JP2013135640A - Culture method for forming nerve cell and/or glial cell from neural stem cell - Google Patents

Culture method for forming nerve cell and/or glial cell from neural stem cell Download PDF

Info

Publication number
JP2013135640A
JP2013135640A JP2011288860A JP2011288860A JP2013135640A JP 2013135640 A JP2013135640 A JP 2013135640A JP 2011288860 A JP2011288860 A JP 2011288860A JP 2011288860 A JP2011288860 A JP 2011288860A JP 2013135640 A JP2013135640 A JP 2013135640A
Authority
JP
Japan
Prior art keywords
group
cell
neural stem
container
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011288860A
Other languages
Japanese (ja)
Inventor
Takashi Yasuda
隆 安田
Makoto Yamanaka
誠 山中
Keigo Takei
啓吾 武井
Yukimitsu Sumida
如光 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2011288860A priority Critical patent/JP2013135640A/en
Priority to PCT/JP2012/080790 priority patent/WO2013099506A1/en
Publication of JP2013135640A publication Critical patent/JP2013135640A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells

Abstract

PROBLEM TO BE SOLVED: To provide a culture method for forming nerve cells and glial cells from neural stem cells through cell aggregate.SOLUTION: The method comprises: a step of suspension culturing neural stem cells C in a medium M containing a growth factor and forming a cell aggregate C', using a culture vessel D; and a step of adding a differentiation-inducing factor to the medium M, adhering the cell aggregate C' to the bottom of the culture vessel D, and differentiating the neural stem cells C. The culture vessel D has groups represented by general formula (1) (in the formula, R, Rand Rare each independently an alkyl group of 1C to 6C; m is an integer of from 2 to 6) present near the surface of the bottom.

Description

本発明は、神経幹細胞から神経細胞及び/又はグリア細胞を形成する培養方法に関する。   The present invention relates to a culture method for forming neural cells and / or glial cells from neural stem cells.

従来、神経幹細胞を神経細胞及び/又はグリア細胞に分化誘導する方法として、神経幹細胞を浮遊培養して細胞凝集塊を形成した後、神経細胞及び/又はグリア細胞に分化させる方法が知られている。   Conventionally, as a method for inducing differentiation of neural stem cells into neural cells and / or glial cells, a method is known in which neural stem cells are cultured in suspension to form cell aggregates and then differentiated into neural cells and / or glial cells. .

特許文献1には、貫通穴が形成された第一基材と、第一基材の一方側の表面に剥離可能に接着されて貫通穴の一方側を覆う第二基材と、貫通穴の一方側を第二基材で覆うことにより形成された細胞非接着性のウェルを有する細胞集合体形成器具が開示されている。   In Patent Document 1, a first base material in which a through hole is formed, a second base material that is peelably bonded to the surface of one side of the first base material and covers one side of the through hole, A cell assembly forming instrument having a non-cell-adhesive well formed by covering one side with a second substrate is disclosed.

また、特許文献1には、細胞集合体形成器具と、細胞集合体形成器具の第一基材の他方側の表面を当接させる細胞接着性表面を有する培養器具を含む細胞集合体転写キットが開示されている。   Patent Document 1 discloses a cell assembly transfer kit including a cell assembly forming instrument and a culture instrument having a cell adhesive surface that abuts the surface of the first base of the cell assembly forming instrument. It is disclosed.

さらに、特許文献1には、細胞集合体形成器具のウェル内で浮遊状態の細胞集合体を形成する集合体形成工程と、細胞集合体形成器具の第一基材の他方側の表面を所定の細胞接着性表面に当接させて、ウェル内の細胞集合体を細胞接着性表面上に沈降させるとともに第一基材から第二基材を剥離する転写工程と、細胞接着性表面に接着した細胞集合体を培養する集合体培養工程を含む細胞集合体の培養方法が開示されている。   Further, Patent Document 1 discloses an assembly forming step for forming a cell assembly in a floating state in a well of a cell assembly forming device, and a surface on the other side of the first base material of the cell assembly forming device. A transfer process in which the cell aggregate in the well is brought into contact with the cell adhesive surface to settle on the cell adhesive surface and the second substrate is peeled off from the first substrate, and the cells adhered to the cell adhesive surface A method for culturing a cell aggregate including an aggregate culture step for culturing the aggregate is disclosed.

しかしながら、細胞集合体形成器具と培養器具を併用しないと、神経幹細胞から細胞凝集塊を経て、神経細胞及び/又はグリア細胞を形成することができないという問題がある。   However, there is a problem that without using a cell assembly forming instrument and a culture instrument in combination, nerve cells and / or glial cells cannot be formed from neural stem cells via cell aggregates.

特開2010−233456号公報JP 2010-233456 A

本発明は、上記の従来技術が有する問題に鑑み、単一の培養容器を用いて、神経幹細胞から細胞凝集塊を経て、神経細胞及び/又はグリア細胞を形成することが可能な培養方法を提供することを目的とする。   The present invention provides a culture method capable of forming nerve cells and / or glial cells from neural stem cells via cell aggregates using a single culture vessel in view of the problems of the above-described conventional techniques. The purpose is to do.

本発明の培養方法は、神経幹細胞から神経細胞及び/又はグリア細胞を形成する培養方法であって、培養容器を用いて、増殖因子を含む培地中で神経幹細胞を浮遊培養して細胞凝集塊を形成する工程と、該培地に分化誘導因子を添加して該細胞凝集塊を該培養容器に接着させて該神経幹細胞を分化させる工程を有し、前記培養容器は、一般式   The culture method of the present invention is a culture method for forming neural cells and / or glial cells from neural stem cells, wherein the neural stem cells are suspended in a medium containing a growth factor using a culture vessel to form cell aggregates. And a step of adding a differentiation-inducing factor to the medium to adhere the cell aggregate to the culture vessel to differentiate the neural stem cells, the culture vessel having a general formula

(式中、R、R及びRは、それぞれ独立に、炭素数が1以上6以下のアルキル基であり、mは、2以上6以下の整数である。)
で表される基が表面近傍に存在する。
(In the formula, R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, and m is an integer of 2 to 6)
Is present near the surface.

本発明によれば、単一の培養容器を用いて、神経幹細胞から細胞凝集塊を経て、神経細胞及び/又はグリア細胞を形成することが可能な培養方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the culture | cultivation method which can form a nerve cell and / or a glial cell through a cell aggregate from a neural stem cell can be provided using a single culture container.

本発明の培養方法の一例を示す図である。It is a figure which shows an example of the culture method of this invention. 実施例1の神経幹細胞の浮遊培養を示す光学顕微鏡写真である。2 is an optical micrograph showing suspension culture of neural stem cells of Example 1. 実施例1の細胞凝集塊を構成する神経幹細胞の分化を示す光学顕微鏡写真である。2 is an optical micrograph showing the differentiation of neural stem cells constituting the cell aggregate of Example 1. FIG.

次に、本発明を実施するための形態を図面と共に説明する。   Next, the form for implementing this invention is demonstrated with drawing.

図1に、本発明の培養方法の一例を示す。   FIG. 1 shows an example of the culture method of the present invention.

なお、本培養方法では、一般式(1)で表される基が底面の表面近傍に存在する培養容器Dを用いる。   In this culture method, a culture vessel D in which the group represented by the general formula (1) is present in the vicinity of the bottom surface is used.

まず、培養容器Dに、神経幹細胞C及び増殖因子(不図示)を含む培地Mを導入し(図1(a)参照)、神経幹細胞Cを浮遊培養すると、神経幹細胞Cが増殖すると共に、凝集し、細胞凝集塊C’が形成される(図1(b)参照)。これは、神経幹細胞Cが非接着性細胞であることに加え、培養容器Dの底面の表面近傍に存在する一般式(1)で表される基が細胞凝集塊C’の接着を抑制するためであると考えられる。   First, a culture medium D containing a neural stem cell C and a growth factor (not shown) is introduced into the culture vessel D (see FIG. 1 (a)). When the neural stem cell C is cultured in suspension, the neural stem cell C grows and aggregates. As a result, a cell aggregate C ′ is formed (see FIG. 1B). This is because the group represented by the general formula (1) existing in the vicinity of the bottom surface of the culture vessel D suppresses the adhesion of the cell aggregate C ′ in addition to the neural stem cell C being a non-adherent cell. It is thought that.

次に、培地Mに分化誘導因子(不図示)を添加すると、細胞凝集塊C’が培養容器Dの底面に接着し(図1(c)参照)、細胞凝集塊C’を構成する神経幹細胞Cが神経細胞及びグリア細胞に分化する。   Next, when a differentiation-inducing factor (not shown) is added to the medium M, the cell aggregate C ′ adheres to the bottom surface of the culture vessel D (see FIG. 1C), and the neural stem cells constituting the cell aggregate C ′ C differentiates into neurons and glial cells.

神経幹細胞Cとしては、特に限定されないが、ヒト、ラット、マウス、霊長類等の哺乳類に由来する神経幹細胞を用いることができる。   Although it does not specifically limit as the neural stem cell C, The neural stem cell derived from mammals, such as a human, a rat, a mouse | mouth, a primate, can be used.

培地としては、神経幹細胞Cを培養することが可能であれば、特に限定されないが、適量の抗生物質を含む無血清培地等が挙げられる。   The medium is not particularly limited as long as neural stem cells C can be cultured, and examples thereof include a serum-free medium containing an appropriate amount of antibiotics.

増殖因子としては、神経幹細胞Cを増殖させることが可能であれば、特に限定されないが、上皮細胞増殖因子、繊維芽細胞増殖因子等が挙げられる。   The growth factor is not particularly limited as long as the neural stem cell C can be grown, and examples thereof include epithelial cell growth factor and fibroblast growth factor.

分化誘導因子としては、細胞凝集塊C’を構成する神経幹細胞Cを分化誘導することが可能であれば、特に限定されないが、ウシ胎児血清等が挙げられる。   The differentiation inducing factor is not particularly limited as long as it can induce differentiation of neural stem cells C constituting the cell aggregate C ′, and examples thereof include fetal bovine serum.

培養容器Dの形態としては、特に限定されないが、ディッシュ、マルチウェルプレート、フラスコ、ローラーボトル、細胞培養プロセスを有するデバイスのユニット等が挙げられる。   The form of the culture vessel D is not particularly limited, and examples thereof include a dish, a multiwell plate, a flask, a roller bottle, and a device unit having a cell culture process.

培養容器Dは、加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器に、加水分解によりシラノール基を生成することが可能な基と、一般式(1)で表される基を有する表面改質剤を反応させることにより製造することができる。このとき、表面改質剤は、分子量が315〜650である。   In the culture vessel D, a group capable of producing a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a hydroxyl group derived from a metal oxide is added to a vessel in the vicinity of the surface. It can be produced by reacting a group capable of generating a silanol group by decomposition with a surface modifier having a group represented by the general formula (1). At this time, the surface modifier has a molecular weight of 315 to 650.

容器の表面近傍に加水分解によりシラノール基を生成することが可能な基及び/又はシラノール基を導入する方法としては、加水分解によりシラノール基を生成することが可能な基を有するポリマー(以下、加水分解性ポリマーという)と、アルコキシシランを含有する塗布液を容器に塗布する方法が挙げられる。   As a method of introducing a silanol group by hydrolysis and / or a silanol group in the vicinity of the surface of the container, a polymer having a group capable of generating a silanol group by hydrolysis (hereinafter referred to as hydrolyzate). And a method of applying a coating solution containing alkoxysilane to a container.

加水分解性ポリマーと、アルコキシシランを含有する塗布液を容器に塗布すると、加水分解性ポリマーとアルコキシシランが加水分解され、シラノール基が生成する。さらに、シラノール基同士の脱水縮合により、加水分解性ポリマーが架橋され、シラノール基が導入された架橋ポリマー層が形成される。具体的には、材料に塗布液を塗布した後に、水、酸又はアルカリを塗布したり、加熱したりする。また、水、酸又はアルカリを材料に塗布した後に、塗布液を塗布してもよい。さらに、塗布液に、水、酸又はアルカリを混合してもよい。この場合、塗布液中で加水分解が起こるため、塗布時に塗布液を適宜調製することが好ましい。なお、水、酸又はアルカリを用いる場合は、加熱してもよいが、通常、室温で十分反応が進行する。また、水、酸又はアルカリを用いなくても、大気中の水分により緩やかに反応が進行する。   When a coating solution containing a hydrolyzable polymer and an alkoxysilane is applied to the container, the hydrolyzable polymer and the alkoxysilane are hydrolyzed to generate silanol groups. Furthermore, the hydrolyzable polymer is crosslinked by dehydration condensation between silanol groups, and a crosslinked polymer layer into which the silanol groups are introduced is formed. Specifically, after applying the coating liquid to the material, water, acid or alkali is applied or heated. Moreover, after applying water, an acid, or an alkali to a material, you may apply | coat a coating liquid. Furthermore, you may mix water, an acid, or an alkali with a coating liquid. In this case, since hydrolysis occurs in the coating solution, it is preferable to appropriately prepare the coating solution at the time of coating. In addition, when using water, an acid, or an alkali, although you may heat, reaction progresses normally normally at room temperature. Moreover, even if water, an acid or an alkali is not used, the reaction proceeds slowly due to moisture in the atmosphere.

加水分解に用いられる酸又はアルカリとしては、加水分解させることが可能なものであれば、特に限定されず、二種以上混合して用いることができ、水溶液として用いてもよい。   The acid or alkali used for the hydrolysis is not particularly limited as long as it can be hydrolyzed, and can be used as a mixture of two or more, or may be used as an aqueous solution.

塗布液としては、有機溶媒中に、加水分解性ポリマーと、アルコキシシランを溶解又は分散させたものを用いることができる。有機溶媒としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、塩素化炭化水素、エーテル、炭素数が1〜4の1〜4価の脂肪族アルコール等のアルコール、エチルセロソルブ、ブチルセロソルブ等のセロソルブ、ジオキサン、酢酸メチル、ジホルムアミド等が挙げられ、二種以上併用してもよい。   As the coating solution, a solution obtained by dissolving or dispersing a hydrolyzable polymer and alkoxysilane in an organic solvent can be used. Examples of the organic solvent include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, ethers, alcohols such as 1-4 tetravalent aliphatic alcohols having 1 to 4 carbon atoms, ethyl cellosolve, butyl cellosolve. Such as cellosolve, dioxane, methyl acetate, diformamide, etc., may be used in combination.

塗布液中の加水分解性ポリマーの含有量は、通常、0.001〜20質量%であり、0.1〜5質量%が好ましい。塗布液中の加水分解性ポリマーの含有量が0.001質量%未満であると、1回の塗布で十分な効果が得られないことがあり、20質量%を超えると、塗布性が低下することがある。   Content of the hydrolysable polymer in a coating liquid is 0.001-20 mass% normally, and 0.1-5 mass% is preferable. If the content of the hydrolyzable polymer in the coating solution is less than 0.001% by mass, a sufficient effect may not be obtained by one coating, and if it exceeds 20% by mass, the coating property is lowered. Sometimes.

また、アルコキシシランに対する加水分解性ポリマーの質量比は、通常、0.01〜20%であり、0.2〜5%が好ましい。アルコキシシランに対する加水分解性ポリマーの質量比が0.01%未満であると、架橋ポリマー層の強度が不十分になることがあり、20%を超えると、架橋ポリマー層に導入されるシラノール基の量が不十分になることがある。   Moreover, mass ratio of the hydrolyzable polymer with respect to alkoxysilane is 0.01 to 20% normally, and 0.2 to 5% is preferable. If the mass ratio of the hydrolyzable polymer to the alkoxysilane is less than 0.01%, the strength of the crosslinked polymer layer may be insufficient. If it exceeds 20%, the silanol groups introduced into the crosslinked polymer layer The amount may be insufficient.

塗布液を塗布する方法としては、特に限定されないが、浸漬塗布法、スプレー塗布法、スピンキャスト法等が挙げられる。   A method for applying the coating solution is not particularly limited, and examples thereof include a dip coating method, a spray coating method, and a spin casting method.

容器を構成する材料としては、特に限定されないが、PP(ポリプロピレン)、シクロオレフィン樹脂、ポリカーボネート、PET(ポリエチレンテレフタレート)、PEEK、フッ素系樹脂、ポリスチレン、ポリ塩化ビニル等の有機材料;金、チタン、アルミ、鉄、銅、ステンレス、アルミナ、酸化チタン、酸化亜鉛等の無機材料等が挙げられる。   Although it does not specifically limit as a material which comprises a container, Organic materials, such as PP (polypropylene), a cycloolefin resin, a polycarbonate, PET (polyethylene terephthalate), PEEK, a fluorine resin, a polystyrene, a polyvinyl chloride; Gold, titanium, Examples include inorganic materials such as aluminum, iron, copper, stainless steel, alumina, titanium oxide, and zinc oxide.

加水分解性ポリマーとしては、加水分解によりシラノール基を生成することが可能な基を有するポリマーであれば、特に限定されないが、一般式   The hydrolyzable polymer is not particularly limited as long as it is a polymer having a group capable of generating a silanol group by hydrolysis.

(式中、Rは、水素原子又はメチル基であり、Rは、炭素数が1〜6のアルキレン基、好ましくはプロピレン基であり、R、R及びRは、それぞれ独立に、炭素数が1〜6のアルコキシル基、好ましくはメトキシル基又はエトキシル基である。)
で表されるモノマー(A−1)を重合することにより得られるホモポリマー又はコポリマー(以下、ポリマー(A)という)を用いることができる。このとき、モノマー(A−1)を二種以上用いてもよい。
(Wherein R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 6 carbon atoms, preferably a propylene group, and R 3 , R 4 and R 5 are each independently And an alkoxyl group having 1 to 6 carbon atoms, preferably a methoxyl group or an ethoxyl group.)
The homopolymer or copolymer (henceforth a polymer (A)) obtained by superposing | polymerizing the monomer (A-1) represented by these can be used. At this time, you may use 2 or more types of monomers (A-1).

また、ポリマー(A)を合成する際に、一般式   Further, when synthesizing the polymer (A), the general formula

(式中、Rは、水素原子又はメチル基であり、Rは、炭素数が1〜18の直鎖状、分岐状又は環状のアルキル基、好ましくは炭素数1〜6のアルキル基、特に好ましくはメチル基である。)
で表されるモノマー(A−2)を共重合してもよい。このとき、モノマー(A−2)を二種以上用いてもよい。
(In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, Particularly preferred is a methyl group.)
The monomer represented by (A-2) may be copolymerized. At this time, you may use 2 or more types of monomers (A-2).

また、ポリマー(A)を合成する際に、一般式   Further, when synthesizing the polymer (A), the general formula

(式中、Rは、水素原子又はメチル基であり、Rは、炭素数が1〜6のアルキレン基、好ましくはエチレン基、プロピレン基又は2−ヒドロキシプロピレン基であり、Xは、一般式 Wherein R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 6 carbon atoms, preferably an ethylene group, a propylene group or a 2-hydroxypropylene group, and X is formula

(式中、R、R、R、R、R、R、R、R及びRは、それぞれ独立に、炭素数が1〜6の直鎖又は分岐状のアルキル基、好ましくはメチル基である。)
で表される基(X−1)、一般式
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently a linear or branched alkyl having 1 to 6 carbon atoms. Group, preferably a methyl group.)
A group represented by formula (X-1), a general formula

(式中、R、R、R、R、R及びRは、それぞれ独立に、炭素数が1〜6の直鎖又は分岐状のアルキル基、好ましくはメチル基であり、Rは、炭素数が1〜6の直鎖又は分岐状のアルキル基、好ましくはブチル基であり、xは、正の整数である。)
で表される基(X−2)又は一般式
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a methyl group, R 7 is a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a butyl group, and x is a positive integer.
A group represented by formula (X-2) or a general formula

(式中、R、R、R、R、R及びRは、それぞれ独立に、炭素数が1〜6の直鎖又は分岐状のアルキル基、好ましくはメチル基であり、Rは、炭素数が1〜6のアルキレン基、好ましくはエチレン基、プロピレン基又は2−ヒドロキシプロピレン基であり、Rは、水素原子又はメチル基であり、yは、正の整数である。)
で表される基(X−3)である。)
で表されるモノマー(A−3)を共重合してもよい。なお、Xが基(X−2)又は(X−3)である場合、モノマー(A−3)は、分子量が1000〜100000であることが好ましく、2000〜20000が特に好ましい。このとき、モノマー(A−3)を二種以上用いてもよい。
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, preferably a methyl group, R 7 is an alkylene group having 1 to 6 carbon atoms, preferably an ethylene group, a propylene group or a 2-hydroxypropylene group, R 8 is a hydrogen atom or a methyl group, and y is a positive integer. .)
It is group (X-3) represented by these. )
The monomer represented by (A-3) may be copolymerized. In addition, when X is group (X-2) or (X-3), it is preferable that a monomer (A-3) is 1000-100000, and 2000-20000 is especially preferable. At this time, you may use 2 or more types of monomers (A-3).

また、ポリマー(A)を合成する際に、一般式   Further, when synthesizing the polymer (A), the general formula

(式中、Rは、水素原子又はメチル基であり、Rは、炭素数が1〜6のアルキレン基、好ましくはエチレン基又はプロピレン基であり、Yは、一般式 Wherein R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 6 carbon atoms, preferably an ethylene group or a propylene group, and Y is a general formula

(式中、R、R及びRは、それぞれ独立に、炭素数が1〜6のアルキル基、好ましくはメチル基であり、Zは、ハロゲン化物イオン又は有機酸若しくは無機酸の共役イオンである。)
で表される基(Y−1)又は一般式
Wherein R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, preferably a methyl group, and Z is a conjugate of a halide ion, an organic acid or an inorganic acid. Ion.)
A group represented by formula (Y-1) or a general formula


(式中、R及びRは、それぞれ独立に、炭素数が1〜6のアルキル基、好ましくはメチル基である。)
で表される基(Y−2)である。)
で表されるモノマー(A−4)を共重合してもよい。このとき、モノマー(A−4)を二種以上用いてもよい。

(In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms, preferably a methyl group.)
It is group (Y-2) represented by these. )
The monomer represented by (A-4) may be copolymerized. At this time, you may use 2 or more types of monomers (A-4).

すなわち、ポリマー(A)を合成する際に、モノマー(A−1)と共に、モノマー(A−2)、モノマー(A−3)及び/又はモノマー(A−4)を共重合してもよい。   That is, when synthesizing the polymer (A), the monomer (A-2), the monomer (A-3) and / or the monomer (A-4) may be copolymerized together with the monomer (A-1).

ポリマー(A)を合成する際に用いられる全モノマー中のモノマー(A−1)の含有量が30〜85質量%であることが好ましい。全モノマー中のモノマー(A−1)の含有量が30質量%未満であると、架橋密度が低下して、親水化の効果が十分に持続しないことがあり、85質量%を超えると、架橋ポリマー層の均一性が低下することがある。   It is preferable that the content of the monomer (A-1) in all monomers used when the polymer (A) is synthesized is 30 to 85% by mass. When the content of the monomer (A-1) in all the monomers is less than 30% by mass, the crosslinking density is lowered, and the effect of hydrophilization may not be sufficiently maintained. The uniformity of the polymer layer may be reduced.

また、ポリマー(A)を合成する際に用いられる全モノマー中のモノマー(A−2)の含有量は、通常、1〜75質量%であり、10〜60質量%が好ましい。全モノマー中のモノマー(A−2)の含有量が1質量%未満であると、架橋ポリマー層の耐水性が低下することがあり、75質量%を超えると、ポリマー(A)がアルコールに難溶性となることがある。   Moreover, content of the monomer (A-2) in all the monomers used when synthesize | combining a polymer (A) is 1-75 mass% normally, and 10-60 mass% is preferable. When the content of the monomer (A-2) in all monomers is less than 1% by mass, the water resistance of the crosslinked polymer layer may be lowered. When the content exceeds 75% by mass, the polymer (A) is difficult to alcohol. May become soluble.

さらに、ポリマー(A)を合成する際に用いられる全モノマー中のモノマー(A−3)の含有量は、通常、1〜70質量%であり、5〜60質量%が好ましい。全モノマー中のモノマー(A−3)の含有量が1質量%未満であると、架橋ポリマー層の耐水性が低下することがあり、70質量%を超えると、ポリマー(A)がアルコールに難溶性となることがある。   Furthermore, content of the monomer (A-3) in all the monomers used when synthesize | combining a polymer (A) is 1-70 mass% normally, and 5-60 mass% is preferable. When the content of the monomer (A-3) in all the monomers is less than 1% by mass, the water resistance of the crosslinked polymer layer may be lowered. When the content exceeds 70% by mass, the polymer (A) is difficult to alcohol. May become soluble.

また、モノマー(A−1)、モノマー(A−2)及びモノマー(A−3)の総質量に対するモノマー(A−4)の質量の比は、通常、0.01〜1であり、0.05〜0.5が好ましい。この比が0.01未満であると、架橋ポリマー層の柔軟性が低下することがあり、1を超えると、架橋ポリマー層の耐水性が低下することがある。   Moreover, the ratio of the mass of the monomer (A-4) to the total mass of the monomer (A-1), the monomer (A-2) and the monomer (A-3) is usually from 0.01 to 1; 05 to 0.5 are preferred. When this ratio is less than 0.01, the flexibility of the crosslinked polymer layer may be lowered, and when it exceeds 1, the water resistance of the crosslinked polymer layer may be lowered.

ポリマー(A)の数平均分子量は2000〜150000であることが好ましい。ポリマー(A)の数平均分子量が2000未満であると、架橋ポリマー層を形成する時間が長くなることがあり、150000を超えると、塗布液の粘度が高くなって、塗布性や作業性に劣ることがある。   The number average molecular weight of the polymer (A) is preferably 2000 to 150,000. When the number average molecular weight of the polymer (A) is less than 2000, the time for forming the crosslinked polymer layer may be long. When the number average molecular weight exceeds 150,000, the viscosity of the coating liquid becomes high and the coating property and workability are poor. Sometimes.

なお、ポリマー(A)の具体例及び製造方法は、特開平11−302129号公報等に開示されている。   In addition, the specific example and manufacturing method of a polymer (A) are disclosed by Unexamined-Japanese-Patent No. 11-302129 etc.

また、加水分解性ポリマーとしては、一般式   As the hydrolyzable polymer, a general formula

(式中、Rは、炭素数が1〜22のアルキル基又はフェニル基、好ましくは、メチル基である。)
で表される構成単位(B−1)を有するホモポリマー又はコポリマー(以下、ポリマー(B)という)を用いることができる。このとき、ポリマー(B)は、構成単位(B−1)を二種以上有してもよい。
(In the formula, R 1 is an alkyl group having 1 to 22 carbon atoms or a phenyl group, preferably a methyl group.)
The homopolymer or copolymer (henceforth a polymer (B)) which has the structural unit (B-1) represented by these can be used. At this time, a polymer (B) may have 2 or more types of structural units (B-1).

また、ポリマー(B)は、一般式   The polymer (B) has a general formula

(式中、R及びRは、それぞれ独立に、炭素数が1〜22のアルキル基又はフェニル基、好ましくは、メチル基である。)
で表される構成単位(B−2)を有してもよい。このとき、ポリマー(B)は、構成単位(B−2)を二種以上有してもよい。
(In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 22 carbon atoms or a phenyl group, preferably a methyl group.)
You may have the structural unit (B-2) represented by these. At this time, a polymer (B) may have 2 or more types of structural units (B-2).

ポリマー(B)は、構成単位(B−1)の含有量が1〜90質量%であることが好ましい。構成単位(B−1)の含有量が1質量%未満であると、架橋密度が低下して、親水化の効果が十分に持続しないことがあり、90質量%を超えると、架橋ポリマー層の均一性が低下することがある。   In the polymer (B), the content of the structural unit (B-1) is preferably 1 to 90% by mass. When the content of the structural unit (B-1) is less than 1% by mass, the crosslinking density is lowered and the effect of hydrophilization may not be sufficiently sustained. When the content exceeds 90% by mass, Uniformity may be reduced.

さらに、ポリマー(B)は、構成単位(B−2)の含有量が10〜99質量%であることが好ましい。構成単位(B−2)の含有量が10質量%未満であると、架橋ポリマー層の均一性が低下することがあり、99質量%を超えると、架橋密度が低下して、親水化の効果が十分に持続しないことがある。   Furthermore, as for a polymer (B), it is preferable that content of a structural unit (B-2) is 10-99 mass%. When the content of the structural unit (B-2) is less than 10% by mass, the uniformity of the cross-linked polymer layer may be reduced. May not last long enough.

ポリマー(B)の数平均分子量は2000〜500000であることが好ましい。数平均分子量が2000未満であると、架橋ポリマー層を形成する時間が長くなることがあり、500000を超えると、塗布液の粘度が高くなって、塗布性や作業性に劣ることがある。   The number average molecular weight of the polymer (B) is preferably 2000 to 500,000. When the number average molecular weight is less than 2,000, the time for forming the crosslinked polymer layer may be long. When the number average molecular weight exceeds 500,000, the viscosity of the coating solution becomes high and the coating property and workability may be inferior.

加水分解性ポリマーとして、ポリマー(A)及びポリマー(B)を併用してもよいし、加水分解性ポリマーと非加水分解性ポリマーを併用してもよい。非加水分解性ポリマーとしては、特に限定されないが、加水分解によりシラノール基を生成することが可能な基を有さないポリマー(A)、ポリマー(B)等が挙げられる。   As the hydrolyzable polymer, the polymer (A) and the polymer (B) may be used in combination, or a hydrolyzable polymer and a non-hydrolyzable polymer may be used in combination. Although it does not specifically limit as a non-hydrolyzable polymer, The polymer (A), polymer (B), etc. which do not have a group which can produce | generate a silanol group by hydrolysis are mentioned.

容器の表面近傍にシラノール基を導入する方法としては、特に限定されないが、シリコーン樹脂を含む塗布液を容器に塗布することにより、シラノール基を有するシリコーン樹脂を含む膜を形成する方法等が挙げられる。   The method for introducing silanol groups in the vicinity of the surface of the container is not particularly limited, and examples thereof include a method of forming a film containing a silicone resin having a silanol group by applying a coating solution containing a silicone resin to the container. .

シラノール基を有するシリコーン樹脂を含む膜は、水の接触角が3〜50°であることが好ましい。水の接触角が3°未満である膜を形成することは困難であり、水の接触角が50°を超える膜を形成すると、一般式(1)で表される基を高密度で導入できなくなることがある。   The film containing a silicone resin having a silanol group preferably has a water contact angle of 3 to 50 °. It is difficult to form a film having a water contact angle of less than 3 °. When a film having a water contact angle of more than 50 ° is formed, the group represented by the general formula (1) can be introduced at high density. It may disappear.

塗布液に含まれるシリコーン樹脂としては、特に限定されないが、一般式
(RO)Si(R4−n
(式中、R及びRは、それぞれ独立に、炭素数が1〜8のアルキル基であり、nは、1〜4の整数であり、nが1又は2である場合、複数のRは、同一であっても異なっていてもよく、nが2又は3である場合、複数のRは、同一であっても異なっていてもよい。)
で表されるアルコキシシランを加水分解した後、縮合することにより得られる樹脂が挙げられ、二種以上併用してもよい。このとき、水の接触角が3〜50°である膜に含まれるシラノール基を有するシリコーン樹脂は、塗布液に含まれるシリコーン樹脂と同一であってもよいし、異なっていてもよい。
As the silicone resin contained in the coating liquid is not particularly limited, the general formula (R 1 O) n Si ( R 2) 4-n
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, n is an integer of 1 to 4, and when n is 1 or 2, a plurality of R 2 may be the same or different, and when n is 2 or 3, a plurality of R 1 may be the same or different.
The resin obtained by condensing after hydrolyzing the alkoxysilane represented by these is mentioned, You may use 2 or more types together. At this time, the silicone resin having a silanol group contained in the film having a water contact angle of 3 to 50 ° may be the same as or different from the silicone resin contained in the coating solution.

塗布液に含まれる有機溶媒としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、塩素化炭化水素、エーテル、炭素数が1〜4の1〜4価の脂肪族アルコール等のアルコール、エチルセロソルブ、ブチルセロソルブ等のセロソルブ、ジオキサン、酢酸メチル、ジホルムアミド等が挙げられ、二種以上併用してもよい。   Although it does not specifically limit as an organic solvent contained in a coating liquid, Alcohols, such as aliphatic hydrocarbon, aromatic hydrocarbon, chlorinated hydrocarbon, ether, C1-C4 aliphatic alcohol with 1-4 carbon atoms. , Ethyl cellosolve, cellosolve such as butyl cellosolve, dioxane, methyl acetate, diformamide, etc., may be used in combination.

塗布液中のシリコーン樹脂の含有量は、通常、0.001〜1質量%であり、0.1〜1質量%が好ましい。塗布液中のシリコーン樹脂の含有量が0.001質量%未満であると、均一な膜が形成されないことがあり、20質量%を超えると、塗布性が低下することがある。   Content of the silicone resin in a coating liquid is 0.001-1 mass% normally, and 0.1-1 mass% is preferable. When the content of the silicone resin in the coating solution is less than 0.001% by mass, a uniform film may not be formed, and when it exceeds 20% by mass, applicability may be lowered.

塗布液を塗布する方法としては、特に限定されないが、浸漬塗布法、スプレー塗布法、スピンキャスト法等が挙げられる。   A method for applying the coating solution is not particularly limited, and examples thereof include a dip coating method, a spray coating method, and a spin casting method.

容器を構成する材料としては、特に限定されないが、ポリカーボネート、PET(ポリエチレンテレフタレート)、ポリスチレン、アクリル樹脂等の有機材料;金、チタン、アルミ、鉄、銅、ステンレス、アルミナ、酸化チタン、酸化亜鉛等の無機材料等が挙げられる。   Although it does not specifically limit as a material which comprises a container, Organic materials, such as a polycarbonate, PET (polyethylene terephthalate), a polystyrene, an acrylic resin; Gold, titanium, aluminum, iron, copper, stainless steel, an alumina, a titanium oxide, a zinc oxide, etc. Inorganic materials and the like.

また、シラノール基が表面近傍に存在する容器として、ガラス製の容器、石英製の容器等を用いてもよい。   Further, a glass container, a quartz container, or the like may be used as a container in which silanol groups are present in the vicinity of the surface.

金属酸化物由来のヒドロキシル基が表面近傍に存在する容器を構成する金属酸化物としては、特に限定されないが、酸化チタン、酸化亜鉛、酸化鉄、酸化クロム、酸化アルミニウム等が挙げられる。   Although it does not specifically limit as a metal oxide which comprises the container in which the hydroxyl group derived from a metal oxide exists in the surface vicinity, Titanium oxide, zinc oxide, iron oxide, chromium oxide, aluminum oxide etc. are mentioned.

半金属酸化物由来のヒドロキシル基が表面近傍に存在する容器を構成する金属酸化物としては、特に限定されないが、酸化ゲルマニウム、酸化ヒ素、酸化ホウ素等が挙げられる。   Although it does not specifically limit as a metal oxide which comprises the container in which the hydroxyl group derived from a semi-metal oxide exists in the surface vicinity, Germanium oxide, arsenic oxide, boron oxide, etc. are mentioned.

加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基に対して反応性を有する基としては、加水分解によりシラノール基を生成することが可能な基が挙げられる。   Examples of the group capable of generating a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a group reactive to a hydroxyl group derived from a metal oxide include silanol by hydrolysis. Examples include groups capable of generating a group.

また、表面改質剤は、加水分解によりシラノール基を生成することが可能な基がスペーサーを介して、一般式(1)で表される基に結合されていることが好ましい。スペーサーとしては、特に限定されないが、メチレン基、オキシエチレン基、アミノ基を1個以上有するアルキレン基等が挙げられる。   In the surface modifier, it is preferable that a group capable of generating a silanol group by hydrolysis is bonded to a group represented by the general formula (1) via a spacer. The spacer is not particularly limited, and examples thereof include an alkylene group having at least one methylene group, oxyethylene group, and amino group.

加水分解によりシラノール基を生成することが可能な基としては、ヒドロシリル基、アルコキシシリル基、ハロシリル基、アシルオキシシリル基、アミノシリル基等が挙げられるが、安定性、反応性等の点から、炭素数が1〜6のアルコキシシリル基又はヒドロシリル基が好ましい。   Examples of the group capable of generating a silanol group by hydrolysis include a hydrosilyl group, an alkoxysilyl group, a halosilyl group, an acyloxysilyl group, and an aminosilyl group. From the viewpoint of stability, reactivity, etc., the number of carbon atoms. Is preferably an alkoxysilyl group or a hydrosilyl group of 1 to 6.

表面改質剤としては、加水分解によりシラノール基を生成することが可能な基と、一般式(1)で表される基を有していれば、特に限定されないが、特開2006−11380号公報に開示されている化合物が挙げられる。   The surface modifier is not particularly limited as long as it has a group capable of generating a silanol group by hydrolysis and a group represented by the general formula (1). The compound currently disclosed by the gazette is mentioned.

次に、加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器に、一般式(1)で表される基を導入する方法について説明する。   Next, in a container having a group capable of generating a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a hydroxyl group derived from a metal oxide in the vicinity of the surface, a general formula ( A method for introducing the group represented by 1) will be described.

まず、加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器に、表面改質剤を含む塗布液を塗布する。このとき、加水分解によりシラノール基を生成することが可能な基が加水分解され、シラノール基が生成する。さらに、容器の表面近傍に存在するシラノール基、半金属酸化物の加水分解により生成したヒドロキシル基及び/又は金属酸化物の加水分解により生成したヒドロキシル基と、表面改質剤の加水分解により生成したシラノール基の脱水縮合により、容器の表面が改質される。具体的には、容器に塗布液を塗布した後に、水、酸又はアルカリを塗布したり、加熱したりする。また、水、酸又はアルカリを容器に塗布した後に、塗布液を塗布してもよい。さらに、塗布液に、水、酸又はアルカリを混合してもよい。この場合、塗布液中で加水分解が起こるため、塗布時に塗布液を適宜調製することが好ましい。なお、水、酸又はアルカリを用いる場合は、加熱してもよいが、通常、室温で十分反応が進行する。また、水、酸又はアルカリを用いなくても、大気中の水分により緩やかに反応が進行する。   First, a surface modifier in a container in which a group capable of generating a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a hydroxyl group derived from a metal oxide exists in the vicinity of the surface A coating solution containing is applied. At this time, a group capable of generating a silanol group by hydrolysis is hydrolyzed to generate a silanol group. In addition, silanol groups present near the surface of the container, hydroxyl groups generated by hydrolysis of metalloid oxides and / or hydroxyl groups generated by hydrolysis of metal oxides, and generated by hydrolysis of surface modifiers. The surface of the container is modified by dehydration condensation of silanol groups. Specifically, after applying the coating solution to the container, water, acid or alkali is applied or heated. Moreover, after applying water, an acid, or an alkali to a container, you may apply | coat a coating liquid. Furthermore, you may mix water, an acid, or an alkali with a coating liquid. In this case, since hydrolysis occurs in the coating solution, it is preferable to appropriately prepare the coating solution at the time of coating. In addition, when using water, an acid, or an alkali, although you may heat, reaction progresses normally normally at room temperature. Moreover, even if water, an acid or an alkali is not used, the reaction proceeds slowly due to moisture in the atmosphere.

酸又はアルカリとしては、加水分解によりシラノール基を生成することが可能な基を加水分解させることが可能であれば、特に限定されず、二種以上併用してもよい。なお、加水分解に用いられる酸又はアルカリは、水溶液として用いてもよい。   The acid or alkali is not particularly limited as long as a group capable of generating a silanol group by hydrolysis can be hydrolyzed, and two or more kinds may be used in combination. The acid or alkali used for hydrolysis may be used as an aqueous solution.

塗布液としては、有機溶媒中に、表面改質剤を溶解又は分散させたものを用いることができる。有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、塩素化炭化水素、エーテル、炭素数が1〜4の1〜4価の脂肪族アルコール等のアルコール、エチルセロソルブ、ブチルセロソルブ等のセロソルブ、ジオキサン、酢酸メチル、ジホルムアミド等が挙げられる。   As the coating solution, a solution obtained by dissolving or dispersing a surface modifier in an organic solvent can be used. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, ethers, alcohols such as 1 to 4 carbon atoms having 1 to 4 carbon atoms, cellosolves such as ethyl cellosolve and butyl cellosolve, and dioxane. , Methyl acetate, diformamide and the like.

塗布液中の表面改質剤の含有量は、通常、0.1〜30質量%であり、1〜10質量%が好ましい。塗布液中の表面改質剤の含有量が0.1質量%未満であると、1回の塗布で第一の表面改質剤を十分に塗布できないことがあり、30質量%を超えると、塗布性が低下することがある。   Content of the surface modifier in a coating liquid is 0.1-30 mass% normally, and 1-10 mass% is preferable. If the content of the surface modifier in the coating solution is less than 0.1% by mass, the first surface modifier may not be sufficiently applied in one application, and if it exceeds 30% by mass, The applicability may decrease.

塗布液を塗布する方法としては、特に限定されないが、浸漬塗布法、スプレー塗布法、スピンキャスト法等が挙げられる。   A method for applying the coating solution is not particularly limited, and examples thereof include a dip coating method, a spray coating method, and a spin casting method.

なお、加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器に、一般式(1)で表される基を導入する方法として、特開2011−236345号公報に開示されている方法を用いてもよい。   In a container in which a group capable of generating a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a hydroxyl group derived from a metal oxide is present in the vicinity of the surface, the general formula (1 The method disclosed in JP 2011-236345 A may be used as a method for introducing a group represented by:

培養容器Dは、カルボキシル基(又はアミノ基)が表面近傍に存在する容器に、アミノ基(又はカルボキシル基)と、一般式(1)で表される基を有する表面改質剤を反応させることにより製造してもよい。このとき、表面改質剤は、分子量が225〜650である。   In the culture vessel D, a surface modifying agent having a group represented by the general formula (1) is reacted with an amino group (or carboxyl group) in a vessel having a carboxyl group (or amino group) in the vicinity of the surface. You may manufacture by. At this time, the surface modifier has a molecular weight of 225 to 650.

容器の表面近傍にアミノ基を導入する方法としては、特に限定されないが、窒素プラズマ処理、アンモニアプラズマ処理、表面処理剤を反応させる方法、シリコーン気相処理等が挙げられる。   A method for introducing an amino group in the vicinity of the surface of the container is not particularly limited, and examples thereof include nitrogen plasma treatment, ammonia plasma treatment, a method of reacting a surface treatment agent, and a silicone gas phase treatment.

窒素プラズマ処理では、窒素ガス雰囲気下、低温プラズマを発生させることにより、容器の表面近傍にアミノ基を導入する(例えば、Surface and Coatings Technology 116−119(1999)802−807,Colloids and Surfaces A:Physicochem.Eng.Aspects 195(2001)81−95,Macromol.Chem.Phys.200.989−996(1999)参照)。具体的には、容器を反応容器内に収容し、反応容器内を真空ポンプで真空にした後、窒素ガスを導入し、グロー放電を行う。   In the nitrogen plasma treatment, an amino group is introduced in the vicinity of the surface of the container by generating a low temperature plasma in a nitrogen gas atmosphere (for example, Surface and Coatings Technology 116-119 (1999) 802-807, Colloids and Surfaces A: Physicochem. Eng. Aspects 195 (2001) 81-95, Macromol. Chem. Phys. 200.989-996 (1999)). Specifically, the container is accommodated in a reaction container, and after the inside of the reaction container is evacuated with a vacuum pump, nitrogen gas is introduced and glow discharge is performed.

アンモニアプラズマ処理では、アンモニアガス雰囲気下、低温プラズマを発生させることにより、容器の表面近傍にアミノ基を導入する。具体的には、容器を反応容器内に収容し、反応容器内を真空ポンプで真空にした後、アンモニアガスを導入し、グロー放電を行う。   In the ammonia plasma treatment, an amino group is introduced in the vicinity of the surface of the container by generating low temperature plasma in an ammonia gas atmosphere. Specifically, the container is accommodated in a reaction container, and after the inside of the reaction container is evacuated with a vacuum pump, ammonia gas is introduced and glow discharge is performed.

容器を構成する材料としては、特に限定されないが、ポリ塩化ビニル、アクリル樹脂、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、シクロオレフィン樹脂、ポリカーボネート、ガラス等が挙げられる。   Although it does not specifically limit as a material which comprises a container, Polyvinyl chloride, an acrylic resin, a polystyrene, a polypropylene, polyethylene, polyester, a cycloolefin resin, a polycarbonate, glass etc. are mentioned.

表面処理剤を反応させる方法では、アミノ基を有するアルコキシシラン、クロロシラン、シラザン等の表面処理剤を用いて、アルコキシシリル基等の加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器の表面近傍にアミノ基を導入する。具体的には、まず、容器内に水/2−プロパノール混合液を仕込み、3−アミノプロピルトリメトキシシランを添加した後、100℃に加熱し、6時間反応させる。次に、室温に冷却した後、メタノールで洗浄し、乾燥する。   In the method of reacting the surface treatment agent, a group capable of generating a silanol group by hydrolysis of an alkoxysilyl group or the like using a surface treatment agent such as alkoxysilane having an amino group, chlorosilane, or silazane, silanol group, An amino group is introduced in the vicinity of the surface of the container in which the hydroxyl group derived from the metalloid oxide and / or the hydroxyl group derived from the metal oxide exists in the vicinity of the surface. Specifically, first, a water / 2-propanol mixed solution is charged into a container, and 3-aminopropyltrimethoxysilane is added, and then heated to 100 ° C. and reacted for 6 hours. Next, after cooling to room temperature, it is washed with methanol and dried.

容器を構成する材料としては、特に限定されないが、メタクリル酸3−トリメトキシシリルプロピル−メタクリル酸メチル−ジビニルベンゼン共重合体、ポリ塩化ビニル、アクリル樹脂、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、シクロオレフィン樹脂、ポリカーボネート、シリカ、ガラス、アルミナ、タルク、クレー、マイカ、アスベスト、酸化チタン、亜鉛華、酸化鉄等が挙げられる。   The material constituting the container is not particularly limited, but 3-trimethoxysilylpropyl methacrylate-methyl methacrylate-divinylbenzene copolymer, polyvinyl chloride, acrylic resin, polystyrene, polypropylene, polyethylene, polyester, cycloolefin resin. , Polycarbonate, silica, glass, alumina, talc, clay, mica, asbestos, titanium oxide, zinc white, iron oxide and the like.

シリコーン気相処理では、1,3,5,7−テトラメチルシクロテトラシロキサンを用いて、容器の表面近傍にヒドロシリル基を導入した後、アミノ基を有するアルケンを反応させることにより、容器の表面近傍にアミノ基を導入する(例えば、特公平1−54379号公報、特公平1−54380号公報、特公平1−54381号公報参照)。具体的には、まず、1,3,5,7−テトラメチルシクロテトラシロキサンと、容器をデシケーター中に入れ、アスピレーターで脱気する。次に、80℃で16時間反応させた後、容器を取り出し、120℃で乾燥させる。さらに、得られた容器をエタノール中に浸し、アリルアミンを添加した後、塩化白金酸のエタノール溶液を添加し、60℃で2時間攪拌する。反応が終了した後、エタノールで洗浄し、減圧乾燥する。   In the silicone gas phase treatment, 1,3,5,7-tetramethylcyclotetrasiloxane is used to introduce a hydrosilyl group in the vicinity of the surface of the container, and then react with an alkene having an amino group, thereby making the vicinity of the surface of the container (See, for example, Japanese Patent Publication No. 1-54379, Japanese Patent Publication No. 1-54380, Japanese Patent Publication No. 1-54381). Specifically, first, 1,3,5,7-tetramethylcyclotetrasiloxane and a container are placed in a desiccator and deaerated with an aspirator. Next, after making it react at 80 degreeC for 16 hours, a container is taken out and it is made to dry at 120 degreeC. Further, the obtained container is immersed in ethanol, allylamine is added, and then an ethanol solution of chloroplatinic acid is added and stirred at 60 ° C. for 2 hours. After the reaction is completed, it is washed with ethanol and dried under reduced pressure.

容器を構成する材料としては、特に限定されないが、スチレン−ジビニルベンゼン共重合体、ポリ塩化ビニル、アクリル樹脂、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、シクロオレフィン樹脂、ポリカーボネート、マイカ、タルク、カオリン、アルミナ、酸化チタン、酸化亜鉛、酸化鉄等が挙げられる。   The material constituting the container is not particularly limited, but styrene-divinylbenzene copolymer, polyvinyl chloride, acrylic resin, polystyrene, polypropylene, polyethylene, polyester, cycloolefin resin, polycarbonate, mica, talc, kaolin, alumina, Examples include titanium oxide, zinc oxide, and iron oxide.

アミノ基を有するアルケンとしては、アリルアミンに限定されず、ビニル基を有するアミン、アクリル基を有するアミン等であればよい。また、アミノ基は、ブトキシカルボニル基、ベンジルオキシカルボニル基等により保護されていてもよい。さらに、アミノ基を有するアルケンの代わりに、エポキシ基等の、例えば、ジアミンとの反応により、アミノ基を導入することが可能な基を有するアルケンを用いてもよい。   The alkene having an amino group is not limited to allylamine, and may be an amine having a vinyl group, an amine having an acrylic group, or the like. The amino group may be protected with a butoxycarbonyl group, a benzyloxycarbonyl group, or the like. Furthermore, instead of an alkene having an amino group, an alkene having a group capable of introducing an amino group by reaction with, for example, a diamine such as an epoxy group may be used.

容器の表面近傍にカルボキシル基を導入する方法としては、特に限定されないが、表面処理剤を反応させる方法、シリコーン気相処理等が挙げられる。   The method for introducing a carboxyl group in the vicinity of the surface of the container is not particularly limited, and examples thereof include a method of reacting a surface treatment agent and a silicone gas phase treatment.

表面処理剤を反応させる方法では、カルボキシル基を有するアルコキシシラン、クロロシラン、シラザン等の表面処理剤を用いて、アルコキシシリル基等の加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器の表面近傍にカルボキシル基を導入する。具体的には、まず、トリエトキシシリルプロピル無水コハク酸をN,N−ジメチルホルムアミドに溶解させ、蒸留水と4−ジメチルアミノピリジンを添加し、16時間室温で撹拌し、カルボンキシル基を有するシランカップリング剤を合成する。次に、容器に水/2−プロパノール混合液を仕込み、カルボキシル基を有するシランカップリング剤を添加した後、100℃に加熱し、6時間反応させる。さらに、室温に冷却した後、メタノールで洗浄し、乾燥する。   In the method of reacting the surface treatment agent, a group capable of generating a silanol group by hydrolysis of an alkoxysilyl group or the like using a surface treatment agent such as an alkoxysilane having a carboxyl group, chlorosilane, or silazane, a silanol group, A carboxyl group is introduced in the vicinity of the surface of the container in which the hydroxyl group derived from the semimetal oxide and / or the hydroxyl group derived from the metal oxide exists in the vicinity of the surface. Specifically, first, triethoxysilylpropyl succinic anhydride is dissolved in N, N-dimethylformamide, distilled water and 4-dimethylaminopyridine are added, the mixture is stirred at room temperature for 16 hours, and a silane having a carboxyxyl group. A coupling agent is synthesized. Next, a water / 2-propanol mixed solution is charged in a container, and after adding a silane coupling agent having a carboxyl group, the mixture is heated to 100 ° C. and reacted for 6 hours. Further, after cooling to room temperature, it is washed with methanol and dried.

容器を構成する材料としては、特に限定されないが、メタクリル酸3−トリメトキシシリルプロピル−メタクリル酸メチル−ジビニルベンゼン共重合体、シリカ、ガラス、アルミナ、タルク、クレー、マイカ、アスベスト、酸化チタン、亜鉛華、酸化鉄等が挙げられる。   The material constituting the container is not particularly limited, but 3-trimethoxysilylpropyl methacrylate-methyl methacrylate-divinylbenzene copolymer, silica, glass, alumina, talc, clay, mica, asbestos, titanium oxide, zinc Examples include flower and iron oxide.

シリコーン気相処理では、1,3,5,7−テトラメチルシクロテトラシロキサンを用いて、容器の表面近傍にヒドロシリル基を導入した後、カルボキシル基を有するアルケンを反応させることにより、容器の表面近傍にカルボキシル基を導入する(例えば、特公平1−54379号公報、特公平1−54380号公報、特公平1−54381号公報参照)。具体的には、まず、1,3,5,7−テトラメチルシクロテトラシロキサンを入れた容器をデシケーター中に入れ、アスピレーターで脱気する。次に、80℃で16時間反応させた後、容器を取り出し、120℃で乾燥させる。さらに、得られた容器をエタノール中に浸し、アリルカルボン酸を添加した後、塩化白金酸のエタノール溶液を添加し、60℃で2時間攪拌する。反応が終了した後、エタノールで洗浄し、減圧乾燥する。   In the silicone gas phase treatment, 1,3,5,7-tetramethylcyclotetrasiloxane is used to introduce a hydrosilyl group in the vicinity of the surface of the container, and then react with an alkene having a carboxyl group, thereby making the vicinity of the surface of the container (See, for example, Japanese Patent Publication No. 1-54379, Japanese Patent Publication No. 1-54380, Japanese Patent Publication No. 1-54381). Specifically, first, a container containing 1,3,5,7-tetramethylcyclotetrasiloxane is placed in a desiccator and deaerated with an aspirator. Next, after making it react at 80 degreeC for 16 hours, a container is taken out and it is made to dry at 120 degreeC. Further, the obtained container is immersed in ethanol, allylcarboxylic acid is added, an ethanol solution of chloroplatinic acid is added, and the mixture is stirred at 60 ° C. for 2 hours. After the reaction is completed, it is washed with ethanol and dried under reduced pressure.

容器を構成する材料としては、特に限定されないが、スチレン−ジビニルベンゼン共重合体、マイカ、タルク、カオリン、アルミナ、酸化チタン、酸化亜鉛、酸化鉄等が挙げられる。   The material constituting the container is not particularly limited, and examples thereof include styrene-divinylbenzene copolymer, mica, talc, kaolin, alumina, titanium oxide, zinc oxide, and iron oxide.

カルボキシル基を有するアルケンとしては、アリルカルボン酸に限定されず、ビニル基を有するカルボン酸、アクリル基を有するカルボン酸等であればよい。   The alkene having a carboxyl group is not limited to allyl carboxylic acid, and may be any carboxylic acid having a vinyl group, carboxylic acid having an acrylic group, or the like.

また、表面改質剤は、アミノ基(又はカルボキシル基)がスペーサーを介して、一般式(1)で表される基に結合されていることが好ましい。スペーサーとしては、特に限定されないが、メチレン基、オキシエチレン基、アミノ基を1個以上有するアルキレン基等が挙げられる。   In the surface modifier, the amino group (or carboxyl group) is preferably bonded to the group represented by the general formula (1) via a spacer. The spacer is not particularly limited, and examples thereof include an alkylene group having at least one methylene group, oxyethylene group, and amino group.

次に、アミノ基と、一般式(1)で表される基を有する表面改質剤について説明する。   Next, the surface modifier having an amino group and a group represented by the general formula (1) will be described.

アミノ基と、一般式(1)で表される基を有する表面改質剤としては、特に限定されないが、特開2006−7203号公報、特開2006−7204号公報、特開2008−174491号公報に開示されている化合物等が挙げられる。   Although it does not specifically limit as a surface modifier which has an amino group and group represented by General formula (1), Unexamined-Japanese-Patent No. 2006-7203, Unexamined-Japanese-Patent No. 2006-7204, Unexamined-Japanese-Patent No. 2008-174491 The compound etc. which are indicated by the gazette are mentioned.

容器の表面近傍に存在するカルボキシル基と、表面改質剤が有するアミノ基は、一般的な反応により縮合させると、アミド結合を形成する。具体的には、容器にN−ヒドロキシスクシンイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドの溶液を仕込み、容器の表面近傍に存在するカルボキシル基を活性エステル化させた後、表面改質剤を容器に仕込む。   When the carboxyl group present in the vicinity of the surface of the container and the amino group of the surface modifier are condensed by a general reaction, an amide bond is formed. Specifically, a solution of N-hydroxysuccinimide and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide is charged into a container, and carboxyl groups existing in the vicinity of the surface of the container are activated to esterify, and then surface modification is performed. Charge the material into the container.

次に、カルボキシル基と、一般式(1)で表される基を有する表面改質剤について説明する。   Next, the surface modifier having a carboxyl group and a group represented by the general formula (1) will be described.

カルボキシル基と、一般式(1)で表される基を有する表面改質剤としては、特に限定されないが、特開2006−11381号公報に開示されている化合物等が挙げられる。   Although it does not specifically limit as a surface modifier which has a carboxyl group and group represented by General formula (1), The compound etc. which are disclosed by Unexamined-Japanese-Patent No. 2006-11381 are mentioned.

容器の表面近傍に存在するアミノ基と、表面改質剤が有するカルボキシル基は、一般的な反応によりを縮合させると、アミド結合を形成する。具体的には、N−ヒドロキシスクシンイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドの溶液を用いて、カルボキシル基を活性エステル化させた表面改質剤を容器に仕込む。   The amino group present in the vicinity of the surface of the container and the carboxyl group possessed by the surface modifier form an amide bond when condensed by a general reaction. Specifically, using a solution of N-hydroxysuccinimide and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, a surface modifier having an active esterified carboxyl group is charged into a container.

[培養容器の作製]
化学式
[Production of culture vessel]
Chemical formula

で表される化合物0.6g、オルトケイ酸テトラエチル0.4mL、1M塩酸1mL及びメタノール10mLを混合させた液を、ガラス基板に浸漬塗布した後、室温で1時間乾燥させた。次に、水洗した後、乾燥し、ホスホリルコリン基が表面近傍に存在するガラス基板を得た。 A solution prepared by mixing 0.6 g of the compound represented by the formula: 0.4 mL of tetraethyl orthosilicate, 1 mL of 1M hydrochloric acid and 10 mL of methanol was dip-coated on a glass substrate, and then dried at room temperature for 1 hour. Next, after washing with water, drying was performed to obtain a glass substrate having phosphorylcholine groups in the vicinity of the surface.

ホスホリルコリン基が表面近傍に存在するガラス基板上に、シリコーン樹脂製の枠を取り付け、底面の面積が1cmの培養容器を得た。 A frame made of silicone resin was attached on a glass substrate having phosphorylcholine groups in the vicinity of the surface to obtain a culture vessel having a bottom area of 1 cm 2 .

[実施例1]
D−MEM/F12培地(Invitrogen社製)に、N−2添加物(Invitrogen社製)を1質量%、上皮細胞増殖因子Human recombinant EGF(PeproTech社製)を20ng/mL、繊維芽細胞増殖因子Human recombinant bFGF(PeproTech社製)を20ng/mL、Antibiotic−Antimycotic(Penicillin−Streptomycin−Amphotericin B mixture)(Invitrogen社製)を1質量%添加し、培地を作製した。
[Example 1]
D-MEM / F12 medium (manufactured by Invitrogen), 1% by mass of N-2 additive (manufactured by Invitrogen), epidermal growth factor Human recombinant EGF (manufactured by PeproTech), 20 ng / mL, fibroblast growth factor Human recombinant bFGF (manufactured by PeproTech) at 20 ng / mL, Antibiotic-Antimycotic (Penicillin-Streptincin-Amphotericin B mix) (manufactured by Invitrogen), and 1% by mass.

細胞密度が2×10個/mLとなるように、マウス由来の神経幹細胞を分散させた培地0.5mLを培養容器に導入し、神経幹細胞を播種した後、気温を37℃、炭酸ガスの濃度を5%、湿度を100%に保持したインキュベータに培養容器を移動させ、神経幹細胞を浮遊培養した。その結果、神経幹細胞が増殖すると共に、遊走し、神経幹細胞を播種してから約60時間後に、細胞凝集塊が形成された(図2参照)。なお、図2(a)、(b)、(c)及び(d)は、それぞれ神経幹細胞を播種してからの経過時間が0時間、24時間、48時間及び72時間である場合である。 After introducing 0.5 mL of a medium in which mouse-derived neural stem cells are dispersed so that the cell density becomes 2 × 10 4 cells / mL into a culture vessel and seeding the neural stem cells, the temperature is 37 ° C., carbon dioxide gas The culture vessel was moved to an incubator maintained at a concentration of 5% and humidity of 100%, and neural stem cells were cultured in suspension. As a result, neural stem cells proliferated, migrated, and a cell aggregate was formed about 60 hours after seeding the neural stem cells (see FIG. 2). 2 (a), (b), (c), and (d) are cases where the elapsed time after seeding the neural stem cells is 0 hours, 24 hours, 48 hours, and 72 hours, respectively.

神経幹細胞を播種してから72時間後に、濃度が10質量%となるように、ウシ胎児血清(HyClone社製)を培地に添加した。その結果、ウシ胎児血清を添加してから約6時間後から、ホスホリルコリン基が表面近傍に存在するガラス基板に細胞凝集塊が接着し始めた。また、ウシ胎児血清を添加してから約12時間後に、細胞凝集塊を構成する神経幹細胞が神経細胞又はグリア細胞に分化し、扁平化して繊維状の突起を伸展させた。さらに、ウシ胎児血清を添加してから約24時間後に、多数の神経細胞及びグリア細胞が複雑なネットワークを形成した(図3参照)。なお、図3(a)、(b)及び(c)は、それぞれウシ胎児血清を添加してからの経過時間が0時間、24時間及び48時間である場合である。   Fetal bovine serum (manufactured by HyClone) was added to the medium so that the concentration became 10% by mass 72 hours after seeding the neural stem cells. As a result, about 6 hours after the addition of fetal bovine serum, cell aggregates began to adhere to the glass substrate on which phosphorylcholine groups were present in the vicinity of the surface. Further, about 12 hours after the addition of fetal bovine serum, the neural stem cells constituting the cell aggregates differentiated into nerve cells or glial cells, and flattened to extend the fibrous processes. Furthermore, about 24 hours after adding fetal bovine serum, a large number of neurons and glial cells formed a complex network (see FIG. 3). 3 (a), (b) and (c) are cases where the elapsed time after adding fetal bovine serum is 0 hours, 24 hours and 48 hours, respectively.

C 神経幹細胞
C’ 細胞凝集塊
D 培養容器
M 培地
C Neural stem cell C 'cell aggregate D Culture vessel M Medium

Claims (2)

神経幹細胞から神経細胞及び/又はグリア細胞を形成する培養方法であって、
培養容器を用いて、増殖因子を含む培地中で神経幹細胞を浮遊培養して細胞凝集塊を形成する工程と、
該培地に分化誘導因子を添加して該細胞凝集塊を該培養容器に接着させて該神経幹細胞を分化させる工程を有し、
前記培養容器は、一般式
(式中、R、R及びRは、それぞれ独立に、炭素数が1以上6以下のアルキル基であり、mは、2以上6以下の整数である。)
で表される基が表面近傍に存在することを特徴とする培養方法。
A culture method for forming neural cells and / or glial cells from neural stem cells,
Using a culture vessel to form a cell aggregate by suspension culture of neural stem cells in a medium containing a growth factor;
Adding a differentiation-inducing factor to the medium, and allowing the cell aggregate to adhere to the culture vessel to differentiate the neural stem cells;
The culture vessel has a general formula
(In the formula, R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, and m is an integer of 2 to 6)
The culture | cultivation method characterized by the group represented by these existing in the surface vicinity.
前記培養容器は、加水分解によりシラノール基を生成することが可能な基、シラノール基、半金属酸化物由来のヒドロキシル基及び/又は金属酸化物由来のヒドロキシル基が表面近傍に存在する容器に、加水分解によりシラノール基を生成することが可能な基と、前記一般式(1)で表される基を有し、分子量が315以上650以下である化合物を反応させることにより製造されていることを特徴とする請求項1に記載の培養方法。   In the culture vessel, a group capable of generating a silanol group by hydrolysis, a silanol group, a hydroxyl group derived from a semi-metal oxide and / or a hydroxyl group derived from a metal oxide is added to a vessel in the vicinity of the surface. It is produced by reacting a compound having a group capable of generating a silanol group by decomposition and a group represented by the general formula (1) and having a molecular weight of 315 or more and 650 or less. The culture method according to claim 1.
JP2011288860A 2011-12-28 2011-12-28 Culture method for forming nerve cell and/or glial cell from neural stem cell Pending JP2013135640A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011288860A JP2013135640A (en) 2011-12-28 2011-12-28 Culture method for forming nerve cell and/or glial cell from neural stem cell
PCT/JP2012/080790 WO2013099506A1 (en) 2011-12-28 2012-11-28 Culture method for forming nerve cells and/or glial cells from neural stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288860A JP2013135640A (en) 2011-12-28 2011-12-28 Culture method for forming nerve cell and/or glial cell from neural stem cell

Publications (1)

Publication Number Publication Date
JP2013135640A true JP2013135640A (en) 2013-07-11

Family

ID=48697004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288860A Pending JP2013135640A (en) 2011-12-28 2011-12-28 Culture method for forming nerve cell and/or glial cell from neural stem cell

Country Status (2)

Country Link
JP (1) JP2013135640A (en)
WO (1) WO2013099506A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004028768D1 (en) * 2003-06-11 2010-09-30 Japan Science & Tech Agency A method for producing retinal neurocytes from neutral stem cells from the iris tissue and retinal neurocyte produced in the method
US10227563B2 (en) * 2008-06-06 2019-03-12 Riken Method for culture of stem cell
JP4719824B2 (en) * 2009-06-15 2011-07-06 株式会社 資生堂 Cell aggregate formation container and cell aggregate formation method

Also Published As

Publication number Publication date
WO2013099506A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
RU2495059C2 (en) Method for controlled hydrolysis and condensation of organosilanes containing epoxy functional groups, as well as co-condensation thereof with other alkoxy silanes with organic functional groups
CN104072781B (en) SiH in a kind of molecular structure2and SiH1the controlled Perhydropolysilazane of ratio and hydrophobic transparent high hardness spray coating prepared therefrom and synthetic method thereof
JP4719824B2 (en) Cell aggregate formation container and cell aggregate formation method
JP5276024B2 (en) Organic thin film forming solution and method for producing the same
Wassel et al. Nanocomposite films of laponite/PEG-grafted polymers and polymer brushes with nonfouling properties
JP5095855B2 (en) Method for forming cell aggregate
TW201335243A (en) Acid anhydride group-containing organosiloxane and manufacturing method thereof
KR20110137292A (en) Surface-modified base plate, biochip and process for producing the biochip
JP2013135640A (en) Culture method for forming nerve cell and/or glial cell from neural stem cell
CN117247536A (en) Perfluoropolyether aminosilane compound, composition, preparation method and application thereof
EP2570466A1 (en) Surface modification method and surface-modified material
CN108299637A (en) A kind of Perfluoropolyether silanes compound and the preparation method and application thereof
WO2005033296A1 (en) Methods of surface modification to enhance cell adhesion
US11130941B2 (en) Method of fabricating substrate for culturing stem cell
CN116003865B (en) Flexible aldehyde base sheet, preparation method and biochip
JP3228658B2 (en) Surface treatment method
JPH0959384A (en) Organopolysiloxane fine particle, its production and liquid crystal display unit
WO2017031682A1 (en) Surface-modified glass sheet, preparation method therefor, and application thereof
CN115926622B (en) High-surface-hardness, wear-resistant and super-soft hydrophobic coating taking silicon-doped carbonized polymer dots as construction elements and preparation method thereof
CN108239193A (en) A kind of Perfluoropolyether silanes dendrimer and preparation method thereof and include its film
EP3484906A1 (en) Surface-modified polymers
WO2018031043A1 (en) Surface-modified polymers
JPWO2018181760A1 (en) Cell culture substrate, method for producing the same, and cell culture method