JP2013140734A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013140734A
JP2013140734A JP2012000699A JP2012000699A JP2013140734A JP 2013140734 A JP2013140734 A JP 2013140734A JP 2012000699 A JP2012000699 A JP 2012000699A JP 2012000699 A JP2012000699 A JP 2012000699A JP 2013140734 A JP2013140734 A JP 2013140734A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
boron
graphite
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000699A
Other languages
Japanese (ja)
Other versions
JP5884488B2 (en
Inventor
Minoru Tejima
手嶋  稔
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012000699A priority Critical patent/JP5884488B2/en
Publication of JP2013140734A publication Critical patent/JP2013140734A/en
Application granted granted Critical
Publication of JP5884488B2 publication Critical patent/JP5884488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery that offers a high energy density, and enables the estimation of remaining battery power based on battery voltage over a wide range.SOLUTION: A nonaqueous electrolyte secondary battery 1 includes: a positive electrode that contains an olivine-type positive electrode active material showing an open circuit potential curve with a flat portion and an inclined portion, and represented by LiMPO(where M represents at least one kind of metal); and a negative electrode that shows an open circuit potential curve with a flat portion and an inclined portion, and contains graphite containing boron, and graphite containing no boron. The mixing ratio of the graphite containing boron to the graphite containing no boron is such that the flat portion of the positive electrode and the inclined portion of the negative electrode coexist over an SOC (State of Charge) range, and the inclined portion of the positive electrode and the flat portion of the negative electrode coexist over an SOC range.

Description

この発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池などの非水電解質二次電池の電極については、従来より種々の提案がなされている。(たとえば、特許文献1〜5参照)。   Various proposals have been made for electrodes of non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. (For example, refer to Patent Documents 1 to 5).

上記特許文献1では、0.1〜10質量%のホウ素を含有したホウ素添加グラファイトや、ホウ素添加ハードカーボンを負極に用いたリチウムイオン電池が開示されている。特許文献1には、ホウ素添加炭素を負極に用いることによって、負極電位が一般的な黒鉛に比べて上昇し、負極表面への金属リチウムの析出を抑制することができることが記載されている。   Patent Document 1 discloses a lithium ion battery using boron-added graphite containing 0.1 to 10% by mass of boron or boron-added hard carbon as a negative electrode. Patent Document 1 describes that by using boron-added carbon for the negative electrode, the negative electrode potential is increased as compared with general graphite, and precipitation of metallic lithium on the negative electrode surface can be suppressed.

上記特許文献2では、Fe、Ni、Mn、CoおよびMgのうち2種以上の金属元素からなるオリビン系正極と、ソフトカーボンからなる負極とを用いたリチウムイオン電池が開示されている。この特許文献2では、オリビン系正極を2種以上の金属元素から形成することにより、正極の電位曲線に2段階の平坦領域(プラトー領域)を設けている。   Patent Document 2 discloses a lithium ion battery using an olivine-based positive electrode made of two or more metal elements of Fe, Ni, Mn, Co, and Mg and a negative electrode made of soft carbon. In Patent Document 2, an olivine-based positive electrode is formed of two or more kinds of metal elements to provide a two-step flat region (plateau region) in the positive electrode potential curve.

上記特許文献3では、集電体側のメソカーボンマイクロビーズ(MCMB)からなる層と、表面側の0.05質量%のホウ素を含有した黒鉛からなる層との2層構造を有する負極を用いたリチウムイオン電池が開示されている。この特許文献3には、MCMBの開回路電位曲線が平坦領域と傾斜領域とを有していることが開示されている。   In Patent Document 3, a negative electrode having a two-layer structure of a layer made of mesocarbon microbeads (MCMB) on the current collector side and a layer made of graphite containing 0.05% by mass of boron on the surface side was used. A lithium ion battery is disclosed. Patent Document 3 discloses that the open circuit potential curve of MCMB has a flat region and an inclined region.

上記特許文献4では、低結晶性炭素で被覆した被覆黒鉛50質量%と、ホウ素を0.014質量%含有させたホウ素含有黒鉛50質量%とを混合して形成した負極を用いたリチウムイオン電池が開示されている。この特許文献4には、ホウ素含有黒鉛によって充電時の負極の開回路電位が相対的に高くなるのを、被覆黒鉛によって低くすることができることが記載されている。   In Patent Document 4, a lithium ion battery using a negative electrode formed by mixing 50% by mass of coated graphite coated with low crystalline carbon and 50% by mass of boron-containing graphite containing 0.014% by mass of boron. Is disclosed. Patent Document 4 describes that the open-circuit potential of the negative electrode at the time of charging can be lowered relatively by boron-containing graphite by using coated graphite.

上記特許文献5では、コークス、グラファイト、ハードカーボンなどの炭素材料を負極に用いて、充電状態における炭素材料の単位重量当たりの充電電気量の変化に対する開回路電位の傾きと、その炭素材料の真密度とを所定の範囲内に設定したリチウムイオン電池が開示されている。   In Patent Document 5, a carbon material such as coke, graphite, or hard carbon is used for the negative electrode, and the slope of the open circuit potential with respect to the change in the amount of charge per unit weight of the carbon material in the charged state, and the trueness of the carbon material. A lithium ion battery having a density set within a predetermined range is disclosed.

特開2004−335167号公報JP 2004-335167 A 特開2009−104983号公報JP 2009-104983 A 特開2001−307717号公報JP 2001-307717 A 特開2007−122975号公報JP 2007-122975 A 特開2007−265831号公報JP 2007-265831 A

リチウムイオン二次電池などの非水電解質二次電池では、電池電圧に基づいて充電深度(SOC)が算出され、その充電深度に基づいて充放電が制御される。しかしながら、上記特許文献2に開示されたオリビン系正極および上記特許文献3に開示されたMCMBや一般的な黒鉛を用いた負極は、両方ともに電位曲線に広い範囲の平坦領域が存在するため、これら正極および負極を用いた電池では、充電深度の広い範囲で電池電圧が一定となる。一般的には、電池の充電深度は電池電圧から算出されることが多く、電池電圧が傾斜を有していると充電深度を算出し易くなる。しかしながら、充電深度の広い範囲で電池電圧が一定である、つまり、電池電圧が平坦である電池では、電池電圧の違いに基づく充電深度の算出が困難となり、さらには、充電深度に基づく充放電の制御が困難になるという問題があった。   In a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, a depth of charge (SOC) is calculated based on the battery voltage, and charge / discharge is controlled based on the depth of charge. However, both the olivine-based positive electrode disclosed in Patent Document 2 and the negative electrode using MCMB and general graphite disclosed in Patent Document 3 have a wide flat region in the potential curve. In a battery using a positive electrode and a negative electrode, the battery voltage is constant over a wide range of charge depth. In general, the charging depth of the battery is often calculated from the battery voltage, and when the battery voltage has a slope, the charging depth is easily calculated. However, it is difficult to calculate the charge depth based on the difference in the battery voltage in the case where the battery voltage is constant over a wide range of the charge depth, that is, the battery voltage is flat. There was a problem that control became difficult.

これに対して、上記特許文献1に開示されたホウ素添加炭素からなる負極はなだらかな傾斜の電位曲線を有しているので、この炭素を負極に用いた電池では電池電圧に基づく充電深度の算出が容易となる。しかしながら、ホウ素添加をしていない炭素と比較してホウ素添加炭素からなる負極は高い電位を有しているため、電池のエネルギー密度が低下するという問題点が生じる。また、電位曲線に傾斜を有する難黒鉛化炭素や易黒鉛化炭素などを負極として用いた電池においても電池電圧に基づく充電深度の算出が容易となるが、これら炭素は黒鉛と比較して充放電容量が小さく、かつ、負極電位も高いため、電池のエネルギー密度が小さくなる。   On the other hand, since the negative electrode made of boron-added carbon disclosed in Patent Document 1 has a potential curve with a gentle slope, the battery using this carbon as the negative electrode calculates the charging depth based on the battery voltage. Becomes easy. However, since the negative electrode made of boron-added carbon has a higher potential than carbon not added with boron, there arises a problem that the energy density of the battery is lowered. In addition, even in batteries using non-graphitizable carbon or graphitizable carbon having a slope in the potential curve as the negative electrode, it is easy to calculate the charging depth based on the battery voltage. Since the capacity is small and the negative electrode potential is high, the energy density of the battery is reduced.

上記特許文献2に開示のオリビン系正極活物質は他の正極活物質と比較して熱安定性が高く、電池の高安全化を図ることができる。一方、このオリビン系正極を用いた電池では、高いエネルギー密度、および充電深度の広い範囲での充放電制御の容易性が求められている。このような課題に対して、上記特許文献1〜5には具体的な解決手段が提示されていない。   The olivine-based positive electrode active material disclosed in Patent Document 2 has higher thermal stability than other positive electrode active materials, and can increase the safety of the battery. On the other hand, batteries using this olivine-based positive electrode are required to have high energy density and ease of charge / discharge control in a wide range of charge depth. No specific solution is presented in Patent Documents 1 to 5 for such problems.

この発明は上記のような課題を解決するためになされたものであり、この発明の目的は、オリビン系正極を用いた非水電解質二次電池において、高エネルギー密度を有しており、かつ、電池電圧に基づく充電深度の算出が容易である非水電解質二次電池を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is a non-aqueous electrolyte secondary battery using an olivine-based positive electrode, which has a high energy density, and It is an object of the present invention to provide a nonaqueous electrolyte secondary battery in which the charge depth based on the battery voltage can be easily calculated.

上記目的を達成するために、この発明の第1の局面による非水電解質二次電池は、開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質を含む正極と、開回路電位曲線が平坦領域と傾斜領域とを有するとともに、ホウ素を含有する黒鉛(以下、「ホウ素含有黒鉛」とする)とホウ素を含有しない黒鉛(以下、「ホウ素非含有黒鉛」とする)とを含む負極とを備え、ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率は、正極の平坦領域が存在する充電深度では負極の傾斜領域が存在するとともに、正極の傾斜領域が存在する充電深度では負極の平坦領域が存在するような混合比率である。 In order to achieve the above object, the nonaqueous electrolyte secondary battery according to the first aspect of the present invention is represented by LiMPO 4 (M is at least one kind of metal) whose open circuit potential curve has a flat region and an inclined region. A positive electrode containing an olivine-based positive electrode active material, a graphite whose open circuit potential curve is flat and inclined, and containing boron (hereinafter referred to as “boron-containing graphite”) and non-boron-containing graphite (hereinafter referred to as “boron-containing graphite”) The mixture ratio of boron-containing graphite and boron-free graphite has a negative electrode slope region at a charging depth where a flat region of the positive electrode exists. The mixing ratio is such that there is a flat region of the negative electrode at the charging depth where the positive region of the positive electrode exists.

ここで、ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率とは、質量比率である。また、ここで、平坦領域とは、活物質の質量当り容量に対する開回路電位の変化が1mV/mAh・g−1未満の領域であり、傾斜領域とは、活物質の質量当り容量に対する開回路電位の変化が1mV/mAh・g−1以上の領域である。   Here, the mixing ratio of boron-containing graphite and non-boron-containing graphite is a mass ratio. Here, the flat region is a region where the change in the open circuit potential with respect to the capacity per mass of the active material is less than 1 mV / mAh · g−1, and the inclined region is the open circuit with respect to the capacity per mass of the active material. This is a region where the change in potential is 1 mV / mAh · g−1 or more.

この発明の第1の局面による非水電解質二次電池では、上記の構成によって、負極電位の低い電位範囲で電位曲線に傾斜を設けることができるので、その負極を用いた電池では高い電池電圧の範囲で電池電圧に傾斜を設けることができる。その結果、電池電圧が高いことに起因して電池の高エネルギー密度化を図ることと、電池電圧に傾斜領域を設けることに起因して充電深度の算出が容易になることとを両立することができる。充電深度の算出が容易になることで、充放電の制御および電池残量の推定が容易となる。   In the non-aqueous electrolyte secondary battery according to the first aspect of the present invention, with the above configuration, the potential curve can be inclined in the low potential range of the negative electrode potential. Therefore, a battery using the negative electrode has a high battery voltage. A slope can be provided in the battery voltage in the range. As a result, it is possible to achieve both high energy density of the battery due to the high battery voltage and easy calculation of the charge depth due to the provision of the inclined region in the battery voltage. it can. Since the calculation of the charging depth is facilitated, charging / discharging control and estimation of the remaining battery level are facilitated.

上記第1の局面による非水電解質二次電池において、好ましくは、正極の平坦領域と傾斜領域との変化点Aと、正極の充電終止点との間の充電深度に、負極の傾斜領域と平坦領域との変化点Bが存在する。このように構成すれば、充電終止点までの充電深度の全範囲で電池電圧に傾斜を設けることができる。   In the nonaqueous electrolyte secondary battery according to the first aspect described above, preferably, the slope of the negative electrode is flat with the depth of charge between the change point A between the flat region and the slope of the positive electrode and the charge termination point of the positive electrode. There is a change point B with the region. If comprised in this way, an inclination can be provided in a battery voltage in the whole range of the charge depth to a charge termination point.

上記第1の局面による非水電解質二次電池において、好ましくは、ホウ素を含有する黒鉛とホウ素を含有しない黒鉛との質量比率が30/70以上90/10以下である。このように構成すれば、負極の傾斜領域を拡大することができる。   In the nonaqueous electrolyte secondary battery according to the first aspect, preferably, the mass ratio of graphite containing boron and graphite not containing boron is 30/70 or more and 90/10 or less. If comprised in this way, the inclination area | region of a negative electrode can be expanded.

この発明の第2の局面による非水電解質二次電池は、開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質を含む正極と、開回路電位曲線が平坦領域と傾斜領域とを有するとともに、ホウ素含有黒鉛とホウ素非含有黒鉛とを含む負極とを備え、ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率は、正極の傾斜領域の充電深度で負極の傾斜領域が存在し、かつ、正極の充電終止点の充電深度が負極の傾斜領域に存在するような混合比率である。 A nonaqueous electrolyte secondary battery according to a second aspect of the present invention includes an olivine-based positive electrode active material represented by LiMPO 4 (M is at least one metal) whose open circuit potential curve has a flat region and an inclined region. A positive electrode, an open circuit potential curve having a flat region and a slope region, and a negative electrode including boron-containing graphite and boron-free graphite, the mixing ratio of boron-containing graphite and boron-free graphite is The mixing ratio is such that the negative electrode inclined region exists at the charging depth of the inclined region, and the charging depth at the positive electrode charging end point exists in the negative electrode inclined region.

この発明の第2の局面による非水電解質二次電池では、上記のように、ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率を、正極の傾斜領域の充電深度で負極の傾斜領域が存在し、かつ、正極の充電終止点の充電深度が負極の傾斜領域に存在するような混合比率にすることによって、正極の充電終止点までの全範囲にわたって確実に電池電圧に傾斜領域を設けることができる。   In the non-aqueous electrolyte secondary battery according to the second aspect of the present invention, as described above, the gradient ratio of the negative electrode exists with the mixing ratio of boron-containing graphite and boron-free graphite at the charging depth of the gradient area of the positive electrode. In addition, by setting the mixing ratio such that the charging depth at the charging end point of the positive electrode exists in the inclined region of the negative electrode, it is possible to reliably provide the inclined region in the battery voltage over the entire range up to the charging end point of the positive electrode. .

本発明によれば、上記のように、電池電圧が高いことに起因して電池の高エネルギー密度化を図ることと、電池電圧に傾斜領域を設けることに起因して充電深度の算出が容易になることとを両立することが可能な非水電解質二次電池を提供することができる。   According to the present invention, as described above, it is possible to increase the energy density of the battery due to the high battery voltage, and to easily calculate the charging depth due to the provision of the inclined region in the battery voltage. It is possible to provide a non-aqueous electrolyte secondary battery capable of achieving both of the above.

本発明の一実施形態による電池の全体構成を示した断面図である。It is sectional drawing which showed the whole structure of the battery by one Embodiment of this invention. ホウ素を含有する黒鉛とホウ素を含有しない黒鉛との混合比率を変化させた場合の負極の開回路電位曲線を示した図である。It is the figure which showed the open circuit potential curve of the negative electrode at the time of changing the mixing ratio of the graphite containing boron and the graphite which does not contain boron. 本発明の実施例1〜3による電池の正極および負極の開回路電位曲線を示した図である。It is the figure which showed the open circuit potential curve of the positive electrode of a battery by Examples 1-3 of this invention, and a negative electrode.

以下、本発明を具体化した実施形態を図面に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

まず、図1〜図3を参照して、本発明の一実施形態による電池1の構成について説明する。なお、電池1は、本発明の「非水電解質二次電池」の一例である。   First, with reference to FIGS. 1-3, the structure of the battery 1 by one Embodiment of this invention is demonstrated. The battery 1 is an example of the “nonaqueous electrolyte secondary battery” in the present invention.

本発明の一実施形態による電池1は、図1に示すように、発電要素2を備えている。発電要素2は、正極3と負極4とセパレータ5とが巻回されることによって形成されている。正極3では、アルミニウム箔またはアルミニウム合金箔からなる正極集電体の両面に正極活物質を含有する正極合剤が塗布されている。負極4では、銅箔からなる負極集電体の両面に負極活物質を含有する負極合剤が塗布されている。   A battery 1 according to an embodiment of the present invention includes a power generation element 2 as shown in FIG. The power generation element 2 is formed by winding a positive electrode 3, a negative electrode 4, and a separator 5. In the positive electrode 3, a positive electrode mixture containing a positive electrode active material is applied to both surfaces of a positive electrode current collector made of an aluminum foil or an aluminum alloy foil. In the negative electrode 4, a negative electrode mixture containing a negative electrode active material is applied to both surfaces of a negative electrode current collector made of copper foil.

また、発電要素2は、電池ケース6の内部に収納されているとともに、発電要素2が電池ケース6の内部に収納された状態で電池ケース6の開口部を塞ぐように、電池蓋7が電池ケース6に取り付けられている。発電要素2の正極3は電池蓋7に接続されているとともに、発電要素2の負極4は電池蓋7の負極端子8に接続されている。また、電池ケース6には、図示しない注液口が形成されている。その注液口を介して電池ケース6の内部に非水電解質を注入した後に、注液口を封止することによって、電池1が形成されている。   In addition, the power generation element 2 is housed inside the battery case 6, and the battery cover 7 is connected to the battery so as to close the opening of the battery case 6 in a state where the power generation element 2 is housed inside the battery case 6. It is attached to the case 6. The positive electrode 3 of the power generation element 2 is connected to the battery lid 7, and the negative electrode 4 of the power generation element 2 is connected to the negative electrode terminal 8 of the battery lid 7. The battery case 6 has a liquid injection port (not shown). The battery 1 is formed by sealing the liquid injection port after injecting a non-aqueous electrolyte into the battery case 6 through the liquid injection port.

本実施形態では、正極活物質には、開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質が含まれており、負極活物質は、ホウ素含有黒鉛とホウ素非含有黒鉛との混合材料を含む。 In the present embodiment, the positive electrode active material includes an olivine-based positive electrode active material represented by LiMPO 4 (M is at least one metal) whose open circuit potential curve has a flat region and a gradient region, The active material includes a mixed material of boron-containing graphite and boron-free graphite.

負極活物質に含まれるホウ素非含有黒鉛として、天然黒鉛、人造黒鉛、または、黒鉛以外の炭素材料で被覆した黒鉛材料(被覆黒鉛)などを用いてもよい。また、ホウ素含有黒鉛のホウ素の含有量については、本発明の作用効果を奏することができる限りにおいて特に限定されない。また、ホウ素含有黒鉛とホウ素非含有黒鉛との混合材料では、ホウ素含有黒鉛とホウ素非含有黒鉛とが均一に混合されていてもよいし、ホウ素含有黒鉛からなる第1の層と、ホウ素非含有黒鉛からなる第2の層とに分かれていてもよい。この場合、第1の層を表面側(正極側)に配置し、第2の層を集電体側に配置するのが好ましい。   As the non-boron-containing graphite contained in the negative electrode active material, natural graphite, artificial graphite, or a graphite material (coated graphite) coated with a carbon material other than graphite may be used. Further, the boron content of the boron-containing graphite is not particularly limited as long as the effects of the present invention can be achieved. Moreover, in the mixed material of boron-containing graphite and boron-free graphite, boron-containing graphite and boron-free graphite may be mixed uniformly, the first layer made of boron-containing graphite, and boron-free It may be divided into a second layer made of graphite. In this case, it is preferable to dispose the first layer on the surface side (positive electrode side) and the second layer on the current collector side.

本実施形態では、負極活物質のホウ素含有黒鉛とホウ素非含有黒鉛との混合比率は、正極の平坦領域が存在する充電深度では負極の傾斜領域が存在し、かつ、正極の傾斜領域が存在する充電深度では負極の平坦領域が存在するか、または、正極の充電終止点が負極の傾斜領域に存在するような混合比率(質量比率)に設定されている。具体的には、図2に示すように、ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率によって、負極の開回路電位曲線における平坦領域および傾斜領域の範囲を調整することが可能である。なお、たとえば図2の「Bあり/Bなし=30/70」とは、負極活物質中のホウ素含有黒鉛とホウ素非含有黒鉛との混合比率(質量比率)が30:70であることを意味する。   In this embodiment, the mixing ratio of boron-containing graphite and non-boron-containing graphite of the negative electrode active material is such that the negative electrode slope region exists at the charge depth where the positive electrode flat region exists, and the positive electrode slope region exists. The charging depth is set to a mixing ratio (mass ratio) such that a flat area of the negative electrode exists or a charging end point of the positive electrode exists in the inclined area of the negative electrode. Specifically, as shown in FIG. 2, it is possible to adjust the range of the flat region and the inclined region in the open circuit potential curve of the negative electrode by the mixing ratio of boron-containing graphite and boron-free graphite. For example, “with / without B = 30/70” in FIG. 2 means that the mixing ratio (mass ratio) of boron-containing graphite and boron-free graphite in the negative electrode active material is 30:70. To do.

ここで、ホウ素非含有黒鉛のみ(Bあり/Bなし=0/100)を負極に用いた場合には、低い開回路電位(約0.08V)で広い平坦領域を有する。一方、ホウ素含有黒鉛のみ(Bあり/Bなし=100/0)を負極に用いた場合には、黒鉛のみの場合と比較して開回路電位が全体的に貴にシフトするとともに、開回路電位曲線が全体にわたってなだらかに傾斜する(平坦領域が存在しない)。ホウ素含有黒鉛とホウ素非含有黒鉛とを混合した場合には、その混合比率に応じて、低い開回路電位で平坦領域を有するホウ素非含有黒鉛の性質と、開回路電位が貴にシフトして傾斜領域が増大するホウ素含有黒鉛の性質との両方が現れる。すなわち、ホウ素含有黒鉛の割合を増加させるのに伴って、開回路電位曲線の平坦領域の範囲が狭くなるとともに、開回路電位が全体的に貴にシフトする。傾斜領域から平坦領域に変化する変化点B(B0〜B3)に着目すると、(Bあり/Bなし=0/100)の場合の変化点B0で約185mAh・g−1、(Bあり/Bなし=30/70)の場合の変化点B1で約245mAh・g−1、(Bあり/Bなし=50/50)の場合の変化点B2で約270mAh・g−1、(Bあり/Bなし=70/30)の場合の変化点B3で約305mAh・g−1となる。 Here, when only boron-free graphite (with / without B = 0/100) is used for the negative electrode, it has a wide flat region with a low open circuit potential (about 0.08 V). On the other hand, when only boron-containing graphite (with / without B = 100/0) is used for the negative electrode, the open circuit potential shifts more preciously as compared with the case of only graphite, and the open circuit potential The curve gently slopes throughout (no flat area). When boron-containing graphite and non-boron-containing graphite are mixed, depending on the mixing ratio, the nature of boron-free graphite having a flat region with a low open circuit potential and the open circuit potential shifts preciously and tilts Both the properties of boron-containing graphite with increasing area appear. That is, as the proportion of the boron-containing graphite is increased, the range of the flat region of the open circuit potential curve is narrowed, and the open circuit potential is shifted preciously as a whole. Focusing on the change point B (B0 to B3) that changes from the inclined region to the flat region, the change point B0 in the case of (with / without B = 0/100) is about 185 mAh · g −1 , (with / B). None = 30/70 to about 245 mAh · g -1 at the change point B1 of the case), (B Yes / B None = 50/50) to about 270 mAh · g -1 at the change point B2 in the case of, (B Yes / B None = 70/30), the change point B3 is about 305 mAh · g −1 .

このように、ホウ素含有黒鉛の割合を増加させるのに伴って、傾斜領域から平坦領域に変化する変化点Bが充電深度の高い方向(図2および図3の右側)へシフトする。一方、ホウ素非含有黒鉛の割合が高いほど、負極の開回路電位が全体的に低く(卑に)なるため、電池電圧を高くして電池のエネルギー密度を高くすることができる。負極活物質のホウ素含有黒鉛とホウ素非含有黒鉛との混合比率を、正極の傾斜領域と平坦領域との関係に応じて上記のように調整することによって、電池電圧が高いことに起因して電池の高エネルギー密度化を図ることと、電池電圧に傾斜領域を設けることに起因して充電深度の算出が容易になることとを両立することができる。充電深度の算出が容易になることで、充放電の制御および電池残量の推定が容易となる。   As described above, as the proportion of the boron-containing graphite is increased, the change point B that changes from the inclined region to the flat region shifts in the direction of higher charging depth (right side in FIGS. 2 and 3). On the other hand, the higher the proportion of non-boron-containing graphite, the lower the open circuit potential of the negative electrode, so that the battery voltage can be increased and the battery energy density can be increased. By adjusting the mixing ratio of the negative electrode active material boron-containing graphite and the non-boron-containing graphite as described above according to the relationship between the inclined region and the flat region of the positive electrode, the battery voltage is high. It is possible to achieve both a higher energy density and easier calculation of the charging depth due to the provision of the inclined region in the battery voltage. Since the calculation of the charging depth is facilitated, charging / discharging control and estimation of the remaining battery level are facilitated.

また、正極活物質には、開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質であれば、いかなる種類の活物質でも使用可能である。金属Mとしては、たとえばFe、Ni、Mn、Cu、CoおよびVなどの遷移金属が好ましい。 The positive electrode active material may be any type of active material as long as it is an olivine-based positive electrode active material represented by LiMPO 4 (M is at least one kind of metal) having an open circuit potential curve having a flat region and an inclined region. It can be used. As the metal M, transition metals such as Fe, Ni, Mn, Cu, Co and V are preferable.

本発明では、「ホウ素含有黒鉛とホウ素非含有黒鉛との混合比率は、正極の平坦領域が存在する充電深度では負極の傾斜領域が存在するとともに、正極の傾斜領域が存在する充電深度では負極の平坦領域が存在するような混合比率である」構成を有する。この構成を実現する方法としては、電池内の正極活物質と負極活物質との質量比率を設定した後に、負極活物質内のホウ素含有黒鉛とホウ素非含有黒鉛との混合比率を調整する方法がある。つまり、この方法では正極の平坦領域と傾斜領域との変化点を把握してから、その正極の変化点に合わせて負極の平坦領域と傾斜領域との変化点を調整する。   In the present invention, “the mixing ratio of boron-containing graphite and non-boron-containing graphite is such that the negative electrode slope area exists at the charge depth where the flat area of the positive electrode exists, and the negative electrode slope exists at the charge depth where the positive electrode slope area exists. It has a configuration in which the mixing ratio is such that a flat region exists. As a method of realizing this configuration, after setting the mass ratio of the positive electrode active material and the negative electrode active material in the battery, there is a method of adjusting the mixing ratio of the boron-containing graphite and the boron-free graphite in the negative electrode active material. is there. That is, in this method, after the change point between the flat region and the inclined region of the positive electrode is grasped, the change point between the flat region and the inclined region of the negative electrode is adjusted in accordance with the change point of the positive electrode.

本発明では、正極の平坦領域と傾斜領域との変化点Aと、正極の充電終止点との間の充電深度に、負極の傾斜領域と平坦領域との変化点Bが存在することが好ましい(図3参照 実施例1)。この形態では、負極の変化点Bが正極の充電終止点を越える形態(図3 実施例3)と比較して負極電位を低くすることができるとともに、充電深度の全範囲において正極および負極の少なくとも一方の傾斜領域を設けることができる。また、本実施形態では、正極の変化点Aと負極の変化点Bとが同一の充電深度に存在してもよいし、負極の変化点Bが正極の変化点Aより低い充電深度(図2および図3の左側)に存在してもよい(図3 実施例2)。また、正極の充電終止点より高い充電深度(図2および図3の右側)に負極の変化点Bが存在してもよい(図3 実施例3)。この形態では、負極電位が若干高くなるものの、負極電位に基づいて、充電深度の全範囲の電池電圧に傾斜領域を設けることができる。   In the present invention, it is preferable that there is a change point B between the slope region of the negative electrode and the flat region at the charging depth between the change point A between the flat region and the slope region of the positive electrode and the charge end point of the positive electrode ( See FIG. 3 Example 1). In this embodiment, the negative electrode potential can be lowered as compared with the embodiment in which the change point B of the negative electrode exceeds the charge end point of the positive electrode (Example 3 in FIG. 3), and at least the positive electrode and the negative electrode in the entire range of the charging depth. One inclined region can be provided. Further, in the present embodiment, the change point A of the positive electrode and the change point B of the negative electrode may exist at the same charge depth, or the change point B of the negative electrode is lower than the change point A of the positive electrode (FIG. 2). And on the left side of FIG. 3) (FIG. 3 Example 2). Moreover, the change point B of a negative electrode may exist in the charge depth (right side of FIG. 2 and FIG. 3) higher than the charge termination point of a positive electrode (FIG. 3 Example 3). In this embodiment, although the negative electrode potential is slightly higher, an inclined region can be provided in the battery voltage in the entire charging depth range based on the negative electrode potential.

なお、正極合剤および負極合剤には、必要に応じて、導電助剤、結着剤および粘度調整剤などを含有させてもよい。導電助剤としては、アセチレンブラック(AB)、カーボンブラックなどを用いることが可能である。結着剤としては、ポリフッ化ビニリデン、スチレン−ブタジエン共重合体ゴム、ポリアクリロニトリルなどを単独または混合して用いることが可能である。また、粘度調整剤としては、N−メチルピロリドン(NMP)などを用いることが可能である。   In addition, you may make a positive electrode mixture and a negative electrode mixture contain a conductive support agent, a binder, a viscosity modifier, etc. as needed. As the conductive aid, acetylene black (AB), carbon black, or the like can be used. As the binder, polyvinylidene fluoride, styrene-butadiene copolymer rubber, polyacrylonitrile, or the like can be used alone or in combination. As the viscosity modifier, N-methylpyrrolidone (NMP) or the like can be used.

電池1のセパレータ5としては、不織布および合成樹脂微多孔膜などを用いることが可能である。なお、加工のしやすさおよび耐久性向上の観点から、ポリエチレンやポリプロピレンなどからなるポリオレフィン系微多孔膜を用いることがより好ましい。   As the separator 5 of the battery 1, a nonwoven fabric, a synthetic resin microporous film, or the like can be used. It is more preferable to use a polyolefin microporous film made of polyethylene, polypropylene, or the like from the viewpoint of ease of processing and durability improvement.

また、電池1の非水電解質には、電解質塩を非水溶媒に溶解させたものを用いる。非水電解質の電解質塩としては、LiClO、LiPF、LiBFなどを用いることが可能である。また、上記電解質塩を単独または2種以上混合して用いることも可能である。なお、導電性向上の観点から、電解質塩としてLiPFを用いることが好ましい。 Further, as the non-aqueous electrolyte of the battery 1, a solution in which an electrolyte salt is dissolved in a non-aqueous solvent is used. As the electrolyte salt of the nonaqueous electrolyte, LiClO 4 , LiPF 6 , LiBF 4 or the like can be used. Further, the above electrolyte salts may be used alone or in combination of two or more. From the viewpoint of improving conductivity, it is preferable to use LiPF 6 as the electrolyte salt.

非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジプロピルカーボネート、メチルプロピルカーボネートおよびジブチルカーボネートなどを用いることが可能である。また、非水溶媒は、非水電解質の導電性や粘度を調整するという観点から、上記した複数の非水溶媒を混合して用いることが好ましい。   Examples of nonaqueous solvents for nonaqueous electrolytes include ethylene carbonate (EC), propylene carbonate, butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate (EMC), dipropyl carbonate, methylpropyl carbonate, and dibutyl carbonate. It is possible to use. The nonaqueous solvent is preferably used by mixing a plurality of nonaqueous solvents described above from the viewpoint of adjusting the conductivity and viscosity of the nonaqueous electrolyte.

[実施例]
次に、本発明の効果を確認するために行った非水電解質二次電池の評価試験について説明する。具体的には、図1に示した上記実施形態に対応する実施例として、以下の実施例1〜3による電池1を作製した。
[Example]
Next, the evaluation test of the nonaqueous electrolyte secondary battery performed for confirming the effect of the present invention will be described. Specifically, as an example corresponding to the above embodiment shown in FIG. 1, a battery 1 according to Examples 1 to 3 below was manufactured.

(実施例1)
(1)正極板の作製
正極活物質としてLiFePO、導電助剤としてアセチレンブラックおよび結着剤としてポリフッ化ビニリデンを用い、正極活物質、導電助剤および結着剤の比率をそれぞれ88質量%、6質量%および6質量%とした混合物にNMP(N−メチルピロリドン)を適量加えて粘度を調整した正極合剤スラリーを作製した。この正極合剤スラリーを厚み20μmのアルミニウム箔の両面に塗布して乾燥させることにより正極3を作製した。正極3には正極合剤が塗布されていないアルミニウム箔が露出した部位を設け、アルミニウム箔が露出した部位と正極リードとを接合した。なお、電池内の正極活物質と負極活物質との質量比率が正極活物質:負極活物質=1.8:1.0となるように、正極合剤および負極合剤の塗布質量を定めた。
Example 1
(1) Production of positive electrode plate Using LiFePO 4 as a positive electrode active material, acetylene black as a conductive additive and polyvinylidene fluoride as a binder, the ratio of the positive electrode active material, the conductive additive and the binder is 88% by mass, An appropriate amount of NMP (N-methylpyrrolidone) was added to a mixture of 6% by mass and 6% by mass to prepare a positive electrode mixture slurry in which the viscosity was adjusted. This positive electrode mixture slurry was applied to both sides of an aluminum foil having a thickness of 20 μm and dried to produce positive electrode 3. The positive electrode 3 was provided with a portion where the aluminum foil not coated with the positive electrode mixture was exposed, and the portion where the aluminum foil was exposed and the positive electrode lead were joined. In addition, the coating mass of the positive electrode mixture and the negative electrode mixture was determined so that the mass ratio of the positive electrode active material and the negative electrode active material in the battery was positive electrode active material: negative electrode active material = 1.8: 1.0. .

(2)ホウ素含有炭素の作製
ホウ素含有炭素の合成方法は以下のとおりである。ピッチコークスとホウ酸とを所定比率で混合し、その混合物をアルゴン気流中1000℃まで加熱して1000℃で10時間保持した後に、さらに2400℃まで加熱して2400℃で20時間保持した。その後、室温まで冷却して粉砕することで、ホウ素の含有量が0.05質量%であるホウ素含有炭素を得た。なお、ホウ素含有炭素におけるホウ素の含有量は0.01質量%〜1.0質量%が好ましい。
(2) Preparation of boron-containing carbon The synthesis method of boron-containing carbon is as follows. Pitch coke and boric acid were mixed at a predetermined ratio, and the mixture was heated to 1000 ° C. in an argon stream and held at 1000 ° C. for 10 hours, and further heated to 2400 ° C. and held at 2400 ° C. for 20 hours. Then, the boron-containing carbon whose boron content is 0.05 mass% was obtained by cooling to room temperature and pulverizing. The boron content in the boron-containing carbon is preferably 0.01% by mass to 1.0% by mass.

(3)負極板の作製
負極活物質としてホウ素含有黒鉛50質量%とホウ素非含有黒鉛50質量%とを含む混合材料(Bあり/Bなし=50/50)、結着剤としてポリフッ化ビニリデンを用い、負極活物質および結着剤をそれぞれ90質量%および10質量%とした混合物にNMPを適量加えて粘度を調整した負極合剤スラリーを作製した。この負極合剤スラリーを厚み15μmの銅箔の両面に塗布して乾燥させることにより負極4を作製した。負極4には負極合剤が塗布されていない銅箔が露出した部位を設け、銅箔が露出した部位と負極リードとを接合した。
(3) Production of Negative Electrode Plate A mixed material containing 50% by mass of boron-containing graphite and 50% by mass of boron-free graphite as a negative electrode active material (with / without B = 50/50), and polyvinylidene fluoride as a binder. A negative electrode mixture slurry was prepared by adjusting the viscosity by adding an appropriate amount of NMP to a mixture containing 90% by mass and 10% by mass of the negative electrode active material and the binder, respectively. This negative electrode mixture slurry was applied to both sides of a 15 μm thick copper foil and dried to prepare negative electrode 4. The negative electrode 4 was provided with a portion where the copper foil not coated with the negative electrode mixture was exposed, and the portion where the copper foil was exposed and the negative electrode lead were joined.

(4)未注液二次電池の作製
作製した正極3と負極4との間にポリエチレン製微多孔膜からなるセパレータ5を介在させて、正極3と負極4とを巻回することにより発電要素2を作製した。発電要素2を電池ケース6の開口部から電池ケース6内に収納して、正極リードを電池蓋7に接合し、負極リードを負極端子8に接合した後に、電池蓋7を電池ケース6の開口部に嵌合させてレーザー溶接で電池ケース6と電池蓋7とを接合することによって非水電解質が電池ケース6内に注液されていない未注液状態の電池を作製した。
(4) Production of non-injected secondary battery A power generation element is formed by winding the positive electrode 3 and the negative electrode 4 with a separator 5 made of a polyethylene microporous film interposed between the produced positive electrode 3 and the negative electrode 4. 2 was produced. The power generation element 2 is housed in the battery case 6 from the opening of the battery case 6, the positive electrode lead is joined to the battery lid 7, the negative electrode lead is joined to the negative electrode terminal 8, and then the battery lid 7 is opened to the battery case 6. The battery case 6 and the battery lid 7 were joined to each other and joined by laser welding to produce a non-injected battery in which the nonaqueous electrolyte was not injected into the battery case 6.

(5)非水電解質の調製および注液
エチレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネート(EMC)=3:2:5(体積比)の混合溶媒にLiPF6を1mol/Lの濃度で溶解させて非水電解質を調製した。この非水電解質を電池ケース6の側面に設けた注液口から電池ケース6の内部に注液した後に、注液口を栓で封口することで実施例1の電池1を作製した。
(5) Preparation and injection of nonaqueous electrolyte LiPF6 in a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 3: 2: 5 (volume ratio) at a concentration of 1 mol / L To prepare a non-aqueous electrolyte. After pouring this non-aqueous electrolyte into the battery case 6 from a liquid injection port provided on the side surface of the battery case 6, the liquid injection port was sealed with a stopper to produce the battery 1 of Example 1.

(実施例2)
負極活物質としてホウ素含有黒鉛30質量%とホウ素非含有黒鉛70質量%とを含む混合材料(Bあり/Bなし=30/70)を用いたこと以外は実施例1と同様の電池1を作成した。
(Example 2)
A battery 1 similar to that of Example 1 was prepared except that a mixed material containing 30% by mass of boron-containing graphite and 70% by mass of boron-free graphite (B present / no B = 30/70) was used as the negative electrode active material. did.

(実施例3)
負極活物質としてホウ素含有黒鉛70質量%とホウ素非含有黒鉛30質量%とを含む混合材料(Bあり/Bなし=70/30)を用いたこと以外は実施例1と同様の電池1を作成した。
(Example 3)
A battery 1 similar to that of Example 1 was prepared except that a mixed material containing 70% by mass of boron-containing graphite and 30% by mass of boron-free graphite (70% / 30% with B) was used as the negative electrode active material. did.

(6)初期容量の確認試験
各電池を用いて、以下の充放電条件にて初期放電容量確認試験をおこなった。25℃において450mAの定電流で3.5Vまで充電し、さらに3.5Vで定電圧にて充電し、定電流充電および定電圧充電を含めて合計3時間充電した。充電後に450mAの定電流にて2.0Vの放電終止電圧まで放電をおこない、この放電容量を「初期容量」とした。
(6) Initial Capacity Confirmation Test An initial discharge capacity confirmation test was performed using the batteries under the following charge / discharge conditions. The battery was charged to 3.5 V at a constant current of 450 mA at 25 ° C., charged at a constant voltage of 3.5 V, and charged for a total of 3 hours including constant current charging and constant voltage charging. After charging, discharging was performed at a constant current of 450 mA to a discharge end voltage of 2.0 V, and this discharge capacity was defined as “initial capacity”.

(7)正極板および負極板の開回路電位測定
各電池の電池ケースの側面に孔を設けて、セパレータで被覆したリチウム金属からなる参照極を挿入し、参照極と電解液とを接触させて正極および負極の電位を測定した。具体的には、放電状態から充電深度の1%を450mAの定電流で充電した後に休止1時間を設けて正極および負極の開回路電位を測定した。この充電、休止および電位測定のサイクルを充電深度100%まで実施した。
(7) Open circuit potential measurement of positive electrode plate and negative electrode plate A hole is provided in the side surface of each battery case, a reference electrode made of lithium metal covered with a separator is inserted, and the reference electrode and the electrolyte are brought into contact with each other. The potential of the positive electrode and the negative electrode was measured. Specifically, 1% of the charging depth was charged with a constant current of 450 mA from the discharged state, and then an open circuit potential of the positive electrode and the negative electrode was measured by providing a rest for 1 hour. This charging, resting, and potential measurement cycle was carried out to a charging depth of 100%.

実施例1〜3による正極および負極の開回路電位の測定結果を図3に示す。図3に示したように、実施例1(Bあり/Bなし=50/50)では、負極の変化点Bが正極の変化点Aと正極の充電終止点との間に存在している。実施例1の形態では、正極電位および負極電位の少なくとも一方の傾斜領域に起因して、使用される充電深度の全範囲に亘って電池電圧に傾斜領域を設けることができる。ここで、「使用される充電深度」とは放電終止電圧から充電終止電圧までの電池の充電深度であり、本実施例における図3の横軸では正極電位と負極電位との電位差が2.0Vと3.5Vと間の充電深度である。また、図2から明らかなように、実施例1では、ホウ素含有黒鉛(比較例2)と比較して負極の開回路電位が全体として低いため、電池電圧を高くすることが可能である。これにより、実施例1では、電池の高エネルギー密度化を図ることができる。   The measurement results of the open circuit potentials of the positive electrode and the negative electrode according to Examples 1 to 3 are shown in FIG. As shown in FIG. 3, in Example 1 (with / without B = 50/50), the change point B of the negative electrode exists between the change point A of the positive electrode and the charge end point of the positive electrode. In the form of Example 1, due to the slope region of at least one of the positive electrode potential and the negative electrode potential, a slope region can be provided in the battery voltage over the entire range of the charging depth used. Here, “the depth of charge used” is the charge depth of the battery from the end-of-discharge voltage to the end-of-charge voltage. On the horizontal axis in FIG. 3 in this example, the potential difference between the positive electrode potential and the negative electrode potential is 2.0 V. And the charging depth between 3.5V. Further, as apparent from FIG. 2, in Example 1, the open circuit potential of the negative electrode as a whole is lower than that of boron-containing graphite (Comparative Example 2), so that the battery voltage can be increased. Thereby, in Example 1, the high energy density of a battery can be achieved.

実施例2(Bあり/Bなし=30/70)では、負極の変化点Bが正極の変化点Aより低い充電深度に存在する。また、実施例2の形態では、正極の変化点Aから充電深度の低い方向に正極の平坦領域の1/10以下の範囲内に、負極の変化点Bの存在することが好ましい。実施例2の形態では、正極の平坦領域の大部分が負極の傾斜領域となるため、使用される充電深度の広い範囲で電池電圧に傾斜領域を設けることができる。   In Example 2 (with / without B = 30/70), the change point B of the negative electrode exists at a lower charging depth than the change point A of the positive electrode. Moreover, in the form of Example 2, it is preferable that the change point B of a negative electrode exists in the range of 1/10 or less of the flat area | region of a positive electrode from the change point A of a positive electrode to the direction where a charge depth is low. In the form of Example 2, since most of the flat region of the positive electrode is the negative electrode inclined region, the inclined region can be provided in the battery voltage in a wide range of the charging depth used.

また、図2から明らかなように、ホウ素含有黒鉛とホウ素非含有黒鉛との混合材料においてホウ素非含有黒鉛の質量比率を大きくすることによって、負極電位をより低くすることができる。その結果、電池電圧を高くして電池のエネルギー密度を図ることができる。   As is clear from FIG. 2, the negative electrode potential can be further lowered by increasing the mass ratio of the boron-free graphite in the mixed material of boron-containing graphite and boron-free graphite. As a result, the battery voltage can be increased to increase the energy density of the battery.

実施例3(Bあり/Bなし=70/30)では、負極に変化点Bが正極の充電終止点より高い充電深度に存在する。実施例3の形態では、ホウ素含有黒鉛の質量比率が大きいために負極電位が実施例1および実施例2のそれらより高くなり、電池のエネルギー密度が若干小さくなるが、正極終止点Eより高い充電深度まで負極電位の傾斜領域が存在するので、使用される充電深度の全範囲で電池電圧に傾斜領域を設けることができる。   In Example 3 (with / without B = 70/30), the change point B exists in the negative electrode at a charging depth higher than the charging end point of the positive electrode. In the form of Example 3, since the mass ratio of the boron-containing graphite is large, the negative electrode potential is higher than those of Example 1 and Example 2, and the energy density of the battery is slightly reduced, but the charging is higher than the positive electrode end point E. Since the gradient region of the negative electrode potential exists up to the depth, the gradient region can be provided in the battery voltage over the entire range of the charging depth used.

また、ハイブリッド自動車などの自動車用途では、回生エネルギーによって大電流での充電が行われたときに、分極が大きくなり一時的に負極電位が大きく降下する。負極電位がリチウムの析出電位よりも低下すると金属リチウムが負極表面に析出するおそれがある。これに対して、実施例3では、充電終止時の負極電位が、平坦領域よりも高い電位である傾斜領域に存在する。充電終止時の負極電位を高くすることで、負極電位がリチウムの析出電位より下回りにくくして、大電流での充電によって生じる金属リチウムの析出を抑制することができる。   Also, in automobile applications such as hybrid vehicles, when charging with a large current is performed by regenerative energy, the polarization becomes large and the negative electrode potential drops temporarily. When the negative electrode potential is lower than the deposition potential of lithium, metallic lithium may be deposited on the negative electrode surface. On the other hand, in Example 3, the negative electrode potential at the end of charging exists in an inclined region that is higher than the flat region. By increasing the negative electrode potential at the end of charging, the negative electrode potential is less likely to fall below the lithium deposition potential, and the deposition of metallic lithium caused by charging with a large current can be suppressed.

なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments and examples but by the scope of claims for patent, and includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

たとえば、上記実施例では、電池内の正極活物質と負極活物質との質量比率が正極活物質:負極活物質=1.8:1.0となるようにした。それ以外に、電池内の正極活物質と負極活物質との質量比率を変更することで正極の変化点Aと負極の変化点Bとの充電深度の位置の関係を調整することができる。たとえば、実施例1においては、正極活物質の質量比率を大きくすることで正極の変化点Aをより高い充電深度(図3の右側)にシフトすることができ、正極の変化点Aを負極の変化点B2よりも高い充電深度の存在させることができる。ホウ素含有黒鉛とホウ素非含有黒鉛との質量比率を変更することで正極の変化点Aと負極の変化点Bとの充電深度の位置の関係を調整する形態だけではなく、上記のように電池内の正極活物質と負極活物質の質量比率を変更することによっても正極の変化点Aと負極の変化点Bとの充電深度の位置の関係を調整することができる。   For example, in the above example, the mass ratio of the positive electrode active material and the negative electrode active material in the battery was set to be positive electrode active material: negative electrode active material = 1.8: 1.0. In addition, by changing the mass ratio of the positive electrode active material and the negative electrode active material in the battery, it is possible to adjust the relationship between the charging depth positions of the change point A of the positive electrode and the change point B of the negative electrode. For example, in Example 1, the change point A of the positive electrode can be shifted to a higher charging depth (right side in FIG. 3) by increasing the mass ratio of the positive electrode active material. A charging depth higher than the change point B2 can be present. By changing the mass ratio of boron-containing graphite and non-boron-containing graphite, not only the form of adjusting the relationship of the charging depth position between the change point A of the positive electrode and the change point B of the negative electrode, but also as described above By changing the mass ratio of the positive electrode active material and the negative electrode active material, the relationship of the charge depth position between the change point A of the positive electrode and the change point B of the negative electrode can be adjusted.

1 電池(非水電解質二次電池)
3 正極
4 負極
1 battery (non-aqueous electrolyte secondary battery)
3 Positive electrode 4 Negative electrode

Claims (4)

開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質を含む正極と、
開回路電位曲線が平坦領域と傾斜領域とを有するとともに、ホウ素を含有する黒鉛とホウ素を含有しない黒鉛とを含む負極とを備え、
前記ホウ素を含有する黒鉛と前記ホウ素を含有しない黒鉛との混合比率は、前記正極の平坦領域が存在する充電深度では前記負極の傾斜領域が存在するとともに、前記正極の傾斜領域が存在する充電深度では前記負極の平坦領域が存在するような混合比率である、非水電解質二次電池。
A positive electrode containing an olivine-based positive electrode active material represented by LiMPO 4 (M is at least one kind of metal) having an open circuit potential curve having a flat region and an inclined region;
The open circuit potential curve has a flat region and a slope region, and includes a negative electrode including graphite containing boron and graphite not containing boron,
The mixing ratio of the boron-containing graphite and the boron-free graphite is such that at the charging depth at which the flat region of the positive electrode exists, the inclined region of the negative electrode exists and at the charging depth at which the inclined region of the positive electrode exists. Then, a non-aqueous electrolyte secondary battery having a mixing ratio such that a flat region of the negative electrode exists.
前記正極の平坦領域と傾斜領域との変化点Aと、前記正極の充電終止点との間の充電深度に、前記負極の傾斜領域と平坦領域との変化点Bが存在する、請求項1に記載の非水電解質二次電池。   The change point A between the slope region and the flat region of the negative electrode exists at the charging depth between the change point A between the flat region and the slope region of the positive electrode and the charge end point of the positive electrode. The nonaqueous electrolyte secondary battery as described. 前記ホウ素を含有する黒鉛と前記ホウ素を含有しない黒鉛との質量比率が30/70以上90/10以下である、請求項1または2に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein a mass ratio of the graphite containing boron and the graphite not containing boron is 30/70 or more and 90/10 or less. 開回路電位曲線が平坦領域と傾斜領域とを有するLiMPO(Mは金属の少なくとも一種)で表されるオリビン系正極活物質を含む正極と、
開回路電位曲線が平坦領域と傾斜領域とを有するとともに、ホウ素を含有する黒鉛とホウ素を含有しない黒鉛とを含む負極とを備え、
前記ホウ素を含有する黒鉛と前記ホウ素を含有しない黒鉛との混合比率は、前記正極の傾斜領域の充電深度で前記負極の傾斜領域が存在し、かつ、前記正極の充電終止点の充電深度が前記負極の傾斜領域に存在するような混合比率である、非水電解質二次電池。
A positive electrode containing an olivine-based positive electrode active material represented by LiMPO 4 (M is at least one kind of metal) having an open circuit potential curve having a flat region and an inclined region;
The open circuit potential curve has a flat region and a slope region, and includes a negative electrode including graphite containing boron and graphite not containing boron,
The mixing ratio of the boron-containing graphite and the boron-free graphite is such that the negative electrode slope region exists at the charge depth of the positive electrode slope region, and the charge depth of the positive electrode charge end point is the charge depth. A non-aqueous electrolyte secondary battery having a mixing ratio that exists in the inclined region of the negative electrode.
JP2012000699A 2012-01-05 2012-01-05 Nonaqueous electrolyte secondary battery Active JP5884488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000699A JP5884488B2 (en) 2012-01-05 2012-01-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000699A JP5884488B2 (en) 2012-01-05 2012-01-05 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013140734A true JP2013140734A (en) 2013-07-18
JP5884488B2 JP5884488B2 (en) 2016-03-15

Family

ID=49038002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000699A Active JP5884488B2 (en) 2012-01-05 2012-01-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5884488B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040679A1 (en) * 2013-09-17 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JP2017227694A (en) * 2016-06-21 2017-12-28 住友電気工業株式会社 Slotted rod for optical cable and optical cable
WO2022209158A1 (en) 2021-03-29 2022-10-06 株式会社豊田自動織機 Electrolytic solution and lithium ion secondary battery
DE112021001177T5 (en) 2020-02-20 2022-12-08 Kabushiki Kaisha Toyota Jidoshokki LITHIUM-ION SECONDARY BATTERY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307717A (en) * 2000-04-26 2001-11-02 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307717A (en) * 2000-04-26 2001-11-02 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040679A1 (en) * 2013-09-17 2015-03-26 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9755233B2 (en) 2013-09-17 2017-09-05 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JP2017227694A (en) * 2016-06-21 2017-12-28 住友電気工業株式会社 Slotted rod for optical cable and optical cable
DE112021001177T5 (en) 2020-02-20 2022-12-08 Kabushiki Kaisha Toyota Jidoshokki LITHIUM-ION SECONDARY BATTERY
WO2022209158A1 (en) 2021-03-29 2022-10-06 株式会社豊田自動織機 Electrolytic solution and lithium ion secondary battery
KR20230109691A (en) 2021-03-29 2023-07-20 가부시키가이샤 도요다 지도숏키 Electrolyte and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5884488B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP7066223B2 (en) Positive electrode material for lithium secondary batteries, positive electrodes including this, and lithium secondary batteries
JP6094843B2 (en) Electrolytic solution additive for lithium secondary battery, non-aqueous electrolytic solution containing the electrolytic solution additive, and lithium secondary battery
US20120100403A1 (en) Electrolytic cell and method of estimating a state of charge thereof
WO2017061102A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US10141607B2 (en) Nonaqueous electrolyte secondary battery
JP6047871B2 (en) Battery pack and power storage device using the same
JP6087489B2 (en) Assembled battery system
KR20140013885A (en) Lithium ion secondary battery
KR20150126843A (en) Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
US9853328B2 (en) Electrolyte for lithium secondary batteries and lithium secondary battery including the same
KR101311495B1 (en) Lithium secondary battery
JP7176821B2 (en) Non-aqueous electrolyte additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
KR102230038B1 (en) Lithium secondary battery
JP5884488B2 (en) Nonaqueous electrolyte secondary battery
US9160033B2 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JPWO2014136794A1 (en) Lithium secondary battery
KR20170070095A (en) Lithium-ion secondary cell
CN104508891B (en) Rechargeable nonaqueous electrolytic battery
JP6260279B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6747312B2 (en) Non-aqueous electrolyte, power storage element and method for manufacturing power storage element
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP2015072769A (en) Nonaqueous electrolytic solution and lithium ion secondary battery
JP7371396B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2022534525A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150