JP2013133322A - Oxidized ldl binding inhibitor composition - Google Patents

Oxidized ldl binding inhibitor composition Download PDF

Info

Publication number
JP2013133322A
JP2013133322A JP2011285615A JP2011285615A JP2013133322A JP 2013133322 A JP2013133322 A JP 2013133322A JP 2011285615 A JP2011285615 A JP 2011285615A JP 2011285615 A JP2011285615 A JP 2011285615A JP 2013133322 A JP2013133322 A JP 2013133322A
Authority
JP
Japan
Prior art keywords
oxidized ldl
ldl binding
inhibitor composition
binding inhibitor
lox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285615A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shinke
康弘 新家
Satoshi Doi
聡 土井
Akinobu Kuzumi
明宣 來住
Taiji Matsukawa
泰治 松川
Takeki Matsui
雄毅 松居
Yasumasa Yamada
泰正 山田
Ichiro Yamada
一郎 山田
Tatsuya Sawamura
達也 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uha Mikakuto Co Ltd
National Cerebral and Cardiovascular Center
Original Assignee
Uha Mikakuto Co Ltd
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uha Mikakuto Co Ltd, National Cerebral and Cardiovascular Center filed Critical Uha Mikakuto Co Ltd
Priority to JP2011285615A priority Critical patent/JP2013133322A/en
Publication of JP2013133322A publication Critical patent/JP2013133322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cardiovascular disease prophylactic or therapeutic agent.SOLUTION: This oxidized LDL binding inhibitor consists of a compound represented by formula (2), for example. When using the oxidized LDL binding inhibitor composition, binding of oxidized LDL to LOX-1 is inhibited, and uptake of the oxidized LDL via the LOX-1 to the inside of cells such as a vascular endothelial cell, a macrophage, and a smooth muscle cell can be inhibited.

Description

本発明は、レクチン様酸化低密度リポ蛋白質受容体であるLOX−1への酸化LDLの結合を阻害する薬剤組成物、及び該酸化LDL結合阻害剤組成物を含有する食品組成物、並びに心血管病又は癌の予防又は治療薬に関する。   The present invention relates to a pharmaceutical composition that inhibits the binding of oxidized LDL to LOX-1, which is a lectin-like oxidized low-density lipoprotein receptor, a food composition containing the oxidized LDL binding inhibitor composition, and cardiovascular The present invention relates to a preventive or therapeutic agent for diseases or cancer.

近年、日本をはじめとする東アジアでは急激な社会の高齢化が進んでいる。さらに、医療技術の向上、国民の長寿化に伴い、医療費の中心は従来の急性疾患より、慢性疾患の治療へとシフトしつつある。   In recent years, the aging of society has been rapidly progressing in East Asia including Japan. Furthermore, with the improvement of medical technology and the longevity of the people, the center of medical expenses is shifting to the treatment of chronic diseases rather than the conventional acute diseases.

日本国厚生労働省の最近の人口動態統計によると、日本における疾患別死亡者の1位が悪性新生物(腫瘍及び癌)、2位が心疾患、3位が脳血管疾患となっているが、心疾患と脳血管疾患による死亡者の合計は全体の約27%であり、これは悪性新生物の死亡者割合である約30%にほぼ匹敵する(平成20年(2008年))。悪性新生物の対処方法に関しては、その発症プロセスから考慮すると早期発見・早期治療が重要であり、臨床学的なアプローチが望ましいとされる。一方、心疾患・脳血管疾患については、生活習慣病に起因する、慢性的な疾患である肥満症・動脈硬化症の下流に位置する疾患であり、その治療も長期間わたるものである。つまり、先に述べたように医療出費の中心が慢性疾患の治療へとシフトしていることが統計的にも現れている。   According to the recent demographic statistics of the Ministry of Health, Labor and Welfare of Japan, the number one death in Japan by disease is malignant neoplasm (tumor and cancer), second is heart disease, and third is cerebrovascular disease. The total number of deaths due to heart disease and cerebrovascular disease is about 27% of the total, which is roughly equivalent to the death rate of malignant neoplasms, about 30% (2008). As for coping with malignant neoplasm, early detection / early treatment is important considering the onset process, and clinical approach is desirable. On the other hand, heart diseases and cerebrovascular diseases are diseases that are located downstream of obesity and arteriosclerosis, which are chronic diseases caused by lifestyle-related diseases, and their treatment also lasts for a long time. In other words, as mentioned above, it is statistically shown that the center of medical expenses has shifted to the treatment of chronic diseases.

慢性的な疾患に対しては治療法として、長期投薬による治療と日常生活習慣への指導という形での対処法が一般的であるが、疾患の特性から、日常的に摂取可能な形態を用いる食品からの予防学的なアプローチが可能なプロセスであり、むしろ、このようなプロセスでの対処方法が望ましい。   For chronic illnesses, treatment in the form of treatment with long-term medication and guidance on daily living habits is common, but due to the nature of the disease, use a form that can be taken on a daily basis It is a process that allows for a preventive approach from food, but rather how to deal with such a process is desirable.

心筋梗塞をはじめとする虚血性心疾患の危険因子として、低密度リポタンパク質(LDL)が知られている。元来LDLは血漿脂質の運搬に必要な脂質蛋白質複合体であるが、酸化を受け易い不飽和脂肪酸を多く含み、容易に酸化的修飾を受ける。この酸化型のLDL(酸化LDL)が血管内皮細胞の機能変化を引き起こし、病的生理活性を担う重要な因子であることが近年わかりつつある。   Low density lipoprotein (LDL) is known as a risk factor for ischemic heart diseases including myocardial infarction. LDL is originally a lipid protein complex necessary for the transport of plasma lipids, but it contains a lot of unsaturated fatty acids that are susceptible to oxidation and is easily oxidatively modified. In recent years, it has been found that this oxidized LDL (oxidized LDL) causes a change in the function of vascular endothelial cells and is an important factor responsible for pathophysiological activity.

酸化LDLによる血管内皮細胞への作用を媒介する受容体として、レクチン様酸化低密度リポ蛋白質受容体(LOX−1)が本発明者の一人である沢村 達也氏により血管内皮細胞より初めて分離同定された(非特許文献1)。その後の研究により、LOX−1は内皮細胞のみならず、マクロファージ、血小板、血管平滑筋細胞などにおいても発現が確認されている(非特許文献2〜4)。
LOX−1の発現は、糖尿病、高血圧、高脂血症などで増加しており、また、沢村 達也氏により作成された抗LOX−1抗体(抗ヒトLOX−1マウスモノクローナル抗体TS92)は酸化LDLとLOX−1との結合を阻害することにより酸化LDLによる内皮依存性弛緩反応の低下を回復し、さらに、心筋梗塞後の梗塞巣の形成やバルーン傷害後の血管内膜肥厚を抑制する。血栓の形成や、エンドトキシン起因性炎症作用、脳卒中の発症にもLOX−1の関与が示唆されており、LOX−1が心血管病の発症において様々なレベルで関与していることが想定されている(非特許文献2、5〜10)。
A lectin-like oxidized low-density lipoprotein receptor (LOX-1) was first isolated and identified from vascular endothelial cells by one of the inventors as a receptor that mediates the action of oxidized LDL on vascular endothelial cells. (Non-Patent Document 1). Subsequent studies have confirmed that LOX-1 is expressed not only in endothelial cells but also in macrophages, platelets, vascular smooth muscle cells, and the like (Non-Patent Documents 2 to 4).
The expression of LOX-1 is increased due to diabetes, hypertension, hyperlipidemia and the like, and anti-LOX-1 antibody (anti-human LOX-1 mouse monoclonal antibody TS92) prepared by Tatsuya Sawamura is oxidized LDL. Inhibition of the binding between LOX-1 and LOX-1 restores the decrease in endothelium-dependent relaxation by oxidized LDL, and further suppresses infarct formation after myocardial infarction and intimal thickening after balloon injury. The involvement of LOX-1 has also been suggested in the formation of blood clots, endotoxin-induced inflammatory effects, and the development of stroke, and it is assumed that LOX-1 is involved at various levels in the development of cardiovascular disease (Non-Patent Documents 2, 5 to 10).

例えば、LOX−1へのリガンドの結合を阻害することを目的とした発明は本発明者の一人である沢村 達也氏より酸化LDL受容体に対する抗体を利用した医薬組成物が報告されている(特許文献1)。   For example, an invention aimed at inhibiting the binding of a ligand to LOX-1 has been reported by Tatsuya Sawamura, one of the inventors of the present invention, as a pharmaceutical composition using an antibody against an oxidized LDL receptor (patent) Reference 1).

一方、慢性疾患の一つである動脈硬化症に対する効能を主張する化合物について、これまでに報告がされている。例えば、特許文献2ではプロアントシアニジンを含む血栓形成抑制剤又は血小板凝集抑制剤を報告しており、また、本発明者の一人である沢村達也氏もLOX−1アンタゴニスト活性を有するポリフェノールとしてプロアントシアニジンを報告している(特許文献3)が、プロアントシアニジンは複数のフラボノイド単位が重合した縮合型タンニンであり、分子量が比較的大きいものである。これら高分子化合物は効能が見られたとしても特に経口からの摂取では有効成分の吸収面において非常に効率が悪く、事実、確実なに効果を発現するには、実施例のマウスの結果から換算して、成人男性60kgに対しては一日24gの有効成分を含む血栓形成抑制剤又は血小板凝集抑制剤を摂取し続ける必要がある。また、プロアントシアニジンについては血糖若しくは血圧の上昇を抑制する効果、血中アディポネクチン濃度上昇効果などの報告もなされている(特許文献4,5)。また、動脈硬化症において発生の見られる線維性肥厚を防ぐ目的で没食子酸エステルの有効量を含む線維化抑制剤の報告も存在する(特許文献6)。しかしながら、特許文献6には没食子酸とフラボノイドとのエステルについて記載されているものの、この化合物とLOX−1との関連については記載がなく不明である。   On the other hand, there have been reports so far on compounds that claim efficacy against arteriosclerosis, which is one of chronic diseases. For example, Patent Document 2 reports a thrombus formation inhibitor or platelet aggregation inhibitor containing proanthocyanidins, and Tatsuya Sawamura, one of the present inventors, also used proanthocyanidins as polyphenols having LOX-1 antagonist activity. As reported (Patent Document 3), proanthocyanidins are condensed tannins in which a plurality of flavonoid units are polymerized, and have a relatively large molecular weight. Even if these macromolecular compounds are effective, they are very inefficient in terms of absorption of active ingredients, especially when taken orally. Thus, it is necessary to continuously take a thrombus formation inhibitor or a platelet aggregation inhibitor containing 24 g of an active ingredient per day for 60 kg of an adult male. In addition, with regard to proanthocyanidins, reports have been made of an effect of suppressing an increase in blood sugar or blood pressure, an effect of increasing blood adiponectin concentration, etc. (Patent Documents 4 and 5). There is also a report of a fibrosis inhibitor containing an effective amount of a gallate ester for the purpose of preventing fibrotic thickening that occurs in arteriosclerosis (Patent Document 6). However, although Patent Document 6 describes an ester of gallic acid and a flavonoid, there is no description about the relationship between this compound and LOX-1, and it is unclear.

また、フラボノイドの一種であるカテキンやエピカテキンによる血管系機能改善も報告されている(特許文献7)が、特許文献7において言及されているカテキンやエピカテキンの没食子酸エステル化合物についてはLOX−1との関連性について詳細な検討が実施されていない。加えて、フラボノイドは鉄イオンや銅イオンなどの金属イオンとキレートを形成することでラジカルの形成やその伝播を抑制する(非特許文献11、12)ことが知られているが、キレートを形成したフラボノイドが受容体へ作用する報告は見られない。   Moreover, although vascular system function improvement by catechin and epicatechin which are 1 type of flavonoids is also reported (patent document 7), about the gallate ester compound of catechin and epicatechin mentioned in patent document 7, it is LOX-1. A detailed study has not been conducted on the relationship between In addition, flavonoids are known to suppress the formation and propagation of radicals by forming chelates with metal ions such as iron ions and copper ions (Non-Patent Documents 11 and 12). There are no reports of flavonoids acting on the receptors.

その他、没食子酸エステルを含有する物としての緑茶の抽出物と動脈硬化に関する報告がいくつかなされているが、LOX−1との関連性については一切の検討がなされていない。例えば、血清コレステロール値を低下させる効果を特許文献8〜11などで報告されているが、いずれも、腸管でのコレステロールの吸収を阻害することを目的としており、そもそも、ヒトを含む動物は自身にコレステロール合成経路を持ち合わせる中、腸管でのコレステロールの吸収を阻害することでの動脈硬化効果は非常に限定的であると推測される。   In addition, although some reports have been made on the extract of green tea as a substance containing gallic acid ester and arteriosclerosis, no investigation has been made on the relationship with LOX-1. For example, Patent Documents 8 to 11 and the like have reported the effect of lowering serum cholesterol levels, and all of them are intended to inhibit the absorption of cholesterol in the intestinal tract. While having a cholesterol synthesis pathway, the arteriosclerotic effect by inhibiting the absorption of cholesterol in the intestine is presumed to be very limited.

加えて、近年、血中コレステロール値と動脈硬化の因果関係について、日本脂質栄養学会が従来の見解と異なった新たなガイドラインを発表するなど(非特許文献13)、必ずしも血中コレステロール値の低下が動脈硬化の予防、更には心血管病の根源的な予防の効果があるとは言い切れていないのが現状である。   In addition, in recent years, regarding the causal relationship between blood cholesterol level and arteriosclerosis, the Japan Society for Lipid Nutrition has published a new guideline that is different from the conventional view (Non-patent Document 13). At present, it cannot be said that there is an effect of preventing arteriosclerosis and further fundamentally preventing cardiovascular disease.

特開2010−180212号公報JP 2010-180212 A 特開2004−238289号公報JP 2004-238289 A 特開2011−006326号公報JP 2011-006326 A 特開2003−212783号公報JP 2003-212783 A 特開2006−182706号公報JP 2006-182706 A 特開平5−271067号公報Japanese Patent Laid-Open No. 5-271667 特表2009−501161号公報JP-T 2009-501161 特開昭60−156614号公報JP-A-60-156614 特開昭62−30711号公報JP-A-62-30711 特許第2812682号公報Japanese Patent No. 2812682 特開2004−262927号公報JP 2004-262927 A

Sawamura T, et al., Nature, 386:73 ‐77,(1997)Sawamura T, et al. , Nature, 386: 73-77, (1997). Chen M, et al., Biochem Biophys Re s Commun, 282:153‐158 (2001)Chen M, et al. , Biochem Biophys Res Commun, 282: 153-158 (2001). Kataoka H, et al., Arterioscler Th romb Vasc Biol, 21:955‐960(2001)Kataoka H, et al. , Arterioscler Throm Vasc Biol, 21: 955-960 (2001). Yoshida H, et al., Biochem J, 334: 9‐13(1998)Yoshida H, et al. , Biochem J, 334: 9-13 (1998). Mehta JL, et al., Cir Res 100(11)1 634‐1642(2007)Mehta JL, et al. , Cir Res 100 (11) 1 634-1642 (2007) Li et al., J.Pharmacol. Exp. Ther. , 302:601‐605(2002)Li et al. , J. et al. Pharmacol. Exp. Ther. , 302: 601-605 (2002) Hinagata et al., Cardiovasc Res, 6 9:263‐271(2006)Hinagata et al. , Cardiovasc Res, 6 9: 263-271 (2006). Kakutani M., et al., Proc Natl Aca d Sci USA. 97:360‐364(2000)Kakutani M. et al. , Et al. Proc Natl Aca d Sci USA. 97: 360-364 (2000) Honjo M., et al., Proc Natl Acad S ci USA. 100:1274‐1279(2003)Honjo M. , Et al. Proc Natl Acad S ci USA. 100: 1274-1279 (2003) Inoue N., et al., Clin Chem. 2010 Apr;56(4):550‐558Inoue N. , Et al. , Clin Chem. 2010 Apr; 56 (4): 550-558. Pietta PG,J Nat Prod. 2000, 63, 1 035−1042Pietta PG, J Nat Prod. 2000, 63, 1 035-1042 Heather A. Hirsch, et al., Cancer Cell, 17, 348‐361(2010)Heater A. Hirsch, et al. , Cancer Cell, 17, 348-361 (2010) 長寿のためのコレステロールガイドライン2010年度版 中日出版社Cholesterol Guidelines for Longevity 2010 Edition Chunichi Publisher

本発明は、上記の背景技術を鑑みてなされたものであり、心血管病の根源的な予防、治療を目標とし、血管内皮細胞、マクロファージなどで発現されている酸化LDL受容体であるLOX-1と酸化LDL及びその他LOX−1とリガンドとの結合を阻害する、安全性が高い薬剤組成物、該組成物を含有する心血管病予防薬又は治療薬及び食品組成物を提供することを課題とする。   The present invention has been made in view of the above-mentioned background art, and aims at the fundamental prevention and treatment of cardiovascular disease, and is an oxidized LDL receptor expressed by vascular endothelial cells, macrophages and the like. PROBLEM TO BE SOLVED: To provide a highly safe pharmaceutical composition that inhibits binding of 1 to oxidized LDL and other LOX-1 and a ligand, a cardiovascular disease preventive or therapeutic agent containing the composition, and a food composition And

本発明者らは、上記課題を解決するために、様々な天然物よりLOX−1の酸化LDL結合能を阻害する成分を鋭意探索した。その結果、フラボノイド没食子酸エステルの中より、本目的の作用の強い化合物を発見し、さらに、2価の遷移金属イオン化合物がフラボノイド没食子酸エステルの結合阻害活性の強化に必須であることを見出し、本発明が完成するに至った。   In order to solve the above-mentioned problems, the present inventors diligently searched for components that inhibit the ability of LOX-1 to bind to oxidized LDL from various natural products. As a result, among the flavonoid gallate esters, a compound with a strong action of this purpose was discovered, and further, a divalent transition metal ion compound was found to be essential for enhancing the binding inhibitory activity of flavonoid gallate esters, The present invention has been completed.

すなわち、本発明の要旨は、
〔1〕下記式(1):
That is, the gist of the present invention is as follows.
[1] The following formula (1):

Figure 2013133322
Figure 2013133322

(式中、R1〜R4はH又は−CH3、R5〜R8はH、−OH又は−OCH3であり、R1〜R4はそれぞれ同一の基であっても、或いは異なった基でもよく、R5〜R8はそれぞれ同一の基であっても、或いは異なった基でもよい。)
で示されるフラボノイド没食子酸エステルと、2価の遷移金属イオン化合物とを含有する酸化LDL結合阻害剤組成物、
〔2〕前記式(1)において、R1、R4がHである前記〔1〕記載の酸化LDL結合阻害剤組成物、
〔3〕前記フラボノイド没食子酸エステルが下記式(2):
(In the formula, R 1 to R 4 are H or —CH 3 , R 5 to R 8 are H, —OH or —OCH 3 , and R 1 to R 4 may be the same group or different. And R 5 to R 8 may be the same group or different groups.)
An oxidized LDL binding inhibitor composition comprising a flavonoid gallate ester represented by formula (II) and a divalent transition metal ion compound,
[2] The oxidized LDL binding inhibitor composition according to [1], wherein R 1 and R 4 are H in the formula (1),
[3] The flavonoid gallate is represented by the following formula (2):

Figure 2013133322
Figure 2013133322

で示されるエピカテキンガレート(ECg)び/又は下記式(3): Epicatechin gallate (ECg) and / or the following formula (3):

Figure 2013133322
Figure 2013133322

で示されるカテキンガレート(Cg)である前記〔1〕又は〔2〕記載の酸化LDL結合阻害剤組成物、 The oxidized LDL binding inhibitor composition according to the above [1] or [2], which is a catechin gallate (Cg) represented by:

〔4〕前記2価の遷移金属イオンが、鉄イオン又は銅イオンである前記〔1〕〜〔3〕いずれかに記載の酸化LDL結合阻害剤組成物、
〔5〕前記〔1〕〜〔4〕いずれかに記載の酸化LDL結合阻害剤組成物を含有する心血管病予防又は治療薬、
〔6〕前記〔1〕〜〔4〕いずれかに記載の酸化LDL結合阻害剤組成物を含有する食品組成物、
に関する。
[4] The oxidized LDL binding inhibitor composition according to any one of [1] to [3], wherein the divalent transition metal ion is an iron ion or a copper ion,
[5] A preventive or therapeutic agent for cardiovascular disease comprising the oxidized LDL binding inhibitor composition according to any one of [1] to [4],
[6] A food composition containing the oxidized LDL binding inhibitor composition according to any one of [1] to [4],
About.

なお、本発明において、酸化LDL結合阻害作用は、レクチン様酸化低密度リポ蛋白質受容体であるLOX-1への酸化LDLの結合を阻害する作用を意味し、具体的には、後述の実施例に記載のような方法で酸化LDL結合阻害作用を評価する。   In the present invention, the oxidized LDL binding inhibitory action means the action of inhibiting the binding of oxidized LDL to LOX-1 which is a lectin-like oxidized low density lipoprotein receptor, and specifically, Examples described later The method for inhibiting oxidized LDL binding is evaluated by the method as described in 1).

また、本発明において、心血管病としては、心臓・血管における疾患を意味しており、例えば、脳卒中、心筋梗塞、血栓症疾患、炎症性疾患などが挙げられる。   In the present invention, the cardiovascular disease means a disease in the heart and blood vessels, and examples thereof include stroke, myocardial infarction, thrombotic disease, inflammatory disease and the like.

本発明の酸化LDL結合阻害剤組成物を用いることで、LOX−1への酸化LDLの結合を阻害して、LOX−1を介した酸化LDLの血管内皮細胞、マクロファージ、平滑筋細胞などの細胞内への取り込みを阻害することができる。また、酸化LDL結合阻害剤組成物の有効成分である式(1)で示されるフラボノイド没食子酸エステルの優れた加工適性から食品組成物や医薬品への応用が容易であり、安価且つ安全にLOX−1を介した心血管病を治療又は予防するという効果が奏される。   By using the oxidized LDL binding inhibitor composition of the present invention, binding of oxidized LDL to LOX-1 is inhibited, and cells such as vascular endothelial cells, macrophages, smooth muscle cells of oxidized LDL via LOX-1 Uptake into the body can be inhibited. In addition, the excellent processability of the flavonoid gallate ester represented by the formula (1), which is an active ingredient of an oxidized LDL binding inhibitor composition, is easy to apply to food compositions and pharmaceuticals, and is inexpensive and safe. The effect of treating or preventing cardiovascular disease via 1 is exhibited.

図1は、実施例1における、ECg及び各金属イオンの存在下のhLOX−1タンパク質(ヒト由来組換え型LOX−1タンパク質)に対する酸化LDL結合阻害能の結果を示すグラフである。縦軸は化合物未添加の場合の酸化LDL結合能を100とした場合の、各化合物が有する酸化LDL結合阻害能の相対値を示す。相対値が低いほど酸化LDL結合阻害能が高いことを示す。FIG. 1 is a graph showing the results of the ability to inhibit oxidized LDL binding to hLOX-1 protein (human-derived recombinant LOX-1 protein) in the presence of ECg and each metal ion in Example 1. The vertical axis shows the relative value of the oxidized LDL binding inhibitory ability of each compound when the oxidized LDL binding ability when no compound is added is 100. A lower relative value indicates a higher ability to inhibit oxidized LDL binding. 図2は、実施例2におけるECg及び2価遷移金属イオンの存在下でのhLOX−1に対する酸化LDL結合阻害能の結果を示すグラフである。FIG. 2 is a graph showing the results of the ability to inhibit oxidized LDL binding to hLOX-1 in the presence of ECg and divalent transition metal ions in Example 2. 図3は実施例3における2価の遷移金属イオン存在下でのECg又はCgのhLOX−1に対する酸化LDL結合阻害能の結果を示すグラフである。FIG. 3 is a graph showing the results of the ability of ECg or Cg to inhibit oxidized LDL binding to hLOX-1 in the presence of a divalent transition metal ion in Example 3. 図4は実施例4における各フラボノイド没食子酸エステル及び2価遷移金属イオン存在下でのhLOX−1に対する酸化LDL結合阻害能の結果を示すグラフである。4 is a graph showing the results of the ability to inhibit oxidized LDL binding to hLOX-1 in the presence of each flavonoid gallate ester and divalent transition metal ion in Example 4. FIG.

本発明の酸化LDL結合阻害剤組成物は、有効成分として式(1):   The oxidized LDL binding inhibitor composition of the present invention has the formula (1) as an active ingredient:

Figure 2013133322
Figure 2013133322

(式中、R1〜R4はH又は−CH3、R5〜R8はH、−OH又は−OCH3であり、R1〜R4はそれぞれ同一の基であっても、或いは異なった基でもよく、R5〜R8はそれぞれ同一の基であっても、或いは異なった基でもよい。)
で示されるフラボノイド没食子酸エステルと、2価の遷移金属イオン化合物とを含有する組成物である。
(In the formula, R 1 to R 4 are H or —CH 3 , R 5 to R 8 are H, —OH or —OCH 3 , and R 1 to R 4 may be the same group or different. And R 5 to R 8 may be the same group or different groups.)
It is a composition containing the flavonoid gallic acid ester shown by and a bivalent transition metal ion compound.

前記フラボノイド没食子酸エステルは、フラボノイドと、没食子酸とのエステル化合物である。   The flavonoid gallic acid ester is an ester compound of flavonoid and gallic acid.

本発明では、前記式(1)で示されるフラボノイド没食子酸エステルを有効成分として用いることで、例えば、プロアントシアニンのような重合体に比べると、単量体であるため、投与されたヒトや非ヒト動物の体内に吸収されやすいという利点がある。   In the present invention, the flavonoid gallic acid ester represented by the above formula (1) is used as an active ingredient, so that it is a monomer as compared with a polymer such as proanthocyanin. There is an advantage that it is easily absorbed into the human animal body.

前記式中、R1〜R4は、H又は−CH3であり、R1〜R4はそれぞれ同一の基であっても、異なった基であってもよい。また、R5〜R8は、H、−OH又は−OCH3であり、R5〜R8はそれぞれ同一の基であっても、異なった基であってもよい。

中でも、前記式(1)で示されるフラボノイド没食子酸エステルとしては、強い酸化LDL結合阻害作用を発現する観点から、R1、R4がHであることが好ましく、R1〜R4がH、R5〜R8がH又は−OHであることがより好ましい。中でも、酸化LDL結合阻害作用を顕著に有する観点から、下記式(2):
In the above formula, R 1 to R 4 are H or —CH 3 , and R 1 to R 4 may be the same group or different groups. R 5 to R 8 may be H, —OH or —OCH 3 , and R 5 to R 8 may be the same group or different groups.

Among these, as the flavonoid gallate ester represented by the above formula (1), R 1 and R 4 are preferably H, and R 1 to R 4 are H, from the viewpoint of expressing a strong oxidized LDL binding inhibitory action. R 5 to R 8 are more preferably H or —OH. Among these, from the viewpoint of having an inhibitory action on oxidized LDL binding, the following formula (2):

Figure 2013133322
Figure 2013133322

で示されるECg及び/又は下記式(3): And / or the following formula (3):

Figure 2013133322
Figure 2013133322

で示されるCgであることが好ましい。 It is preferable that it is Cg shown by these.

前記式(1)で示されるフラボノイド没食子酸エステルの多くはカメリア シネンシス(Camellia sinensis)(茶)をはじめ幅広い植物中に見出される。カメリア シネンシスは、日本を含む世界中において古くから飲料及び食品の原料として様々な形態で長く食されているため、前記式(1)で示されるフラボノイド没食子酸エステルは、安全性の点で、問題はない。   Many of the flavonoid gallate esters represented by the formula (1) are found in a wide variety of plants including Camellia sinensis (tea). Camellia sinensis has long been eaten in various forms throughout the world, including Japan, as a raw material for beverages and foods. Therefore, the flavonoid gallate ester represented by the above formula (1) is problematic in terms of safety. There is no.

ただし、前記式(1)で示されるフラボノイド没食子酸エステルはいずれも前記カメリア シネンシス中における含有量が少ない。例えば、天然界で比較的存在量の多いとされるECgにおいてすら、前記カメリア シネンシスに含まれる全主要フラボノイド類中の約10%程度に過ぎない(例えば、村松敬一郎著,茶の科学,朝倉書店,p88)。したがって、前記式(1)で示されるフラボノイド没食子酸エステルはいずれも、カテキンなどの他のフラボノイドに比べると、これまで作用の検討が見過ごされてきた化合物群である。   However, the flavonoid gallate ester represented by the formula (1) has a low content in the camelia sinensis. For example, even ECg, which is considered to be relatively abundant in nature, is only about 10% of all major flavonoids contained in Camellia sinensis (for example, Keiichiro Muramatsu, Tea Science, Asakura Shoten) , P88). Therefore, all of the flavonoid gallate esters represented by the formula (1) are a group of compounds that have so far been neglected for their effects compared to other flavonoids such as catechins.

前記式(1)で示されるフラボノイド没食子酸エステルは、そのまま酸化LDL結合阻害剤組成物の有効成分として用いることが好ましいが、本発明の酸化LDL結合阻害剤組成物では、前記式(1)で示されるフラボノイド没食子酸エステルに加えて、2価の遷移金属イオン化合物を混合する。   The flavonoid gallate ester represented by the formula (1) is preferably used as an active ingredient of the oxidized LDL binding inhibitor composition as it is, but in the oxidized LDL binding inhibitor composition of the present invention, the formula (1) In addition to the indicated flavonoid gallate ester, a divalent transition metal ion compound is mixed.

前記2価の遷移金属イオン化合物とは、水溶液中で、金属イオンを放出することができる化合物である。前記2価の遷移金属イオン化合物を構成する金属イオンとしては、鉄イオン、銅イオン、ニッケルイオン、亜鉛イオン、コバルトイオン、マンガンイオン、銀イオンなどが挙げられるが、酸化LDL結合阻害作用に優れる観点から、鉄イオン、銅イオンが好ましい。
前記イオン性化合物としては、具体的には、前記2価の遷移金属の硫酸塩、硝酸塩、塩化物、硫化物、水酸化物などが挙げられるが特に限定はない。
本発明において、前記2価の遷移金属イオン化合物は、イオン性化合物を前記フラボノイド没食子酸エステルと混合すればよい。
The divalent transition metal ion compound is a compound capable of releasing metal ions in an aqueous solution. Examples of the metal ions constituting the divalent transition metal ion compound include iron ions, copper ions, nickel ions, zinc ions, cobalt ions, manganese ions, and silver ions. Therefore, iron ions and copper ions are preferable.
Specific examples of the ionic compound include sulfates, nitrates, chlorides, sulfides and hydroxides of the divalent transition metal, but there is no particular limitation.
In the present invention, the divalent transition metal ion compound may be prepared by mixing an ionic compound with the flavonoid gallate.

前記式(1)で示されるフラボノイド没食子酸エステル及び2価の遷移金属イオン化合物の酸化LDL結合阻害剤組成物中における量は、有効成分として作用効果が奏される量であればよく、前記2成分のみで調製されていてもよく、他の成分を含有していてもよく、特に限定はない。   The amount of the flavonoid gallate ester represented by the formula (1) and the divalent transition metal ion compound in the oxidized LDL binding inhibitor composition may be any amount that exhibits an effect as an active ingredient. It may be prepared only with components, and may contain other components, and is not particularly limited.

また、酸化LDL結合阻害剤組成物中における前記式(1)で示されるフラボノイド没食子酸エステルと2価の遷移金属イオンとのモル比は、LOX−1への酸化LDL結合阻害作用を奏する観点から、100:1〜1:10の範囲であることが好ましい。
なお、前記2価の遷移金属イオン化合物のモル比は、使用するイオン性化合物中の遷移金属の量を換算して算出すればよい。
In addition, the molar ratio of the flavonoid gallate ester represented by the above formula (1) and the divalent transition metal ion in the oxidized LDL binding inhibitor composition is from the viewpoint of inhibiting the oxidized LDL binding to LOX-1. 100: 1 to 1:10.
The molar ratio of the divalent transition metal ion compound may be calculated by converting the amount of transition metal in the ionic compound to be used.

本発明の酸化LDL結合阻害剤組成物は、前記前記式(1)で示されるフラボノイド没食子酸エステル及び2価の遷移金属イオン化合物以外にも必要に応じて他の成分を配合してもよい。
前記の成分としては、例えば、ショ糖等の糖類、マルチトール等の糖アルコールで糖衣を施したり、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等でコーティングを施してもよいし、胃溶性若しくは腸溶性物質のフィルムで被覆してもよい。また、食品の場合には、水、アルコール、澱粉質、蛋白質、繊維質、糖質、脂質、ビタミン、ミネラル、着香料、着色料、甘味料、調味料、安定剤、防腐剤、乳化剤のような食品に通常配合される原料又は素材と組み合わせることなどが挙げられる。
The oxidized LDL binding inhibitor composition of the present invention may contain other components as needed in addition to the flavonoid gallate ester and divalent transition metal ion compound represented by the formula (1).
Examples of the component include sugar coating such as sugars such as sucrose, sugar alcohol such as maltitol, coating with gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose, and the like. It may be covered with a film of material. In the case of foods, water, alcohol, starch, protein, fiber, sugar, lipid, vitamin, mineral, flavoring, coloring, sweetener, seasoning, stabilizer, preservative, emulsifier, etc. For example, it may be combined with a raw material or a material that is usually blended in a simple food.

また、本発明の酸化LDL結合阻害剤組成物は、食品、医薬品などの組成物に、公知の技術を用いて、配合することができる。この場合、本発明の酸化LDL結合阻害剤組成物をそのまま用いてもよいが、各種基材に配合してもよい。基材の種類は特に限定されるものではなく、適時設定すればよいが、例えば、錠剤、カプセル、飴、グミあるいはドリンクなどの経口投与基材が、食品などに簡易に配合できる観点から好ましい。   In addition, the oxidized LDL binding inhibitor composition of the present invention can be blended into compositions such as foods and pharmaceuticals using known techniques. In this case, the oxidized LDL binding inhibitor composition of the present invention may be used as it is, but may be blended in various base materials. The type of the substrate is not particularly limited and may be set as appropriate. For example, an oral administration substrate such as a tablet, capsule, candy, gummi, or drink is preferable from the viewpoint that it can be easily blended into foods.

食品組成物としては、一般食品として、種々の食品原料に前記酸化LDL結合阻害剤組成物の所望量を加え、通常の製造方法により加工することにより、また、健康食品、機能性食品として、食べ易い状態にして使用することができる。   As a food composition, as a general food, a desired amount of the oxidized LDL binding inhibitor composition is added to various food ingredients and processed by a normal production method, or as a health food or functional food. It can be used in an easy state.

医薬品組成物としては、錠剤、散剤、顆粒剤、カプセル剤、坐剤、注射剤、液剤などが挙げられ、これらは増量剤、賦形剤、潤沢剤、崩壊剤、結合剤、矯味矯臭剤などと共に通常の方法に従って製剤すればよい。これらの医薬品組成物は、心血管病の予防薬又は治療薬として使用される。   Examples of the pharmaceutical composition include tablets, powders, granules, capsules, suppositories, injections, liquids, and the like. These include bulking agents, excipients, lubricants, disintegrants, binders, flavoring agents, and the like. At the same time, it may be formulated according to a usual method. These pharmaceutical compositions are used as preventive or therapeutic agents for cardiovascular diseases.

本発明の酸化LDL結合阻害剤組成物の1日あたりの投与量は、症状、身長、体重、年齢などにより異なるが、成人1人あたりの摂取量が、1〜2000mg/kg・日、好ましくは1〜100mg/kg・日となるように、1回ないし数回に分けてヒトや非ヒト動物などの被検体に投与するのがよい。   The daily dose of the oxidized LDL binding inhibitor composition of the present invention varies depending on symptoms, height, weight, age, etc., but the intake amount per adult is 1 to 2000 mg / kg · day, preferably It is preferable to administer to a subject such as a human or non-human animal in 1 to several times so that the dose is 1 to 100 mg / kg · day.

本発明の酸化LDL結合阻害剤組成物は、ヒトや非ヒト動物(例えば、サル、ウシ、ブタ、ウマ、ヒツジ、ヤギ、ロバ、ラクダ、ウサギ、イヌ、ネコ、ネズミ、マウス、モルモットなどの哺乳動物、ニワトリ、アヒル、ガチョウなどの鳥類)に投与することで、心血管病を予防/治療することが期待できる。   The oxidized LDL binding inhibitor composition of the present invention is used in humans and non-human animals (eg, monkeys, cows, pigs, horses, sheep, goats, donkeys, camels, rabbits, dogs, cats, mice, mice, guinea pigs, etc.). It can be expected to prevent / treat cardiovascular disease by administration to animals, birds such as chickens, ducks and geese.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の主旨はこれらによって制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the gist of the present invention is not limited thereto.

(実施例1)
各種の2価の遷移金属イオン存在下でのECgの酸化LDL結合阻害作用を組換えhLOX−1タンパク質を用いて評価を行った。
Example 1
The inhibitory effect of ECg on oxidized LDL binding in the presence of various divalent transition metal ions was evaluated using recombinant hLOX-1 protein.

2価の遷移金属イオン化合物としては、FeSO4、CuSO4、NiSO4、ZnSO4、CoCl2及びMnSO4を使用した。 As the divalent transition metal ion compound, FeSO 4 , CuSO 4 , NiSO 4 , ZnSO 4 , CoCl 2 and MnSO 4 were used.

組換えhLOX−1タンパク質は、ヒト由来LOX−1の細胞外ドメインである。human LOX−1 cDNA(ジーンバンク:NM002543)のうち、細胞外ドメイン(ex−hLOX−1)をコードする領域(61〜273番目の塩基配列)を、定法に従い発現、精製し得たものを使用した。組換えhLOX−1タンパク質は酸化LDLに対する結合能力を有していることを確認し、以下のELISAによる試験用LOX−1標品として用いることにした。   Recombinant hLOX-1 protein is the extracellular domain of human-derived LOX-1. Among human LOX-1 cDNA (Genbank: NM002543), a region encoding the extracellular domain (ex-hLOX-1) (61st to 273rd nucleotide sequence) expressed and purified according to a conventional method is used. did. It was confirmed that the recombinant hLOX-1 protein has a binding ability to oxidized LDL, and it was decided to use it as a test LOX-1 preparation by the following ELISA.

ELISA(Enzyme Linked Immunosorbent Assay:酵素免疫測定法)は、マキシソープ・イムノプレート(96ウェルタイプ、NUNC製)を用いて行った。上記のように精製した組換えhLOX−1タンパク質を5μg/mLとなるようにPBS(−)バッファーで調整し、50μLずつ各ウェルにアプライした。4℃で1晩静置後、PBS(−)バッファーで各ウェルを400μL×2回で洗浄し、20%イムノブロックを含むPBS(−)バッファー300μLを各ウェルにアプライした。25℃で2時間静置した後に、PBS(−)バッファーで各ウェルを400μL×2回で洗浄し、2μM ECg/10mM HEPES/150mM NaClバッファーで各遷移金属イオン濃度が3μMとなるように調整した各精製サンプルを50μLずつ各ウェルにアプライした。4℃で1時間静置した後に、PBS(−)バッファーで各ウェルを400μL×3回で洗浄し、1μg/mLとなるように10mM HEPES/150 mM NaCl/0.1% BSAで調整した酸化LDLを各ウェルにアプライした。4℃で1時間静置した後に、PBS(−)バッファーで各ウェルを400μL×3回で洗浄し、Anti−ApoB HUC20抗体を10mM HEPES/150 mM NaCl/0.1% BSAで適当量希釈し、50μLずつ各ウェルにアプライした。室温で1時間の静置後、PBS(−)バッファーで各ウェルを400μL×3回で洗浄し、Donkey anti−chicken IgY抗体を10mM HEPES/150 mM NaCl/0.1% BSAで適当量希釈し、50μLずつ各ウェルにアプライした。室温で1時間の静置後、PBS(−)バッファーで各ウェルを400μL×5回で洗浄し、3,3’,5,5’−テトラメチルベンヂジン(TMB)ペルオキシダーゼ−酵素免疫測定(EIA)−基質−キット試薬(Bio−rad社製)を50μLずつ各ウェルにアプライした。適当な反応時間後に、0.5M H2SO4を50μLずつ各ウェルにアプライして反応を停止させた。最終的に450nmで検出を行い、酸化LDL結合阻害活性(LOX‐1に対する酸化LDL結合阻害率)を定量した。図1に結果を示す。 ELISA (Enzyme Linked Immunosorbent Assay) was performed using a maxisorp immunoplate (96 well type, manufactured by NUNC). The recombinant hLOX-1 protein purified as described above was adjusted with PBS (−) buffer to 5 μg / mL, and 50 μL was applied to each well. After allowing to stand overnight at 4 ° C., each well was washed twice with PBS (−) buffer at 400 μL × 2 times, and 300 μL of PBS (−) buffer containing 20% immunoblock was applied to each well. After allowing to stand at 25 ° C. for 2 hours, each well was washed twice with PBS (−) buffer in 400 μL × 2, and each transition metal ion concentration was adjusted to 3 μM with 2 μM ECg / 10 mM HEPES / 150 mM NaCl buffer. 50 μL of each purified sample was applied to each well. After standing at 4 ° C. for 1 hour, each well was washed with 400 μL × 3 times with PBS (−) buffer, and oxidized with 10 mM HEPES / 150 mM NaCl / 0.1% BSA adjusted to 1 μg / mL. LDL was applied to each well. After allowing to stand at 4 ° C. for 1 hour, each well was washed with PBS (−) buffer at 400 μL × 3 times, and an anti-ApoB HUC20 antibody was diluted with 10 mM HEPES / 150 mM NaCl / 0.1% BSA in an appropriate amount. 50 μL was applied to each well. After standing at room temperature for 1 hour, each well was washed with PBS (−) buffer 400 × L × 3 times, and Donkey anti-chicken IgY antibody was diluted with 10 mM HEPES / 150 mM NaCl / 0.1% BSA in an appropriate amount. 50 μL was applied to each well. After standing at room temperature for 1 hour, each well was washed with 400 μL × 5 times with PBS (−) buffer, and 3,3 ′, 5,5′-tetramethylbenzidine (TMB) peroxidase-enzyme immunoassay ( 50 μL of EIA) -substrate-kit reagent (Bio-rad) was applied to each well. After an appropriate reaction time, 50 μL of 0.5 MH 2 SO 4 was applied to each well to stop the reaction. Finally, detection was performed at 450 nm, and the oxidized LDL binding inhibitory activity (oxidized LDL binding inhibition rate against LOX-1) was quantified. The results are shown in FIG.

その結果、図1に示すように、酸化LDLの結合率が100%である場合(図中、「100%binding」)と比べると、鉄イオン、銅イオン、ニッケルイオン、亜鉛イオン存在下でLOX−1への酸化LDL結合阻害活性が見いだされた。中でも、鉄イオン存在下に最も優れた酸化LDL結合阻害活性が見いだされた。これは金属イオン化合物無添加時(図中「no metal」)よりも優れた活性である。同様に、銅イオンにおいても優れた酸化LDL結合阻害活性が見いだされた。このことから鉄イオン及び銅イオンの存在がECgの酸化LDL結合阻害剤組成物として有用であることが示された。   As a result, as shown in FIG. 1, LOX is present in the presence of iron ions, copper ions, nickel ions, and zinc ions as compared with the case where the binding rate of oxidized LDL is 100% (“100% binding” in the figure). Inhibition of oxidized LDL binding to -1 was found. Among them, the most excellent oxidized LDL binding inhibitory activity was found in the presence of iron ions. This is an activity superior to that when no metal ion compound is added (“no metal” in the figure). Similarly, excellent oxidized LDL binding inhibitory activity was also found for copper ions. This indicates that the presence of iron ions and copper ions is useful as an oxidized LDL binding inhibitor composition for ECg.

なお、前記ECgのかわりに、Cgを用いた場合でも、鉄イオン、銅イオンの存在下で、酸化LDL結合阻害作用が確認された。   In addition, even when Cg was used instead of ECg, the action of inhibiting oxidized LDL binding was confirmed in the presence of iron ions and copper ions.

(実施例2)
ECg及び2価遷移金属イオンの存在下でのhLOX−1に対する酸化LDL結合阻害能の評価を行った。
(Example 2)
The ability to inhibit oxidized LDL binding to hLOX-1 in the presence of ECg and divalent transition metal ions was evaluated.

評価方法では、2価の遷移金属イオンとして0.1μM〜100μMの2価の鉄又は銅イオンが存在するように調整した以外は、実施例1と同様に行った。結果を図2に示す。   The evaluation method was performed in the same manner as in Example 1 except that the divalent transition metal ions were adjusted so that 0.1 to 100 μM of divalent iron or copper ions were present. The results are shown in FIG.

図2の結果より、2μMのECgを用いる場合、鉄イオン0.1μM〜100μM存在下で、LOX−1への酸化LDL結合阻害活性が示されることが見出された。また、2μMのECgを用いる場合、銅イオン0.1μM〜100μM存在下、特に1μM〜10μMで、LOX−1への酸化LDL結合阻害活性が示されることが見出された。
また、2μMのECgを用いる場合、銅イオン3μM〜10μM存在下で、LOX−1への酸化LDL結合阻害活性が示されることが見出された。
したって、金属イオンの種類により、少しずれがあるものの、フラボノイド没食子酸エステルと2価の金属イオンとのモル比は、鉄イオンの場合、20:3〜2:10が好ましく、2:3〜2:10が好ましいことがわかる。
From the results of FIG. 2, it was found that when 2 μM ECg was used, the activity of inhibiting oxidized LDL binding to LOX-1 was exhibited in the presence of 0.1 μM to 100 μM of iron ions. It was also found that when 2 μM ECg was used, the activity of inhibiting oxidized LDL binding to LOX-1 was exhibited in the presence of copper ions of 0.1 μM to 100 μM, particularly 1 μM to 10 μM.
It was also found that when 2 μM ECg was used, the activity of inhibiting oxidized LDL binding to LOX-1 was exhibited in the presence of 3 μM to 10 μM copper ions.
Therefore, although there is a slight difference depending on the type of metal ion, the molar ratio of the flavonoid gallate to the divalent metal ion is preferably 20: 3 to 2:10 in the case of iron ions, and is preferably 2: 3 to 3. It turns out that 2:10 is preferable.

(実施例3)
2価の遷移金属イオン存在下でのECg又はCgのhLOX−1に対する酸化LDL結合阻害能の評価を行った。
(Example 3)
The ability of ECg or Cg to inhibit oxidized LDL binding to hLOX-1 in the presence of a divalent transition metal ion was evaluated.

評価方法は、2価の遷移金属イオンとして2価の鉄イオンを用い、ECg又はCgを0.03μM〜10μMの濃度で用いた以外は実施例1に準じて行った。結果を図3に示す。   The evaluation method was performed in the same manner as in Example 1 except that divalent iron ions were used as divalent transition metal ions and ECg or Cg was used at a concentration of 0.03 μM to 10 μM. The results are shown in FIG.

図3の結果より、ECg及びCgは、0.1μM以上の濃度で優れた阻害活性を示すことが見出された。   From the results of FIG. 3, it was found that ECg and Cg showed excellent inhibitory activity at a concentration of 0.1 μM or more.

(実施例4)
ECg類縁体によるLOX−1への酸化LDL結合阻害作用を以下のようにして調べた。
下記フラバン骨格:
Example 4
The inhibitory action of oxidized LDL binding to LOX-1 by the ECg analog was examined as follows.
The following flavan skeleton:

Figure 2013133322
Figure 2013133322

において、C環に没食子酸エステル構造を持つ、フラボノイド没食子酸エステルであるECg及びECgの類縁体4種(式: In EC, ECg which is a flavonoid gallate ester having a gallate ester structure on the C ring and four kinds of analogs of ECg (formula:

Figure 2013133322
Figure 2013133322

で表されるECg3’−O−Me、ECg4’−O−Me、ECg3’’−O−Me、ECg4’’O−Me)のLOX−1に対する酸化LDL結合阻害作用を評価した。
なお、評価方法では、金属イオンとして2価の鉄イオンを用いた以外は、実施例1に準じて行った。結果を図4に示す。
ECg3′-O-Me, ECg4′-O-Me, ECg3 ″ -O-Me, and ECg4 ″ O-Me) represented by formula (1) were evaluated for the inhibitory effect on oxidized LDL binding to LOX-1.
In addition, in the evaluation method, it carried out according to Example 1 except having used bivalent iron ion as a metal ion. The results are shown in FIG.

図4の結果より、ECg3’’−O−Meにも鉄イオン存在下で優れた酸化LDL結合阻害作用が見いだされた。ECg3’’−O−Meの酸化LDL結合阻害作用はECgに比べると低いものの、LOX−1への酸化LDL結合阻害作用を有すると考えられる。このことからECg3’’−O−Meが酸化LDL結合阻害物質として有用であることが示された。   From the results of FIG. 4, ECg3 ″ -O-Me also found an excellent inhibitory effect on oxidized LDL binding in the presence of iron ions. Although the inhibitory action of ECg3 ″ -O-Me on oxidized LDL binding is lower than that of ECg, it is considered to have an inhibitory action on oxidized LDL binding to LOX-1. This indicates that ECg3 ″ -O-Me is useful as an oxidized LDL binding inhibitor.

また、前記非特許文献2〜10にはLOX−1が心血管病の発症に関連していることが示されていることから、LOX−1の作用を阻害できる酸化LDL結合阻害剤が動物における心血管病の予防・治療薬として使用できることは十分予想される。
したがって、本発明の酸化LDL結合阻害剤組成物も、上記のように、酸化LDL受容体であるLOX−1への酸化LDLの結合を阻害する作用に優れ、かつ安全性が高いことから、本発明の酸化LDL結合阻害剤組成物をヒトや非ヒトの哺乳動物などの被検体に継続的に摂取させることにより、血管内皮細胞などの心血管病に関連する細胞への酸化LDLの結合が継続的に阻害されて、ヒト、非ヒト動物における心血管病の関連疾患の発症を抑える予防薬、又は疾患の症状を緩和したりする治療薬として使用することができる。
In addition, since Non-Patent Documents 2 to 10 show that LOX-1 is related to the onset of cardiovascular disease, an oxidized LDL binding inhibitor capable of inhibiting the action of LOX-1 is present in animals. It can be expected to be used as a prophylactic / therapeutic agent for cardiovascular disease.
Therefore, the oxidized LDL binding inhibitor composition of the present invention is also excellent in the action of inhibiting the binding of oxidized LDL to the oxidized LDL receptor LOX-1 as described above, and has high safety. By continuously ingesting the oxidized LDL binding inhibitor composition of the invention to a subject such as a human or non-human mammal, the binding of oxidized LDL to cells associated with cardiovascular disease such as vascular endothelial cells continues. It can be used as a prophylactic agent that is inhibited to prevent the onset of cardiovascular related diseases in humans and non-human animals, or a therapeutic agent that alleviates the symptoms of the disease.

Claims (6)

下記式(1):
Figure 2013133322
(式中、R1〜R4はH又は−CH3、R5〜R8はH、−OH又は−OCH3であり、R1〜R4はそれぞれ同一の基であっても、或いは異なった基でもよく、R5〜R8はそれぞれ同一の基であっても、或いは異なった基でもよい。)
で示されるフラボノイド没食子酸エステルと2価の遷移金属イオン化合物とを含有する酸化LDL結合阻害剤組成物。
Following formula (1):
Figure 2013133322
(In the formula, R 1 to R 4 are H or —CH 3 , R 5 to R 8 are H, —OH or —OCH 3 , and R 1 to R 4 may be the same group or different. And R 5 to R 8 may be the same group or different groups.)
An oxidized LDL binding inhibitor composition comprising a flavonoid gallate ester represented by formula (II) and a divalent transition metal ion compound.
前記式(1)において、R1、R4がHである請求項1記載の酸化LDL結合阻害剤組成物。 The oxidized LDL binding inhibitor composition according to claim 1 , wherein R 1 and R 4 are H in the formula (1). 前記フラボノイド没食子酸エステルが下記式(2):
Figure 2013133322
で示されるエピカテキンガレート及び/又は下記式(3):
Figure 2013133322
で示されるカテキンガレートである請求項1又は2記載の酸化LDL結合阻害剤組成物。
The flavonoid gallate is represented by the following formula (2):
Figure 2013133322
Epicatechin gallate represented by the following formula (3):
Figure 2013133322
The oxidized LDL binding inhibitor composition according to claim 1, wherein the catechin gallate is represented by the formula:
前記2価の遷移金属イオン化合物を構成する金属イオンが、鉄イオン又は銅イオンである請求項1〜3いずれかに記載の酸化LDL結合阻害剤組成物。   The oxidized LDL binding inhibitor composition according to any one of claims 1 to 3, wherein the metal ion constituting the divalent transition metal ion compound is an iron ion or a copper ion. 請求項1〜4いずれかに記載の酸化LDL結合阻害剤組成物を含有する心血管病予防又は治療薬。   A preventive or therapeutic agent for cardiovascular disease comprising the oxidized LDL binding inhibitor composition according to any one of claims 1 to 4. 請求項1〜4いずれかに記載の酸化LDL結合阻害剤組成物を含有する食品組成物。   A food composition comprising the oxidized LDL binding inhibitor composition according to claim 1.
JP2011285615A 2011-12-27 2011-12-27 Oxidized ldl binding inhibitor composition Pending JP2013133322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285615A JP2013133322A (en) 2011-12-27 2011-12-27 Oxidized ldl binding inhibitor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285615A JP2013133322A (en) 2011-12-27 2011-12-27 Oxidized ldl binding inhibitor composition

Publications (1)

Publication Number Publication Date
JP2013133322A true JP2013133322A (en) 2013-07-08

Family

ID=48910258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285615A Pending JP2013133322A (en) 2011-12-27 2011-12-27 Oxidized ldl binding inhibitor composition

Country Status (1)

Country Link
JP (1) JP2013133322A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132725A (en) * 1997-07-24 1999-02-09 Mitsui Norin Kk Liquid diet
JPH11116475A (en) * 1997-10-07 1999-04-27 Snow Brand Milk Prod Co Ltd Preventive and/or curing agent for inflammatory bowel disease
WO2005007640A1 (en) * 2003-07-22 2005-01-27 Kyowa Hakko Kogyo Co., Ltd. Preventive or therapeutic composition for viral infectious disease
JP2006131512A (en) * 2004-11-02 2006-05-25 Pharma Foods International Co Ltd Composition for accelerating secretion of adiponectin and food and drink containing the composition
JP2007521010A (en) * 2003-07-03 2007-08-02 ザ プロクター アンド ギャンブル カンパニー A composition containing green tea catechins and one or more polyvalent mineral cations
WO2008081583A1 (en) * 2006-12-27 2008-07-10 Kao Corporation Beverage packed in container
JP2008182934A (en) * 2007-01-29 2008-08-14 Mitsui Norin Co Ltd Food and drink composition
JP2009040704A (en) * 2007-08-07 2009-02-26 Mitsui Norin Co Ltd Method for producing 3-deoxyanthocyanidin
JP2010518822A (en) * 2007-02-15 2010-06-03 ワイス エルエルシー Improved stability in vitamin and mineral supplements
JP2010239869A (en) * 2009-04-01 2010-10-28 Suntory Holdings Ltd Manganese-containing substance and method for producing the same
JP2012111747A (en) * 2010-11-05 2012-06-14 Uha Mikakuto Co Ltd Lox-1 antagonist agent
JP2013009670A (en) * 2011-05-31 2013-01-17 Uha Mikakuto Co Ltd Green tea beverage
JP2013111051A (en) * 2011-11-30 2013-06-10 Uha Mikakuto Co Ltd Method for producing treated product of tea extract having improved functionality

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1132725A (en) * 1997-07-24 1999-02-09 Mitsui Norin Kk Liquid diet
JPH11116475A (en) * 1997-10-07 1999-04-27 Snow Brand Milk Prod Co Ltd Preventive and/or curing agent for inflammatory bowel disease
JP2007521010A (en) * 2003-07-03 2007-08-02 ザ プロクター アンド ギャンブル カンパニー A composition containing green tea catechins and one or more polyvalent mineral cations
WO2005007640A1 (en) * 2003-07-22 2005-01-27 Kyowa Hakko Kogyo Co., Ltd. Preventive or therapeutic composition for viral infectious disease
JP2006131512A (en) * 2004-11-02 2006-05-25 Pharma Foods International Co Ltd Composition for accelerating secretion of adiponectin and food and drink containing the composition
WO2008081583A1 (en) * 2006-12-27 2008-07-10 Kao Corporation Beverage packed in container
JP2008182934A (en) * 2007-01-29 2008-08-14 Mitsui Norin Co Ltd Food and drink composition
JP2010518822A (en) * 2007-02-15 2010-06-03 ワイス エルエルシー Improved stability in vitamin and mineral supplements
JP2009040704A (en) * 2007-08-07 2009-02-26 Mitsui Norin Co Ltd Method for producing 3-deoxyanthocyanidin
JP2010239869A (en) * 2009-04-01 2010-10-28 Suntory Holdings Ltd Manganese-containing substance and method for producing the same
JP2012111747A (en) * 2010-11-05 2012-06-14 Uha Mikakuto Co Ltd Lox-1 antagonist agent
JP2013009670A (en) * 2011-05-31 2013-01-17 Uha Mikakuto Co Ltd Green tea beverage
JP2013111051A (en) * 2011-11-30 2013-06-10 Uha Mikakuto Co Ltd Method for producing treated product of tea extract having improved functionality

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015039304; 医薬品添加物事典 2007, 2007, p.326,328 *

Similar Documents

Publication Publication Date Title
Legeay et al. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome
Du et al. Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-κB and NLRP3 inflammasome
Jeong et al. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome
Zhang et al. Cereal fiber ameliorates high-fat/cholesterol-diet-induced atherosclerosis by modulating the NLRP3 inflammasome pathway in ApoE–/–Mice
JP2022159422A (en) Tau protein aggregation inhibitory composition
JP2019511514A (en) Grape extract and method relating thereto
AU2021273560A1 (en) Methods and compositions for increasing energy expenditure using cinnamaldehyde
JP2007320956A (en) Arteriosclerosis inhibitor
JP2006131512A (en) Composition for accelerating secretion of adiponectin and food and drink containing the composition
JP2012111747A (en) Lox-1 antagonist agent
JP2017514858A (en) Methods and compositions comprising ursolic acid and / or resveratrol for treating obesity, diabetes, or cancer
CA3192866A1 (en) Aminoacids for treatment of neurological disorders
US20160067270A1 (en) Use of ginsenoside f2 for prophylaxis and treatment of liver disease
JP2013133322A (en) Oxidized ldl binding inhibitor composition
KR102374440B1 (en) Composition for preventing or treating ovarian cancer comprising fucosterol
KR101901062B1 (en) Pharmaceutical composition for preventing or treating chronic obstructive pulmonary diseases(COPD), comprising FPS-ZM1 or pharmaceutically acceptable salts thereof
JP2010105922A (en) Lox-1 antagonist agent
JP2016135781A (en) Therapeutic composition and processed food for colon cancer
JP2013136548A (en) Binding inhibitor of oxidized ldl
KR101163534B1 (en) Novel inhibitors for blocking interaction of BLT2-G alpha I3
Jin et al. Simultaneous Treatment of 5-Aminosalicylic Acid and Treadmill Exercise More Effectively Improves Ulcerative Colitis in Mice
Yahya et al. Old drug with new milestone: chloroquine and hydroxychloroquine in SARS-COV-2 (COVID-19) with multifaceted effects in other diseases
US9526717B2 (en) Composition for treating immune diseases containing daurinol compound as active ingredient
JP7333626B2 (en) Composition for preventing and treating Alzheimer's dementia, composition for reducing amyloid β oligomer neurotoxicity
Szydełko et al. Health-promoting properties of compounds derived from Capsicum sp. A review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405