JP2013135479A - Threshold voltage decision method for detection circuit, overvoltage detection circuit, and battery pack - Google Patents

Threshold voltage decision method for detection circuit, overvoltage detection circuit, and battery pack Download PDF

Info

Publication number
JP2013135479A
JP2013135479A JP2011282535A JP2011282535A JP2013135479A JP 2013135479 A JP2013135479 A JP 2013135479A JP 2011282535 A JP2011282535 A JP 2011282535A JP 2011282535 A JP2011282535 A JP 2011282535A JP 2013135479 A JP2013135479 A JP 2013135479A
Authority
JP
Japan
Prior art keywords
voltage
detection circuit
secondary battery
secondary batteries
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282535A
Other languages
Japanese (ja)
Other versions
JP5933971B2 (en
Inventor
Ryosuke Yamamoto
亮介 山本
Masayuki Kobayashi
雅幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011282535A priority Critical patent/JP5933971B2/en
Publication of JP2013135479A publication Critical patent/JP2013135479A/en
Application granted granted Critical
Publication of JP5933971B2 publication Critical patent/JP5933971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a threshold voltage decision method for a detection circuit, an overvoltage detection circuit, and a battery pack which can reduce the power consumption of the detection circuit before secondary batteries fall to an overdischarged state.SOLUTION: While a difference between an open voltage of the secondary battery that has the highest voltage, indicated by a full line, of three secondary batteries connected in series and a voltage of 1.3 V at an upper limit of an overdischarged state of the secondary batteries (that is, a boundary voltage to a deep discharge region) is surely greater than a voltage difference between the highest and lowest open voltages of the secondary batteries (that is, a vertical difference between characteristic curves indicated by full and broken lines), when the voltage of the secondary battery that has the highest voltage becomes equal to or lower than a shutdown threshold voltage (3.1 V-3.9 V) lower than an overvoltage detection voltage of 4.35 V, a protection IC (detection circuit) shuts down to reduce power consumption.

Description

本発明は、複数直列に接続された二次電池の夫々が過電圧状態に有ることを検出し、予め決定された閾値電圧にて省電力状態となる検出回路の閾値電圧決定方法、過電圧検出回路及び該過電圧検出回路を備えるパック電池に関する。   The present invention detects a threshold voltage determination method for a detection circuit that detects that each of a plurality of secondary batteries connected in series is in an overvoltage state and enters a power saving state at a predetermined threshold voltage, an overvoltage detection circuit, and The present invention relates to a battery pack provided with the overvoltage detection circuit.

従来、リチウムイオン電池に代表される二次電池の充電では、所定電流にて定電流充電し、端子電圧(以下、電池電圧又はセル電圧という)が、二次電池に許容される最大電圧より低く設定された所定電圧に達した後は、定電圧充電にて充電する、いわゆる定電流・定電圧充電方式が広く用いられる。電池電圧が最大電圧を超えた場合は、電池の寿命及び充放電容量を損ねることとなり、発火に至る虞もあるため、充電中は電池電圧が最大電圧を超えないように制御される。   Conventionally, in the charging of a secondary battery represented by a lithium ion battery, constant current charging is performed at a predetermined current, and the terminal voltage (hereinafter referred to as battery voltage or cell voltage) is lower than the maximum voltage allowed for the secondary battery. A so-called constant current / constant voltage charging method in which charging is performed by constant voltage charging after reaching a set predetermined voltage is widely used. When the battery voltage exceeds the maximum voltage, the life and charge / discharge capacity of the battery are impaired, and there is a risk of ignition. Therefore, the battery voltage is controlled not to exceed the maximum voltage during charging.

ところで、二次電池(セル)を2個以上直列に接続した組電池を備えるパック電池を充電する場合、セル電圧のバランスが崩れたときに、セル電圧が充電電圧の「1/直列接続されたセル数」の電圧を超えることが普通に起こり得る。また、本体側の充電器の故障により過電圧が印加される可能性もある。このため、上記のような組電池を備えるパック電池では、確実を期すために、ハードウェアによる過電圧検出回路とソフトウェアにより制御される制御回路とで二重に過電圧が検出されることが多い(特許文献1参照)。容量が小さなパック電池では、過電圧検出回路だけで過電圧が検出されることもある。   By the way, when charging a battery pack including an assembled battery in which two or more secondary batteries (cells) are connected in series, when the cell voltage balance is lost, the cell voltage is “1 / series connected to the charging voltage. It can normally occur that the voltage of the “number of cells” is exceeded. In addition, an overvoltage may be applied due to a failure of the charger on the main body side. For this reason, in the battery pack including the assembled battery as described above, an overvoltage is often detected twice by a hardware overvoltage detection circuit and a control circuit controlled by software in order to ensure certainty (patents). Reference 1). In a battery pack having a small capacity, an overvoltage may be detected only by an overvoltage detection circuit.

制御回路は、各セルのセル電圧を監視しており、何れかのセルが放電終止電圧まで低下した場合、過放電を防止するために、組電池の充放電路に介装された放電用のスイッチをオフさせる。この場合にも、過電圧検出回路が各セルに接続されていることから、セル電圧が僅かながら低下し続けるため、一部のセルが過放電状態に陥って、負極から溶出した銅イオンが電池内部で析出したり、セル内部で発生したガスによってパック電池の容器が膨れ上がったりする虞がある。   The control circuit monitors the cell voltage of each cell, and when any cell drops to the discharge end voltage, in order to prevent overdischarge, a discharge circuit interposed in the charging / discharging path of the assembled battery is used. Turn off the switch. Also in this case, since the overvoltage detection circuit is connected to each cell, the cell voltage continues to decrease slightly, so that some cells fall into an overdischarged state, and copper ions eluted from the negative electrode are inside the battery. There is a risk that the container of the battery pack may swell up due to gas deposited in the cell or gas generated inside the cell.

これに対し、過電圧検出回路の中には、セル電圧が所定の閾値電圧(パワーダウンの閾値電圧)まで低下したことを検出した場合に、自身をパワーダウンさせて消費電流を低減するものがある。このような過電圧検出回路を用いることにより、各セルの更なる電圧低下が防止される。   On the other hand, in some overvoltage detection circuits, when it is detected that the cell voltage has dropped to a predetermined threshold voltage (power-down threshold voltage), the overvoltage detection circuit powers itself down to reduce current consumption. . By using such an overvoltage detection circuit, further voltage drop of each cell is prevented.

特開2004−127532号公報JP 2004-127532 A

しかしながら、パワーダウンが可能な過電圧検出回路は、検出対象の全てのセルのセル電圧がパワーダウンの閾値電圧を下回った場合にのみパワーダウンするため、セルの電圧バランスが崩れている場合、セル電圧が低いセルが過放電状態に陥る可能性があった。   However, an overvoltage detection circuit capable of powering down powers down only when the cell voltage of all cells to be detected falls below the power-down threshold voltage. There is a possibility that a cell having a low value falls into an overdischarge state.

本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、二次電池が過放電状態に陥る前に検出回路の消費電力を低減することが可能な検出回路の閾値電圧決定方法、過電圧検出回路及び該過電圧検出回路を備えるパック電池を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to detect the threshold voltage of the detection circuit that can reduce the power consumption of the detection circuit before the secondary battery falls into an overdischarged state. A determination method, an overvoltage detection circuit, and a battery pack including the overvoltage detection circuit.

本発明に係る検出回路の閾値電圧決定方法は、直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高い場合、夫々の二次電池が所定の過電圧状態にあることを検出し、全ての前記二次電池の電圧が前記第1電圧より低い第2電圧以下となった場合、消費電力を低減して動作する検出回路の前記第2電圧を予め決定する方法において、前記二次電池の放電容量と最大及び最小の開放電圧との関係を示す放電特性を用意し、前記放電特性における一の放電容量について、最大の開放電圧と前記二次電池が過放電状態となる上限の電圧との差分を算出すると共に、最大及び最小の開放電圧の電圧差を算出し、算出した差分が電圧差より大きいか否かを判定し、大きい場合、前記一の放電容量についての最大の開放電圧を前記第2電圧とすることを特徴とする。   The threshold voltage determination method of the detection circuit according to the present invention is such that each secondary battery is in a predetermined overvoltage state when the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time or more. A method for detecting in advance and predetermining the second voltage of a detection circuit that operates with reduced power consumption when the voltages of all the secondary batteries are equal to or lower than a second voltage lower than the first voltage. A discharge characteristic indicating a relationship between a discharge capacity of the secondary battery and a maximum and minimum open voltage, and the maximum open voltage and the secondary battery are overdischarged for one discharge capacity in the discharge characteristic. And calculating the difference between the maximum and minimum open circuit voltages and determining whether or not the calculated difference is greater than the voltage difference. Maximum open circuit voltage Characterized by a serial second voltage.

本発明に係る過電圧検出回路は、直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高いか否かを判定する手段と、該手段が高いと判定した場合、夫々の二次電池が所定の過電圧状態にあることを検出する手段とを備え、全ての前記二次電池の電圧が前記第1電圧より低い第2電圧以下となった場合、消費電力を低減するようにしてあり、前記二次電池の放電容量と最大及び最小の電圧との関係を示す放電特性における一の放電容量について、最大の電圧と前記二次電池が過放電状態となる上限の電圧との差分が、最大及び最小の電圧の電圧差より大きいときの最大の電圧を、前記第2電圧としてあることを特徴とする。   The overvoltage detection circuit according to the present invention has means for determining whether or not the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time or more, and when determining that the means is high And means for detecting that each secondary battery is in a predetermined overvoltage state, and reduces the power consumption when the voltage of all the secondary batteries is equal to or lower than the second voltage lower than the first voltage. The maximum voltage and the upper limit voltage at which the secondary battery is in an overdischarged state with respect to one discharge capacity in the discharge characteristics indicating the relationship between the discharge capacity of the secondary battery and the maximum and minimum voltages. The second voltage is the maximum voltage when the difference between the two is larger than the voltage difference between the maximum and minimum voltages.

本発明に係る過電圧検出回路は、前記二次電池は、リチウムイオン電池であり、前記第2電圧は、3.1V〜3.9Vであることを特徴とする。   In the overvoltage detection circuit according to the present invention, the secondary battery is a lithium ion battery, and the second voltage is 3.1V to 3.9V.

本発明に係る過電圧検出回路は、前記第2電圧は、3.5V以上であることを特徴とする。   In the overvoltage detection circuit according to the present invention, the second voltage is 3.5 V or more.

本発明に係る過電圧検出回路は、直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高いか否かを判定する手段と、該手段が高いと判定した場合、夫々の二次電池が所定の過電圧状態にあることを検出する手段とを備え、全ての前記二次電池の電圧が、前記第1電圧より低く且つ放電末期の電圧より高い第2電圧以下となった場合、消費電力を低減するようにしてあることを特徴とする。   The overvoltage detection circuit according to the present invention has means for determining whether or not the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time or more, and when determining that the means is high Means for detecting that each secondary battery is in a predetermined overvoltage state, and the voltage of all the secondary batteries is lower than the first voltage and lower than the second voltage higher than the end-of-discharge voltage. In this case, the power consumption is reduced.

本発明に係る過電圧検出回路は、前記放電末期の電圧は、3.0V以上であることを特徴とする。   The overvoltage detection circuit according to the present invention is characterized in that the voltage at the end of discharge is 3.0 V or more.

本発明に係るパック電池は、上述の過電圧検出回路と、該過電圧検出回路によって過電圧状態にあることが検出される直列接続された複数の二次電池とを備えることを特徴とする。   The battery pack according to the present invention includes the above-described overvoltage detection circuit and a plurality of series-connected secondary batteries that are detected to be in an overvoltage state by the overvoltage detection circuit.

本発明にあっては、直列に接続された複数の二次電池の全てが第2電圧以下の電圧となったときに消費電力を低減する検出回路の第2電圧を予め決定するにあたり、二次電池の放電容量と最大及び最小の開放電圧との関係を示す放電特性において、一の放電容量に対する最大の開放電圧と二次電池が過放電状態となる上限の電圧との差分が、同じ一の放電容量に対する最大及び最小の開放電圧の電圧差より大きい場合、そのときの最大の開放電圧を第2電圧とする。
つまり、最も電圧が低い二次電池の電圧が過放電状態の上限の電圧より高いときに検出回路が省電力状態となるように、検出回路が監視する電圧の閾値が決定される。
In the present invention, when the second voltage of the detection circuit that reduces the power consumption when all of the plurality of secondary batteries connected in series are equal to or lower than the second voltage, the secondary voltage is determined in advance. In the discharge characteristics showing the relationship between the discharge capacity of the battery and the maximum and minimum open voltage, the difference between the maximum open voltage for one discharge capacity and the upper limit voltage at which the secondary battery is overdischarged is the same. When it is larger than the voltage difference between the maximum and minimum open circuit voltages with respect to the discharge capacity, the maximum open circuit voltage at that time is set as the second voltage.
That is, the threshold value of the voltage monitored by the detection circuit is determined so that the detection circuit is in the power saving state when the voltage of the secondary battery having the lowest voltage is higher than the upper limit voltage of the overdischarge state.

本発明にあっては、検出回路が省電力状態に切り替わるときの二次電池の電圧である第2電圧が、3.1V〜3.9Vと従来よりも高めに設定されているため、検出回路がリチウムイオン電池の過電圧の検出に好適に用いられる。
つまり、第2電圧の下限値を3.1Vとすることにより、二次電池間での電圧差が拡大して電圧バランスが大きく崩れる前に検出回路が省電力状態となる。また、通常4.1V以上に設定される過電圧の検出電圧に対して、第2電圧の上限値を3.9Vとすることにより、過電圧の確実な検出が担保される。検出回路が半導体集積回路で構成される場合、第2電圧のばらつき範囲の大きさを0.8Vより小さくするのは製造上困難である。
In the present invention, since the second voltage, which is the voltage of the secondary battery when the detection circuit is switched to the power saving state, is set to 3.1 V to 3.9 V, which is higher than the conventional voltage, the detection circuit Is suitably used for detecting an overvoltage of a lithium ion battery.
In other words, by setting the lower limit value of the second voltage to 3.1 V, the detection circuit enters a power saving state before the voltage difference between the secondary batteries expands and the voltage balance is largely lost. In addition, when the upper limit value of the second voltage is set to 3.9 V with respect to the overvoltage detection voltage that is normally set to 4.1 V or higher, reliable detection of the overvoltage is ensured. When the detection circuit is composed of a semiconductor integrated circuit, it is difficult to manufacture the size of the variation range of the second voltage below 0.8V.

本発明にあっては、第2電圧が3.5V以上であることが好ましい。
第2電圧を3.5Vより低く設定した場合、最も電圧が高い二次電池の電圧が第2電圧以下となったことが検出されて検出回路が省電力状態となる前に、二次電池間での電圧差が拡大して電圧バランスが崩れ易くなる。
In the present invention, the second voltage is preferably 3.5 V or higher.
When the second voltage is set lower than 3.5 V, it is detected that the voltage of the secondary battery having the highest voltage is lower than the second voltage and the detection circuit is in the power saving state. As a result, the voltage difference is increased, and the voltage balance is easily lost.

本発明にあっては、直列に接続された複数の二次電池の全てが第2電圧以下の電圧となったときに消費電力を低減する検出回路の第2電圧を予め決定するにあたり、二次電池夫々が過電圧状態にあることが検出される第1電圧より低く且つ二次電池の放電末期の電圧より高い電圧を第2電圧とする。
つまり、最も電圧が高い二次電池の電圧が、少なくとも放電末期の電圧より低くなる前に検出回路が省電力状態となるように、検出回路が監視する電圧の閾値が決定される。
In the present invention, when the second voltage of the detection circuit that reduces the power consumption when all of the plurality of secondary batteries connected in series are equal to or lower than the second voltage, the secondary voltage is determined in advance. A voltage lower than the first voltage at which each of the batteries is detected to be in an overvoltage state and higher than the voltage at the end of discharge of the secondary battery is defined as the second voltage.
That is, the threshold value of the voltage monitored by the detection circuit is determined so that the detection circuit enters the power saving state before the voltage of the secondary battery having the highest voltage becomes lower than at least the voltage at the end of discharge.

本発明にあっては、最も電圧が高い二次電池の電圧が、少なくとも3.0Vより低くなる前に検出回路が省電力状態となるため、最も電圧が低い二次電池が過放電状態となるのが防止される蓋然性が高い。   In the present invention, since the detection circuit is in a power saving state before the voltage of the secondary battery having the highest voltage is lower than at least 3.0 V, the secondary battery having the lowest voltage is in an overdischarged state. There is a high probability that it will be prevented.

本発明にあっては、上述した検出回路によって二次電池が過電圧状態にあることが検出される。
これにより、最も電圧が低い二次電池の電圧が、過放電状態となる上限の電圧まで低下する前に自身が省電力状態となって各二次電池から流入する暗電流を大幅に低減することが可能な検出回路が、パック電池に適用される。
In the present invention, the detection circuit described above detects that the secondary battery is in an overvoltage state.
Thereby, before the voltage of the secondary battery with the lowest voltage drops to the upper limit voltage at which it becomes an overdischarged state, the dark current flowing from each secondary battery is greatly reduced by entering the power saving state. A detection circuit capable of the above is applied to the battery pack.

本発明によれば、最も電圧が低い二次電池の電圧が過放電状態の上限の電圧より高いときに検出回路が省電力状態となるように、検出回路が監視する電圧の閾値が決定される。
従って、二次電池が過放電状態に陥る前に検出回路の消費電力を低減して各二次電池から検出回路に流入する暗電流を大幅に減少させることが可能となる。
According to the present invention, the threshold value of the voltage monitored by the detection circuit is determined so that the detection circuit is in the power saving state when the voltage of the secondary battery having the lowest voltage is higher than the upper limit voltage of the overdischarge state. .
Therefore, the power consumption of the detection circuit can be reduced before the secondary battery enters the overdischarged state, and the dark current flowing from each secondary battery into the detection circuit can be greatly reduced.

本発明の実施の形態に係るパック電池の接続構成を例示する回路図である。It is a circuit diagram which illustrates the connection configuration of the battery pack according to the embodiment of the present invention. 本発明の他の実施の形態に係るパック電池の接続構成を例示する回路図である。It is a circuit diagram which illustrates the connection structure of the battery pack which concerns on other embodiment of this invention. 二次電池の放電容量に対する開放電圧の変化を例示する特性図である。It is a characteristic view which illustrates the change of the open circuit voltage with respect to the discharge capacity of a secondary battery.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1は、本発明の実施の形態に係るパック電池の接続構成を例示する回路図である。図中1は二次電池であり、二次電池1,1,1は、3つ直列に接続されたリチウムイオン電池からなる。直列接続される二次電池1は、個数が3つに限定されず、種類がリチウムイオン電池に限定されない。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is a circuit diagram illustrating a connection configuration of a battery pack according to an embodiment of the present invention. In the figure, 1 is a secondary battery, and the secondary batteries 1, 1, 1 are composed of three lithium ion batteries connected in series. The number of secondary batteries 1 connected in series is not limited to three, and the type is not limited to a lithium ion battery.

最も低電位側に配されるべき二次電池1の負極端子は、接地電位に接続されている。最も高電位側の二次電池1の正極端子は、図示しないケースの外部に露出したプラス(+)端子81に接続されている。直列接続された二次電池1,1,1夫々の正極端子は、抵抗器2,2,2を介して保護IC4の入力端子41,42,43に接続されている。入力端子41,42間及び42,43間には、コンデンサ3,3が各別に接続されている。入力端子43及び接地電位間には、他のコンデンサ3が接続されている。抵抗器2,2,2及びコンデンサ3,3,3は、保護IC4を安定に動作させるためのものである。   The negative terminal of the secondary battery 1 to be arranged on the lowest potential side is connected to the ground potential. The positive terminal of the secondary battery 1 on the highest potential side is connected to a plus (+) terminal 81 exposed outside the case (not shown). The positive terminals of the secondary batteries 1, 1, 1 connected in series are connected to the input terminals 41, 42, 43 of the protection IC 4 via resistors 2, 2, 2. Capacitors 3 and 3 are respectively connected between the input terminals 41 and 42 and 42 and 43. Another capacitor 3 is connected between the input terminal 43 and the ground potential. Resistors 2, 2, 2 and capacitors 3, 3, 3 are for operating the protection IC 4 stably.

保護IC4は、電源端子44,グランド(グラウンド)端子45が、夫々プラス(+)端子81,接地電位に接続されており、上述した5つの端子によって、3つの二次電池1,1,1の過電圧を各別に検出する。保護IC4が過電圧の検出信号を出力する検出信号端子46は、ケースの外部に露出したマイナス(−)端子82及び接地電位間に直列に接続されたNチャネル型のMOSFET(以下FETという)51,52のゲートに接続されている。FET51,52は、ドレイン同士を突き合わせてある。   In the protection IC 4, a power terminal 44 and a ground terminal 45 are connected to a plus (+) terminal 81 and a ground potential, respectively, and the three secondary batteries 1, 1, 1 are connected by the five terminals described above. Detect overvoltage separately. The detection signal terminal 46 from which the protection IC 4 outputs an overvoltage detection signal has a negative (−) terminal 82 exposed outside the case and an N-channel MOSFET (hereinafter referred to as FET) 51 connected in series between the ground potential. 52 is connected to the gate. The FETs 51 and 52 have their drains butted together.

パック電池の図示しないケースには、温度(T)端子83が設けられており、該温度端子83及びマイナス端子82間には、二次電池1,1,1に熱的に結合された感熱素子6と、FET51,52に熱的に結合された温度ヒューズ7とが直列に接続されている。図1では、破線が熱的な結合を表す。FET51,52が故障して過熱した場合は、温度ヒューズ7が溶断する。パック電池は、プラス端子81、マイナス端子82、及び温度端子83を介して、携帯端末等の電気機器(図示せず)に着脱可能に装着される。   A case (not shown) of the battery pack is provided with a temperature (T) terminal 83, and between the temperature terminal 83 and the negative terminal 82, a thermal element thermally coupled to the secondary batteries 1, 1, 1. 6 and a thermal fuse 7 thermally coupled to the FETs 51 and 52 are connected in series. In FIG. 1, the broken line represents thermal coupling. When the FETs 51 and 52 fail and overheat, the temperature fuse 7 is blown. The battery pack is detachably attached to an electric device (not shown) such as a portable terminal via a plus terminal 81, a minus terminal 82, and a temperature terminal 83.

外部の電気機器は、温度端子83及びマイナス端子82間の電圧を検出して感熱素子6の抵抗値を算出し、算出した抵抗値から換算した感熱素子6の温度に基づいて二次電池1,1,1の温度を検出する。FET51,52が過熱して温度ヒューズ7が溶断した場合は、感熱素子6の抵抗値が極めて大きい値に換算されるため、FET51,52の異常が外部から検出される。   The external electric device detects the voltage between the temperature terminal 83 and the minus terminal 82 to calculate the resistance value of the thermal element 6, and based on the temperature of the thermal element 6 converted from the calculated resistance value, the secondary battery 1 1 and 1 temperatures are detected. When the FETs 51 and 52 are overheated and the thermal fuse 7 is blown, the resistance value of the thermal element 6 is converted to a very large value, so that an abnormality in the FETs 51 and 52 is detected from the outside.

以上のパック電池の回路構成において、例えば、二次電池1,1,1夫々の電圧が4.35Vより高い状態が2秒間以上継続した場合、保護IC4が二次電池1,1,1の過電圧を各別に検出して、検出信号端子46からロウ(L)レベルの検出信号を出力する。この検出信号がFET51,52夫々のゲートに与えられることにより、FET51,52がオフして、二次電池1,1,1の充電が禁止されるため、二次電池1,1,1が過電圧から保護される。保護IC4は、二次電池1,1,1の過電圧を監視中に、二次電池1,1,1から最大で5μA程度の電流を消費する。   In the circuit configuration of the battery pack described above, for example, when the state where the voltage of each of the secondary batteries 1, 1, 1 is higher than 4.35 V continues for 2 seconds or more, the protection IC 4 detects that the secondary battery 1, 1, 1 Are detected separately and a detection signal terminal 46 outputs a low (L) level detection signal. By supplying this detection signal to the gates of the FETs 51 and 52, the FETs 51 and 52 are turned off and charging of the secondary batteries 1, 1, and 1 is prohibited. Protected from. The protection IC 4 consumes a maximum current of about 5 μA from the secondary batteries 1, 1, 1 while monitoring the overvoltage of the secondary batteries 1, 1, 1.

一方、全ての二次電池1,1,1の電圧が、例えば、保護IC4の消費電力が低減される省電力状態(以下、シャットダウンという)の閾値電圧である3.5V以下となった場合、保護IC4がシャットダウンする。保護IC4がシャットダウン中に二次電池1,1,1から消費する電流は、最大で0.1μA程度に抑えられるため、二次電池1,1,1が、過放電状態に陥ることが防止される。   On the other hand, when the voltages of all the secondary batteries 1, 1, 1 become 3.5 V or less, which is a threshold voltage in a power saving state (hereinafter referred to as shutdown) in which the power consumption of the protection IC 4 is reduced, for example, The protection IC 4 is shut down. The current consumed from the secondary batteries 1, 1, 1 while the protection IC 4 is shut down is suppressed to about 0.1 μA at the maximum, so that the secondary batteries 1, 1, 1 are prevented from falling into an overdischarged state. The

以上のパック電池では、保護IC4がロウ(L)レベルの検出信号を出力したが、これに限定されるものではなく、保護IC4がハイ(H)レベルの検出信号を出力するものであってもよい。
図2は、本発明の他の実施の形態に係るパック電池の接続構成を例示する回路図である。パック電池が、二次電池1,1,1及び保護IC4と、これらに接続された抵抗器2,2,2及びコンデンサ3,3,3とを備えるのは、図1に示す実施の形態の場合と同様であるため、その説明を省略する。
In the above battery pack, the protection IC 4 outputs a low (L) level detection signal. However, the present invention is not limited to this, and the protection IC 4 may output a high (H) level detection signal. Good.
FIG. 2 is a circuit diagram illustrating a connection configuration of a battery pack according to another embodiment of the present invention. The battery pack includes secondary batteries 1, 1, 1 and a protection IC 4, and resistors 2, 2, 2 and capacitors 3, 3, 3 connected thereto, according to the embodiment shown in FIG. Since this is the same as the case, the description thereof is omitted.

図2に示すパック電池は、第1端子が最も高電位側の二次電池1の正極端子に接続された3端子型の非復帰スイッチ9を備え、マイナス端子82が接地電位に接続されている。非復帰スイッチ9の第2端子はプラス端子81に接続されており、第3端子には、ソース接地のNチャネル型のFET53のドレインが接続されている。FET53のゲートは、保護IC4の検出信号端子46に接続されている。   The battery pack shown in FIG. 2 includes a three-terminal non-return switch 9 having a first terminal connected to the positive terminal of the secondary battery 1 on the highest potential side, and a negative terminal 82 connected to the ground potential. . The non-return switch 9 has a second terminal connected to the plus terminal 81 and a third terminal connected to the drain of an N-channel FET 53 with a common source. The gate of the FET 53 is connected to the detection signal terminal 46 of the protection IC 4.

非復帰スイッチ9は、第1及び第2端子間に直列に接続されたヒューズ91,91と、該ヒューズ91,91の接続点及び第3端子間に並列に接続された加熱抵抗92,92とを有する。ヒューズ91,91は、例えば130℃前後まで温度が上昇したときに溶断するものである。二次電池1,1,1の電圧の何れかが過電圧の検出電圧より高くなった場合、検出信号端子46から出力されたハイ(H)レベルの検出信号によってFET53がオンする。これにより、加熱抵抗92,92にヒューズ91,91を介して二次電池1,1,1から直流電圧が印加されてヒューズ91,91が加熱されるため、ヒューズ91,91が溶断して二次電池1,1,1の充放電電流が遮断される。このようにして、二次電池1,1,1が過電圧から保護される。   The non-return switch 9 includes fuses 91 and 91 connected in series between the first and second terminals, and heating resistors 92 and 92 connected in parallel between the connection point of the fuses 91 and 91 and the third terminal. Have The fuses 91 and 91 are blown when the temperature rises to around 130 ° C., for example. When any of the voltages of the secondary batteries 1, 1, 1 becomes higher than the overvoltage detection voltage, the FET 53 is turned on by a high (H) level detection signal output from the detection signal terminal 46. As a result, a DC voltage is applied to the heating resistors 92, 92 from the secondary batteries 1, 1, 1 via the fuses 91, 91 to heat the fuses 91, 91. The charging / discharging current of the secondary batteries 1, 1, 1 is cut off. In this way, the secondary batteries 1, 1, 1 are protected from overvoltage.

尚、非復帰スイッチ9に代えて、プラス端子81と、最も高電位側の二次電池1の正極端子との間に、ドレイン同士を突き合わせた2つのPチャネル型のFETを直列に介装させ、該FET夫々のゲートに検出信号端子46を接続するようにしてもよい。この場合の各FETの動作は、夫々のゲートに与えられる制御信号のハイ/ロウの極性が反転している点を除いて、図1に示す実施の形態におけるFET51,52の動作と同様である。   Instead of the non-return switch 9, two P-channel FETs with their drains butted in series are interposed in series between the positive terminal 81 and the positive terminal of the secondary battery 1 on the highest potential side. The detection signal terminal 46 may be connected to the gate of each FET. The operation of each FET in this case is the same as that of the FETs 51 and 52 in the embodiment shown in FIG. 1 except that the high / low polarities of the control signals applied to the respective gates are inverted. .

以下では、上述した実施の形態及び他の実施の形態に係るパック電池で、一部の二次電池1が過放電状態に陥る前に、保護IC4をシャットダウンさせる方法について説明する。
図3は、二次電池1,1,1の放電容量に対する開放電圧の変化を例示する特性図である。ここでの二次電池1,1,1は、リチウムイオン電池である。図の横軸は満充電状態からの放電容量、即ち満充電容量から残容量を減算した容量を表し、縦軸は、二次電池1,1,1の開放電圧を表す。図中、最も電圧が高い二次電池1の開放電圧を実線で表示し、最も電圧が低い二次電池1の開放電圧を破線で表示する。
In the following, a method for shutting down the protection IC 4 in the battery pack according to the above-described embodiment and other embodiments before some of the secondary batteries 1 fall into an overdischarged state will be described.
FIG. 3 is a characteristic diagram illustrating the change of the open circuit voltage with respect to the discharge capacity of the secondary batteries 1, 1, 1. Here, the secondary batteries 1, 1, 1 are lithium ion batteries. The horizontal axis of the figure represents the discharge capacity from the fully charged state, that is, the capacity obtained by subtracting the remaining capacity from the full charge capacity, and the vertical axis represents the open circuit voltage of the secondary batteries 1, 1, 1. In the figure, the open circuit voltage of the secondary battery 1 with the highest voltage is displayed with a solid line, and the open circuit voltage of the secondary battery 1 with the lowest voltage is displayed with a broken line.

二次電池1,1,1を満充電状態まで充電して放電させた場合、各二次電池1,1,1の放電容量は等量であるのに対し、各二次電池1,1,1の放電容量−電圧特性の違いによって、開放電圧に差異が生じる。この差異は、放電率の違い及び二次電池1,1,1の劣化の程度の違いによっても異なるが、放電容量が増加して開放電圧が低下するほど顕著となる。換言すれば、二次電池1,1,1の放電容量が増加した場合、最も電圧が高い二次電池1の開放電圧と、二次電池1が過放電状態となる上限の電圧との差分が縮小する一方で、二次電池1,1,1における最大及び最小の開放電圧(又は充放電時の電圧)の電圧差が拡大し続ける。   When the secondary batteries 1, 1, 1 are fully charged and discharged, the discharge capacity of each secondary battery 1, 1, 1 is equal, whereas each secondary battery 1, 1, 1 Due to the difference in the discharge capacity-voltage characteristics of 1, the difference occurs in the open circuit voltage. This difference varies depending on the difference in discharge rate and the degree of deterioration of the secondary batteries 1, 1, 1, but becomes more prominent as the discharge capacity increases and the open circuit voltage decreases. In other words, when the discharge capacity of the secondary batteries 1, 1, 1 increases, the difference between the open circuit voltage of the secondary battery 1 having the highest voltage and the upper limit voltage at which the secondary battery 1 is overdischarged is While decreasing, the voltage difference between the maximum and minimum open-circuit voltage (or voltage during charging / discharging) in the secondary batteries 1, 1, 1 continues to increase.

さて、図3の例では、二次電池1,1,1が満充電状態に近い状態にある場合、二次電池1,1,1における最大及び最小の開放電圧の電圧差が無視できるほど小さく維持されており、二次電池1,1,1の開放電圧が3.9Vを下回って3.5V前後に低下するまでは、最大及び最小の開放電圧の電圧差が0.1V以内に十分収まっている。放電容量が増加して、最も電圧が高い二次電池1の開放電圧が3.1Vに低下した場合であっても、二次電池1,1,1における最大及び最小の開放電圧の電圧差は、約0.3V(3.1V−2.8V)以内に維持されている。   In the example of FIG. 3, when the secondary batteries 1, 1, 1 are in a fully charged state, the voltage difference between the maximum and minimum open circuit voltages in the secondary batteries 1, 1, 1 is so small that it can be ignored. The voltage difference between the maximum and minimum open-circuit voltage is well within 0.1V until the open-circuit voltage of the secondary batteries 1, 1, 1 falls below 3.9V and drops to around 3.5V. ing. Even when the discharge capacity increases and the open circuit voltage of the secondary battery 1 having the highest voltage decreases to 3.1 V, the voltage difference between the maximum and minimum open circuit voltages of the secondary batteries 1, 1, 1 is , About 0.3V (3.1V-2.8V).

放電容量が更に増加して、最も電圧が高い二次電池1の開放電圧が3.0Vに低下した場合、二次電池1,1,1における最大及び最小の開放電圧の電圧差が一挙に拡大し、最も電圧が低い二次電池1の開放電圧が1.3Vにまで低下して、過放電状態に陥る(つまり深放電領域に進入する)ことが読み取れる。この時点で、最も電圧が高い二次電池1の開放電圧と、二次電池1が過放電状態となる上限の電圧との差分が、二次電池1,1,1における最大及び最小の開放電圧の電圧差と同等になる。
尚、図3に示した放電特性は一例であって、他にも種々の放電特性があり、シャットダウンの閾値電圧は、放電末期の電圧より高くすることが好ましい。
When the discharge capacity further increases and the open circuit voltage of the secondary battery 1 with the highest voltage drops to 3.0 V, the voltage difference between the maximum and minimum open circuit voltages of the secondary batteries 1, 1, 1 expands all at once. In addition, it can be seen that the open-circuit voltage of the secondary battery 1 having the lowest voltage is reduced to 1.3 V and enters an overdischarged state (that is, enters a deep discharge region). At this time, the difference between the open voltage of the secondary battery 1 having the highest voltage and the upper limit voltage at which the secondary battery 1 is in an overdischarged state is the maximum and minimum open voltage of the secondary batteries 1, 1, 1. Is equivalent to the voltage difference.
The discharge characteristics shown in FIG. 3 are merely examples, and there are various other discharge characteristics. It is preferable that the shutdown threshold voltage is higher than the voltage at the end of discharge.

以上のことから、最も電圧が高い二次電池1の電圧が3.0Vより高いときに、保護IC4をシャットダウンさせることにより、最も電圧が低い二次電池1が過放電状態に陥る前に保護IC4の消費電力を低減させて、それ以上二次電池1,1,1の電圧を低下させないようにすることができると言える。   From the above, when the voltage of the secondary battery 1 with the highest voltage is higher than 3.0V, the protection IC 4 is shut down, so that the secondary battery 1 with the lowest voltage is put into the overdischarge state before the secondary battery 1 falls into the overdischarge state. It can be said that the power consumption of the secondary battery 1, 1, 1 can be prevented from being lowered any further.

そこで、本実施の形態では、保護IC4におけるシャットダウンの閾値電圧、即ち全ての二次電池1,1,1の電圧がその電圧を下回ったときに保護IC4をシャットダウンさせる電圧の下限値を3.1Vとする。上述したように、保護IC4におけるシャットダウンの閾値電圧を3.5Vより高くすることにより、二次電池1,1,1間の電圧差が0.1V以内に収まっている間に、保護IC4の消費電流を低減させることができる。保護IC4を半導体集積回路で構成する場合は、製造上のばらつきを考慮して、上記閾値電圧の範囲を3.1V〜3.9Vとする。   Therefore, in the present embodiment, the shutdown threshold voltage in the protection IC 4, that is, the lower limit value of the voltage that causes the protection IC 4 to shut down when the voltages of all the secondary batteries 1, 1, 1 fall below that voltage is 3.1 V. And As described above, by setting the shutdown threshold voltage in the protection IC 4 to be higher than 3.5V, the consumption of the protection IC 4 while the voltage difference between the secondary batteries 1, 1, 1 is within 0.1V. The current can be reduced. When the protection IC 4 is formed of a semiconductor integrated circuit, the threshold voltage range is set to 3.1 V to 3.9 V in consideration of manufacturing variations.

以上のように、本実施の形態によれば、二次電池のそのときの放電容量に対する最大の開放電圧と、二次電池が過放電状態となる上限の電圧である1.3Vとの差分が、同じ放電容量に対する最大及び最小の開放電圧間の電圧差よりも大きいことが担保されている間に、最も電圧が高い二次電池の電圧が、過電圧の検出電圧である4.35Vより低いシャットダウンの閾値電圧以下となった場合、保護IC(検出回路)がシャットダウンして消費電力が低減される。
つまり、最も電圧が低い二次電池の電圧が、過放電状態となる上限の電圧より高いときに検出回路が省電力状態となる。
従って、二次電池が過放電状態に陥る前に検出回路をシャットダウンさせて各二次電池から検出回路に流入する暗電流を大幅に低減させることが可能となる。
As described above, according to the present embodiment, the difference between the maximum open-circuit voltage for the discharge capacity of the secondary battery at that time and 1.3 V, which is the upper limit voltage at which the secondary battery is in an overdischarged state, is obtained. Shutdown of the highest voltage secondary battery below the overvoltage detection voltage of 4.35V, while being guaranteed to be greater than the voltage difference between the maximum and minimum open circuit voltage for the same discharge capacity When the threshold voltage is lower than the threshold voltage, the protection IC (detection circuit) is shut down to reduce power consumption.
That is, the detection circuit is in the power saving state when the voltage of the secondary battery having the lowest voltage is higher than the upper limit voltage that causes the overdischarge state.
Therefore, it is possible to significantly reduce the dark current flowing from each secondary battery into the detection circuit by shutting down the detection circuit before the secondary battery enters an overdischarged state.

また、シャットダウンの閾値電圧が、3.1V〜3.9Vと従来より高めに設定されているため、保護IC(検出回路)がリチウムイオン電池の過電圧の検出に好適に用いられる。
つまり、シャットダウンの閾値電圧の下限値を3.1Vとすることにより、二次電池間での電圧差が拡大して電圧バランスが大きく崩れる前に検出回路を省電力状態とすることが可能となる。また、通常4.1V以上に設定される過電圧の検出電圧に対して、シャットダウンの閾値電圧の上限値を3.9Vとすることにより、過電圧の確実な検出を担保することが可能となる。
In addition, since the shutdown threshold voltage is set to 3.1 V to 3.9 V, which is higher than the conventional one, the protection IC (detection circuit) is preferably used for detecting the overvoltage of the lithium ion battery.
In other words, by setting the lower limit value of the shutdown threshold voltage to 3.1 V, the detection circuit can be put into a power saving state before the voltage difference between the secondary batteries is enlarged and the voltage balance is largely lost. . In addition, when the upper limit value of the shutdown threshold voltage is set to 3.9 V with respect to the overvoltage detection voltage that is normally set to 4.1 V or higher, it is possible to ensure the reliable detection of the overvoltage.

更に、保護IC(検出回路)によるシャットダウンの閾値電圧が3.5V以上であることが好ましいと言える。
つまり、シャットダウンの閾値電圧を3.5V以上に設定することにより、二次電池間での電圧差が拡大して電圧バランスが崩れ易くなる前に、最も電圧が高い二次電池の電圧がシャットダウンの閾値電圧以下となったことを検出して検出回路をシャットダウンさせることが可能となる。
Furthermore, it can be said that the shutdown threshold voltage by the protection IC (detection circuit) is preferably 3.5 V or more.
In other words, by setting the shutdown threshold voltage to 3.5 V or higher, the voltage of the secondary battery with the highest voltage is shut down before the voltage difference between the secondary batteries increases and the voltage balance tends to be lost. It becomes possible to shut down the detection circuit by detecting that the voltage is lower than the threshold voltage.

更にまた、過電圧の検出電圧である4.35Vより低く且つ放電末期の電圧より高い電圧をシャットダウンの閾値電圧とする。
従って、最も電圧が高い二次電池の電圧が、少なくとも放電末期の電圧より低くなる前に検出回路をシャットダウンさせることが可能となる。
Furthermore, a voltage lower than the overvoltage detection voltage of 4.35 V and higher than the end-of-discharge voltage is set as the shutdown threshold voltage.
Therefore, the detection circuit can be shut down before the voltage of the secondary battery having the highest voltage becomes lower than at least the voltage at the end of discharge.

更にまた、最も電圧が高い二次電池の電圧(最大セル電圧)が少なくとも3.0Vより低くなる前に保護ICがシャットダウンするため、最も電圧が低い二次電池が過放電状態となるのが防止される蓋然性を高めることが可能となる。   Furthermore, since the protection IC shuts down before the voltage (maximum cell voltage) of the secondary battery with the highest voltage falls below at least 3.0V, the secondary battery with the lowest voltage is prevented from being overdischarged. It is possible to increase the probability of being done.

更にまた、上述した保護IC(検出回路)によって二次電池が過電圧状態にあることが検出される。
これにより、最も電圧が低い二次電池の電圧が、過放電状態となる上限の電圧まで低下する前にシャットダウンして各二次電池から流入する暗電流を大幅に低減することが可能な検出回路を、パック電池に適用することが可能となる。
Furthermore, it is detected by the protection IC (detection circuit) described above that the secondary battery is in an overvoltage state.
As a result, the detection circuit that can shut down before the voltage of the secondary battery with the lowest voltage drops to the upper limit voltage that causes an overdischarged state to significantly reduce the dark current flowing from each secondary battery. Can be applied to a battery pack.

尚、本実施の形態にあっては、二次電池1,1,1の電圧を保護IC4だけで監視したが、例えばCPUを有する制御部を備えておき、該制御部が、保護IC4が監視する過電圧より低い過電圧を監視し、更に二次電池1,1,1の過放電を監視するようにしてもよい。   In the present embodiment, the voltage of the secondary batteries 1, 1, 1 is monitored only by the protection IC 4. However, for example, a control unit having a CPU is provided, and the control unit is monitored by the protection IC 4. The overvoltage lower than the overvoltage to be monitored may be monitored, and the overdischarge of the secondary batteries 1, 1, 1 may be further monitored.

今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 二次電池
4 保護IC(検出回路)
51,52,53 FET
9 非復帰スイッチ
1 Secondary battery 4 Protection IC (detection circuit)
51, 52, 53 FET
9 Non-return switch

Claims (7)

直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高い場合、夫々の二次電池が所定の過電圧状態にあることを検出し、全ての前記二次電池の電圧が前記第1電圧より低い第2電圧以下となった場合、消費電力を低減して動作する検出回路の前記第2電圧を予め決定する方法において、
前記二次電池の放電容量と最大及び最小の開放電圧との関係を示す放電特性を用意し、
前記放電特性における一の放電容量について、最大の開放電圧と前記二次電池が過放電状態となる上限の電圧との差分を算出すると共に、最大及び最小の開放電圧の電圧差を算出し、
算出した差分が電圧差より大きいか否かを判定し、
大きい場合、前記一の放電容量についての最大の開放電圧を前記第2電圧とすること
を特徴とする検出回路の閾値電圧決定方法。
When the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time or more, it is detected that each secondary battery is in a predetermined overvoltage state, and all the secondary batteries are In the method of predetermining the second voltage of the detection circuit that operates with reduced power consumption when the voltage is equal to or lower than the second voltage lower than the first voltage,
Prepare discharge characteristics showing the relationship between the discharge capacity of the secondary battery and the maximum and minimum open circuit voltage,
For one discharge capacity in the discharge characteristics, calculate the difference between the maximum open voltage and the upper limit voltage at which the secondary battery is overdischarged, and calculate the voltage difference between the maximum and minimum open voltage,
Determine whether the calculated difference is greater than the voltage difference,
A threshold voltage determination method for a detection circuit, wherein, when the value is larger, the maximum open-circuit voltage for the one discharge capacity is the second voltage.
直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高いか否かを判定する手段と、
該手段が高いと判定した場合、夫々の二次電池が所定の過電圧状態にあることを検出する手段とを備え、
全ての前記二次電池の電圧が前記第1電圧より低い第2電圧以下となった場合、消費電力を低減するようにしてあり、
前記二次電池の放電容量と最大及び最小の電圧との関係を示す放電特性における一の放電容量について、最大の電圧と前記二次電池が過放電状態となる上限の電圧との差分が、最大及び最小の電圧の電圧差より大きいときの最大の電圧を、前記第2電圧としてあること
を特徴とする過電圧検出回路。
Means for determining whether the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time;
And a means for detecting that each secondary battery is in a predetermined overvoltage state when it is determined that the means is high,
When the voltage of all the secondary batteries is equal to or lower than the second voltage lower than the first voltage, power consumption is reduced.
For one discharge capacity in the discharge characteristics indicating the relationship between the discharge capacity of the secondary battery and the maximum and minimum voltage, the difference between the maximum voltage and the upper limit voltage at which the secondary battery is overdischarged is the maximum. An overvoltage detection circuit, wherein the second voltage is a maximum voltage that is larger than a voltage difference between the minimum voltages.
前記二次電池は、リチウムイオン電池であり、
前記第2電圧は、3.1V〜3.9Vであること
を特徴とする請求項2に記載の過電圧検出回路。
The secondary battery is a lithium ion battery,
The overvoltage detection circuit according to claim 2, wherein the second voltage is 3.1V to 3.9V.
前記第2電圧は、3.5V以上であること
を特徴とする請求項3に記載の過電圧検出回路。
The overvoltage detection circuit according to claim 3, wherein the second voltage is 3.5 V or more.
直列接続された複数の二次電池夫々の電圧が第1電圧より所定時間以上継続して高いか否かを判定する手段と、
該手段が高いと判定した場合、夫々の二次電池が所定の過電圧状態にあることを検出する手段とを備え、
全ての前記二次電池の電圧が、前記第1電圧より低く且つ放電末期の電圧より高い第2電圧以下となった場合、消費電力を低減するようにしてあること
を特徴とする過電圧検出回路。
Means for determining whether the voltage of each of the plurality of secondary batteries connected in series is continuously higher than the first voltage for a predetermined time;
And a means for detecting that each secondary battery is in a predetermined overvoltage state when it is determined that the means is high,
An overvoltage detection circuit, wherein when all the secondary batteries have a voltage lower than the first voltage and lower than a second voltage higher than the end-of-discharge voltage, the power consumption is reduced.
前記放電末期の電圧は、3.0V以上であることを特徴とする請求項5に記載の過電圧検出回路。   6. The overvoltage detection circuit according to claim 5, wherein the voltage at the end of discharge is 3.0 V or more. 請求項2から6の何れか1項に記載の過電圧検出回路と、該過電圧検出回路によって過電圧状態にあることが検出される直列接続された複数の二次電池とを備えることを特徴とするパック電池。   A pack comprising: the overvoltage detection circuit according to any one of claims 2 to 6; and a plurality of series-connected secondary batteries that are detected to be in an overvoltage state by the overvoltage detection circuit. battery.
JP2011282535A 2011-12-24 2011-12-24 Method for determining threshold voltage of detection circuit, overvoltage detection circuit, and battery pack Active JP5933971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282535A JP5933971B2 (en) 2011-12-24 2011-12-24 Method for determining threshold voltage of detection circuit, overvoltage detection circuit, and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282535A JP5933971B2 (en) 2011-12-24 2011-12-24 Method for determining threshold voltage of detection circuit, overvoltage detection circuit, and battery pack

Publications (2)

Publication Number Publication Date
JP2013135479A true JP2013135479A (en) 2013-07-08
JP5933971B2 JP5933971B2 (en) 2016-06-15

Family

ID=48911842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282535A Active JP5933971B2 (en) 2011-12-24 2011-12-24 Method for determining threshold voltage of detection circuit, overvoltage detection circuit, and battery pack

Country Status (1)

Country Link
JP (1) JP5933971B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114513A1 (en) * 2015-01-12 2016-07-21 주식회사 엘지화학 Overvoltage protection circuit, control method therefor and battery pack
US10698034B2 (en) 2015-01-12 2020-06-30 Lg Chem, Ltd. Overvoltage protection circuit, control method therefor and battery pack
WO2022025726A1 (en) * 2020-07-31 2022-02-03 주식회사 엘지에너지솔루션 Overvoltage characteristic evaluation apparatus for battery and overvoltage characteristic evaluation method
CN115102263A (en) * 2022-08-22 2022-09-23 禹创半导体(深圳)有限公司 Communication method for battery protection chip in cascade application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012283A (en) * 1996-06-24 1998-01-16 Sony Corp Battery pack and its control method
JP2004127532A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Battery pack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012283A (en) * 1996-06-24 1998-01-16 Sony Corp Battery pack and its control method
JP2004127532A (en) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd Battery pack

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114513A1 (en) * 2015-01-12 2016-07-21 주식회사 엘지화학 Overvoltage protection circuit, control method therefor and battery pack
US10698034B2 (en) 2015-01-12 2020-06-30 Lg Chem, Ltd. Overvoltage protection circuit, control method therefor and battery pack
CN113437728A (en) * 2015-01-12 2021-09-24 株式会社Lg化学 Overvoltage protection circuit, control method thereof and battery pack
CN113437728B (en) * 2015-01-12 2024-05-31 株式会社Lg新能源 Overvoltage protection circuit, control method thereof and battery pack
WO2022025726A1 (en) * 2020-07-31 2022-02-03 주식회사 엘지에너지솔루션 Overvoltage characteristic evaluation apparatus for battery and overvoltage characteristic evaluation method
US12025671B2 (en) 2020-07-31 2024-07-02 Lg Energy Solution, Ltd. Overvoltage characteristics evaluation apparatus and method for battery
CN115102263A (en) * 2022-08-22 2022-09-23 禹创半导体(深圳)有限公司 Communication method for battery protection chip in cascade application
CN115102263B (en) * 2022-08-22 2022-11-29 禹创半导体(深圳)有限公司 Communication method for battery protection chip in cascade application

Also Published As

Publication number Publication date
JP5933971B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP4183004B2 (en) Battery pack
JP4943296B2 (en) Battery pack, secondary battery charging method, and charging device
US8299759B2 (en) Battery pack and battery capacity calculating method
TWI418109B (en) Battery apparatus, integrated circuit for battery system and battery protection method
US20090295332A1 (en) Battery pack and charging method for the same
JP5457206B2 (en) Battery pack
US20170098943A1 (en) Secondary-battery protecting integrated circuit, secondary battery protection apparatus, and battery pack
US20090295335A1 (en) Battery pack and charging method for the same
US10498149B2 (en) Rechargeable battery protection integrated circuit, rechargeable battery protection device, and battery pack
JP2007215310A (en) Battery pack control method
JP2011115040A (en) Battery pack preventing high temperature swelling of battery cell, and method thereof
JP2007143284A (en) Battery pack for power tool
KR101147231B1 (en) Battery pack and method for controlling of charging and dischraging of the same
US20070013342A1 (en) Battery pack
JP2010259234A (en) Battery pack
JP2010166752A (en) Battery pack and method of controlling charging and discharging
JP2008021417A (en) Battery pack and detecting method
JP2011115012A (en) Battery pack and control method
US20190280341A1 (en) Circuits, systems, and methods for protecting batteries
JP2009254215A (en) Battery charger
JP2011200042A (en) Battery-state monitoring circuit and battery device
JP5933971B2 (en) Method for determining threshold voltage of detection circuit, overvoltage detection circuit, and battery pack
JP5094301B2 (en) Pack battery control method
JP5181311B2 (en) Battery pack charging method and battery pack
JP2010259240A (en) Protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5933971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350