JP2013139420A - Carbon-carbon bond type heavy fluorous tag - Google Patents

Carbon-carbon bond type heavy fluorous tag Download PDF

Info

Publication number
JP2013139420A
JP2013139420A JP2011290499A JP2011290499A JP2013139420A JP 2013139420 A JP2013139420 A JP 2013139420A JP 2011290499 A JP2011290499 A JP 2011290499A JP 2011290499 A JP2011290499 A JP 2011290499A JP 2013139420 A JP2013139420 A JP 2013139420A
Authority
JP
Japan
Prior art keywords
carbon
group
fluorous
compound
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011290499A
Other languages
Japanese (ja)
Other versions
JP6001267B2 (en
Inventor
Masamori Mizuno
真盛 水野
Masami Tojino
真美 戸治野
Kotaro Goto
浩太朗 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP2011290499A priority Critical patent/JP6001267B2/en
Publication of JP2013139420A publication Critical patent/JP2013139420A/en
Application granted granted Critical
Publication of JP6001267B2 publication Critical patent/JP6001267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon-carbon bond type heavy fluorous tag having three fluorous chains, having the whole carbon-carbon bond structure between a fluorous group and a functional group, and having at least one methylene group adjacent to a functional group.SOLUTION: The carbon-carbon bond type heavy fluorous tag is represented by formula (1), wherein Rf is a ≥1C perfluoroorganic group; Y is present or not, and in the case of being present, is a hydrocarbon group; Z is a functional group; n is an integer of ≥1; Rf and Y may be different at respective indicated sites.

Description

本発明は、炭素−炭素結合型ヘビーフルオラスタグに関する。より詳しくは、フルオラス鎖を3本有し、フルオラス基と官能基の間が全て炭素−炭素結合構造であり、官能基の隣に少なくとも1つ以上のメチレン基を有する炭素−炭素結合型ヘビーフルオラスタグに関する。   The present invention relates to a carbon-carbon bond type heavy fluorous tag. More specifically, a carbon-carbon bond type heavy fluorous having three fluoro chains, having a carbon-carbon bond structure between the fluoro group and the functional group, and having at least one methylene group adjacent to the functional group. Regarding tags.

フルオラス合成法は液相合成法でありながら、固相合成法に匹敵する迅速な分離精製手法として、有機合成の分野で注目されている。これはぺルフルオロカーボンが有機溶媒や水に溶解せず、三者が互いに分液できることに着目し、多フッ素化した誘導体のみをペルフルオロカーボン層に抽出させ、化合物の精製を容易にかつ安全に行うという方法である。この手法を用いて種々の化合物を合成するためには、目的の化合物の構造に適した多フッ素化された基を導入する必要がある。   Although the fluorous synthesis method is a liquid phase synthesis method, it has attracted attention in the field of organic synthesis as a rapid separation and purification method comparable to the solid phase synthesis method. This is because perfluorocarbons do not dissolve in organic solvents and water, and the three parties can separate each other, and only the polyfluorinated derivatives are extracted into the perfluorocarbon layer, so that the compounds can be purified easily and safely. It is a method. In order to synthesize various compounds using this technique, it is necessary to introduce a polyfluorinated group suitable for the structure of the target compound.

フルオラス合成用のフルオラスタグは、目的物質をフルオラス溶媒中に抽出するために十分な量のフッ素含量が必要であるために、フルオラスタグ分子内に複数本のフルオラス鎖を有している必要がある。このようにフルオラスタグ1分子内に複数本のフルオラス鎖を有しているフルオラスタグは、固相抽出用に用いられるフルオラス鎖1本のフルオラスタグが「ライトフルオラスタグ」と呼ばれるのに対して「ヘビーフルオラスタグ」と呼ばれている。ヘビーフルオラスタグの中でも特にフルオラス鎖を3本有するヘビーフルオラスタグは合成の容易さもあり、多くの報告例がある(非特許文献1−3)。   A fluorous tag for fluorous synthesis needs to have a plurality of fluorous chains in the fluorous tag molecule because a sufficient amount of fluorine content is required to extract the target substance into a fluorous solvent. . In this way, a fluorous tag having a plurality of fluorous chains in one fluorous tag molecule is called a “light fluorous tag” whereas a fluorous tag of one fluorous chain used for solid phase extraction is called “light fluorous tag”. It is called “heavy fluorous tag”. Among the heavy fluorous tags, a heavy fluorous tag having three fluorous chains is particularly easy to synthesize, and there are many reports (Non-Patent Documents 1-3).

このような従来型のフルオラス鎖3本を有するヘビーフルオラスタグは主に炭素−ケイ素結合や炭素−酸素−炭素(エーテル結合)骨格で構成されている。しかし炭素−ケイ素結合は塩化アルミニウムのような酸(非特許文献4)やm−CPBAのような酸化剤存在下(非特許文献5)、または超臨界水中(特許文献1)で容易に切断されることが知られている。また、エーテル結合も三臭化ホウ素などの酸性条件下で容易に切断されることも知られている(非特許文献6)。   Such a conventional heavy fluorous tag having three fluorous chains is mainly composed of a carbon-silicon bond or a carbon-oxygen-carbon (ether bond) skeleton. However, the carbon-silicon bond is easily cleaved in the presence of an acid such as aluminum chloride (Non-patent Document 4), an oxidizing agent such as m-CPBA (Non-patent Document 5), or supercritical water (Patent Document 1). It is known that It is also known that ether bonds are easily cleaved under acidic conditions such as boron tribromide (Non-patent Document 6).

従って様々な有機合成反応に適応できるヘビーフルオラスタグとして、フルオラス基とリンカーを導入する官能基の間がすべて炭素−炭素結合で構成される、化学的に非常に安定なヘビーフルオラスタグの開発が求められている。   Therefore, as a heavy fluorous tag that can be adapted to various organic synthesis reactions, it is necessary to develop a chemically very stable heavy fluorous tag in which all the functional groups for introducing a linker are composed of carbon-carbon bonds. It has been.

既に炭素−炭素結合骨格から成る、不斉炭素を有さない3級のヘビーフルオラスアルコールと、それを原料としたヘビーフルオラスタグの合成例が報告されている(非特許文献7)。該文献中で報告されているヘビーフルオラスアルコールはフルオラス鎖3本が同一炭素上に結合している3級アルコールのために水酸基に対する立体障害が非常に大きいことから有機合成に必要な様々なリンカーの導入が非常に困難である。従って該文献中では芳香族への求電子置換反応を用いたベンジル型リンカーの導入によるベンジル型フルオラスタグの応用に限定されている。このように導入できるのがベンジル型リンカーに限定されてしまうと、合成工程で接触水素化還元やバーチ還元等、ベンジル基が脱離する条件を用いることができなくなるばかりでなく、有機合成において汎用性のあるベンジル基を保護基として使用することも制限されてしまう。   A synthesis example of a tertiary heavy fluoroalcohol having a carbon-carbon bond skeleton and no asymmetric carbon and a heavy fluorous tag using the tertiary heavy fluoroalcohol as a raw material has already been reported (Non-patent Document 7). The heavy fluoroalcohol reported in the literature is a tertiary alcohol in which three fluorous chains are bonded on the same carbon, and thus has a great steric hindrance to the hydroxyl group. It is very difficult to introduce. Therefore, the literature is limited to the application of benzylic fluorous tags by introducing benzylic linkers using electrophilic substitution reactions on aromatics. If the benzyl type linker can be introduced in this way, not only can the conditions for the elimination of the benzyl group, such as catalytic hydrogenation reduction or birch reduction, be used in the synthesis process, but it is also widely used in organic synthesis. The use of a functional benzyl group as a protecting group is also limited.

特開2004−323436号公報JP 2004-323436 A

A. Studerら、Science Vol. 275, 823 (1997)A. Studer et al., Science Vol. 275, 823 (1997) D. P. Curranら、Tetrahedron Lett., Vol. 39, 4937 (1998)D. P. Curran et al., Tetrahedron Lett. , Vol. 39, 4937 (1998) M. Mizunoら、J. Fluorine Chem., Vol129, 955 (2008)M.M. Mizuno et al. Fluorine Chem. , Vol 129, 955 (2008) D. A. Armitage, In Comprehensive Organometallic Chemistry, Vol. 2, Chapter 9.1., (1982)D. A. Armitage, In Comprehensive Organometallic Chemistry, Vol. 2, Chapter 9.1. , (1982) G. R. Jonesら、Tetrahedron, Vol. 52, 7599 (1996)G. R. Jones et al., Tetrahedron, Vol. 52, 7599 (1996) M. Demuynckら、J. Org. Chem., Vol. 44, 4863 (1979)M.M. Demuynck et al. Org. Chem. , Vol. 44, 4863 (1979) Y. Nakamuraら、Tetrahedron, Vol. 57, 5565 (2001)Y. Nakamura et al., Tetrahedron, Vol. 57, 5565 (2001)

本発明の目的は、フルオラス鎖を3本有し、フルオラス基と官能基の間が全て炭素−炭素結合構造で、様々なリンカーを容易に導入できるように官能基の隣に少なくとも1つ以上のメチレン基を有するヘビーフルオラスタグを提供することである。   It is an object of the present invention to have at least one fluorocarbon chain adjacent to a functional group so that various linkers can be easily introduced by having a carbon-carbon bond structure between the fluorous group and the functional group. It is to provide a heavy fluorous tag having a methylene group.

上記課題を鋭意検討した結果、本発明者らはフルオラス鎖を3本有し、同一炭素上に3本のフルオラス基が炭素−炭素結合で結合しており、しかもフルオラス基と末端の官能基までの間が全て炭素−炭素結合構造であり、官能基の隣に少なくとも1つ以上のメチレン基を有する炭素−炭素結合型ヘビーフルオラスタグの合成に成功して、本発明を完成するに至った。
すなわち、本発明は以下の通りである。
<1> 一般式(1)
As a result of intensive studies on the above problems, the present inventors have three fluorous chains, three fluorous groups are bonded on the same carbon by a carbon-carbon bond, and even the fluorous group and the terminal functional group. A carbon-carbon bond structure is formed between all of the gaps, and a carbon-carbon bond type heavy fluorous tag having at least one methylene group adjacent to the functional group was successfully synthesized, and the present invention was completed.
That is, the present invention is as follows.
<1> General formula (1)

Figure 2013139420
Figure 2013139420

(式中、Rfは炭素数1以上のペルフルオロ有機基を、Yは存在するか存在せず、存在する場合には炭化水素基を、Zは官能基を、nは1以上の整数を表し、Rf、Yはその表示各位において同一である必要はない。)で示される炭素−炭素結合型ヘビーフルオラスタグ。
<2> Yが存在して炭化水素基が飽和炭化水素基である、<1>記載の炭素−炭素結合型ヘビーフルオラスタグ。
<3> 一般式(2)
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, Y represents a hydrocarbon group if present or absent, Z represents a functional group, n represents an integer of 1 or more, Rf and Y do not need to be the same in each position.) A carbon-carbon bonded heavy fluorous tag.
<2> The carbon-carbon bond type heavy fluorous tag according to <1>, wherein Y is present and the hydrocarbon group is a saturated hydrocarbon group.
<3> General formula (2)

Figure 2013139420
Figure 2013139420

(式中、Rfは炭素数1以上のペルフルオロ有機基を、m、p、qは0以上の整数を、nは1以上の整数を表し、Rfはその表示各位において同一である必要はない。)で示される炭素−炭素結合型ヘビーフルオラスタグ。
<4> ペルフルオロ有機基が炭素数4〜20のペルフルオロアルキル基、ペルフルオロポリエーテル基、またはペルフルオロエーテル基で、nが1、mが2、p=qでpが2〜8である<3>記載の炭素−炭素結合型ヘビーフルオラスタグ。
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, m, p, and q represent integers of 0 or more, n represents an integer of 1 or more, and Rf does not need to be the same in each display position. The carbon-carbon bond type heavy fluorous tag shown by this).
<4> The perfluoro organic group is a perfluoroalkyl group, a perfluoropolyether group or a perfluoroether group having 4 to 20 carbon atoms, n is 1, m is 2, p = q, and p is 2 to 8. <3> The carbon-carbon bond type heavy fluorous tag as described.

<5> <1>から<4>のいずれかに記載の炭素−炭素結合型ヘビーフルオラスタグより誘導される化合物。
<6> 化合物が糖質誘導体である<5>記載の化合物。
<7> <5>または<6>に記載の炭素−炭素結合型ヘビーフルオラスタグより誘導される化合物を利用して化合物をフルオラス溶媒に抽出する方法。
<5> A compound derived from the carbon-carbon bond type heavy fluorous tag according to any one of <1> to <4>.
<6> The compound according to <5>, wherein the compound is a carbohydrate derivative.
<7> A method for extracting a compound into a fluorous solvent using the compound derived from the carbon-carbon bond type heavy fluorous tag according to <5> or <6>.

本発明で提供される新規な炭素−炭素結合型ヘビーフルオラスタグは、既存のヘビーフルオラスタグと比べ化学的に非常に安定であり、かつ既存のヘビーフルオラスタグでは分解してしまう強酸性条件下や酸化反応等でも使用することができるため、反応の種類に制限を受けることなくフルオラス合成法を行うことができることから、工業的にも非常に有用なヘビーフルオラスタグである。   The novel carbon-carbon bond type heavy fluorous tag provided by the present invention is chemically very stable as compared with the existing heavy fluorous tag, and under strong acidic conditions under which the existing heavy fluorous tag decomposes. Since it can be used in an oxidation reaction or the like, a fluorosynthetic method can be carried out without being limited by the type of reaction, and thus it is a heavy fluorous tag that is very useful industrially.

しかも、官能基の隣に少なくとも1つ以上のメチレン基を有するため、フルオラス鎖3本の立体障害を減じることから、有機合成に必要な様々なリンカーを容易に導入できる。
さらに、反応終了後のヘビーフルオラスタグは容易に再生することができ、何度でも再利用が可能であることから、廃棄物削減の観点からも環境に優しく、経済的にも優れたフルオラス合成用のヘビーフルオラスタグを提供できる。
In addition, since it has at least one methylene group adjacent to the functional group, the steric hindrance of three fluorous chains is reduced, so that various linkers necessary for organic synthesis can be easily introduced.
In addition, the heavy fluorous tag after the reaction is easily regenerated and can be reused any number of times, so it is environmentally friendly and economically excellent for fluorous synthesis from the viewpoint of waste reduction. Can provide a heavy fluorous tag.

本発明の炭素−炭素結合型ヘビーフルオラスタグは、フルオラス基と官能基との間がすべて炭素−炭素結合骨格である。   The carbon-carbon bond type heavy fluorous tag of the present invention has a carbon-carbon bond skeleton all between the fluoro group and the functional group.

Figure 2013139420
Figure 2013139420

一般式(1)において、Rfはペルフルオロ有機基である。ここで有機基とは、C−H部分を必須とする基をいう。有機基としては、飽和炭化水素基、エーテル性酸素原子含有飽和炭化水素基が好ましい。
Rfの炭素数は1以上であって、1〜20が好ましく、特に4〜12が好ましい。
Rfの構造は直鎖構造であっても、分岐構造であっても、環構造であっても、または部分的に環構造を有する構造であってもよいが、原料となるペルフルオロ有機化合物の入手のしやすさの点から直鎖構造、または分岐構造であるのが好ましい
Rfの具体例としては次の例が挙げられる。
In general formula (1), Rf is a perfluoro organic group. Here, the organic group refers to a group that requires a C—H moiety. The organic group is preferably a saturated hydrocarbon group or an etheric oxygen atom-containing saturated hydrocarbon group.
Rf has 1 or more carbon atoms, preferably 1-20, and particularly preferably 4-12.
The structure of Rf may be a linear structure, a branched structure, a ring structure, or a structure having a partial ring structure. The straight chain structure or the branched structure is preferable from the viewpoint of easy handling. Specific examples of Rf include the following examples.

Figure 2013139420
Figure 2013139420

一般式(1)において、Yは存在するか存在せず、存在する場合には2価の炭化水素基であって、好ましくは飽和炭化水素基であり、特に好ましくはアルキレン基である。
Yが炭化水素基である場合の炭素数は、1〜30が好ましく、特に2〜12が好ましい。
Yが炭化水素基である場合の構造は、直鎖構造であっても、分岐構造であっても、環構造であっても、または部分的に環構造を有する構造であっても、または構造中に直鎖構造や分岐構造や環構造が混在する構造であっても、また環構造が複数連結した構造であってもよいが、原料となる炭化水素化合物の入手のしやすさの点から直鎖構造、または環構造であるのが好ましく、特に直鎖構造が好ましい。
Yが炭化水素基である場合の具体例としては、次の例が挙げられる。
In the general formula (1), Y is present or absent, and when it is present, it is a divalent hydrocarbon group, preferably a saturated hydrocarbon group, and particularly preferably an alkylene group.
1-30 are preferable and, as for carbon number in case Y is a hydrocarbon group, 2-12 are especially preferable.
The structure when Y is a hydrocarbon group may be a linear structure, a branched structure, a ring structure, or a structure having a partial ring structure, or a structure It may be a structure in which a straight chain structure, a branched structure, or a ring structure is mixed, or a structure in which a plurality of ring structures are connected. From the viewpoint of easy availability of hydrocarbon compounds as raw materials A linear structure or a ring structure is preferable, and a linear structure is particularly preferable.
Specific examples in the case where Y is a hydrocarbon group include the following examples.

Figure 2013139420
Figure 2013139420

一般式(1)において、Zは官能基である。官能基の種類としては水酸基、ペルオキシ基、アルデヒド基、ケトン基、カルボキシル基、アミド基、イミド基、シアノ基、オキシム基、チオール基、スルホニル基、ケテン基、ジイミド基、イソシアネート基、チオイソシアネート基、アミノ基、イミノ基、アゾ基、アジド基、ニトロ基などが挙げられるが、水酸基、アルデヒド基、カルボキシル基、アミノ基、チオール基、アジド基が好ましく、特に水酸基が好ましい。   In the general formula (1), Z is a functional group. The types of functional groups are hydroxyl, peroxy, aldehyde, ketone, carboxyl, amide, imide, cyano, oxime, thiol, sulfonyl, ketene, diimide, isocyanate, and thioisocyanate groups. An amino group, an imino group, an azo group, an azide group, a nitro group, and the like are preferable, and a hydroxyl group, an aldehyde group, a carboxyl group, an amino group, a thiol group, and an azide group are preferable, and a hydroxyl group is particularly preferable.

一般式(1)で表される炭素−炭素結合型ヘビーフルオラスタグの合成は、如何なる方法によってもよい。具体的な合成例として、一般式(2)で表される炭素−炭素結合型ヘビーフルオラスタグの合成例を示す。すなわち、合成ラジカル開始剤存在下、以下の一般式(3)   The carbon-carbon bond type heavy fluorous tag represented by the general formula (1) may be synthesized by any method. As a specific synthesis example, a synthesis example of a carbon-carbon bond type heavy fluorous tag represented by the general formula (2) is shown. That is, in the presence of a synthetic radical initiator, the following general formula (3)

Figure 2013139420
Figure 2013139420

(式中、m、p、qは2以上の整数を、nは1以上の整数を表し、Rfはその表示各位において同一である必要はない。)で表される、末端に不飽和2重結合を有するオレフィン化合物と、一般式(4)
Rf−X (4)
(式中、Rfは炭素数1以上のペルフルオロ有機基を表し、Xはヨウ素または臭素を表す。)で表わされるペルフルオロ有機ハロゲン化物を反応させ、一般式(5)
(Wherein m, p and q represent an integer of 2 or more, n represents an integer of 1 or more, and Rf does not have to be the same at each display position). An olefin compound having a bond, and a general formula (4)
Rf-X (4)
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, and X represents iodine or bromine), and is reacted with a general formula (5).

Figure 2013139420
Figure 2013139420

(式中、Rfは炭素数1以上のペルフルオロ有機基を、m、p、qは2以上の整数を、nは1以上の整数を表し、Rfはその表示各位において同一である必要はない。)で表される、目的物質の中間体であるハロゲン付加体が得られる。 (In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, m, p, q represent an integer of 2 or more, n represents an integer of 1 or more, and Rf does not need to be the same in each display position. And a halogen adduct that is an intermediate of the target substance.

本発明において使用されるラジカル開始剤としては、ラジカルを発生させるものであれば特に制限されない。代表的なラジカル開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN)、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物、過酸化ベンゾイル、ジtert−ブチルペルオキシド等のペルオキシド化合物、トリメチルボラン、トリエチルボラン等のトリアルキルボランが挙げられる。
ラジカル開始剤の使用量に特に制限はないが、ペルフルオロ有機ハロゲン化物に対して0.01〜1モル当量が好ましく、さらに好ましくは0.05〜0.3モル当量が好ましい。
The radical initiator used in the present invention is not particularly limited as long as it generates radicals. Typical radical initiators include, for example, azobisisobutyronitrile (AIBN), dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis (4-methoxy-2,4-dimethyl). Azo compounds such as valeronitrile), peroxide compounds such as benzoyl peroxide and ditert-butyl peroxide, and trialkylboranes such as trimethylborane and triethylborane.
Although there is no restriction | limiting in particular in the usage-amount of a radical initiator, 0.01-1 molar equivalent is preferable with respect to perfluoro organic halide, More preferably, 0.05-0.3 molar equivalent is preferable.

反応は、無溶媒で実施しても、溶媒の存在下に実施してもよい。溶媒を用いる場合は、該反応において不活性な溶媒の1種または2種以上を用いうる。溶媒としては、シクロヘキサン、イソオクタン、n−ヘキサン等の炭化水素系溶媒、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロホルム等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、メチル−tert−ブチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトニトリル等のニトリル系溶媒、ペルフルオロヘキサン、ペルフルオロヘプタン、ペルフルオロオクタン、ペルフルオロメチルシクロヘキサン、ペルフルオロ−1,2−ジメチルシクロヘキサン、ペルフルオロデカリン、3M社のフロリナート(登録商標)シリーズなどのペルフルオアルキル系溶媒、DuPont社のKrytox(登録商標)シリーズや、ダイキン工業社のデムナム(登録商標)シリーズ、ソルベイソレクシス社のガルデン(登録商標)シリーズなどのペルフルオロポリエーテル系溶媒が用いられる。また用いる溶媒の量に特に制限はない。   The reaction may be carried out without a solvent or in the presence of a solvent. When using a solvent, 1 type (s) or 2 or more types of an inert solvent in this reaction can be used. Solvents include hydrocarbon solvents such as cyclohexane, isooctane and n-hexane, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, carbon tetrachloride and chloroform, diethyl ether, diisopropyl ether, methyl-tert-butyl ether, ethylene glycol. Ether solvents such as dimethyl ether, tetrahydrofuran and dioxane, nitrile solvents such as acetonitrile, perfluorohexane, perfluoroheptane, perfluorooctane, perfluoromethylcyclohexane, perfluoro-1,2-dimethylcyclohexane, perfluorodecalin, 3M Fluorinert (registered trademark) ) Series perfluoroalkyl solvents, DuPont's Krytox (registered trademark) series, Daikin Industries Munamu (registered trademark) series, perfluoropolyether solvents such as Galden (registered trademark) series of Solvay Solexis is used. Moreover, there is no restriction | limiting in particular in the quantity of the solvent to be used.

反応の圧力は、減圧下、大気圧下、または加圧下のいずれであってもよい。
反応時間には何ら制限はないが、30分〜72時間が好ましい。
反応温度は使用するラジカル開始剤がアゾ化合物の場合は、分解してラジカルを発生する温度が好ましいため、アゾ化合物の種類により適宜変更しうるが、40℃〜200℃が好ましい。アゾ化合物以外のラジカル開始剤の場合は反応温度には何ら制限はないが、0℃〜200℃が好ましい。
The pressure of the reaction may be any of reduced pressure, atmospheric pressure, or increased pressure.
Although there is no restriction | limiting in reaction time, 30 minutes-72 hours are preferable.
When the radical initiator to be used is an azo compound, the reaction temperature is preferably a temperature at which the radical is decomposed to generate a radical, and can be appropriately changed depending on the type of the azo compound, but is preferably 40 ° C to 200 ° C. In the case of radical initiators other than azo compounds, the reaction temperature is not limited at all, but is preferably 0 ° C to 200 ° C.

一般式(5)のハロゲン付加体の脱ハロゲン化を行うことで、目的物である一般式(1)のヘビーフルオラスアルコールが得られる。
脱ハロゲン化の工程としては、還元反応による1工程の反応で一般式(5)から目的物である一般式(1)を得ることもできる。
還元反応としては水素化アルミニウムリチウム、水素化トリブチルスズ、パラジウム(0)などの還元剤を用いる手法、またはニッケルやパラジウム等の金属触媒による接触水素化還元などが挙げられる。
By dehalogenating the halogen adduct of the general formula (5), the heavy fluoroalcohol of the general formula (1), which is the target product, is obtained.
As the dehalogenation step, the general formula (1), which is the target product, can be obtained from the general formula (5) by a one-step reaction by a reduction reaction.
Examples of the reduction reaction include a method using a reducing agent such as lithium aluminum hydride, tributyltin hydride and palladium (0), or catalytic hydrogenation reduction using a metal catalyst such as nickel or palladium.

なお、一般式(5)の構造によっては還元反応が進行しにくい場合がある。この場合は塩基処理による脱ハロゲン化を行う。脱ハロゲン化の際にベータ水素脱離が起こるため、一般式(6)   Depending on the structure of the general formula (5), the reduction reaction may not easily proceed. In this case, dehalogenation by base treatment is performed. Since dehydrogenation occurs during dehalogenation, the general formula (6)

Figure 2013139420
Figure 2013139420

(式中、式中、Rfは炭素数1以上のペルフルオロ有機基を、m、p、qは2以上の整数を、nは1以上の整数を表し、Rfはその表示各位において同一である必要はない。)で表されるオレフィン体が生成する。
脱ハロゲン化に用いる塩基としてはルイス塩基でもブレンステッド塩基でもよく、また無機塩基、有機塩基のいずれであっても用いることができる。また塩基の形態は気体、液体、固体のどの形態でもよい。
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, m, p, q represent an integer of 2 or more, n represents an integer of 1 or more, and Rf must be the same in each display position. Is not produced.).
The base used for dehalogenation may be a Lewis base or a Bronsted base, and any of an inorganic base and an organic base can be used. The form of the base may be any form of gas, liquid and solid.

塩基としては、例えばトリエチルアミン、ジエチルアミン、ブチルアミン、ジアザビシクロウンデセン、ジアザビシクロノネン、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられる。
塩基の使用量に特に制限はないが、一般式(4)のハロゲン付加体に対して3〜20モル当量が好ましく、さらに好ましくは6〜10モル当量が好ましい。
この反応における反応温度としては、通常−78℃〜溶媒の沸点であり、−10〜60℃が好ましく、0〜40℃が特に好ましい。
反応時間には何ら制限はないが、30分〜72時間が好ましい。
Examples of the base include triethylamine, diethylamine, butylamine, diazabicycloundecene, diazabicyclononene, sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate and the like. It is done.
Although there is no restriction | limiting in particular in the usage-amount of a base, 3-20 molar equivalent is preferable with respect to the halogen adduct of General formula (4), More preferably, 6-10 molar equivalent is preferable.
The reaction temperature in this reaction is usually −78 ° C. to the boiling point of the solvent, preferably −10 to 60 ° C., particularly preferably 0 to 40 ° C.
Although there is no restriction | limiting in reaction time, 30 minutes-72 hours are preferable.

一般式(6)のオレフィン中間体は還元反応により目的物である一般式(2)を得ることができる。
オレフィン中間体の還元反応としてはニッケルやパラジウム等の金属触媒による接触水素化還元が好ましい。
還元反応における反応温度には何ら制限はないが、0〜40℃が好ましい。
反応時間には何ら制限はないが、10分〜48時間が好ましい。
反応の圧力は、大気圧下、または加圧下のいずれであってもよい。
The olefin intermediate of the general formula (6) can obtain the target general formula (2) by a reduction reaction.
As the reduction reaction of the olefin intermediate, catalytic hydrogenation reduction with a metal catalyst such as nickel or palladium is preferable.
Although there is no restriction | limiting in the reaction temperature in a reductive reaction, 0-40 degreeC is preferable.
Although there is no restriction | limiting in reaction time, 10 minutes-48 hours are preferable.
The pressure of the reaction may be under atmospheric pressure or under pressure.

以上のようにして得られる、本発明化合物である炭素−炭素結合型ヘビーフルオラスタグは、例えばリンカーとしてベンジル型リンカーを用いると、ウィリアムソン法によるエーテル化が可能である。更に、接触還元により容易に炭素−炭素結合型ヘビーフルオラスタグに再生される。   The carbon-carbon bond type heavy fluorous tag which is the compound of the present invention obtained as described above can be etherified by the Williamson method, for example, when a benzyl type linker is used as the linker. Furthermore, it is easily regenerated into a carbon-carbon bond type heavy fluorous tag by catalytic reduction.

以下に、本発明を実施例を用いて更に詳細に説明するが、これらの実施例は本発明の具体例を示すもので、本発明を何ら限定するものではない。   The present invention will be described in more detail below with reference to examples, but these examples show specific examples of the present invention and do not limit the present invention.

炭素−炭素結合型ヘビーフルオラスタグの合成
(1)工程1
アルゴン雰囲気中、テトラヒドロフラン(5mL)にリチウムジイソプロピルアミド(1.09M テトラヒドロフラン溶液、13mL、14.2mmol)とヘキサメチルホスホルアミド(2.3mL,13.2mmol)を加え、−78℃に冷却した。ここにクロトン酸エチル(1.5mL,12.1mmol)をテトラヒドロフラン1mLに溶解させた溶液を加え、−78℃で1時間攪拌した。さらに5−ブロモペンテン(1.9mL,16.1mmol)を加えたのち、反応温度を室温まで自然昇温させながら一晩攪拌し、得られた溶液を反応溶液Aとする。
Synthesis of carbon-carbon bond type heavy fluorous tag (1) Step 1
In an argon atmosphere, lithium diisopropylamide (1.09 M tetrahydrofuran solution, 13 mL, 14.2 mmol) and hexamethylphosphoramide (2.3 mL, 13.2 mmol) were added to tetrahydrofuran (5 mL), and the mixture was cooled to -78 ° C. A solution prepared by dissolving ethyl crotonic acid (1.5 mL, 12.1 mmol) in 1 mL of tetrahydrofuran was added thereto, and the mixture was stirred at −78 ° C. for 1 hour. Further, 5-bromopentene (1.9 mL, 16.1 mmol) is added, followed by stirring overnight while allowing the reaction temperature to naturally rise to room temperature.

次に、別な反応容器中にアルゴン雰囲気中、テトラヒドロフラン(5mL)にリチウムジイソプロピルアミド(1.09M テトラヒドロフラン溶液、13mL、14.2mmol)とヘキサメチルホスホルアミド(2.3mL,13.2mmol)を加え、−78℃に冷却した。ここに反応溶液Aを加え−78℃で1時間攪拌した。さらに5−ブロモペンテン(1.7mL,14.4mmol)を加えたのち、反応温度を室温まで自然昇温させながら一晩攪拌した。反応温度を0℃にした後、反応溶液に飽和塩化アンモニウム水溶液を加えて反応を停止させた。反応溶液にn−ヘキサンを加えて分配抽出し有機層を分離した後、有機層を2M 塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=30:1)にて精製し、化合物1を2.04g(67%)得た。   Next, lithium diisopropylamide (1.09 M tetrahydrofuran solution, 13 mL, 14.2 mmol) and hexamethylphosphoramide (2.3 mL, 13.2 mmol) were added to tetrahydrofuran (5 mL) in an argon atmosphere in another reaction vessel. In addition, it was cooled to -78 ° C. The reaction solution A was added here, and it stirred at -78 degreeC for 1 hour. Further, 5-bromopentene (1.7 mL, 14.4 mmol) was added, followed by stirring overnight while allowing the reaction temperature to naturally rise to room temperature. After the reaction temperature was 0 ° C., a saturated aqueous ammonium chloride solution was added to the reaction solution to stop the reaction. The reaction solution was partitioned and extracted by adding n-hexane, and the organic layer was separated. The organic layer was washed with 2M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous sodium sulfate. After the desiccant was filtered off, the solvent was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 30: 1) to obtain 2.04 g (67%) of Compound 1.

Figure 2013139420
Figure 2013139420

(2)工程2
水素化アルミニウムリチウム(309mg,8.14mmol)をジエチルエーテル(10mL)に加え反応温度を0℃にした溶液に、実施例1で得られた化合物1(2.04g, 8.14mmol)をジエチルエーテル20mLに溶解させた溶液を加え0℃で攪拌した。2時間後に氷片を加えて反応を停止させた後、さらに3M 水酸化ナトリウム水溶液を加えた。有機層を無水硫酸ナトリウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=7:1)にて精製し、化合物2を1.67g(74%)得た。
(2) Step 2
Lithium aluminum hydride (309 mg, 8.14 mmol) was added to diethyl ether (10 mL) and the reaction temperature was 0 ° C., and compound 1 obtained in Example 1 (2.04 g, 8.14 mmol) was added to diethyl ether. A solution dissolved in 20 mL was added and stirred at 0 ° C. After 2 hours, ice pieces were added to stop the reaction, and 3M aqueous sodium hydroxide solution was further added. The organic layer was dried over anhydrous sodium sulfate. After the desiccant was filtered off, the solvent was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 7: 1) to obtain 1.67 g (74%) of Compound 2.

Figure 2013139420
Figure 2013139420

(3)工程3
工程2で得られた化合物2(111mg,0.53mmol)をn−ヘキサン(1mL)に溶解させ、さらにC17I(2.45g,4.48mmol)とフロリナート(登録商標)FC−72(4mL)を加えて反応温度を60℃にし、1M トリエチルボラン/n−ヘキサン溶液(0.5mL)を加えて攪拌した。3時間後と6時間後にそれぞれ1M トリエチルボラン/n−ヘキサン溶液(0.5mL)を加えた。20時間後に室温まで反応温度を下げた後、溶媒を減圧濃縮し、残渣にFC72とアセトニトリルを加え、分配抽出後FC72層を分離し、溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=10:1)にて精製し、化合物3を551mg(56%)得た。
(3) Process 3
Compound 2 (111 mg, 0.53 mmol) obtained in step 2 was dissolved in n-hexane (1 mL), and further C 8 F 17 I (2.45 g, 4.48 mmol) and Florinato (registered trademark) FC-72. (4 mL) was added to bring the reaction temperature to 60 ° C., and a 1M triethylborane / n-hexane solution (0.5 mL) was added and stirred. After 3 hours and 6 hours, 1 M triethylborane / n-hexane solution (0.5 mL) was added, respectively. After lowering the reaction temperature to room temperature after 20 hours, the solvent was concentrated under reduced pressure, FC72 and acetonitrile were added to the residue, and after partition extraction, the FC72 layer was separated, and the solvent was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 10: 1) to obtain 551 mg (56%) of Compound 3.

Figure 2013139420
Figure 2013139420

(4)工程4
工程3で得られた化合物3(550mg、0.30mmol)をテトラヒドロフラン(10mL)に溶解させ、ジアザビシクロウンデセン(0.27mL)を加え室温で一晩攪拌した。反応液を濾過して不溶物を除去した後、ろ液に酢酸エチルを加え、有機層を1M 塩酸、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧濃縮した。得られた残渣をエタノール(5mL)−酢酸エチル(5mL)混合溶媒に溶解させ、水酸化パラジウム/炭素(260mg)と触媒量の酢酸を加え、溶液中に水素ガスをバブリングしながら18時間攪拌した。反応液を濾過し、ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=8:1)にて精製し、化合物4を269mg(61%)得た。
(4) Step 4
Compound 3 (550 mg, 0.30 mmol) obtained in step 3 was dissolved in tetrahydrofuran (10 mL), diazabicycloundecene (0.27 mL) was added, and the mixture was stirred overnight at room temperature. The reaction solution was filtered to remove insolubles, ethyl acetate was added to the filtrate, the organic layer was washed with 1M hydrochloric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and the organic layer was dried over anhydrous sodium sulfate. . After the desiccant was filtered off, the solvent was concentrated under reduced pressure. The obtained residue was dissolved in a mixed solvent of ethanol (5 mL) -ethyl acetate (5 mL), palladium hydroxide / carbon (260 mg) and a catalytic amount of acetic acid were added, and the mixture was stirred for 18 hours while bubbling hydrogen gas into the solution. . The reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 8: 1) to obtain 269 mg (61%) of Compound 4.

Figure 2013139420
Figure 2013139420

炭素−炭素結合型ヘビーフルオラスタグの安定性の検討
本発明の1級アルコール型の炭素−炭素結合型ヘビーフルオラスタグの安定性について、従来のエーテル結合型ヘビーフルオラスタグとの比較実験を行った。1級アルコール型の炭素−炭素結合型ヘビーフルオラスタグとしては実施例1で合成した化合物4を、比較例であるエーテル結合型ヘビーフルオラスタグとしては化合物5を用いた。
Examination of stability of carbon-carbon bond type heavy fluorous tag The stability of the primary alcohol type carbon-carbon bond type heavy fluorous tag of the present invention was compared with a conventional ether bond type heavy fluorous tag. The compound 4 synthesized in Example 1 was used as the primary alcohol type carbon-carbon bond type heavy fluorous tag, and the compound 5 was used as the ether bond type heavy fluorous tag as a comparative example.

Figure 2013139420
Figure 2013139420

まず、比較例として、化合物5(354mg,0.23mmol)を酢酸エチル(3.5mL)に溶解させ、1.0M 三臭化ホウ素のジクロロメタン溶液(0.70mL,0.70mmol)を加え、室温で17時間攪拌した。反応液に水を加え酢酸エチルで3回抽出した。有機層を飽和食塩水、飽和炭酸水素ナトリウム水溶液の順で洗浄後、硫酸マグネシウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=1:1)にて精製したところ、エーテル結合が1か所切断された化合物6が139mg(56%)得られた。   First, as a comparative example, compound 5 (354 mg, 0.23 mmol) was dissolved in ethyl acetate (3.5 mL), 1.0 M boron tribromide in dichloromethane (0.70 mL, 0.70 mmol) was added, and For 17 hours. Water was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The organic layer was washed successively with saturated brine and saturated aqueous sodium hydrogen carbonate solution, and dried over magnesium sulfate. After the desiccant was filtered off, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 1: 1) to obtain 139 mg (56%) of Compound 6 having one ether bond cleaved.

Figure 2013139420
Figure 2013139420

次に、実施例2として、化合物4(102mg,69.5μmol)を酢酸エチル(1mL)に溶解させ、三臭化ホウ素の1.0M ジクロロメタン溶液(0.21mL,0.21mmol)を加え、室温で20時間攪拌した。反応液に水を加え酢酸エチルで3回抽出した。有機層を飽和食塩水、飽和炭酸水素ナトリウム水溶液の順で洗浄後、硫酸マグネシウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=10:1)にて精製したところ、化合物4がほぼ定量的(100
mg、98%)に回収された。
Next, as Example 2, Compound 4 (102 mg, 69.5 μmol) was dissolved in ethyl acetate (1 mL), and a 1.0 M solution of boron tribromide in dichloromethane (0.21 mL, 0.21 mmol) was added. For 20 hours. Water was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The organic layer was washed successively with saturated brine and saturated aqueous sodium hydrogen carbonate solution, and dried over magnesium sulfate. After the desiccant was filtered off, the solvent was distilled off under reduced pressure. When the residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 10: 1), compound 4 was almost quantitative (100
mg, 98%).

Figure 2013139420
Figure 2013139420

以上の結果から、本発明の炭素−炭素結合型ヘビーフルオラスタグは、比較例である従来のエーテル型ヘビーフルオラスタグが分解してしまう反応条件下でも安定であることが明らかとなった。   From the above results, it has been clarified that the carbon-carbon bond type heavy fluorous tag of the present invention is stable even under reaction conditions in which a conventional ether type heavy fluorous tag as a comparative example is decomposed.

炭素−炭素結合型ヘビーフルオラスタグを用いた糖鎖合成
化合物4(313mg,0.21mmol)、α,α−ジブロモキシレン(281mg,1.07mmol)および15−クラウン−5(0.13mL,0.64mmol)をテトラヒドロフラン(1.5mL)とノベック(登録商標)HFE7100(0.75mL)の混合溶媒に溶解させ、この溶液に水素化ナトリウム(29mg,0.66mmol)を加え、室温で24時間攪拌した。反応液に水(0.5ml)を加え過剰の試薬を分解した後、水(30ml)、トルエン(30mL)およびペルフルオロカーボン(フロリナート(登録商標)FC72)(30mL×3)で分配抽出した。FC72層に無水硫酸マグネシウムを加え乾燥させた後、乾燥剤を濾別し、溶媒を減圧濃縮した。得られた残渣(326mg)とチオ尿素(17.8mg,0.23mmol)をエタノール(6mL)に溶解させ、4時間加熱還流した。反応液に0.35M 水酸化ナトリウム水溶液(0.91ml)を加えさらに2時間加熱還流した。反応液に希硫酸を加えpHを2〜3に調製した後、メタノール(20mL)とFC−72(20mL×3)で分配抽出し、FC72層を減圧濃縮した。得られた残渣(304mg)と2−フタルイミド−2−デオキシ−1,3,4,6−テトラ−O−アセチル−D−グルコース(509mg,1.07mmol)をジクロロメタン(3mL)とHFE7100(3mL)の混合溶媒に溶解させ、三フッ化ホウ素ジエチルエーテル錯体(0.12mL,1.07mmol)を加え、室温で21時間攪拌した。反応液に飽和食塩水を加え、クロロホルムで3回抽出した。有機層を飽和炭酸水素ナトリウム水溶液の順で洗浄した後、硫酸マグネシウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣に95%メタノール水溶液(20mL)を加えHFE7100:FC72=2:1のフルオラス混合溶媒(20mL×3)で分配抽出した。フルオラス混合溶媒層を分取後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=3:1)にて精製し、化合物7を175mg(3工程41%)得た。
Glycosylation using a carbon-carbon bond type heavy fluorous tag Compound 4 (313 mg, 0.21 mmol), α, α-dibromoxylene (281 mg, 1.07 mmol) and 15-crown-5 (0.13 mL, .0. 64 mmol) was dissolved in a mixed solvent of tetrahydrofuran (1.5 mL) and Novec (registered trademark) HFE7100 (0.75 mL), sodium hydride (29 mg, 0.66 mmol) was added to the solution, and the mixture was stirred at room temperature for 24 hours. . Water (0.5 ml) was added to the reaction solution to decompose excess reagent, and then partition extraction was performed with water (30 ml), toluene (30 mL) and perfluorocarbon (Fluorinart (registered trademark) FC72) (30 mL × 3). After anhydrous magnesium sulfate was added to the FC72 layer for drying, the desiccant was filtered off and the solvent was concentrated under reduced pressure. The obtained residue (326 mg) and thiourea (17.8 mg, 0.23 mmol) were dissolved in ethanol (6 mL) and heated under reflux for 4 hours. To the reaction solution was added 0.35M aqueous sodium hydroxide solution (0.91 ml), and the mixture was further heated to reflux for 2 hours. Diluted sulfuric acid was added to the reaction solution to adjust the pH to 2 to 3, and then partitioned and extracted with methanol (20 mL) and FC-72 (20 mL × 3), and the FC72 layer was concentrated under reduced pressure. The obtained residue (304 mg), 2-phthalimido-2-deoxy-1,3,4,6-tetra-O-acetyl-D-glucose (509 mg, 1.07 mmol), dichloromethane (3 mL) and HFE7100 (3 mL) In a mixed solvent, boron trifluoride diethyl ether complex (0.12 mL, 1.07 mmol) was added, and the mixture was stirred at room temperature for 21 hours. Saturated saline was added to the reaction solution, and the mixture was extracted 3 times with chloroform. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution in that order, and then dried over magnesium sulfate. After the desiccant was filtered off, the solvent was distilled off under reduced pressure. A 95% aqueous methanol solution (20 mL) was added to the residue, and partition extraction was performed with a HFE7100: FC72 = 2: 1 fluorous mixed solvent (20 mL × 3). After separating the fluorous mixed solvent layer, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 3: 1) to obtain 175 mg (41% of 3 steps) of Compound 7.

化合物7: H−NMR (CDCl): δ = 1.12−1.41 (m, 12H), 1.51−1.64 (m, 6H), 1.84 (s, 3H), 1.89−2.10 (m, 9H), 2.12 (s, 3H), 3.11 (s, 2H), 3.76−3.80 (m, 1H), 4.27−4.33( m, 1H), 4.34−4.67 (m 3H), 5.17 (t, J = 8.9 Hz, 1H), 5.32 ( d, J = 11.0 Hz, 1H), 5.77 (t, J = 8.9 Hz, 1H), 7.10−7.24 (m, 4H), 7.71−7.87 (m, 4H). Compound 7: 1 H-NMR (CDCl 3 ): δ = 1.12-1.41 (m, 12H), 1.51-1.64 (m, 6H), 1.84 (s, 3H), 1 89-2.10 (m, 9H), 2.12 (s, 3H), 3.11 (s, 2H), 3.76-3.80 (m, 1H), 4.27-4.33 (M, 1H), 4.34-4.67 (m3H), 5.17 (t, J = 8.9 Hz, 1H), 5.32 (d, J = 11.0 Hz, 1H), 5.77 (t, J = 8.9 Hz, 1H), 7.10-7.24 (m, 4H), 7.71-7.87 (m, 4H).

次に、化合物7(128mg,64.1μmol)とメチル=2,3,4−トリ−O−ベンジル−α−D−グルコピラノシド(149mg,0.32mmol)をアルゴン雰囲気下、ジクロロメタン(1mL)とHFE7100(0.5mL)の混合溶媒に溶解し、モレキュラーシーブス4A(0.24g)を加え、室温で2時間攪拌した。その後N−ヨードスクシンイミド(28.8mg,128μmol)およびトリメチルシリルトリフルオロメタンスルホネートの0.1M ジクロロメタン溶液 (256μL,25.6μmmol)を順次加え、室温で21時間攪拌した。固形物を濾別し、酢酸エチルで洗浄した。濾液は洗液と合わせて飽和炭酸水素ナトリウム水溶液、飽和チオ硫酸ナトリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣に95%アセトニトリル水溶液(20mL)を加えHFE7100:FC72=2:1のフルオラス混合溶媒(20mL×3)で分配抽出した。有機層を減圧濃縮し、残渣をシリカゲルシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=2:1)にて精製し、目的物質である2糖誘導体の化合物8を16.9mg(30%)得た。一方、フルオラス混合溶媒層を分取後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=3:1)にて精製し、化合物9を27.7mg(14%)得た。さらに原料である化合物7を175mg(56%)回収した。   Next, compound 7 (128 mg, 64.1 μmol) and methyl = 2,3,4-tri-O-benzyl-α-D-glucopyranoside (149 mg, 0.32 mmol) were added in dichloromethane (1 mL) and HFE7100 in an argon atmosphere. (0.5 mL) was dissolved in a mixed solvent, molecular sieves 4A (0.24 g) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, N-iodosuccinimide (28.8 mg, 128 μmol) and 0.1 M dichloromethane solution of trimethylsilyl trifluoromethanesulfonate (256 μL, 25.6 μmmol) were sequentially added, and the mixture was stirred at room temperature for 21 hours. The solid was filtered off and washed with ethyl acetate. The filtrate was combined with the washing solution, washed with a saturated aqueous sodium hydrogen carbonate solution, a saturated aqueous sodium thiosulfate solution, and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After the desiccant was filtered off, the solvent was distilled off under reduced pressure. A 95% aqueous acetonitrile solution (20 mL) was added to the residue, and the mixture was partitioned and extracted with a mixed solvent of HFE7100: FC72 = 2: 1 (20 mL × 3). The organic layer was concentrated under reduced pressure, and the residue was purified by silica gel silica gel column chromatography (n-hexane: ethyl acetate = 2: 1) to obtain 16.9 mg (30%) of the target substance disaccharide derivative Compound 8. It was. On the other hand, after separating the fluorous mixed solvent layer, the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 3: 1) to obtain 27.7 mg (14%) of Compound 9. Further, 175 mg (56%) of Compound 7 as a raw material was recovered.

化合物8: H NMR (600 MHz, CDCl) : δ = 1.83 (S, 3H), 2.03 (S, 3H), 2.09 (S, 3H), 3.17 (S, 3H), 3.23 (t, J = 9.0 Hz, 1H), 3.38 (dd, J = 6.2, 3.5 Hz, 1H), 3.66 (d, 9.0 Hz, 2H), 3.81−3.89 (m, 2H), 4.10 (t, J = 10.3Hz, 2H), 4.17 (dd, J = 9.6, 2.1 Hz, 1H), 4.32 (dd, J = 7.6, 4.8 Hz, 1H), 4.35−4.42 (m, 3H), 4.57 (d, J = 12.4 Hz, 1H), 4.65 (d, J = 11.0 Hz, 1H), 4.72 (d, J = 11.7 Hz 1H), 4.86 (d, J = 11.0 Hz, 1H), 5.18 (t, J = 10.3 Hz, 1H), 5.43 (d, J = 9.1 Hz, 1H), 5.79 (t, J = 9.1 Hz, 1H), 7.00−7.04 (m, 2H), 7.19−7.35 (m, 15H), 7.46−7.80 (m, 2H). Compound 8: 1 H NMR (600 MHz, CDCl 3 ): δ = 1.83 (S, 3H), 2.03 (S, 3H), 2.09 (S, 3H), 3.17 (S, 3H) ), 3.23 (t, J = 9.0 Hz, 1H), 3.38 (dd, J = 6.2, 3.5 Hz, 1H), 3.66 (d, 9.0 Hz, 2H) ), 3.81-3.89 (m, 2H), 4.10 (t, J = 10.3 Hz, 2H), 4.17 (dd, J = 9.6, 2.1 Hz, 1H), 4.32 (dd, J = 7.6, 4.8 Hz, 1H), 4.35-4.42 (m, 3H), 4.57 (d, J = 12.4 Hz, 1H), 4 .65 (d, J = 11.0 Hz, 1H), 4.72 (d, J = 11.7 Hz 1H), 4.86 (d, J = 11 0 Hz, 1H), 5.18 (t, J = 10.3 Hz, 1H), 5.43 (d, J = 9.1 Hz, 1H), 5.79 (t, J = 9.1 Hz). , 1H), 7.00-7.04 (m, 2H), 7.19-7.35 (m, 15H), 7.46-7.80 (m, 2H).

化合物9: H NMR (600 MHz, CDCl) : δ = 1.31−1.37 (m, 24H), 1.50−1.62 (m, 12H), 1.91−2.08 (m, 12H), 3.13 (S, 4H), 3.60 (s, 4H), 4.40 (s, 4H), 7.11−7.30 (m, 8H). Compound 9: 1 H NMR (600 MHz, CDCl 3 ): δ = 1.3-1.37 (m, 24H), 1.50-1.62 (m, 12H), 1.91-2.08 ( m, 12H), 3.13 (S, 4H), 3.60 (s, 4H), 4.40 (s, 4H), 7.11-7.30 (m, 8H).

Figure 2013139420
Figure 2013139420

炭素−炭素結合型ヘビーフルオラスタグの再生
化合物9(25.5mg,80.7μmol)をベンゾトリフルオリド(3mL)に溶解させ、無水酢酸(0.3mL)および三フッ化ホウ素ジエチルエーテル錯体(0.3mL)を加え、50℃で3時間攪拌した。反応液に飽和食塩水を加え酢酸エチルで3回抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥させた。乾燥剤を濾別後、溶媒を減圧留去した。残渣をメタノール(20mL)とFC−72)(20mL×3)で分配抽出し、FC−72層を減圧濃縮した。得られた残渣をメタノール(2mL)とHFE7100(2mL)の混合溶媒に溶解させ、28%ナトリウムメトキシドメタノール溶液(40μL)を加え、室温にて20時間攪拌した。反応液にAmberlite IR−120(Hform)を加えて中和後、樹脂を濾別し、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン:酢酸エチル=10:1)にて精製し、炭素−炭素結合型ヘビーフルオラスタグ4を21.9mg(90%)得た。
Regeneration of carbon-carbon bonded heavy fluorous tag Compound 9 (25.5 mg, 80.7 μmol) was dissolved in benzotrifluoride (3 mL), acetic anhydride (0.3 mL) and boron trifluoride diethyl ether complex (0. 3 mL) was added, and the mixture was stirred at 50 ° C. for 3 hours. Saturated brine was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and then dried over magnesium sulfate. After the desiccant was filtered off, the solvent was distilled off under reduced pressure. The residue was partitioned and extracted with methanol (20 mL) and FC-72) (20 mL × 3), and the FC-72 layer was concentrated under reduced pressure. The obtained residue was dissolved in a mixed solvent of methanol (2 mL) and HFE7100 (2 mL), 28% sodium methoxide methanol solution (40 μL) was added, and the mixture was stirred at room temperature for 20 hr. Amberlite IR-120 (H + form) was added to the reaction solution for neutralization, the resin was filtered off, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane: ethyl acetate = 10: 1) to obtain 21.9 mg (90%) of carbon-carbon bonded heavy fluorous tag 4.

化合物4 MALDI−TOF MASS:Calcd for C382751NaO (M+Na): 1491.1、Found: 1491.1. Compound 4 MALDI-TOF MASS: Calcd for C 38 H 27 F 51 NaO 5 (M + Na +): 1491.1, Found: 1491.1.

Figure 2013139420
Figure 2013139420

本発明化合物を用いるフルオラス合成が、医薬や食品添加物、化粧品、液晶、電子材料、高分子材料モノマー、機能性材料、医療材料などのファインケミカルズの製造、ペプチド、糖鎖、核酸などの複雑な天然物やそのアナローグの製造を容易にすることは確実である。また、本発明化合物は化学的に安定な構造を有しており酸化反応や還元反応、ラジカル反応といった工業的に有用な有機合成に広く用いることが可能であり、従って本発明化合物の工業的価値や波及効果は極めて大である。
Fluorous synthesis using the compounds of the present invention is a complex natural product such as pharmaceuticals, food additives, cosmetics, liquid crystals, electronic materials, polymer materials monomers, functional materials, production of fine chemicals such as medical materials, peptides, sugar chains, nucleic acids, etc. It is certain to facilitate the manufacture of objects and their analogs. In addition, the compound of the present invention has a chemically stable structure and can be widely used for industrially useful organic synthesis such as oxidation reaction, reduction reaction and radical reaction. The ripple effect is extremely large.

Claims (7)

一般式(1)
Figure 2013139420
(式中、Rfは炭素数1以上のペルフルオロ有機基を、Yは存在するか存在せず、存在する場合には炭化水素基を、Zは官能基を、nは1以上の整数を表し、Rf、Yはその表示各位において同一である必要はない。)で示される炭素−炭素結合型ヘビーフルオラスタグ。
General formula (1)
Figure 2013139420
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, Y represents a hydrocarbon group if present or absent, Z represents a functional group, n represents an integer of 1 or more, Rf and Y do not need to be the same in each position.) A carbon-carbon bonded heavy fluorous tag.
Yが存在して炭化水素基が飽和炭化水素基である、請求項1記載の炭素−炭素結合型ヘビーフルオラスタグ。   The carbon-carbon bonded heavy fluorous tag according to claim 1, wherein Y is present and the hydrocarbon group is a saturated hydrocarbon group. 一般式(2)
Figure 2013139420
(式中、Rfは炭素数1以上のペルフルオロ有機基を、m、p、qは0以上の整数を、nは1以上の整数を表し、Rfはその表示各位において同一である必要はない。)で示される炭素−炭素結合型ヘビーフルオラスタグ。
General formula (2)
Figure 2013139420
(In the formula, Rf represents a perfluoro organic group having 1 or more carbon atoms, m, p, and q represent integers of 0 or more, n represents an integer of 1 or more, and Rf does not need to be the same in each display position. The carbon-carbon bond type heavy fluorous tag shown by this).
ペルフルオロ有機基が炭素数4〜20のペルフルオロアルキル基、ペルフルオロポリエーテル基、またはペルフルオロエーテル基で、nが1、mが2、p=qでpが2〜8である請求項3記載の炭素−炭素結合型ヘビーフルオラスタグ。   The carbon according to claim 3, wherein the perfluoro organic group is a perfluoroalkyl group, a perfluoropolyether group or a perfluoroether group having 4 to 20 carbon atoms, n is 1, m is 2, p = q, and p is 2 to 8. -Carbon-bonded heavy fluorous tag. 請求項1から4のいずれかに記載の炭素−炭素結合型ヘビーフルオラスタグより誘導される化合物。   A compound derived from the carbon-carbon bonded heavy fluorous tag according to claim 1. 化合物が糖質誘導体である請求項5記載の化合物。   The compound according to claim 5, wherein the compound is a carbohydrate derivative. 請求項5または6に記載の炭素−炭素結合型ヘビーフルオラスタグより誘導される化合物を利用して化合物をフルオラス溶媒に抽出する方法。
A method for extracting a compound into a fluorous solvent using the compound derived from the carbon-carbon bond type heavy fluorous tag according to claim 5.
JP2011290499A 2011-12-31 2011-12-31 Carbon-carbon bond type heavy fluorous tag Expired - Fee Related JP6001267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011290499A JP6001267B2 (en) 2011-12-31 2011-12-31 Carbon-carbon bond type heavy fluorous tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011290499A JP6001267B2 (en) 2011-12-31 2011-12-31 Carbon-carbon bond type heavy fluorous tag

Publications (2)

Publication Number Publication Date
JP2013139420A true JP2013139420A (en) 2013-07-18
JP6001267B2 JP6001267B2 (en) 2016-10-05

Family

ID=49037252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011290499A Expired - Fee Related JP6001267B2 (en) 2011-12-31 2011-12-31 Carbon-carbon bond type heavy fluorous tag

Country Status (1)

Country Link
JP (1) JP6001267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037362A (en) * 2012-08-14 2014-02-27 Noguchi Institute Odorless thiol derivative having aglycone transition inhibition effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283326A (en) * 1975-12-24 1977-07-12 Hoechst Ag Perflvoroalkyllacetyllchloride and method of manufacturing
JP2004250379A (en) * 2003-02-20 2004-09-09 Asahi Glass Co Ltd Fluorine-containing compound, method for producing the same, fluoropolymer and water-repellent/oil-repellent composition
WO2007112100A2 (en) * 2006-03-24 2007-10-04 The University Of Utah Research Foundation Highly fluorinated oils and surfactants and methods of making and using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283326A (en) * 1975-12-24 1977-07-12 Hoechst Ag Perflvoroalkyllacetyllchloride and method of manufacturing
JP2004250379A (en) * 2003-02-20 2004-09-09 Asahi Glass Co Ltd Fluorine-containing compound, method for producing the same, fluoropolymer and water-repellent/oil-repellent composition
WO2007112100A2 (en) * 2006-03-24 2007-10-04 The University Of Utah Research Foundation Highly fluorinated oils and surfactants and methods of making and using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOTO, KOHTARO; NUERMAIMAITI, NUERAMINA; MIZUNO, MAMORU: "Effective application of heavy fluorous thioglycoside for oligosaccharide synthesis", CHEMISTRY LETTERS, vol. 40(7), JPN6015044660, 2011, pages 756 - 757, ISSN: 0003381837 *
NAKAMURA, Y.; TAKEUCHI, S.; OKUMURA, K.; OHGO, Y.: "Enantioselective addition of diethylzinc to aldehydes catalyzed by fluorous β-aminoalcohols", TETRAHEDRON, vol. 57(26), JPN6015044659, 2001, pages 5565 - 5571, ISSN: 0003381836 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037362A (en) * 2012-08-14 2014-02-27 Noguchi Institute Odorless thiol derivative having aglycone transition inhibition effect

Also Published As

Publication number Publication date
JP6001267B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
EP3042889B1 (en) Method for producing fluorine-containing olefin
JP6146724B2 (en) Method for producing alkyl fluoroacrylate
JP6001267B2 (en) Carbon-carbon bond type heavy fluorous tag
WO2015099154A1 (en) PRODUCTION METHOD FOR α-FLUORO ACRYLIC ACID ESTERS
JP3600213B2 (en) New production method of 1,2-diol
JP2007231002A (en) Manufacturing method of polymerizable diamantyl ester compound
US9024077B2 (en) Fluorine-containing vinyl ether compound and method for producing the same
Du et al. A novel ring-opening based tandem domino process of an activated vinyl cyclopropane
JP4576173B2 (en) Method for producing adamantyl (meth) acrylate compound
JP5636692B2 (en) Method for producing 5-hydroxy-1,3-dioxane and method for producing branched glycerol trimer using 5-hydroxy-1,3-dioxane obtained by the method as a raw material
JPWO2006041062A1 (en) (4E) -5-Chloro-2-isopropyl-4-pentenoic acid ester and process for producing optically active substance thereof
CA2709715C (en) Process for the preparation of diacerein
JPWO2019117019A1 (en) Method for producing diol
JP2002293774A (en) Method for producing 5-(meth)acryloyloxy-2,6- norbornanecarbolactone
JP2014091725A (en) Method for producing (meth)acrylic acid ester
JP6014486B2 (en) Method for producing farnesal using bis (acetylacetonato) oxovanadium (IV)
JP5878842B2 (en) Process for producing 2,3,6,7,10,11-hexahydroxytriphenylenes
JP2004346007A (en) Method for producing 3,3&#39;-bicyclohexenyl
JP2007051104A (en) Method for producing epoxy-group-containing phosphorus compound
JPWO2015108171A1 (en) Method for producing high purity 1,3-dialkylcyclobutane-1,2,3,4-tetracarboxylic acid-1,2: 3,4-dianhydride
JP4654412B2 (en) Process for producing α-epoxyphosphonic acids
JP4440167B2 (en) Highly fluorinated carboxylic acid derivative and method for producing the same
JP2002155006A (en) Method for producing orthocarbonate
JP2016160240A (en) Production process for xanthene
US9051256B1 (en) Process for producing hydroxy adamantane carboxylic acid compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees