrower from the outer peripheral portion of the inner mold 30 toward the communication portion between the plurality of core wire passages 35. According to this configuration, the cut portion 37 can be formed in a shape that reaches closer to the communication portion of the plurality of core wire passages 35. As a result, the insulating coating material 14 can be inserted further into the gaps between the plurality of core wires 12 guided through the core wire guide port 34, and the shape of the flat cable 10 can be more reliably stabilized. be able to.

また、切込部37が、内金型30の先端部の外周部のうちの複数の芯線通過路35が並ぶ方向に亘る2部分の両方にそれぞれ形成されている。この構成によると、複数の芯線12同士の隙間に対して両側から絶縁被覆材料14を入り込ませることができ、より確実にフラットケーブル10の形状を安定化させることができる。   Further, the cut portions 37 are formed in both of the two portions in the direction in which the plurality of core wire passages 35 are arranged in the outer peripheral portion of the tip portion of the inner mold 30. According to this configuration, the insulating coating material 14 can be inserted into the gaps between the plurality of core wires 12 from both sides, and the shape of the flat cable 10 can be more reliably stabilized.

また、内金型30と外金型50とが、先端部同士が面一となる位置関係で配設されている構成によると、絶縁被覆材料14が複数の芯線12に押し付けられることによる複数の芯線12に加わる負荷を低減することができる。特に、銅等に比べて強度が低いアルミ等により形成される芯線12を用いる場合には、内金型30と外金型50とを先端部同士が面一となる(或いはこれに近い)位置関係で配設することが要求される。この場合、絶縁被覆材料14が複数の芯線12に対して押し付けられる力が弱くなる傾向にあるが、絶縁被覆材料14が切込部37を通じて芯線12同士の隙間に入り込むため、形状を安定化したフラットケーブル10を得ることができる。このように、芯線12にアルミ等により形成されたものを使用する場合、本発明はより有効である。   Further, according to the configuration in which the inner mold 30 and the outer mold 50 are arranged in a positional relationship in which the tips are flush with each other, a plurality of insulation coating materials 14 are pressed against the plurality of core wires 12. The load applied to the core wire 12 can be reduced. In particular, when the core wire 12 formed of aluminum or the like having a lower strength than copper or the like is used, the positions of the inner mold 30 and the outer mold 50 are flush with each other (or close to each other). It is required to be arranged in a relationship. In this case, although the force with which the insulating coating material 14 is pressed against the plurality of core wires 12 tends to be weak, the shape is stabilized because the insulating coating material 14 enters the gaps between the core wires 12 through the cut portions 37. The flat cable 10 can be obtained. Thus, the present invention is more effective when the core wire 12 made of aluminum or the like is used.

これまで、切込部37が、内金型30の延出部36の外周部のうちの複数の芯線通過路35が並ぶ方向に亘る2部分の両方にそれぞれ形成されている例で説明してきたが、切込部37が一方のみに形成されている場合でも、形成されていない場合より形態の安定化されたフラットケーブル10を製造することが可能と考えられる。   So far, the description has been made with the example in which the cut portions 37 are formed in both of the two portions in the direction in which the plurality of core wire passages 35 are arranged in the outer peripheral portion of the extending portion 36 of the inner mold 30. However, even when the cut portion 37 is formed on only one side, it is considered possible to manufacture the flat cable 10 having a stabilized form as compared with the case where the cut portion 37 is not formed.

また、フラットケーブル押出金型20について、内金型30及び外金型50が、先端部同士が面一になる形態で配設されている例で説明してきたが、これに限られるものではない。すなわち、外金型50は、先端部が内金型30の先端部に対して芯線通過方向S前方に位置する形態で配設されていてもよい。なお、この場合には、複数の芯線12(例えば、アルミ等で形成された芯線)が樹脂吐出口52の内部で絶縁被覆材料14の圧力によって切断等の損傷を受けない範囲で外金型50の先端部を内金型30の先端部より前方に設定するとよい。   Further, the flat cable extrusion mold 20 has been described with an example in which the inner mold 30 and the outer mold 50 are arranged in a form in which the tip portions are flush with each other, but the present invention is not limited to this. . That is, the outer mold 50 may be disposed in a form in which the tip end portion is positioned in front of the tip end portion of the inner mold 30 in the core wire passing direction S. In this case, the outer mold 50 is within a range in which the plurality of core wires 12 (for example, core wires formed of aluminum or the like) are not damaged by cutting or the like due to the pressure of the insulating coating material 14 inside the resin discharge port 52. It is preferable that the front end of the inner mold 30 be set in front of the front end of the inner mold 30.

また、切込部37が延出部36の芯線通過方向Sに沿って形成されている例で説明したが、延出部36の先端部のみに形成されていてもよい。すなわち、切込部37は、絶縁被覆材料14が樹脂吐出口52から吐出される前に自身の内側を流れ得るように形成されていればよい。   Further, although the example in which the cut portion 37 is formed along the core wire passing direction S of the extending portion 36 has been described, it may be formed only at the distal end portion of the extending portion 36. That is, the cut portion 37 may be formed so that it can flow inside itself before the insulating coating material 14 is discharged from the resin discharge port 52.

以上のように、フラットケーブル押出金型20及びフラットケーブルの製造方法は詳細に説明されたが、上記した説明は、全ての局面において例示であって、この発明がそれに限定されるものではない。また、上述した各種変形例は、相互に矛盾しない限り組み合わせて適用可能である。そして、例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。   As described above, the flat cable extrusion mold 20 and the flat cable manufacturing method have been described in detail, but the above description is illustrative in all aspects, and the present invention is not limited thereto. The various modifications described above can be applied in combination as long as they do not contradict each other. And it is understood that the countless modification which is not illustrated can be assumed without deviating from the scope of the present invention.

10 フラットケーブル
12 芯線
14 絶縁被覆材料
20 フラットケーブル押出金型
30 内金型
32 芯線案内部
34 芯線案内口
35 芯線通過路
36 延出部
37 切込部
50 外金型
52 樹脂吐出口
DESCRIPTION OF SYMBOLS 10 Flat cable 12 Core wire 14 Insulation coating material 20 Flat cable extrusion die 30 Inner die 32 Core wire guide part 34 Core wire guide port 35 Core wire passage 36 Extension part 37 Cut part 50 Outer mold 52 Resin discharge port

Claims (5)

並列状に一列で配置された複数の芯線の外周部を絶縁被覆材料により覆って形成されるフラットケーブルを押出成形するためのフラットケーブル押出金型であって、
先端部で円状に開口すると共に前記芯線を延在方向に沿って通過可能な複数の芯線通過路が互いに側部で連通する形態で一列に並んだ形状に形成された芯線案内口を有し、前記先端部が前記複数の芯線通過路が並ぶ方向に沿った扁平形状に形成され、前記複数の芯線を並列状に一列で案内可能な内金型と、
先端部で前記複数の芯線通過路が並ぶ方向に沿った扁平形状に開口する樹脂吐出口を有し、前記先端部が前記芯線案内口の先端部に対して面一かそれより前方に位置すると共に前記内金型の外周部に対して前記絶縁被覆材料が通過可能な隙間をあけて配設されている外金型と、
を備え、
前記内金型は、先端部の外周部のうちの前記複数の芯線通過路が並ぶ方向に亘る2部分のうちの少なくとも一方に、前記外周部から前記複数の芯線通過路同士の連通部分に向けて形成された凹状の切込部を有している、フラットケーブル押出金型。
A flat cable extrusion mold for extruding a flat cable formed by covering the outer periphery of a plurality of core wires arranged in a line in parallel with an insulating coating material,
A plurality of core wire passages that open in a circular shape at the front end portion and that can pass through the core wire along the extending direction have core wire guide ports formed in a line in a form that communicates with each other at the side portions. The inner end mold is formed in a flat shape along the direction in which the plurality of core wire passages are arranged, and the plurality of core wires can be guided in a row in parallel.
It has a resin discharge port that opens in a flat shape along the direction in which the plurality of core wire passages are arranged at the front end portion, and the front end portion is flush with or ahead of the front end portion of the core wire guide port. And an outer mold disposed with a gap through which the insulating coating material can pass with respect to the outer peripheral portion of the inner mold, and
With
The inner mold is directed to at least one of the two portions in the direction in which the plurality of core wire passages are arranged in the outer peripheral portion of the tip portion, from the outer periphery to the communication portion of the plurality of core wire passages. A flat cable extrusion mold having a concave cut portion formed in the above manner.
請求項1に記載のフラットケーブル押出金型であって、
前記切込部は、前記内金型の外周部から前記複数の芯線通過路同士の前記連通部分に向けて徐々に幅狭になる形状に形成されている、フラットケーブル押出金型。
A flat cable extrusion die according to claim 1,
The said cut | notch part is a flat cable extrusion die currently formed in the shape which becomes narrow gradually toward the said communication part of these core wire passages from the outer peripheral part of the said inner metal mold | die.
請求項1又は請求項2に記載のフラットケーブル押出金型であって、
前記切込部は、前記内金型の先端部の外周部のうちの前記複数の芯線通過路が並ぶ方向に亘る2部分の両方にそれぞれ形成されている、フラットケーブル押出金型。
The flat cable extrusion mold according to claim 1 or 2,
The said cut | notch part is a flat cable extrusion metal mold | die each formed in both of two parts over the direction where the said several core wire passage way is located among the outer peripheral parts of the front-end | tip part of the said inner metal mold | die.
請求項1〜請求項3のいずれか一項に記載のフラットケーブル押出金型であって、
前記内金型と前記外金型とは、先端部同士が面一となる形態で配設されている、フラットケーブル押出金型。
The flat cable extrusion die according to any one of claims 1 to 3,
The inner mold and the outer mold are flat cable extrusion molds that are arranged in such a manner that their front ends are flush with each other.
並列状に一列で配置された複数の芯線の外周部を絶縁被覆材料により覆って形成されるフラットケーブルの製造方法であって、
(a)請求項1〜請求項4のいずれか一項に記載のフラットケーブル押出金型において、前記内金型の前記芯線案内口を通じて前記複数の芯線を並列状に一列で下流側に移動させる工程と、
(b)前記フラットケーブル押出金型において、前記内金型と前記外金型との隙間を通じて、前記樹脂吐出口から前記絶縁被覆材料を前記工程(a)で下流側に移動される前記複数の芯線の外周部を覆う形態で押し出す工程と、
を備える、フラットケーブルの製造方法。
A method of manufacturing a flat cable formed by covering the outer periphery of a plurality of core wires arranged in a line in parallel with an insulating coating material,
(A) In the flat cable extrusion die according to any one of claims 1 to 4, the plurality of core wires are moved in parallel in a line downstream through the core wire guide port of the inner die. Process,
(B) In the flat cable extrusion mold, the insulating coating material is moved downstream in the step (a) from the resin discharge port through a gap between the inner mold and the outer mold. Extruding in a form covering the outer periphery of the core wire,
A method for manufacturing a flat cable.
JP2012003362A 2012-01-11 2012-01-11 Flat cable extrusion mold and method for manufacturing flat cable Pending JP2013143290A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012003362A JP2013143290A (en) 2012-01-11 2012-01-11 Flat cable extrusion mold and method for manufacturing flat cable
PCT/JP2012/076152 WO2013105314A1 (en) 2012-01-11 2012-10-10 Flat cable extrusion die and method for producing flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003362A JP2013143290A (en) 2012-01-11 2012-01-11 Flat cable extrusion mold and method for manufacturing flat cable

Publications (1)

Publication Number Publication Date
JP2013143290A true JP2013143290A (en) 2013-07-22

Family

ID=48781278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003362A Pending JP2013143290A (en) 2012-01-11 2012-01-11 Flat cable extrusion mold and method for manufacturing flat cable

Country Status (2)

Country Link
JP (1) JP2013143290A (en)
WO (1) WO2013105314A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765420B1 (en) * 2016-09-28 2017-08-07 김명업 Oval flat cable method of manufacturing the same
CN108790090A (en) * 2018-07-23 2018-11-13 上海理工大学 The 3D printing shaping dies of cable insulation material collaboration coating Work robot
JP7488079B2 (en) 2020-03-27 2024-05-21 古河電気工業株式会社 Flat electric wire and its manufacturing method, flat electric wire with terminal, and wire harness

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639960Y2 (en) * 1981-04-28 1988-03-24
JPH08339725A (en) * 1995-06-12 1996-12-24 Mitsubishi Cable Ind Ltd Manufacture of flat type cable
JP2004119234A (en) * 2002-09-27 2004-04-15 Sumitomo Wiring Syst Ltd Manufacturing method of flat cable
JP2011014449A (en) * 2009-07-03 2011-01-20 Autonetworks Technologies Ltd Flat cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101765420B1 (en) * 2016-09-28 2017-08-07 김명업 Oval flat cable method of manufacturing the same
CN108790090A (en) * 2018-07-23 2018-11-13 上海理工大学 The 3D printing shaping dies of cable insulation material collaboration coating Work robot
JP7488079B2 (en) 2020-03-27 2024-05-21 古河電気工業株式会社 Flat electric wire and its manufacturing method, flat electric wire with terminal, and wire harness

Also Published As

Publication number Publication date
WO2013105314A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
US9666955B2 (en) Conductive line and routing structure for the same
US20130077815A1 (en) Audio headsets with multi-color ribbon cable and related systems and methods of manufacture
US10033116B2 (en) Terminal, terminal-equipped electrical wire, and method for manufacturing terminal-equipped electrical wire
CN102682890A (en) Flat cable
JP2009534999A (en) Method and apparatus for manufacturing an assembly of two annular sheaths that can be separated from each other for producing one annular sheath
WO2013105314A1 (en) Flat cable extrusion die and method for producing flat cable
US9805842B2 (en) Wire harness
JP5639300B2 (en) Wire crimping apparatus and wire crimping method
JP4028091B2 (en) Manufacturing method of electric wire with water stop
JP4925986B2 (en) Rubber coating method for metal wire, cord manufacturing method, cord, rubber coating device, and cord manufacturing device
US5215698A (en) Extrusion tool and method of extrusion coating
JP2015022894A (en) Wire harness
JP2013041666A (en) Coated electric wire manufacturing method and coated electric wire with groove
WO2013105315A1 (en) Flat cable extrusion die and method for producing flat cable
JP2009037911A (en) Method of molding slot part in coaxial cable
WO2013008489A1 (en) Flat cable manufacturing method and flat cable
JP2014164835A (en) Wire crimping device, and method of manufacturing wire connection structure
JP2003057506A (en) Optical fiber cable and optical composite lead-in wire
CN111247605A (en) Pipe conductor and conductive path
CN103901566B (en) Fan-shaped stainless tube optical unit and manufacturing method thereof
CN214820674U (en) Extrusion die of cable insulation sleeve and cable manufacturing equipment
JP2002056732A (en) Method and extrusion molding die for manufacturing flat cable
KR101463480B1 (en) Extrusion head for producing covered electric wire
US20110240334A1 (en) Redundant webbing in conjoined cables
JP6635339B2 (en) Flat cable with ground wire and method of manufacturing flat cable with ground wire