JP2013140079A - Reactor isolation cooler - Google Patents

Reactor isolation cooler Download PDF

Info

Publication number
JP2013140079A
JP2013140079A JP2012000349A JP2012000349A JP2013140079A JP 2013140079 A JP2013140079 A JP 2013140079A JP 2012000349 A JP2012000349 A JP 2012000349A JP 2012000349 A JP2012000349 A JP 2012000349A JP 2013140079 A JP2013140079 A JP 2013140079A
Authority
JP
Japan
Prior art keywords
valve
reactor
pipe
heat transfer
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000349A
Other languages
Japanese (ja)
Other versions
JP5696056B2 (en
Inventor
Aritoshi Mizuide
有俊 水出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012000349A priority Critical patent/JP5696056B2/en
Publication of JP2013140079A publication Critical patent/JP2013140079A/en
Application granted granted Critical
Publication of JP5696056B2 publication Critical patent/JP5696056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a reaction isolation cooler capable of cooling a reactor even if the loss of power occurs during reactor isolation.SOLUTION: A steam supply pipe 8 connected to a reactor pressure vessel 1 is connected to an inlet portion of a heat transfer pipe 5 of a condenser 4. A condensate water returning pipe 9 connected to an outlet portion of the heat transfer pipe 7 is connected to the reactor pressure vessel 1. A condensate valve 10 is provided in the condensate water returning pipe 9, and a bypass piping 16 provided with a bypass valve 17 bypasses the condensate valve 10 and is connected to the condensate water returning pipe 9. A flow rate limit orifice 18 is attached to the bypass piping 16. A valve actuating device 27 opens the bypass valve 17 when power supply is lost during reactor isolation. Steam generated by the decay heat of nuclear fuel material in a reactor core 2 is condensed in the heat transfer pipe 5. Condensate water generated in the heat transfer pipe 5 successively passes through the condensate water returning pipe 9, the bypass piping 16, and the condensate water returning pipe 9, and is returned to the reactor pressure vessel 1. Therefore, a reactor is cooled.

Description

本発明は、原子炉隔離時冷却装置に係り、特に、沸騰水型原子力プラントに適用するのに好適な原子炉隔離時冷却装置に関する。   The present invention relates to a reactor isolation cooling device, and more particularly to a reactor isolation cooling device suitable for application to a boiling water nuclear power plant.

沸騰水型原子力プラントにおいて、原子炉は原子炉格納容器によって取り囲まれており、原子炉格納容器内に圧力抑制室が形成されている。この沸騰水型原子力プラントでは、原子炉にすべての制御棒が挿入された原子炉停止状態においても定格出力の数パーセントの崩壊熱が原子炉内の炉心で生じる。運転中の沸騰水型原子力プラントにおいて、何らかの要因により、原子炉の炉心内に全制御棒が挿入されて沸騰水型原子力プラントの運転が停止されると、原子炉に接続された主蒸気配管に設けられた主蒸気隔離弁が全閉状態になり、核燃料物質の崩壊熱により炉心で発生する蒸気が、主蒸気配管に設けられた逃し安全弁から原子炉圧力抑制室内の冷却水中に放出される。この蒸気の放出は、原子炉内の水位の低下をもたらす。   In a boiling water nuclear power plant, a nuclear reactor is surrounded by a reactor containment vessel, and a pressure suppression chamber is formed in the reactor containment vessel. In this boiling water nuclear power plant, even when the reactor is shut down with all control rods inserted into the reactor, decay heat of several percent of the rated power is generated in the reactor core. In a boiling water nuclear power plant in operation, if for some reason all control rods are inserted into the reactor core and the operation of the boiling water nuclear power plant is stopped, the main steam pipe connected to the nuclear reactor The provided main steam isolation valve is fully closed, and the steam generated in the core due to the decay heat of the nuclear fuel material is released into the cooling water in the reactor pressure suppression chamber from the relief safety valve provided in the main steam pipe. This release of steam results in a drop in the water level in the reactor.

このため、制御棒が炉心に全挿入されて原子炉が隔離された状態において原子炉内の炉心で発生する崩壊熱を除去する原子炉隔離時冷却装置が、上記の原子炉水位の低下を抑制するために用いられている。原子炉隔離時冷却装置は、核燃料物質の崩壊熱で発生する蒸気を原子炉から復水器の胴体内に設置された伝熱管内に導いてこの蒸気をその胴体内で伝熱管の外側に存在する冷却水と熱交換することにより除熱するシステムである。伝熱管内で蒸気の凝縮により生成された凝縮水は、原子炉圧力容器内に戻される。   For this reason, the reactor isolation cooling system that removes the decay heat generated in the reactor core when the control rods are fully inserted into the reactor core and the reactor is isolated suppresses the decrease in the reactor water level described above. It is used to In the reactor isolation cooling system, steam generated by the decay heat of nuclear fuel material is introduced from the reactor into the heat transfer tube installed in the fuselage fuselage, and this steam is present outside the heat transfer tube in the fuselage. This system removes heat by exchanging heat with cooling water. The condensed water produced by the condensation of steam in the heat transfer tube is returned to the reactor pressure vessel.

原子炉隔離時冷却装置の一例が、特開平4−27896号公報に記載されている。この原子炉隔離時冷却装置は、内部に伝熱管を設けた冷却水貯水槽を設け、この伝熱管の入口側に原子炉圧力容器に接続された蒸気配管を接続し、伝熱管の出口側に接続された復水配管を原子炉圧力容器に接続し、復水配管に流量調節弁を設けている。原子炉の隔離時事象が発生したときには、原子炉圧力容器内で崩壊熱により発生した蒸気が蒸気配管を通して伝熱管に導かれて凝縮され、発生した凝縮水が復水配管を通して原子炉圧力容器に戻される。このとき、計測された原子炉圧力を入力した制御装置が、流量調節弁の開度を調節し、原子炉圧力容器内に戻される凝縮水の量を調節する。このため、隔離時事象が発生したときにおいて、原子炉圧力容器内の圧力の低下を抑制し、この圧力を一定に保持する。   An example of a reactor isolation cooling device is described in Japanese Patent Application Laid-Open No. 4-27896. This reactor isolation cooling device is provided with a cooling water storage tank provided with a heat transfer tube inside, a steam pipe connected to the reactor pressure vessel connected to the inlet side of the heat transfer tube, and an outlet side of the heat transfer tube The connected condensate piping is connected to the reactor pressure vessel, and the condensate piping is provided with a flow control valve. When a reactor isolation event occurs, steam generated by decay heat in the reactor pressure vessel is led to the heat transfer tube through the steam pipe to condense, and the generated condensed water passes into the reactor pressure vessel through the condensate pipe. Returned. At this time, the control device that has input the measured reactor pressure adjusts the opening of the flow control valve to adjust the amount of condensed water returned into the reactor pressure vessel. For this reason, when an isolation event occurs, the pressure drop in the reactor pressure vessel is suppressed, and this pressure is kept constant.

また、特開平3−246492号公報に記載された原子炉隔離時冷却装置は、冷却水が充填されたプール内に配置された復水器を有し、復水器の伝熱管の一端を蒸気配管により原子炉圧力容器に接続し、その伝熱管の他端を復水配管により原子炉圧力容器に接続している。第1隔離弁が蒸気配管に設けられ、第3隔離弁が復水配管に設けられる。第2隔離弁が設けられた第1バイパス配管が、第1隔離弁をバイパスして蒸気配管に接続される。第4隔離弁が設けられた第2バイパス配管が、第3隔離弁をバイパスして復水配管に接続される。その原子炉隔離時冷却装置を起動するときには、第2及び第4隔離弁を開き、復水器の暖気に要する時間が経過した後に第1及び第3隔離弁を開く。このようにして、復水器の暖気を行っている。原子炉隔離時冷却装置が起動された後における原子炉圧力容器内の温度は、第2及び第4隔離弁のそれぞれの開度調整または第1及び第3隔離弁のそれぞれの開度調整により制御される。なお、第1隔離弁、第2隔離弁、第3隔離弁及び第4隔離弁の各開度は、制御装置によって制御される。   Further, a reactor isolation cooling apparatus described in Japanese Patent Laid-Open No. 3-246492 has a condenser arranged in a pool filled with cooling water, and steam is connected to one end of a heat transfer tube of the condenser. A pipe is connected to the reactor pressure vessel, and the other end of the heat transfer tube is connected to the reactor pressure vessel through a condensate pipe. A first isolation valve is provided in the steam pipe and a third isolation valve is provided in the condensate pipe. The first bypass pipe provided with the second isolation valve bypasses the first isolation valve and is connected to the steam pipe. The second bypass pipe provided with the fourth isolation valve bypasses the third isolation valve and is connected to the condensate pipe. When starting the reactor isolation cooling device, the second and fourth isolation valves are opened, and the first and third isolation valves are opened after the time required for warming up the condenser has elapsed. In this way, the condenser is warmed up. The temperature in the reactor pressure vessel after the reactor isolation cooling device is started is controlled by adjusting the opening of each of the second and fourth isolation valves or adjusting the opening of each of the first and third isolation valves. Is done. In addition, each opening degree of a 1st isolation valve, a 2nd isolation valve, a 3rd isolation valve, and a 4th isolation valve is controlled by the control apparatus.

特開平4−27896号公報JP-A-4-27896 特開平3−246492号公報JP-A-3-246492

特開平4−27896号公報に記載された原子炉隔離時冷却装置では、原子炉隔離時において電源喪失が生じている場合には、復水配管に設けられた流量調節弁を開くことができない。この結果、原子炉隔離時において、原子炉隔離時冷却装置による原子炉の冷却を行うことができなくなる。   In the reactor isolation cooling device described in Japanese Patent Application Laid-Open No. 4-27896, when a power loss occurs at the time of reactor isolation, the flow control valve provided in the condensate pipe cannot be opened. As a result, at the time of reactor isolation, the reactor cannot be cooled by the reactor isolation cooling device.

本発明の目的は、原子炉隔離時に電源喪失が生じていても原子炉を冷却することができる原子炉隔離時冷却装置を提供することにある。   An object of the present invention is to provide a reactor isolation cooling device that can cool a reactor even when a power loss occurs at the time of reactor isolation.

上記した目的を達成する本発明の特徴は、伝熱管を有する復水器と、伝熱管の入口に連絡されて原子炉圧力容器内で生成された蒸気を伝熱管に導く蒸気供給管と、伝熱管の出口に連絡されて伝熱管から排出された凝縮水を原子炉圧力容器に導く凝縮水戻り管と、凝縮水戻り管に設けられて原子炉隔離時に開く第1開閉弁と、第1開閉弁をバイパスして両端が凝縮水戻り管に接続されるバイパス配管と、バイパス配管に設けられ、電源喪失時に開く第2開閉弁とを備えたことにある。   A feature of the present invention that achieves the above-described object is that a condenser having a heat transfer tube, a steam supply pipe that is connected to the inlet of the heat transfer pipe and guides the steam generated in the reactor pressure vessel to the heat transfer pipe, and A condensed water return pipe that leads the condensed water discharged from the heat transfer pipe connected to the outlet of the heat pipe to the reactor pressure vessel, a first opening / closing valve that is provided in the condensed water return pipe and opens when the reactor is isolated, and a first opening / closing A bypass pipe having both ends connected to the condensed water return pipe by bypassing the valve and a second on-off valve provided in the bypass pipe and opened when the power is lost are provided.

電源喪失時に開く第2開閉弁を設けたバイパス配管を、第1開閉弁をバイパスさせて凝縮水戻り管に接続しているため、原子炉隔離時に電源喪失が生じて第1開閉弁を開くことができない場合でも、第2開閉弁を開くことができる。これにより、復水器の伝熱管内における蒸気の凝縮によって生じた凝縮水を、バイパス配管を通して原子炉圧力容器に導くことができ、原子炉を冷却することができる。   Bypassing the first open / close valve and connecting the condensate return pipe with the bypass on / off valve, which opens when the power is lost, opens the first open / close valve when power is lost during reactor isolation. Even when it is not possible, the second on-off valve can be opened. Thereby, the condensed water produced by the condensation of steam in the heat transfer tube of the condenser can be guided to the reactor pressure vessel through the bypass pipe, and the reactor can be cooled.

本発明によれば、原子炉隔離時に電源喪失が生じていても原子炉を冷却することができる。   According to the present invention, it is possible to cool a nuclear reactor even if a power loss occurs during the isolation of the nuclear reactor.

本発明の好適な一実施例である実施例1の原子炉隔離時冷却装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a reactor isolation cooling apparatus according to embodiment 1, which is a preferred embodiment of the present invention. 電源喪失時において図1に示すバイパス弁を作動させる弁作動装置の構成図である。It is a block diagram of the valve actuator which operates the bypass valve shown in FIG. 1 at the time of power loss. 本発明の他の実施例である実施例2の原子炉隔離時冷却装置に用いられるバイパス弁の構成図である。It is a block diagram of the bypass valve used for the reactor isolation | separation cooling device of Example 2 which is another Example of this invention.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本発明の好適な一実施例である実施例1の原子炉隔離時冷却装置を、図1及び図2を用いて説明する。   A reactor isolation cooling apparatus according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIGS.

本実施例の原子炉隔離時冷却装置3を、図1を用いて説明する。原子炉隔離時冷却装置3は沸騰水型原子力プラントに適用される。この沸騰水型原子力プラントは、炉心2を内蔵する原子炉圧力容器1を有する。圧力計13及び水位計14が原子炉圧力容器1に設置される。圧力計13及び水位計14は作動信号発生装置15に接続される。   The reactor isolation cooling device 3 of the present embodiment will be described with reference to FIG. The reactor isolation cooling device 3 is applied to a boiling water nuclear power plant. This boiling water nuclear power plant has a reactor pressure vessel 1 in which a core 2 is built. A pressure gauge 13 and a water level gauge 14 are installed in the reactor pressure vessel 1. The pressure gauge 13 and the water level gauge 14 are connected to the operation signal generator 15.

原子炉隔離時冷却装置3は、伝熱管5を胴体内に設置した復水器4、蒸気供給管8、凝縮水戻り管9、復水弁10、制御装置11、バイパス配管16、バイパス弁17、及び弁作動装置27を備えている。原子炉圧力容器1に接続された蒸気供給管8が、復水器4の伝熱管5の入口部に接続される。蒸気供給管8の、原子炉圧力容器1における開口の位置は、原子炉圧力容器1内に形成される、沸騰水型原子力プラントの通常運転時における冷却水の液面よりも上方に位置している。その伝熱管7の出口部に接続された凝縮水戻り管9が、原子炉圧力容器1に接続される。凝縮水戻り管9の、原子炉圧力容器1における開口の位置は、原子炉圧力容器1内に形成される、沸騰水型原子力プラントの通常運転時における冷却水の液面よりも下方に位置している。電動弁である復水弁10が凝縮水戻り管9に設けられる。バイパス弁(開閉弁)17が設けられたバイパス配管16が復水弁10をバイパスして凝縮水戻り管9に接続される。流量制限オリフィス(流量制限装置)18がバイパス配管16に取り付けられる。   The reactor isolation cooling device 3 includes a condenser 4 having a heat transfer pipe 5 installed in the fuselage, a steam supply pipe 8, a condensed water return pipe 9, a condensate valve 10, a control device 11, a bypass pipe 16, and a bypass valve 17. And a valve actuator 27. A steam supply pipe 8 connected to the reactor pressure vessel 1 is connected to an inlet portion of the heat transfer pipe 5 of the condenser 4. The position of the opening of the steam supply pipe 8 in the reactor pressure vessel 1 is located above the liquid level of the cooling water formed in the reactor pressure vessel 1 during normal operation of the boiling water nuclear power plant. Yes. A condensed water return pipe 9 connected to the outlet of the heat transfer pipe 7 is connected to the reactor pressure vessel 1. The position of the opening of the condensed water return pipe 9 in the reactor pressure vessel 1 is located below the liquid level of the cooling water formed in the reactor pressure vessel 1 during normal operation of the boiling water nuclear power plant. ing. A condensate valve 10, which is an electric valve, is provided in the condensed water return pipe 9. A bypass pipe 16 provided with a bypass valve (open / close valve) 17 bypasses the condensate valve 10 and is connected to the condensed water return pipe 9. A flow restriction orifice (flow restriction device) 18 is attached to the bypass pipe 16.

バイパス弁17は、図2に示すように、シリンダ19、ピストン20及び弁体21を有する。ピストン21がシリンダ19内に配置され、弁体21がロッドでピストン20に連結される。シリンダ室22及び23がシリンダ19内に形成される。シリンダ室23はピストン20よりも弁体21側に形成され、シリンダ室22がピストン20に対して弁体21とは反対側に形成される。   As shown in FIG. 2, the bypass valve 17 includes a cylinder 19, a piston 20, and a valve body 21. The piston 21 is disposed in the cylinder 19 and the valve body 21 is connected to the piston 20 with a rod. Cylinder chambers 22 and 23 are formed in the cylinder 19. The cylinder chamber 23 is formed on the valve body 21 side with respect to the piston 20, and the cylinder chamber 22 is formed on the opposite side of the valve body 21 with respect to the piston 20.

弁作動装置27が、トリップ弁24,25及び電磁弁26を有する。トリップ弁24,25は空気作動弁である。トリップ弁24のAが配管36によってシリンダ19に接続されてシリンダ室22に連絡される。トリップ弁24のPが配管38でボリュームタンク32に接続される。シリンダ19に接続されてシリンダ室23に連絡される配管37が、トリップ弁25のAに接続される。トリップ弁25のEが配管39により配管38に接続される。トリップ弁25のPは配管31により計装用空気源28に接続される。逆止弁29が配管31に設けられる。   The valve actuator 27 has trip valves 24 and 25 and a solenoid valve 26. Trip valves 24 and 25 are air operated valves. A of the trip valve 24 is connected to the cylinder 19 by a pipe 36 and communicated with the cylinder chamber 22. P of the trip valve 24 is connected to the volume tank 32 by a pipe 38. A pipe 37 connected to the cylinder 19 and connected to the cylinder chamber 23 is connected to A of the trip valve 25. E of the trip valve 25 is connected to the pipe 38 by the pipe 39. P of the trip valve 25 is connected to an instrument air source 28 by a pipe 31. A check valve 29 is provided in the pipe 31.

トリップ弁24に駆動用空気を供給する配管40が電磁弁26のAに接続される。トリップ弁25に駆動用空気を供給する配管41が配管40に接続される。電磁弁26のPに接続される配管30が逆止弁29と計装用空気源28の間で配管31に接続される。トリップ弁24のE及び電磁弁26のEはどこにも接続されていない。電源12が制御装置11及び電磁弁26に接続される。制御装置11には作動信号発生装置15も接続される。   A pipe 40 for supplying driving air to the trip valve 24 is connected to A of the electromagnetic valve 26. A pipe 41 that supplies driving air to the trip valve 25 is connected to the pipe 40. A pipe 30 connected to P of the electromagnetic valve 26 is connected to the pipe 31 between the check valve 29 and the instrumentation air source 28. The E of the trip valve 24 and the E of the electromagnetic valve 26 are not connected anywhere. A power supply 12 is connected to the control device 11 and the electromagnetic valve 26. An operation signal generator 15 is also connected to the control device 11.

沸騰水型原子力プラントの通常運転時では、復水弁10が閉じられており、原子炉圧力容器1内で発生した蒸気が原子炉隔離時冷却装置3の復水器4に流入することが阻止されている。   During normal operation of the boiling water nuclear power plant, the condensate valve 10 is closed, and the steam generated in the reactor pressure vessel 1 is prevented from flowing into the condenser 4 of the cooling device 3 during reactor isolation. Has been.

原子炉圧力容器1内の水位が水位計14で計測され、原子炉圧力容器1内の圧力が圧力計13で計測される。計測された水位及び圧力が作動信号発生装置15に入力される。圧力計13で計測された圧力が設定圧力以上になったとき、または、水位計14で計測された水位が設定水位以下になったとき、作動信号発生装置15から制御装置11に作動信号が出力される。作動信号発生装置15から出力された作動信号を入力された制御装置11は、復水弁10を開く。復水弁10が開いたとき、原子炉隔離時冷却装置3が起動される。すなわち、原子炉隔離時に、原子炉隔離時冷却装置3が起動される。また、沸騰水型原子力プラントの運転中に、計測された圧力が設定圧力以上になったとき、または、計測された水位が設定水位以下になったときには、全制御棒が炉心に挿入され、沸騰水型原子力プラントの運転が停止され、原子炉圧力容器1に接続された主蒸気配管(図示せず)に設けられた主蒸気隔離弁(図示せず)が閉止される。   The water level in the reactor pressure vessel 1 is measured by the water level gauge 14, and the pressure in the reactor pressure vessel 1 is measured by the pressure gauge 13. The measured water level and pressure are input to the operation signal generator 15. When the pressure measured by the pressure gauge 13 becomes equal to or higher than the set pressure, or when the water level measured by the water level gauge 14 becomes equal to or lower than the set water level, an operation signal is output from the operation signal generator 15 to the control device 11. Is done. The control device 11 to which the operation signal output from the operation signal generator 15 is input opens the condensate valve 10. When the condensate valve 10 is opened, the reactor isolation cooling device 3 is activated. That is, the reactor isolation cooling device 3 is activated during the reactor isolation. In addition, when the measured pressure exceeds the set pressure during the operation of the boiling water nuclear power plant, or when the measured water level falls below the set water level, all control rods are inserted into the reactor core and boil The operation of the water nuclear plant is stopped, and a main steam isolation valve (not shown) provided in a main steam pipe (not shown) connected to the reactor pressure vessel 1 is closed.

沸騰水型原子力プラントの運転が停止されているときに、原子炉圧力容器1内の炉心において核燃料物質の崩壊熱により発生した蒸気は、原子炉隔離時において復水弁10が開いたときに、蒸気供給管8を通って復水器4の伝熱管5内に導かれる。復水弁10の開度は電源12から電流が供給される制御装置11によって調節される。伝熱管5内の蒸気は、伝熱管5の外側で復水器4の胴体内に存在する水6によって凝縮され、凝縮水7になる。この凝縮水7は、伝熱管5から凝縮水戻り管9内に排出される。電源12が正常であるとき、この凝縮水7が凝縮水戻り管9を通って原子炉圧力容器1内に導かれ、炉心2が凝縮水7によって冷却される。   When the operation of the boiling water nuclear power plant is stopped, the steam generated by the decay heat of the nuclear fuel material in the core in the reactor pressure vessel 1 is opened when the condensate valve 10 is opened at the time of reactor isolation. It is led into the heat transfer pipe 5 of the condenser 4 through the steam supply pipe 8. The opening degree of the condensing valve 10 is adjusted by a control device 11 to which current is supplied from a power source 12. The steam in the heat transfer tube 5 is condensed by the water 6 existing in the body of the condenser 4 outside the heat transfer tube 5 to become condensed water 7. The condensed water 7 is discharged from the heat transfer pipe 5 into the condensed water return pipe 9. When the power source 12 is normal, the condensed water 7 is guided into the reactor pressure vessel 1 through the condensed water return pipe 9, and the core 2 is cooled by the condensed water 7.

電源12が正常状態にあって復水弁10が開いているとき、バイパス弁17が閉じている。電源12が正常状態であるときにおけるバイパス弁17の閉動作について説明する。電源12の正常状態時においては、電源12から電磁弁26に電流が供給されるため、電磁弁26は、A及びPを開放してEを閉止している。このため、計装用空気源28からの空気が、配管31,30を経由して電磁弁26に達した加圧空気が、電磁弁26のP,Aを通って配管40に排出され、トリップ弁24に供給される。また、配管40に排出された加圧空気の一部は配管41を通ってトリップ弁25に供給される。トリップ弁24,25のそれぞれは、加圧空気の作用によってA及びPが開放され、Eが閉止される。このため、ボリュームタンク32内の加圧空気が、配管41、トリップ弁24のP及びA、及び配管36を通ってシリンダ室22に供給される。また、計装用空気源28が、配管31、トリップ弁25のP及びA、及び配管37を通してシリンダ室23に連絡される。ボリュームタンク32内の加圧空気の圧力が計装用空気源28の加圧空気の圧力よりも高いので、ピストン20がシリンダ室23に向かって移動し、バイパス配管16がバイパス弁17の弁体21によって閉止される。   When the power supply 12 is in a normal state and the condensing valve 10 is open, the bypass valve 17 is closed. The closing operation of the bypass valve 17 when the power supply 12 is in a normal state will be described. When the power supply 12 is in a normal state, current is supplied from the power supply 12 to the electromagnetic valve 26, so the electromagnetic valve 26 opens A and P and closes E. For this reason, the pressurized air from which the air from the instrumentation air source 28 has reached the electromagnetic valve 26 via the pipes 31 and 30 is discharged to the pipe 40 through P and A of the electromagnetic valve 26, and the trip valve 24. A part of the pressurized air discharged to the pipe 40 is supplied to the trip valve 25 through the pipe 41. In each of the trip valves 24 and 25, A and P are opened by the action of pressurized air, and E is closed. For this reason, the pressurized air in the volume tank 32 is supplied to the cylinder chamber 22 through the pipe 41, P and A of the trip valve 24, and the pipe 36. An instrument air source 28 is communicated with the cylinder chamber 23 through the pipe 31, P and A of the trip valve 25, and the pipe 37. Since the pressure of the pressurized air in the volume tank 32 is higher than the pressure of the pressurized air of the instrumentation air source 28, the piston 20 moves toward the cylinder chamber 23, and the bypass pipe 16 is the valve body 21 of the bypass valve 17. Closed by.

沸騰水型原子力プラントの運転が停止されて、万が一、電源12が喪失した場合には、復水弁10が閉止状態になっている。電源12の喪失時、すなわち、電源12から電磁弁26に電流が供給されなくなったとき、電磁弁26はA及びEが開放されてPが閉止される。このため、トリップ弁24,25の駆動用空気である、計装用空気源28の加圧空気が、電磁弁26からトリップ弁24,25のそれぞれに供給されなくなり、トリップ弁24,25のそれぞれではA及びEが開放されてPが閉止される。ボリュームタンク32内の加圧空気が配管38,39、トリップ弁25のE及びA、及び配管37を通してシリンダ室23に供給される。シリンダ室22内の加圧空気は、配管36、及びトリップ弁24のA及びEを通して外部に排気される。このため、ピストン20がシリンダ室22側に移動して弁体21を持ち上げる。バイパス弁17が開放される。   If the operation of the boiling water nuclear plant is stopped and the power supply 12 is lost, the condensing valve 10 is closed. When the power source 12 is lost, that is, when no current is supplied from the power source 12 to the solenoid valve 26, the solenoid valve 26 is opened by A and E and P is closed. For this reason, the pressurized air of the instrumentation air source 28, which is the driving air for the trip valves 24, 25, is not supplied to the trip valves 24, 25 from the electromagnetic valve 26, respectively. A and E are opened and P is closed. Pressurized air in the volume tank 32 is supplied to the cylinder chamber 23 through the pipes 38 and 39, the E and A of the trip valve 25, and the pipe 37. The pressurized air in the cylinder chamber 22 is exhausted to the outside through the pipe 36 and the trip valves 24 A and E. For this reason, the piston 20 moves to the cylinder chamber 22 side and lifts the valve body 21. The bypass valve 17 is opened.

本実施例では、上記したように、原子炉隔離時において、万が一、電源が喪失した場合でもバイパス弁17が開放されるため、原子炉圧力容器1内の炉心2で核燃料物質の崩壊熱により発生した蒸気は、前述したように、復水器4の伝熱管5内で凝縮される。この蒸気の凝縮により発生した凝縮水7は、凝縮水戻り管9に排出され、バイパス配管16を通って原子炉圧力容器1に導かれる。   In the present embodiment, as described above, when the reactor is isolated, the bypass valve 17 is opened even if the power source is lost. Therefore, the reactor 2 is generated by the decay heat of the nuclear fuel material in the core 2 in the reactor pressure vessel 1. The steam thus condensed is condensed in the heat transfer tube 5 of the condenser 4 as described above. The condensed water 7 generated by the condensation of the steam is discharged to the condensed water return pipe 9 and guided to the reactor pressure vessel 1 through the bypass pipe 16.

本実施例では、電源12から電流が制御装置11に供給される状態において、原子炉が隔離されたとき、制御装置11によって復水弁10が開放されるため、原子炉圧力容器1内の炉心2で核燃料物質の崩壊熱により発生した蒸気を、復水器4の伝熱管5内で凝縮させることができる。発生した凝縮水7は、復水弁10を通して原子炉圧力容器1内に導かれる。このように、電源12から電流が供給されるときには、復水弁10を開いて原子炉を冷却することができる。   In the present embodiment, when the reactor is isolated in a state where current is supplied from the power source 12 to the control device 11, the condensate valve 10 is opened by the control device 11, so that the core in the reactor pressure vessel 1 is opened. 2, the steam generated by the decay heat of the nuclear fuel material can be condensed in the heat transfer tube 5 of the condenser 4. The generated condensed water 7 is guided into the reactor pressure vessel 1 through the condensate valve 10. In this way, when current is supplied from the power supply 12, the condensate valve 10 can be opened to cool the nuclear reactor.

原子炉隔離時において電源が喪失したときには、復水弁10が全閉状態になっており、前述したように、弁作動装置27によってバイパス弁17を開くことができる。このため、原子炉隔離時に炉心2で核燃料物質の崩壊熱によって発生した蒸気が伝熱管5内で凝縮され、生成された凝縮水7が凝縮水戻り管9、バイパス配管16及び凝縮水戻り管9を順次通って原子炉圧力容器1内に導かれて原子炉が冷却される。このとき、凝縮水7は復水弁10を通過しない。また、凝縮水7が原子炉圧力容器1内に導かれるために、原子炉圧力容器1内の水位は実質的に変化しない。   When the power source is lost at the time of reactor isolation, the condensing valve 10 is fully closed, and the bypass valve 17 can be opened by the valve operating device 27 as described above. For this reason, the steam generated by the decay heat of the nuclear fuel material in the reactor core 2 at the time of reactor isolation is condensed in the heat transfer pipe 5, and the generated condensed water 7 is condensed water return pipe 9, bypass pipe 16 and condensed water return pipe 9. Are sequentially led into the reactor pressure vessel 1 to cool the reactor. At this time, the condensed water 7 does not pass through the condensate valve 10. Further, since the condensed water 7 is guided into the reactor pressure vessel 1, the water level in the reactor pressure vessel 1 does not substantially change.

バイパス配管16に設けられている流量制限オリフィス18によって、原子炉圧力容器1に導かれる凝縮水7の流量が制限される。すなわち、流量制限オリフィス18は、凝縮水7が過度に原子炉圧力容器1内に流入することを制限している。このため、原子炉圧力容器1内の温度減少率が制限値よりも大きくなることを防止できる。電源12から電流が供給されるときには、復水弁10の開度が調節されて原子炉圧力容器1に導かれる凝縮水7の流量が調節され、原子炉圧力容器1内の温度減少率が制限値よりも大きくなることを防止できる。電源が喪失しているときには、バイパス弁17の開度を調節することができないので、流量制限オリフィス18によって、原子炉圧力容器1に導かれる凝縮水7の流量を制限している。   A flow rate restriction orifice 18 provided in the bypass pipe 16 limits the flow rate of the condensed water 7 guided to the reactor pressure vessel 1. That is, the flow restriction orifice 18 restricts the condensed water 7 from flowing into the reactor pressure vessel 1 excessively. For this reason, it can prevent that the temperature decreasing rate in the reactor pressure vessel 1 becomes larger than a limit value. When current is supplied from the power supply 12, the opening of the condensate valve 10 is adjusted, the flow rate of the condensed water 7 guided to the reactor pressure vessel 1 is adjusted, and the temperature reduction rate in the reactor pressure vessel 1 is limited. It can prevent becoming larger than the value. Since the opening degree of the bypass valve 17 cannot be adjusted when the power source is lost, the flow rate of the condensed water 7 guided to the reactor pressure vessel 1 is limited by the flow rate restriction orifice 18.

本発明の他の実施例である実施例2の原子炉隔離時冷却装置を、図3を用いて説明する。   A reactor isolation cooling apparatus according to embodiment 2, which is another embodiment of the present invention, will be described with reference to FIG.

本実施例の原子炉隔離時冷却装置は、実施例1の原子炉隔離時冷却装置3においてバイパス弁17をバイパス弁17Aに替えた構成する。バイパス弁17Aを用いることによって、実施例1で用いた弁作動装置27が不要になる。本実施例の原子炉隔離時冷却装置の他の構成は実施例1の原子炉隔離時冷却装置3と同じである。   The reactor isolation cooling device of the present embodiment is configured by replacing the bypass valve 17 with the bypass valve 17A in the reactor isolation cooling device 3 of the first embodiment. By using the bypass valve 17A, the valve operating device 27 used in the first embodiment becomes unnecessary. Other configurations of the reactor isolation cooling device of the present embodiment are the same as those of the reactor isolation cooling device 3 of the first embodiment.

本実施例で用いられるバイパス弁17Aの詳細な構造を、以下に説明する。バイパス弁17Aは、鉄心36、電磁コイル33、ばね(圧縮ばね)34及び弁体21を有する。鉄心36、電磁コイル33及びばね34は、ケース内に設置されている。弁体21は、鉄心36に取り付けられてケースを貫通するロッドに取り付けられる。電磁コイル33は鉄心32を取り囲んでいる。ばね34は、ケースに取り付けられて鉄心32を支えている。電磁コイル33は電源35に接続される。   The detailed structure of the bypass valve 17A used in the present embodiment will be described below. The bypass valve 17 </ b> A includes an iron core 36, an electromagnetic coil 33, a spring (compression spring) 34, and a valve body 21. The iron core 36, the electromagnetic coil 33, and the spring 34 are installed in the case. The valve body 21 is attached to a rod that is attached to the iron core 36 and penetrates the case. The electromagnetic coil 33 surrounds the iron core 32. The spring 34 is attached to the case and supports the iron core 32. The electromagnetic coil 33 is connected to a power source 35.

原子炉隔離時において電源が喪失していないときには、電源35から電磁コイル33に電流が供給されて電磁コイル33が励磁される。鉄心32が電磁コイル33の励磁によって下方に引き付けられ、弁体21によってバイパス配管16が封鎖されている。本実施例では、原子炉隔離時に、炉心2において核燃料物質の崩壊熱で発生した蒸気が、復水器4の伝熱管5内で凝縮される。電源が喪失していないときには、実施例1と同様に、復水弁10が開放されるので、伝熱管5内で生成された凝縮水7が、バイパス配管16ではなく、凝縮水戻り管9を通って原子炉圧力容器1内に導かれる。なお、原子力プラントの通常運転時においても、電磁コイル33が励磁されて鉄心32が電磁コイル33の励磁によって下方に引き付けられ、バイパス配管16が弁体21によって封鎖されている。   When the power source is not lost at the time of reactor isolation, a current is supplied from the power source 35 to the electromagnetic coil 33 to excite the electromagnetic coil 33. The iron core 32 is attracted downward by excitation of the electromagnetic coil 33, and the bypass pipe 16 is blocked by the valve body 21. In the present embodiment, the steam generated by the decay heat of the nuclear fuel material in the core 2 is condensed in the heat transfer tube 5 of the condenser 4 at the time of the nuclear reactor isolation. When the power source is not lost, the condensate valve 10 is opened as in the first embodiment, so that the condensed water 7 generated in the heat transfer pipe 5 is not the bypass pipe 16 but the condensed water return pipe 9. It is led through the reactor pressure vessel 1. Even during normal operation of the nuclear power plant, the electromagnetic coil 33 is excited and the iron core 32 is attracted downward by the excitation of the electromagnetic coil 33, and the bypass pipe 16 is sealed by the valve body 21.

原子炉隔離時において電源が喪失したときには、復水弁10は閉じたままである。電源35からバイパス弁17Aの電磁コイル33に電流が供給されないので、電磁コイル33は励磁されず、鉄心32はばね34によって上方に向かって押し上げられる。弁体21が上方に引き上げられ、バイパス弁17Aが開放される。このとき、伝熱管5内で生成された凝縮水7がバイパス配管16を通って原子炉圧力容器1内に導かれ、炉心2が冷却される。   When power is lost during reactor isolation, the condensate valve 10 remains closed. Since no current is supplied from the power source 35 to the electromagnetic coil 33 of the bypass valve 17 </ b> A, the electromagnetic coil 33 is not excited and the iron core 32 is pushed upward by the spring 34. The valve body 21 is pulled upward, and the bypass valve 17A is opened. At this time, the condensed water 7 generated in the heat transfer tube 5 is led into the reactor pressure vessel 1 through the bypass pipe 16 and the core 2 is cooled.

本実施例は、実施例1で生じる各効果を得ることができる。また、電源喪失で解放されるバイパス弁17Aをバイパス配管16に設けているので、本実施例は、弁作動装置27が不要になり、実施例1の原子炉隔離時冷却装置3よりも構成が単純化される。   In the present embodiment, each effect produced in the first embodiment can be obtained. Further, since the bypass pipe 17A that is released when the power source is lost is provided in the bypass pipe 16, the valve operating device 27 is not necessary in this embodiment, and the configuration is more than that of the reactor isolation cooling device 3 of the first embodiment. Simplified.

1…原子炉圧力容器、2…炉心、3…原子炉隔離時冷却装置、4…復水器、5…伝熱管、8…蒸気供給管、9…凝縮水戻り管、10…復水弁、11…制御装置、10…水位計、11…蒸気供給管、13…圧力計、14…水位計、15…作動信号発生装置、16…バイパス配管、17,17A…バイパス弁、18…流量制限オリフィス、19…シリンダ、20…ピストン、21…弁体、24,25…トリップ弁、26…電磁弁、27…弁作動装置、32…鉄心、33…電磁コイル、34…ばね。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Reactor cooling system, 4 ... Condenser, 5 ... Heat transfer pipe, 8 ... Steam supply pipe, 9 ... Condensate return pipe, 10 ... Condensate valve, DESCRIPTION OF SYMBOLS 11 ... Control apparatus, 10 ... Water level gauge, 11 ... Steam supply pipe, 13 ... Pressure gauge, 14 ... Water level gauge, 15 ... Actuation signal generator, 16 ... Bypass piping, 17, 17A ... Bypass valve, 18 ... Flow restriction orifice , 19 ... cylinder, 20 ... piston, 21 ... valve body, 24, 25 ... trip valve, 26 ... solenoid valve, 27 ... valve actuator, 32 ... iron core, 33 ... electromagnetic coil, 34 ... spring.

Claims (6)

伝熱管を有する復水器と、前記伝熱管の入口に連絡されて原子炉圧力容器内で生成された蒸気を前記伝熱管に導く蒸気供給管と、前記伝熱管の出口に連絡されて前記伝熱管から排出された凝縮水を前記原子炉圧力容器に導く凝縮水戻り管と、前記凝縮水戻り管に設けられて原子炉隔離時に開く第1開閉弁と、前記第1開閉弁をバイパスして両端が前記凝縮水戻り管に接続されるバイパス配管と、前記バイパス配管に設けられ、電源喪失時に開く第2開閉弁とを備えたことを特徴とする原子炉隔離時冷却装置。   A condenser having a heat transfer tube, a steam supply pipe connected to the inlet of the heat transfer pipe to guide the steam generated in the reactor pressure vessel to the heat transfer pipe, and an outlet of the heat transfer pipe connected to the heat transfer pipe. A condensed water return pipe for guiding the condensed water discharged from the heat pipe to the reactor pressure vessel, a first opening / closing valve provided in the condensed water return pipe and opening when the reactor is isolated; bypassing the first opening / closing valve; A reactor isolation isolation cooling device comprising: a bypass pipe having both ends connected to the condensed water return pipe; and a second on-off valve provided in the bypass pipe and opened when power is lost. 前記第1開閉弁が電動弁である請求項1に記載の原子炉隔離時冷却装置。   The reactor isolation cooling device according to claim 1, wherein the first on-off valve is an electric valve. 前記原子炉圧力容器内に導く前記凝縮水の流量を制限する流量制限装置を、前記バイパス配管に設けた請求項1または2に記載の原子炉隔離時冷却装置。   The reactor isolation cooling device according to claim 1 or 2, wherein a flow rate limiting device for limiting a flow rate of the condensed water led into the reactor pressure vessel is provided in the bypass pipe. 前記流量制限装置が流量制限オリフィスである請求項3に記載の原子炉隔離時冷却装置。   The reactor isolation cooling device according to claim 3, wherein the flow restriction device is a flow restriction orifice. 前記第2開閉弁が空気作動弁であり、この空気作動弁は、シリンダ、及び前記シリンダ内に配置されて弁体に連結されたピストンを有し、
前記シリンダ内で前記ピストンよりも前記弁体側に形成された第1シリンダ室に接続され、前記第1シリンダ室への第1作動空気の供給及び前記第1シリンダ室内からの前記第1作動空気の排出を行う第1トリップ弁、前記シリンダ内で前記ピストンよりも前記弁体から遠ざかる方向に形成された第2シリンダ室に接続され、前記第2シリンダ室への第1作動空気の供給及び前記第2シリンダ室内からの前記第1作動空気の排出を行う第2トリップ弁、及び前記第1及び第2トリップ弁のそれぞれへの第2作動空気の供給を制御する電磁弁を有する弁作動装置であって、前記電磁弁に電流が供給されているときには前記第2シリンダ室内の圧力が前記第1シリンダ室内の圧力よりも高くなるように前記第1及び第2トリップ弁を制御し、前記電磁弁に電流が供給されないときには前記第1シリンダ室内の圧力が前記第2シリンダ室内の圧力よりも高くなるように前記第1及び第2トリップ弁を制御する前記弁作動装置を設けた請求項1ないし4のいずれか1項に記載の原子炉隔離時冷却装置。
The second on-off valve is an air operated valve, and the air operated valve has a cylinder and a piston disposed in the cylinder and connected to the valve body,
The cylinder is connected to a first cylinder chamber formed on the valve body side of the piston in the cylinder, and the first working air is supplied to the first cylinder chamber and the first working air is supplied from the first cylinder chamber. A first trip valve for discharging, connected to a second cylinder chamber formed in the cylinder in a direction farther from the valve body than the piston, and supplying the first working air to the second cylinder chamber and the second A valve operating device having a second trip valve that discharges the first operating air from a two-cylinder chamber, and an electromagnetic valve that controls the supply of the second operating air to each of the first and second trip valves. When the current is supplied to the solenoid valve, the first and second trip valves are controlled so that the pressure in the second cylinder chamber is higher than the pressure in the first cylinder chamber, 2. The valve operating device for controlling the first and second trip valves so that a pressure in the first cylinder chamber is higher than a pressure in the second cylinder chamber when no current is supplied to the magnetic valve. 5. The reactor isolation cooling device according to any one of items 1 to 4.
前記第2開閉弁は、弁体に連結された鉄心、前記鉄心を取り囲む電磁コイル及び前記鉄心を有し、前記電磁コイルへの電流の供給が途絶えたときに前記鉄心が前記ばねによって前記バイパス配管から離れる方向に移動する請求項1ないし4のいずれか1項に記載の原子炉隔離時冷却装置。   The second on-off valve includes an iron core connected to a valve body, an electromagnetic coil surrounding the iron core, and the iron core, and when the supply of current to the electromagnetic coil is interrupted, the iron core is moved by the spring to the bypass pipe. The reactor isolation cooling device according to any one of claims 1 to 4, wherein the cooling device moves in a direction away from the reactor.
JP2012000349A 2012-01-05 2012-01-05 Reactor isolation cooling system Active JP5696056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000349A JP5696056B2 (en) 2012-01-05 2012-01-05 Reactor isolation cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000349A JP5696056B2 (en) 2012-01-05 2012-01-05 Reactor isolation cooling system

Publications (2)

Publication Number Publication Date
JP2013140079A true JP2013140079A (en) 2013-07-18
JP5696056B2 JP5696056B2 (en) 2015-04-08

Family

ID=49037632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000349A Active JP5696056B2 (en) 2012-01-05 2012-01-05 Reactor isolation cooling system

Country Status (1)

Country Link
JP (1) JP5696056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869307A3 (en) * 2013-10-30 2015-06-24 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
JP2017044645A (en) * 2015-08-28 2017-03-02 日立Geニュークリア・エナジー株式会社 Cooling device at time of reactor isolation
WO2022140268A1 (en) * 2020-12-22 2022-06-30 Ge-Hitachi Nuclear Energy Americas Llc Multi-mode heat removal systems for nuclear reactors and methods of using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170886A (en) * 1986-01-24 1987-07-27 株式会社日立製作所 Nuclear reactor cooling system
JPH0342595A (en) * 1989-06-26 1991-02-22 Westinghouse Electric Corp <We> Passive safety injector for nuclear power plant
JPH03246492A (en) * 1990-02-23 1991-11-01 Hitachi Ltd Emergency condenser system
JPH0427896A (en) * 1990-05-24 1992-01-30 Toshiba Corp Emergency condenser
JPH0580191A (en) * 1991-09-19 1993-04-02 Hitachi Ltd Air operated valve
JPH06281779A (en) * 1993-03-30 1994-10-07 Toshiba Corp Reactor container cooling device
US20020101951A1 (en) * 2000-10-17 2002-08-01 Mikihide Nakamaru Boiling water reactor nuclear power plant
JP2002267784A (en) * 2001-03-07 2002-09-18 Toshiba Corp Water injection flow rate adjusting facility for nuclear reactor water injection system
JP2003302490A (en) * 2002-04-10 2003-10-24 Toshiba Corp Cooling equipment for nuclear reactor isolation time
US20120121056A1 (en) * 2009-09-08 2012-05-17 Kabushiki Kaisha Toshiba Reactor containment vessel and nuclear power plant using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170886A (en) * 1986-01-24 1987-07-27 株式会社日立製作所 Nuclear reactor cooling system
JPH0342595A (en) * 1989-06-26 1991-02-22 Westinghouse Electric Corp <We> Passive safety injector for nuclear power plant
JPH03246492A (en) * 1990-02-23 1991-11-01 Hitachi Ltd Emergency condenser system
JPH0427896A (en) * 1990-05-24 1992-01-30 Toshiba Corp Emergency condenser
JPH0580191A (en) * 1991-09-19 1993-04-02 Hitachi Ltd Air operated valve
JPH06281779A (en) * 1993-03-30 1994-10-07 Toshiba Corp Reactor container cooling device
US20020101951A1 (en) * 2000-10-17 2002-08-01 Mikihide Nakamaru Boiling water reactor nuclear power plant
JP2002267784A (en) * 2001-03-07 2002-09-18 Toshiba Corp Water injection flow rate adjusting facility for nuclear reactor water injection system
JP2003302490A (en) * 2002-04-10 2003-10-24 Toshiba Corp Cooling equipment for nuclear reactor isolation time
US20120121056A1 (en) * 2009-09-08 2012-05-17 Kabushiki Kaisha Toshiba Reactor containment vessel and nuclear power plant using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869307A3 (en) * 2013-10-30 2015-06-24 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
US9916908B2 (en) 2013-10-30 2018-03-13 Hitachi-Ge Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
JP2017044645A (en) * 2015-08-28 2017-03-02 日立Geニュークリア・エナジー株式会社 Cooling device at time of reactor isolation
WO2022140268A1 (en) * 2020-12-22 2022-06-30 Ge-Hitachi Nuclear Energy Americas Llc Multi-mode heat removal systems for nuclear reactors and methods of using the same

Also Published As

Publication number Publication date
JP5696056B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP6349443B2 (en) Heat removal system used in nuclear reactors
JP5759899B2 (en) Power generation module assembly, reactor module, and reactor cooling method
JP5696056B2 (en) Reactor isolation cooling system
JP5904859B2 (en) Emergency core cooling device and nuclear reactor facility equipped with the same
JP5876320B2 (en) Nuclear power plant
JP5027258B2 (en) Nuclear power plant using nanoparticles in a closed circuit of an emergency system and associated method
WO2016056481A1 (en) Drainage recovery device
JP2014506998A5 (en)
JP2007051929A (en) Reactor containment cooling facility and nuclear power plant
JP2012233711A (en) Reactor cooling method and reactor cooling system
CN111755716A (en) Fuel extraction system, fuel tank apparatus having fuel extraction system, and fuel cell system having fuel extraction system
KR20140133290A (en) Passive residual heat removal system and nuclear power plant having the same
KR101535479B1 (en) Depressurization system of reactor coolant system and nuclear power plant having the same
JP5566963B2 (en) Nuclear power plant
JP2015034734A (en) Steam processing system of nuclear power plant
JP2502224B2 (en) Air operated valve
KR20180111334A (en) Preheating and cooling system for nuclear reactor and nuclear power plant having the same
JP2020173201A (en) Emergency condenser system
JP2017150742A (en) Loop heat pipe heat exchange system and loop heat pipe heat exchange system for atomic furnace
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
JP2013088158A (en) Emergency condensate system for nuclear power plant and operation method thereof
JP2013120172A (en) Reactor core isolation cooling system and method for controlling reactor core isolation cooling system
JP5962251B2 (en) Drain collection system
JP4991598B2 (en) Automatic decompression system for nuclear power generation facilities
JP2016003961A (en) Nuclear power plant cooling system and nuclear power plant cooling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5696056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150