JP2013134158A - Radiation intensity measuring method for radiation intensity measuring apparatus - Google Patents

Radiation intensity measuring method for radiation intensity measuring apparatus Download PDF

Info

Publication number
JP2013134158A
JP2013134158A JP2011284700A JP2011284700A JP2013134158A JP 2013134158 A JP2013134158 A JP 2013134158A JP 2011284700 A JP2011284700 A JP 2011284700A JP 2011284700 A JP2011284700 A JP 2011284700A JP 2013134158 A JP2013134158 A JP 2013134158A
Authority
JP
Japan
Prior art keywords
light
photostimulable
crystal
excitation
radiation intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011284700A
Other languages
Japanese (ja)
Other versions
JP5792612B2 (en
Inventor
Koichi Okada
耕一 岡田
Takahiro Tadokoro
孝広 田所
Hiroshi Kitaguchi
博司 北口
Katsunobu Ueno
克宜 上野
Akihisa Kaihara
明久 海原
Hitoshi Kuwabara
均 桑原
Yoshinobu Sakakibara
吉伸 榊原
Yuta INAMURA
雄太 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011284700A priority Critical patent/JP5792612B2/en
Publication of JP2013134158A publication Critical patent/JP2013134158A/en
Application granted granted Critical
Publication of JP5792612B2 publication Critical patent/JP5792612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation intensity measuring apparatus capable of monitoring intensity changes of light made incident on a light receiving part and capable of feeding back correction matched with changes of light intensity of measurement results.SOLUTION: The radiation intensity measuring apparatus includes a measurement device for measuring a component not caused by excitation of a photostimulable crystal of light measured by the light receiving part, analyzes influences of optical fiber deterioration and light bending loss, and uses the analyzed results as correction data. Further, time distributions of light intensities of both of light not caused by the excitation of the photostimulable crystal and light caused by the excitation of the photostimulable crystal are measured, and a change in the crystal structure of the photostimulable crystal is monitored from a change of the time distribution of the light caused by the excitation of the photostimulable crystal with respect to the time distribution of the light not caused by the excitation of the photostimulable crystal.

Description

本発明は放射線強度を計測する放射線強度計測装置及び放射線強度計測方法に関し、特に光輝尽性(OSL:Optically Stimulated Luminescence)結晶を用いた放射線強度計測装置及び放射線強度計測方法に関する。   The present invention relates to a radiation intensity measuring apparatus and a radiation intensity measuring method for measuring radiation intensity, and more particularly to a radiation intensity measuring apparatus and a radiation intensity measuring method using an optically stimulated (OSL) crystal.

光輝尽性結晶は放射線の照射を受けると電子が励起され、価電子帯から伝導帯に遷移する。この伝導帯に遷移した電子は格子欠陥にトラップされると準安定となるため、励起状態が維持される。一方、価電子帯は電子が抜けたためホールが生じる。励起した状態の光輝尽性結晶に特定の波長の光を照射すると伝導帯の電子が価電子帯に戻り、電子とホールが結合して発光現象が起こる。この発光現象の発光強度は励起している電子の量に依存し、また、放射線の照射による励起は確率的な事象であるため、放射線の照射量が多いほど励起されている電子が増加する。従って、光輝尽性結晶からの発光強度を調べることで、光輝尽性結晶に照射された放射線量がわかる。また、光輝尽性結晶への放射線の照射量は放射線強度と照射時間で決まるため、光輝尽性結晶からの発光強度と照射時間から放射線強度を導出することができる。   When the photostimulable crystal is irradiated with radiation, electrons are excited and transition from the valence band to the conduction band. The electrons transitioning to the conduction band become metastable when trapped by lattice defects, so that the excited state is maintained. On the other hand, holes are generated in the valence band because electrons are lost. When the excited photostimulable crystal is irradiated with light of a specific wavelength, the electrons in the conduction band return to the valence band, and the electrons and holes combine to produce a light emission phenomenon. The emission intensity of this luminescence phenomenon depends on the amount of excited electrons, and the excitation by radiation irradiation is a stochastic event, so the number of excited electrons increases as the radiation dose increases. Therefore, by examining the emission intensity from the photostimulable crystal, the radiation dose applied to the photostimulable crystal can be determined. Moreover, since the radiation dose to the photostimulable crystal is determined by the radiation intensity and the irradiation time, the radiation intensity can be derived from the emission intensity and the irradiation time from the photostimulable crystal.

放射線を照射された光輝尽性結晶に光ファイバを介してレーザー光を照射し、光輝尽性結晶を発光させ、発生した光を同一または別の光ファイバを介して伝送し、その発光強度を調べることで、光輝尽性結晶から離れた位置において放射線強度を計測することが可能である。また、光輝尽性結晶が励起する過程で電源は不要であるため、光輝尽性結晶を設置した場所の周囲に電源を用意する必要がなく、電源や計測装置を設置することが困難な場所における放射線強度計測を行うことが可能である。   Radiation-irradiated photostimulable crystal is irradiated with laser light through an optical fiber, causing the photostimulable crystal to emit light, and the generated light is transmitted through the same or another optical fiber, and the emission intensity is examined. Thus, it is possible to measure the radiation intensity at a position away from the photostimulable crystal. In addition, since no power source is required during the process of exciting the photostimulable crystal, it is not necessary to prepare a power source around the location where the photostimulable crystal is installed, and in places where it is difficult to install a power source or measuring device. It is possible to measure radiation intensity.

光輝尽性結晶を用いて放射線強度分布を計測する技術として先行文献1の放射線強度計測装置がある。この装置は光輝尽性結晶を複数配置し、それぞれの設置位置での放射線強度を計測する装置である。この装置ではレーザー光源からのレーザー光を光分配装置により分配することで、レーザー光源および受光部を含む計測装置が一組あれば複数の光輝尽性結晶に照射された放射線強度を調べることが可能としている。   As a technique for measuring a radiation intensity distribution using a photostimulable crystal, there is a radiation intensity measuring apparatus disclosed in Prior Literature 1. This device is a device in which a plurality of photostimulable crystals are arranged and the radiation intensity at each installation position is measured. In this device, the laser light from the laser light source is distributed by the light distribution device, so that the radiation intensity irradiated to multiple photostimulable crystals can be examined with a single measuring device including the laser light source and the light receiving unit. It is said.

このような技術は例えば、特開平11−23749号公報に記載されている。   Such a technique is described, for example, in JP-A-11-23749.

特開平11−23749号公報JP 11-23749 A

光輝尽性結晶と光ファイバによる放射線強度計測では、光輝尽性結晶や光ファイバが劣化する。劣化の原因には放射線照射に起因するものと経年劣化によるものがある。劣化が起こった場合、受光部で得られる光強度と光輝尽性結晶に照射された放射線強度の相関が変化するため、正しい放射線強度計測ができなくなる。同様に、光ファイバの設置環境の変化により、光の曲げ損失が変化した場合も受光部で得られる光強度と光輝尽性結晶に照射された放射線強度の相関が変化するため、正しい放射線強度計測ができなくなる。   In radiation intensity measurement using a photostimulable crystal and an optical fiber, the photostimulable crystal and the optical fiber deteriorate. There are two causes of deterioration, one due to radiation irradiation and the other due to aging. When the deterioration occurs, the correlation between the light intensity obtained at the light receiving portion and the radiation intensity irradiated to the photostimulable crystal changes, so that correct radiation intensity measurement cannot be performed. Similarly, when the bending loss of light changes due to changes in the installation environment of the optical fiber, the correlation between the light intensity obtained at the light receiving part and the radiation intensity irradiated to the photostimulable crystal changes, so the correct radiation intensity measurement Can not be.

また、光ファイバを介して離れた位置で制御している場合、光輝尽性結晶の設置位置での変化を直接観測できず、光輝尽性結晶の変化に気づき難い。この時、物理的な変化が光輝尽性結晶に発生していたとしても、気づくことができず、正しい放射線強度計測ができなくなる。   In addition, when the control is performed at a position away via the optical fiber, it is difficult to directly observe the change of the photostimulable crystal because the change at the installation position of the photostimulable crystal cannot be observed directly. At this time, even if a physical change occurs in the photostimulable crystal, it cannot be noticed, and correct radiation intensity measurement cannot be performed.

さらに、先行文献のように複数の光輝尽性結晶を用いる場合、光ファイバの設置環境によって、光の曲げ損失が発生し、受光部で得られる光強度に差異が生じるため、放射線強度と計測された光強度の相関が光輝尽性結晶の設置位置ごとに異なる。この問題は設置した時に光輝尽性結晶ごとに補正を行うことで初期の段階では問題とならないが、長期間の使用の間に、設置場所の環境や光ファイバの敷設に変化が発生した場合、補正値が正しくなくなるため、正しい放射線強度計測ができなくなる。同様に、光ファイバの劣化も光輝尽性結晶ごとに異なるタイミング、程度で起こるため、補正値が正しくなくなり、正しい放射線強度計測ができなくなる。   Furthermore, when using a plurality of photostimulable crystals as in the prior art, the bending loss of light occurs depending on the installation environment of the optical fiber, and the light intensity obtained at the light receiving part varies, so it is measured as the radiation intensity. The correlation of the light intensity varies depending on the position where the photoluminescent crystal is installed. This problem is not a problem at the initial stage by correcting each photoluminescent crystal when it is installed, but if there is a change in the environment of the installation site or the laying of the optical fiber during long-term use, Since the correction value is incorrect, correct radiation intensity measurement cannot be performed. Similarly, since the optical fiber is deteriorated at different timings and levels for each of the photostimulable crystals, the correction value becomes incorrect and correct radiation intensity measurement cannot be performed.

これらの原因により、光輝尽性結晶と光ファイバによる放射線強度計測装置は長期間使用した場合や複数箇所に設置した場合等で信頼性が低下する問題があった。   Due to these causes, there has been a problem that reliability of the radiation intensity measuring device using the photostimulable crystal and the optical fiber is lowered when used for a long period of time or when installed at a plurality of locations.

本発明は、劣化や環境の変化による発光強度の変化に可能な放射線強度計測装置及び放射線強度計測方法を提供する事を目的とする。   An object of the present invention is to provide a radiation intensity measuring device and a radiation intensity measuring method capable of changing a light emission intensity due to deterioration or environmental change.

上記目的を達成するために本発明では、受光部で計測された光のうち光輝尽性結晶の励起に起因しない成分を計測する計測装置を備えている。   In order to achieve the above object, the present invention includes a measuring device that measures a component that is not caused by excitation of the photostimulable crystal in the light measured by the light receiving unit.

本発明の装置では、劣化や環境の変化による発光強度の変化に対応できる。   The apparatus of the present invention can cope with changes in emission intensity due to deterioration and environmental changes.

放射線強度計測装置の全体図。The whole figure of a radiation intensity measuring device. 他の実施例を示す図。The figure which shows another Example. さらに他の実施例を示す図。The figure which shows another Example.

以下本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の好適な一実施例である実施例1の放射線強度計測装置を、図1を用いて説明する。   A radiation intensity measuring apparatus according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIG.

ここで、本実施例の基本的な考え方を説明する。
光輝尽性結晶の励起に起因しない成分は光源から受光部に至る過程での光の散乱や反射に起因しており、その強度は光ファイバの劣化や光の曲げ損失に依存する。従って、これらの成分を計測することで、光ファイバの劣化や光の曲げ損失の影響をモニタすることが可能である。また、受光部で得られる最初の光の成分は光輝尽性結晶の励起に起因しない光または、光輝尽性結晶の励起に起因しない光と光輝尽性結晶の励起に起因する光の混合成分となる。いずれにせよ、光強度の時間分布の立ち上がりには光輝尽性結晶の励起に起因しない光の成分が含まれる。光輝尽性結晶の励起に起因しない光の立ち上がり時間と光輝尽性結晶の励起に起因する光のピークの時間差は通常一定であるが、光輝尽性結晶の構造の変化によって、時間差に変化が生じる。このような現象は放射線照射による光輝尽性結晶の劣化や光輝尽性結晶の物理的な変化によって発生する。従って、光輝尽性結晶の励起に起因しない光の時間分布と光輝尽性結晶の励起に起因した光の時間分布を計測することで、光輝尽性結晶の変化をモニタすることが可能である。ここで言う時間差とは光輝尽性結晶の励起による光の発生の時間幅が長くなることも含んでいる。
Here, the basic concept of the present embodiment will be described.
The component not caused by excitation of the photostimulable crystal is caused by light scattering and reflection in the process from the light source to the light receiving part, and its intensity depends on optical fiber degradation and light bending loss. Therefore, by measuring these components, it is possible to monitor the effects of optical fiber degradation and light bending loss. In addition, the first light component obtained in the light receiving part is a light component not caused by excitation of the photostimulable crystal, or a mixed component of light caused by excitation of the photostimulable crystal and light caused by excitation of the photostimulable crystal. Become. In any case, the rise of the time distribution of the light intensity includes a light component not caused by excitation of the photostimulable crystal. The time difference between the rise time of light not caused by excitation of the photostimulable crystal and the time peak of light caused by excitation of the photostimulable crystal is usually constant, but the time difference changes due to the change in the structure of the photostimulable crystal. . Such a phenomenon occurs due to deterioration of the photostimulable crystal due to irradiation or physical change of the photostimulable crystal. Therefore, it is possible to monitor the change of the photostimulable crystal by measuring the time distribution of light not caused by excitation of the photostimulable crystal and the time distribution of light caused by excitation of the photostimulable crystal. The time difference mentioned here includes that the time width of light generation due to excitation of the photostimulable crystal becomes longer.

実施例1の放射線強度計測装置は、光輝尽性結晶1、レーザー光源2、受光部3、増幅器4、光分析装置5、励起光計測装置6、励起光解析装置7、非励起光計測装置8、非励起光解析装置9、出力用光ファイバ10、入力用光ファイバ11で構成される。   The radiation intensity measuring device of Example 1 includes a photostimulable crystal 1, a laser light source 2, a light receiving unit 3, an amplifier 4, an optical analysis device 5, an excitation light measurement device 6, an excitation light analysis device 7, and a non-excitation light measurement device 8. , A non-excitation light analyzing device 9, an output optical fiber 10, and an input optical fiber 11.

放射線照射により光輝尽性結晶1中の電子が励起される。前記励起された前記光輝尽性結晶1にレーザー光源2から入力用光ファイバ11を介してレーザー光が入射する。前記レーザー光は前記光輝尽性結晶1内の電子を基底状態に戻し、その時、励起光が前記光輝尽性結晶1から放出される。前記放出された励起光は出力用光ファイバ10を介して受光部3に入射し、電気信号に変換される。一方、前記レーザー光の成分の一部は前記レーザー光源2から前記受光部3に至る過程の前記入力用光ファイバ11、前記光輝尽性結晶1、前記出力用光ファイバ10で散乱および反射され、前記受光部3に入射し、電気信号に変換される。励起光に基づく電気信号および励起光に基づかない電気信号は共に増幅器4で増幅され光分析装置5で前記光輝尽性結晶1の励起に起因する信号と、前記光輝尽性結晶1の励起に起因しない信号とに分けられる。前記光輝尽性結晶1の励起に起因した信号は励起光計測装置6で計測され、励起光解析装置7で光強度の時間分布や波高分布が解析される。また、前記光輝尽性結晶1の励起に起因しない信号は非励起光計測装置8で計測され、非励起光解析装置9で解析される。   Electrons in the photostimulable crystal 1 are excited by irradiation. Laser light is incident on the excited photostimulable crystal 1 from the laser light source 2 through the input optical fiber 11. The laser light returns the electrons in the photostimulable crystal 1 to the ground state, and at that time, excitation light is emitted from the photostimulable crystal 1. The emitted excitation light enters the light receiving unit 3 through the output optical fiber 10 and is converted into an electric signal. On the other hand, a part of the component of the laser light is scattered and reflected by the input optical fiber 11, the photostimulable crystal 1, and the output optical fiber 10 in the process from the laser light source 2 to the light receiving unit 3, The light enters the light receiving unit 3 and is converted into an electric signal. Both the electrical signal based on the excitation light and the electrical signal not based on the excitation light are amplified by the amplifier 4 and are caused by the excitation of the photostimulable crystal 1 and the excitation of the photostimulable crystal 1 by the optical analyzer 5. It is divided into signals that do not. A signal resulting from the excitation of the photostimulable crystal 1 is measured by the excitation light measuring device 6, and the time distribution and the wave height distribution of the light intensity are analyzed by the excitation light analyzing device 7. Further, a signal not caused by excitation of the photostimulable crystal 1 is measured by the non-excitation light measuring device 8 and analyzed by the non-excitation light analyzing device 9.

実施例1の放射線強度計測装置を運用する際には、あらかじめ前記光輝尽性結晶1の励起に起因しない光の計測データを取得、解析し、該データと実測時の前記光輝尽性結晶1の励起に起因しない光の計測データと比較する。前記光ファイバに劣化や光の曲げ損失による光の減衰量の増加があった場合、前記光輝尽性結晶1の励起に起因しない光および前記光輝尽性結晶1の励起に起因した光の強度が減衰する。この時、前記光輝尽性結晶1の励起に起因しない光の減衰量から前記光輝尽性結晶1の励起に起因した光の減衰量を推定できる。前記あらかじめ取得した前記光輝尽性結晶1の励起に起因しない光の成分のデータはデータベース化して前記非励起光解析装置9の内部に組み込んでおいても良い。環境の変化としては、前記出力用光ファイバ10または前記入力用光ファイバ11の敷設状況の変化による光の曲げ損失の増減や前記出力用光ファイバ10または前記入力用光ファイバ11の放射線劣化、経年劣化が考えられる。   When the radiation intensity measuring apparatus of Example 1 is operated, measurement data of light not caused by excitation of the photostimulable crystal 1 is acquired and analyzed in advance, and the data and the photostimulable crystal 1 at the time of actual measurement are analyzed. Compare with measurement data of light not caused by excitation. When there is an increase in light attenuation due to deterioration or bending loss of light in the optical fiber, the intensity of light not caused by excitation of the photostimulable crystal 1 and light caused by excitation of the photostimulable crystal 1 are increased. Attenuates. At this time, the amount of light attenuation caused by the excitation of the photostimulable crystal 1 can be estimated from the amount of light attenuation not caused by the excitation of the photostimulable crystal 1. Data of light components not caused by excitation of the photostimulable crystal 1 obtained in advance may be stored in a database and incorporated in the non-excitation light analyzing device 9. Changes in the environment include increase / decrease in light bending loss due to changes in the laying condition of the output optical fiber 10 or the input optical fiber 11, radiation deterioration of the output optical fiber 10 or the input optical fiber 11, and aging. Deterioration is considered.

また、あらかじめ前記光輝尽性結晶1の励起に起因しない光の成分のデータを取得していなかったとしても、測回ごとの前記光輝尽性結晶1の励起に起因しない信号を比較することで、相対的な環境の変化をモニタすることは可能である。   Moreover, even if the data of the light component not resulting from the excitation of the photostimulable crystal 1 has not been acquired in advance, by comparing the signals not caused by the excitation of the photostimulable crystal 1 for each measurement, It is possible to monitor relative environmental changes.

さらに、前記光輝尽性結晶1の励起に起因しない信号から環境の変化による計測値の増減を演算して前記光輝尽性結晶1の励起に起因した信号の計測値に補正をかけることにより、環境の変化に依存することなく、放射線強度計測を行うことができる。この補正は、前記非励起光解析装置9の結果を前記励起光計測装置6にフィードバックさせることによって、自動的に行っても良い。   Further, by calculating the increase / decrease of the measured value due to the change of the environment from the signal not caused by the excitation of the photostimulable crystal 1 and correcting the measured value of the signal caused by the excitation of the photostimulable crystal 1, Radiation intensity measurement can be performed without depending on the change of. This correction may be automatically performed by feeding back the result of the non-excitation light analysis device 9 to the excitation light measurement device 6.

本発明の好適な一実施例である実施例2の放射線強度計測装置を、図2を用いて説明する。   A radiation intensity measuring apparatus according to embodiment 2, which is a preferred embodiment of the present invention, will be described with reference to FIG.

実施例2の放射線強度計測装置は、光輝尽性結晶1、レーザー光源2、受光部3、増幅器4、光分析装置5、励起光計測装置6、励起光解析装置7、非励起光計測装置8、非励起光解析装置9、出力用光ファイバ10、入力用光ファイバ11で構成される。   The radiation intensity measuring device of Example 2 includes a photostimulable crystal 1, a laser light source 2, a light receiving unit 3, an amplifier 4, an optical analyzer 5, an excitation light measuring device 6, an excitation light analyzing device 7, and a non-excitation light measuring device 8. , A non-excitation light analyzing device 9, an output optical fiber 10, and an input optical fiber 11.

光輝尽性結晶1の励起に起因する光と起因しない光を分けて解析する過程に関しては実施例1と同じである。   The process for analyzing separately the light caused by excitation of the photostimulable crystal 1 and the light not caused by the excitation is the same as in the first embodiment.

実施例2の放射線強度計測装置は、前記光輝尽性結晶1の励起に起因しない信号をタイミング信号として取り扱う。レーザー光源2から放出されたレーザー光の成分のうち最短で受光部3に入射する成分と前記光輝尽性結晶1の励起に起因する信号の最短で前記受光部3に入射する成分のタイミング差は装置の構成を変えない限り同じである。従って、前記光輝尽性結晶1の励起に起因しない信号の立ち上がり時刻を基準のタイミングとし、前記光輝尽性結晶1の励起に起因した成分の光強度の時間分布を計測することで、前記光輝尽性結晶1の励起に起因した成分の光強度の時間分布の変化を観測することができる。   The radiation intensity measuring apparatus according to the second embodiment handles a signal that is not caused by excitation of the photostimulable crystal 1 as a timing signal. The timing difference between the component of the laser light emitted from the laser light source 2 and the component that enters the light receiving unit 3 at the shortest and the component that enters the light receiving unit 3 at the shortest of the signal resulting from excitation of the photostimulable crystal 1 is as follows. The same as long as the configuration of the apparatus is not changed. Therefore, by measuring the time distribution of the light intensity of the component resulting from the excitation of the photoluminescent crystal 1 using the rise time of the signal not resulting from the excitation of the photoluminescent crystal 1 as a reference timing, The change in the time distribution of the light intensity of the component due to the excitation of the crystalline 1 can be observed.

図2では、前記光輝尽性結晶1に変化が無い時の光強度分布(光強度の時間分布)101と前記光輝尽性結晶1に変化があった時の光強度分布(光強度の時間分布)102を示している。前記光輝尽性結晶1に変化があった場合、時刻に対する光強度分布が相対的に遅い時刻に放出される。ここで言う遅いとは、立ち上がりタイミングが遅くなること、または励起光の放出時間が長くなることを意味している。また、ここで言う前記光輝尽性結晶1の変化とは、前記光輝尽性結晶1の劣化および物理的な変化である。従って、前記光輝尽性結晶1の励起に起因しない光による時間分布の立ち上がり時間を基準とした前記光輝尽性結晶1の励起に起因した光強度の時間分布の変化を解析することにより、前記光輝尽性結晶1の劣化および物理的な変化をモニタすることができる。この時、非励起光解析装置9によって前記光輝尽性結晶1の励起に起因しない信号の立ち上がり時刻を解析し、得られたタイミング信号を元に励起光解析装置7により前記光輝尽性結晶1の励起に起因した信号の時間分布を解析している。   In FIG. 2, the light intensity distribution (light intensity time distribution) 101 when there is no change in the photoluminescent crystal 1 and the light intensity distribution (time distribution of light intensity) when the photoluminescent crystal 1 is changed. ) 102. When the photoluminescent crystal 1 is changed, the light intensity distribution with respect to the time is emitted at a later time. The term “slow” here means that the rise timing is delayed or the emission time of the excitation light is lengthened. Moreover, the change of the said photostimulable crystal 1 said here is deterioration of the said photostimulable crystal 1, and a physical change. Therefore, by analyzing the change in the time distribution of the light intensity caused by the excitation of the photostimulable crystal 1 based on the rise time of the time distribution caused by the light not caused by the excitation of the photoluminescent crystal 1, The deterioration and physical change of the exhaustive crystal 1 can be monitored. At this time, the non-excitation light analyzing device 9 analyzes the rise time of the signal not caused by the excitation of the photostimulable crystal 1, and the excitation light analyzing device 7 uses the excitation light analyzing device 7 to analyze the photostimulable crystal 1. The time distribution of the signal due to excitation is analyzed.

また、励起した前記光輝尽性結晶1から放出される光強度の時間分布の変化に伴い、前記光輝尽性結晶1の光強度が減少する。従って、励起光解析算装置7で、光強度の時間分布の変化に伴った光強度の補正値を算出し、励起光解析算装置7での計数値を補正する機能を有しても良い。   Further, the light intensity of the photostimulable crystal 1 decreases with the change of the time distribution of the light intensity emitted from the excited photostimulable crystal 1. Therefore, the excitation light analyzing / calculating device 7 may have a function of calculating a correction value of the light intensity according to a change in the time distribution of the light intensity and correcting the count value in the exciting light analyzing / calculating device 7.

本発明の好適な一実施例である実施例3の放射線強度計測装置を、図3を用いて説明する。   A radiation intensity measuring apparatus according to embodiment 3, which is a preferred embodiment of the present invention, will be described with reference to FIG.

実施例3の放射線強度計測装置は、複数の光輝尽性結晶1、レーザー光源2、受光部3、増幅器4、光分析装置5、励起光計測装置6、励起光解析装置7、非励起光計測装置8、非励起光解析装置9、複数の出力用光ファイバ10、複数の入力用光ファイバ11、入力用光分配装置21、出力用光分配装置22、非励起光演算装置31、放射線強度演算装置32で構成される。   The radiation intensity measuring apparatus of Example 3 includes a plurality of photostimulable crystals 1, a laser light source 2, a light receiving unit 3, an amplifier 4, an optical analyzer 5, an excitation light measurement apparatus 6, an excitation light analysis apparatus 7, and non-excitation light measurement. Device 8, non-pumping light analysis device 9, a plurality of output optical fibers 10, a plurality of input optical fibers 11, an input light distribution device 21, an output light distribution device 22, a non-pumping light calculation device 31, a radiation intensity calculation The device 32 is configured.

光輝尽性結晶1の励起に起因する光と起因しない光を分けて解析する過程に関しては実施例1と同じである。   The process for analyzing separately the light caused by excitation of the photostimulable crystal 1 and the light not caused by the excitation is the same as in the first embodiment.

実施例3の放射線強度計測装置は複数箇所の放射線強度を計測する構成である。放射線強度を計測する位置は光輝尽性結晶1の設置位置で決まる。本実施例では、光輝尽性結晶1、出力用光ファイバ10、入力用光ファイバ11以外は光輝尽性結晶1によらず共通のものを使用している。レーザー光源2から放出されるレーザー光は入力用光分配装置21によりそれぞれの光輝尽性結晶1にそれぞれの入力用光ファイバ11を介して順次伝送される。受光部3へ入射する光は出力用光分配装置22により、それぞれの光輝尽性結晶1ごとにそれぞれの出力用光ファイバ10を介して順次伝送される。二つの前記光分配装置は光輝尽性結晶1ごとに決まったチャンネルを持っているため、片方の前記光分配装置のチャンネルが切り替わるのと同時にもう一方の前記光分配装置のチャンネルが切り替わるように制御されている。共通の前記受光部3に光が入射する際に、他の光輝尽性結晶1に影響を与えない、または影響が無視できるほど軽微なのであれば、前記出力用光分配装置22は設けなくても良い。   The radiation intensity measuring apparatus according to the third embodiment is configured to measure the radiation intensity at a plurality of locations. The position where the radiation intensity is measured is determined by the installation position of the photostimulable crystal 1. In the present embodiment, a common material other than the photostimulable crystal 1 is used except for the photostimulable crystal 1, the output optical fiber 10, and the input optical fiber 11. Laser light emitted from the laser light source 2 is sequentially transmitted to the respective photostimulable crystals 1 by the input light distribution device 21 via the respective input optical fibers 11. The light incident on the light receiving unit 3 is sequentially transmitted by the output light distribution device 22 via each output optical fiber 10 for each photoluminescent crystal 1. Since the two light distribution devices have a predetermined channel for each of the photostimulable crystals 1, the channel of one of the light distribution devices is switched so that the channel of the other light distribution device is simultaneously switched. Has been. If the light is incident on the common light receiving unit 3 and does not affect the other photostimulable crystal 1, or if the influence is negligible, the output light distribution device 22 may not be provided. good.

本実施例のように光輝尽性結晶1が複数設置されている場合、それぞれの光輝尽性結晶1を設置する際の敷設の仕方や、設置後の環境の変化により、入力に対する出力の感度差が発生する可能性がある。この感度差を補正するために全ての光輝尽性結晶1の励起に起因しない信号を比較し、非励起光の信号強度が同等となるように補正値を非励起光演算装置31で演算して放射線強度演算装置32で全ての光輝尽性結晶1の励起に起因した計測値に対して補正する。ここで言う感度差とは、光の曲げ損失や光ファイバの劣化を含んだ光の伝送ロスのことである。   When a plurality of photostimulable crystals 1 are installed as in this embodiment, the difference in output sensitivity with respect to the input depends on the installation method when each photostimulable crystal 1 is installed and the environment after installation. May occur. In order to correct this sensitivity difference, signals that are not caused by excitation of all the photostimulable crystals 1 are compared, and a correction value is calculated by the non-excitation light calculation device 31 so that the signal intensity of the non-excitation light becomes equal. The radiation intensity calculation device 32 corrects the measurement values resulting from the excitation of all the photostimulable crystals 1. The sensitivity difference referred to here is light transmission loss including light bending loss and optical fiber deterioration.

1 光輝尽性結晶
2 レーザー光源
3 受光部
4 増幅器
5 光分析装置
6 励起光計測装置
7 励起光解析装置
8 非励起光計測装置
9 非励起光解析装置
10 出力用光ファイバ
11 入力用光ファイバ
21 入力用光分配装置
22 出力用光分配装置
31 非励起光演算装置
32 放射線強度演算装置
101、102 光強度分布
DESCRIPTION OF SYMBOLS 1 Photoluminescent crystal 2 Laser light source 3 Light-receiving part 4 Amplifier 5 Optical analyzer 6 Excitation light measurement device 7 Excitation light analysis device 8 Non-excitation light measurement device 9 Non-excitation light analysis device 10 Output optical fiber 11 Input optical fiber 21 Input light distribution device 22 Output light distribution device 31 Non-pumping light calculation device 32 Radiation intensity calculation devices 101 and 102 Light intensity distribution

Claims (13)

光輝尽性結晶から放出される光を計測するための受光部とを有し、前記光輝尽性結晶にレーザー光源からのレーザー光が照射されるものであって、前記受光部から伝送される前記光輝尽性結晶から放出された光を計測する計測装置を備えた放射線強度計測装置において、光輝尽性結晶の励起に起因しない光成分を計測する計測装置を備えたことを特徴とする放射線強度計測装置。   A light receiving unit for measuring light emitted from the photostimulable crystal, wherein the photoluminescent crystal is irradiated with laser light from a laser light source, and transmitted from the light receiving unit. Radiation intensity measurement apparatus comprising a measurement apparatus for measuring light emitted from a photostimulable crystal, comprising a measurement apparatus for measuring a light component not caused by excitation of the photostimulable crystal. apparatus. 請求項1に記載の放射線強度計測装置において、前記受光部で得られた光の出力に応じた信号を増幅する増幅器を備えたことを特徴とする放射線強度計測装置。   The radiation intensity measuring apparatus according to claim 1, further comprising an amplifier that amplifies a signal corresponding to an output of light obtained by the light receiving unit. 請求項1に記載の放射線強度計測装置において、前記レーザー光は光ファイバを介して前記光輝尽性結晶に照射され、前記光輝尽性結晶から放出される光は光ファイバを介して前記受光部に伝送されるものであり、光輝尽性結晶の励起に起因しない信号から光ファイバの劣化の影響や光の曲げ損失による光強度の変化を解析する解析装置を備えたことを特徴とする放射線強度計測装置。   2. The radiation intensity measuring apparatus according to claim 1, wherein the laser light is applied to the photostimulable crystal through an optical fiber, and light emitted from the photostimulable crystal is applied to the light receiving unit through the optical fiber. Radiation intensity measurement characterized by an analysis device that analyzes the change in light intensity due to optical fiber degradation and light bending loss from signals transmitted and not caused by excitation of the photostimulable crystal apparatus. 請求項3に記載の放射線強度計測装置において、光輝尽性結晶の励起に起因した信号を解析する装置が、光輝尽性結晶の励起に起因しない信号の解析から演算された補正値によって補正される機能を有することを特徴とする放射線強度計測装置。   4. The radiation intensity measuring apparatus according to claim 3, wherein the apparatus for analyzing the signal caused by excitation of the photostimulable crystal is corrected by a correction value calculated from the analysis of the signal not caused by excitation of the photostimulable crystal. A radiation intensity measuring device having a function. 請求項1に記載の放射線強度計測装置において、光輝尽性結晶の励起に起因しない光および光輝尽性結晶の励起に起因した光の強度の時刻分布を解析する解析装置を備えたことを特徴とする放射線強度計測装置。   The radiation intensity measuring apparatus according to claim 1, further comprising an analysis device for analyzing a time distribution of light not caused by excitation of the photostimulable crystal and light caused by excitation of the photostimulable crystal. Radiation intensity measuring device. 請求項5に記載の放射線強度計測装置において、光輝尽性結晶の励起に起因しない光の時間分布を用いて光輝尽性結晶の励起に起因した光が受光部に到達する時間の広がりの変化を解析する解析装置を備えたことを特徴とする放射線強度計測装置。   6. The radiation intensity measuring apparatus according to claim 5, wherein a time distribution of light not caused by excitation of the photostimulable crystal is used to change a time spread in which light caused by excitation of the photostimulable crystal reaches the light receiving part. A radiation intensity measuring device comprising an analyzing device for analysis. 請求項5に記載の放射線強度計測装置において、光輝尽性結晶の励起に起因しない光の時間分布を用いて光輝尽性結晶の励起に起因した光が受光部に到達する時間の遅れを解析する解析装置を備えたことを特徴とする放射線強度計測装置。   6. The radiation intensity measuring apparatus according to claim 5, wherein the time delay of the light due to excitation of the photostimulable crystal reaching the light receiving part is analyzed using the time distribution of light not caused by excitation of the photostimulable crystal. A radiation intensity measuring device comprising an analyzing device. 請求項5から請求項7に記載の放射線強度計測装置において、光輝尽性結晶の励起に起因した信号を解析する装置が、光輝尽性結晶の励起に起因した光の時間分布の変化から演算された補正値によって補正される機能を有することを特徴とする放射線強度計測装置。   8. The radiation intensity measuring apparatus according to claim 5, wherein an apparatus for analyzing a signal caused by excitation of a photostimulable crystal is calculated from a change in time distribution of light caused by excitation of the photostimulable crystal. A radiation intensity measuring device having a function corrected by the correction value. 請求項1に記載の放射線強度計測装置において、光輝尽性結晶としてBaFBrを用いたことを特徴とする放射線強度計測装置。   The radiation intensity measuring apparatus according to claim 1, wherein BaFBr is used as the photostimulable crystal. 請求項1に記載の放射線強度計測装置において、光輝尽性結晶としてAl23を用いたことを特徴とする放射線強度計測装置。 The radiation intensity measuring apparatus according to claim 1, wherein Al 2 O 3 is used as the photostimulable crystal. 請求項1から請求項9のいずれかに記載の放射線強度計測装置において、光輝尽性結晶の代わりに光輝尽性物質を塗布した支持板を用いることを特徴とする放射線強度計測装置。   The radiation intensity measuring apparatus according to any one of claims 1 to 9, wherein a support plate coated with a photostimulable substance is used instead of the photostimulable crystal. 複数の光輝尽性結晶と、レーザー光源と、前記レーザー光源の光を分配する光分配装置と、前記分配された光を前記複数の光輝尽性結晶に伝送する複数の光ファイバと、前記光輝尽性結晶から放出されて光ファイバを介して伝送された光を計測するための共通の受光部と、前記受光部からの光を計測する計測装置と光輝尽性結晶の励起に起因しない光成分を計測する計測装置を備えた放射線強度計測装置において、光輝尽性結晶の励起に起因しない光の強度の差異から、光輝尽性結晶間の感度差を補正する演算装置を備えたことを特徴とする放射線強度計測装置。   A plurality of photostimulable crystals, a laser light source, a light distribution device that distributes light from the laser light source, a plurality of optical fibers that transmit the distributed light to the plurality of photostimulable crystals, and the photostimulable crystal A common light receiving unit for measuring light emitted from the crystalline crystal and transmitted through the optical fiber, a measuring device for measuring the light from the light receiving unit, and a light component not caused by excitation of the photostimulable crystal A radiation intensity measuring device having a measuring device for measuring, comprising: an arithmetic device for correcting a sensitivity difference between photostimulable crystals from a difference in light intensity not caused by excitation of the photostimulable crystal. Radiation intensity measuring device. 光輝尽性結晶から放出される光を受光部で計測し、前記受光部からの光輝尽性結晶から放出された光を計測装置で計測し、光分析装置と光輝尽性結晶の励起に起因しない光成分を計測する放射線強度計測方法。   The light emitted from the photostimulable crystal is measured by the light receiving portion, the light emitted from the light stimulable crystal from the light receiving portion is measured by the measuring device, and is not caused by the excitation of the light analyzing device and the photostimulable crystal. A radiation intensity measurement method that measures light components.
JP2011284700A 2011-12-27 2011-12-27 Radiation intensity measuring device Active JP5792612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284700A JP5792612B2 (en) 2011-12-27 2011-12-27 Radiation intensity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284700A JP5792612B2 (en) 2011-12-27 2011-12-27 Radiation intensity measuring device

Publications (2)

Publication Number Publication Date
JP2013134158A true JP2013134158A (en) 2013-07-08
JP5792612B2 JP5792612B2 (en) 2015-10-14

Family

ID=48910948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284700A Active JP5792612B2 (en) 2011-12-27 2011-12-27 Radiation intensity measuring device

Country Status (1)

Country Link
JP (1) JP5792612B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655593A (en) * 2015-01-21 2015-05-27 中国科学院广州地球化学研究所 Pulse-excitation-based optically stimulated luminescence measurement and control device
CN111316131A (en) * 2017-11-07 2020-06-19 图尔库大学 Determining the amount of a predetermined type of radiation impinging on the sensor material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444990B (en) * 2015-11-04 2018-01-02 中国电子科技集团公司第四十一研究所 A kind of dynamic corrections device and method of test light insertion loss and Optical Return Loss

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165641A (en) * 1984-02-08 1985-08-28 Konishiroku Photo Ind Co Ltd Flaw detector of radiation picture information reader
JPH03279933A (en) * 1990-03-28 1991-12-11 Fuji Photo Film Co Ltd Radiation image reader
JP2010008468A (en) * 2008-06-24 2010-01-14 Fujifilm Corp Radiographic image reading apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165641A (en) * 1984-02-08 1985-08-28 Konishiroku Photo Ind Co Ltd Flaw detector of radiation picture information reader
JPH03279933A (en) * 1990-03-28 1991-12-11 Fuji Photo Film Co Ltd Radiation image reader
JP2010008468A (en) * 2008-06-24 2010-01-14 Fujifilm Corp Radiographic image reading apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655593A (en) * 2015-01-21 2015-05-27 中国科学院广州地球化学研究所 Pulse-excitation-based optically stimulated luminescence measurement and control device
CN111316131A (en) * 2017-11-07 2020-06-19 图尔库大学 Determining the amount of a predetermined type of radiation impinging on the sensor material
CN111316131B (en) * 2017-11-07 2021-07-02 图尔库大学 Determining the amount of a predetermined type of radiation impinging on the sensor material
US11079498B2 (en) 2017-11-07 2021-08-03 Turun Yliopisto Determining the amount of a predetermined type of radiation irradiated on a sensor material

Also Published As

Publication number Publication date
JP5792612B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
CA2711223C (en) Methods and systems for extending the range of fiber optic distributed temperature sensing (dts) systems
KR101729663B1 (en) Apparatus and method for managing performance of random number generator based on quantum shot noise
EP3141880B1 (en) Fiber measurement with pulse shaping
JP5792612B2 (en) Radiation intensity measuring device
US20160258808A1 (en) Distributed optical sensing devices and methods performing a measurement
KR20170048412A (en) Time measurement device, time measurement method, light-emission-lifetime measurement device, and light-emission-lifetime measurement method
WO2017029791A1 (en) Concentration measurement device
UA125139C2 (en) System for controlling operation of the x-ray fluorescence system for detecting materials, x-ray fluorescence system detecting materials and method for sample measuring for material identification with the use of x-ray fluorescence
EP3278143B1 (en) Detector and method of operation
KR101524453B1 (en) A Scintillation Detector with Temperature Compensation Funtion and Control Method thereof
JP6454020B2 (en) System and method for minimizing non-random fixed patterns of spectrometers
Gras et al. Optimization of the LHC beam current transformers for accurate luminosity determination
JP6012171B2 (en) Radiation monitor and method for monitoring radiation dose
JP2005114528A (en) Device for measuring fluorescence lifetime
Marechal et al. Design, development, and operation of a fiber-based Cherenkov beam loss monitor at the SPring-8 Angstrom Compact Free Electron Laser
US20200072681A1 (en) Temperature measurement apparatus, temperature measurement method, and storage medium
US20130208762A1 (en) Suppression of Stimulated Raman Scattering
CN107631796B (en) A kind of fibre optic rediation monitoring device and monitoring method
RU2367978C1 (en) Method for calibration of scintillation circuit
WO2021192358A1 (en) Optical fiber-type radiation monitor and method of using same
US20230314216A1 (en) Pulsed-light spectroscopic device
Siksin Measurement of the Bragg Peak Depth by a Digital Imaging Detector and PPC-40 Ionization Camera
KR20150078862A (en) Apparatus for sensing laser
JP2001083254A (en) Optical fiber-type radiation detecting apparatus
Joram et al. Comparative Measurements of the Photon Detection Efficiency of KETEK SiPM Detectors for the LHCb SciFi Upgrade Project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R151 Written notification of patent or utility model registration

Ref document number: 5792612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151