JP2013133269A - Method for controlling operation of cement production facility - Google Patents

Method for controlling operation of cement production facility Download PDF

Info

Publication number
JP2013133269A
JP2013133269A JP2011286471A JP2011286471A JP2013133269A JP 2013133269 A JP2013133269 A JP 2013133269A JP 2011286471 A JP2011286471 A JP 2011286471A JP 2011286471 A JP2011286471 A JP 2011286471A JP 2013133269 A JP2013133269 A JP 2013133269A
Authority
JP
Japan
Prior art keywords
amount
waste
cement
odor
production facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011286471A
Other languages
Japanese (ja)
Other versions
JP5838800B2 (en
Inventor
Takeshi Momotomi
武 百冨
Hiroyuki Matsuda
弘幸 松田
Masaki Okazaki
正基 岡嵜
Atsushi Hasegawa
敦 長谷川
Makoto Umei
誠 梅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011286471A priority Critical patent/JP5838800B2/en
Publication of JP2013133269A publication Critical patent/JP2013133269A/en
Application granted granted Critical
Publication of JP5838800B2 publication Critical patent/JP5838800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable accurate management by an odor index, by measuring continuously each odor of various exhaust gases from a cement production facility.SOLUTION: In this method for controlling operation of the cement production facility for producing cement, while treating waste, in the cement production facility, waste before charging into the cement production facility is sampled and heated to 550°C at the maximum, and the total hydrocarbon amount in volatile gas generated by the heating is measured, and the amount of increase of the total hydrocarbon amount in the exhaust gas discharged from the cement production facility is predicted based on the measurement result, and the input amount of waste into the cement production facility is controlled based on the prediction result.

Description

本発明は、セメント製造設備で廃棄物を処理する場合の運転制御方法に係り、特に、排ガスの臭気を予測しつつ廃棄物の投入量を制御する運転制御方法に関する。   The present invention relates to an operation control method when processing waste in a cement manufacturing facility, and more particularly to an operation control method for controlling the amount of waste input while predicting the odor of exhaust gas.

近年、各種の産業廃棄物を処分のためセメント原料やセメント焼成用の燃料の一部として利用するようになってきている。この産業廃棄物には、廃プラスチック、油分や洗浄剤等を含む土壌、各種汚泥等が混在していることにより、石炭を起源とするものではない炭素分や有機分が発生するようになってきた。これら産業廃棄物からの揮発やその燃焼によって生じる排ガスは、臭気物質を含むため、その管理が必要である。   In recent years, various industrial wastes have been used as a part of cement raw materials and cement burning fuels for disposal. This industrial waste contains waste plastics, soil containing oil and cleaning agents, and various sludges. As a result, carbon and organic components that do not originate from coal are generated. It was. Since the exhaust gas generated by volatilization from these industrial wastes or their combustion contains odorous substances, it must be managed.

本出願人は、先に特許文献1〜3により、セメント製造設備から発生する排ガス中の全炭化水素量(Total HydroCarbon:略してTHCということがある)を連続的に測定し、この全炭化水素量から排ガスの臭気指数を推定する技術を提案した。   According to Patent Documents 1 to 3, the present applicant previously measured the total amount of hydrocarbons in the exhaust gas generated from the cement production facility (Total HydroCarbon: abbreviated as THC for short), and the total hydrocarbons. A technique to estimate the odor index of exhaust gas from the quantity was proposed.

特開2009−192482号公報JP 2009-192482 A 特開2010−151649号公報JP 2010-151649 A 特開2010−151650号公報JP 2010-151650 A

これら特許文献1〜3で提案した技術によって、セメント製造設備からの排ガス中の臭気を連続的に把握することが可能になったが、このような測定技術を開発しただけでは、廃棄物の処理自体を効率化することはできず、排ガスの臭気指数の上昇を危惧し、少量の廃棄物しか処理することができなかった。   The technologies proposed in Patent Documents 1 to 3 enable continuous grasp of the odor in the exhaust gas from the cement production facility. However, simply by developing such a measurement technique, It was not possible to improve the efficiency of the product itself, and it was feared that the odor index of the exhaust gas would rise, and only a small amount of waste could be treated.

本発明は、このような事情に鑑みてなされたもので、排ガス中の臭気を抑えながら、最大限効率よく廃棄物を処理することができるセメント製造設備の運転制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for controlling the operation of a cement production facility capable of treating waste efficiently with maximum efficiency while suppressing odor in exhaust gas. To do.

廃棄物をセメント製造設備に投入する際に、その廃棄物により臭気成分がどの程度増えるかについて、予め把握できるようにしておくと、投入量の制御により、排ガス中の臭気成分を所定量以下に管理することができる。この場合、有機物に由来する臭気成分としてこげ臭を把握できればよく、廃棄物を加熱して発生する揮発ガスから全炭化水素量を測定すれば、セメント製造設備に投入した際の全炭化水素量の増量分を把握することができる。
また、この場合、本発明者は鋭意研究の結果、廃棄物には種々の有機物が混合されており、これを加熱していくと、350℃前後で大半の有機物が揮発し、残りの有機物も450℃前後でほとんど揮発し、550℃までの間に有機物の大部分が揮発することを見出した。その後、例えば600℃に加熱したとしても、揮発分にはこげ臭の原因となる臭気成分がほとんど含まれていないし、600℃以上では分解が発生する。このため、こげ臭の把握のためには廃棄物を最大550℃まで加熱することで十分であるとの知見を得た。
When waste is input to cement production facilities, it is possible to know in advance how much the odor component will increase due to the waste.By controlling the input amount, the odor component in the exhaust gas is reduced to a predetermined amount or less. Can be managed. In this case, it is only necessary to be able to grasp the burnt odor as an odor component derived from organic matter, and if the total hydrocarbon amount is measured from the volatile gas generated by heating the waste, the total hydrocarbon amount when it is input to the cement production facility The increase can be grasped.
In this case, as a result of earnest research, the present inventor has mixed various organic substances in the waste. When heated, most of the organic substances evaporate at around 350 ° C., and the remaining organic substances are also removed. It was found that most of the organic substances volatilized at around 450 ° C. and most of the organic substances volatilized up to 550 ° C. Then, even if it heats to 600 degreeC, for example, the volatile component hardly contains the odor component which causes a burning odor, and decomposition | disassembly will generate | occur | produce above 600 degreeC. For this reason, the knowledge that heating waste to a maximum of 550 ° C. is sufficient for grasping the burnt odor was obtained.

すなわち、本発明は、セメント製造設備で廃棄物を処理しながらセメントを製造するセメント製造設備の運転制御方法であって、セメント製造設備に投入される前の廃棄物から採取した試料を加熱し、その加熱により発生する揮発ガス中の全炭化水素量を測定し、その測定結果に基づきセメント製造設備から放出される排ガス中の全炭化水素量の増加量を予測し、その予測結果に基づきセメント製造設備への廃棄物の投入量を制御することを特徴とする。
その場合、試料の加熱温度を最大550℃とするとよい。
That is, the present invention is an operation control method of a cement production facility for producing cement while processing the waste in the cement production facility, heating a sample collected from the waste before being put into the cement production facility, Measure the total hydrocarbon amount in the volatile gas generated by the heating, predict the increase in the total hydrocarbon amount in the exhaust gas released from the cement production facility based on the measurement result, and manufacture the cement based on the prediction result It is characterized by controlling the amount of waste input to the facility.
In that case, the heating temperature of the sample may be set to a maximum of 550 ° C.

廃棄物中の有機物のうち、こげ臭の原因となる有機物による全炭化水素量を予め測定しているので、廃棄物の投入による臭気成分への影響、言い換えれば廃棄物を投入することによる全炭化水素量の増加量を事前に把握できる。したがって、この方法によりセメント製造設備の運転を制御すれば、環境に悪影響を及ぼさない範囲で廃棄物を最大限処理することが可能になる。   Of the organic matter in the waste, the total amount of hydrocarbons due to the organic matter that causes the burning odor is measured in advance, so the impact on the odor component due to the input of waste, in other words, the total carbonization due to the input of waste The amount of increase in hydrogen can be grasped in advance. Therefore, if the operation of the cement production facility is controlled by this method, it is possible to treat waste as much as possible without adversely affecting the environment.

本発明に係るセメント製造設備の運転制御方法によれば、廃棄物をセメント製造設備に投入する前に、投入による全炭化水素量の増加量を把握することができるので、環境に悪影響を及ぼさない範囲で廃棄物を最大限処理することができ、その処理効率がよい。   According to the operation control method for a cement production facility according to the present invention, it is possible to grasp the increase in the total hydrocarbon amount due to the input before introducing the waste into the cement production facility, so that there is no adverse effect on the environment. Waste can be treated to the maximum extent, and its processing efficiency is good.

本発明の運転制御方法の実施に用いられる全炭化水素量測定装置の例を示す構成図である。It is a block diagram which shows the example of the total hydrocarbon amount measuring apparatus used for implementation of the operation control method of this invention. セメント製造設備を示す全体システム構成図である。It is a whole system lineblock diagram showing cement manufacturing equipment. 廃棄物を加熱して発生する揮発ガス中のTHC量の加熱温度との関係を示すグラフである。It is a graph which shows the relationship with the heating temperature of the amount of THC in the volatile gas which generate | occur | produces by heating a waste material. 廃棄物(原料)を550℃まで加熱して発生する揮発ガス中のTHC量を100としたときの、加熱温度によるTHC量の比率を原料毎に示すグラフである。It is a graph which shows the ratio of the THC amount by heating temperature for every raw material when the THC amount in the volatile gas generated by heating waste (raw material) to 550 degreeC is set to 100. 本発明の方法により予測した排ガス中のTHC量と実際に測定した排ガス中のTHC量との相関を示すグラフである。It is a graph which shows the correlation with the amount of THC in the exhaust gas estimated by the method of this invention, and the amount of THC in the exhaust gas actually measured. 本発明の方法によって予測した臭気指数とセメント製造設備に廃棄物を投入した際の臭気指数の時間的変動との関係を示すグラフである。It is a graph which shows the relationship between the odor index estimated by the method of this invention, and the time fluctuation | variation of the odor index at the time of throwing a waste into a cement manufacturing equipment. 廃棄物を650℃程度まで加熱して予測した排ガス中のTHC量と実際に測定した排ガス中のTHC量との相関を示すグラフである。It is a graph which shows the correlation with the amount of THC in the waste gas estimated by heating waste to about 650 degreeC, and the amount of THC in the waste gas actually measured.

以下、本発明に係るセメント製造設備の運転制御方法の一実施形態を図面を参照しながら説明する。
図1は本発明の運転制御方法の実施に際してセメント製造設備からの排ガス中の臭気成分の予測のために用いられる全炭化水素量測定装置21を示している。
この全炭化水素量測定装置21は、例えば電気炉からなる加熱炉22と、加熱炉22内で加熱される試料の揮発ガスを輸送するための窒素ガス等のキャリアガスを供給するキャリアガス供給系23と、キャリアガスとともに輸送された揮発ガス中の全炭化水素量を測定するTHC測定器24と、このTHC測定器24の測定結果からセメント製造設備で処理した場合の臭気指数の増加量を予測する臭気指数予測手段25とを備えている。
Hereinafter, an embodiment of an operation control method for a cement production facility according to the present invention will be described with reference to the drawings.
FIG. 1 shows a total hydrocarbon amount measuring device 21 used for predicting odor components in exhaust gas from a cement production facility when carrying out the operation control method of the present invention.
This total hydrocarbon amount measuring device 21 includes a heating furnace 22 made of, for example, an electric furnace, and a carrier gas supply system that supplies a carrier gas such as nitrogen gas for transporting a volatile gas of a sample heated in the heating furnace 22. 23, a THC measuring device 24 for measuring the total amount of hydrocarbons in the volatile gas transported with the carrier gas, and an increase in the odor index when treated in a cement production facility is predicted from the measurement result of the THC measuring device 24 The odor index predicting means 25 is provided.

キャリアガス供給系23には、キャリアガスを貯留するガス容器26と、ガス容器26からの流通量を測定する流量計27とが備えられており、ガス容器26からキャリアガスが加熱炉22内に所定流量で供給される。
加熱炉22には、試料28を収容する炉芯管29が備えられており、この炉芯管29内にキャリアガスを流通させて揮発ガスをTHC測定器24に送り出すようになっている。
The carrier gas supply system 23 includes a gas container 26 that stores the carrier gas, and a flow meter 27 that measures the flow rate from the gas container 26, and the carrier gas is supplied from the gas container 26 into the heating furnace 22. It is supplied at a predetermined flow rate.
The heating furnace 22 is provided with a furnace core tube 29 that accommodates the sample 28, and a carrier gas is circulated in the furnace core tube 29 to send volatile gas to the THC measuring device 24.

THC測定器24は、例えば水素イオン化検出法(FID:Flame Ionization Detector)による測定器であり、ノズルから排ガスと燃料の水素とを送って点火することにより、排ガス中の有機物が水素炎中で燃焼し、その炎を挟むコレクター電極間に発生する炭素イオンによるイオン電流を測定するものである。
臭気指数予測手段25は、予め全炭化水素量と臭気指数との相関関係を数式化してコンピュータに記憶しておき、THC測定器24から得られた全炭化水素量の測定値から数式に従い臭気指数の増加量を予測するものである。
The THC measuring device 24 is a measuring device based on, for example, a hydrogen ionization detector (FID). By sending and igniting exhaust gas and hydrogen of fuel from a nozzle, organic substances in the exhaust gas are combusted in a hydrogen flame. The ion current due to carbon ions generated between the collector electrodes sandwiching the flame is measured.
The odor index predicting means 25 preliminarily formulates a correlation between the total hydrocarbon amount and the odor index and stores it in a computer, and the odor index according to the formula from the measured value of the total hydrocarbon amount obtained from the THC measuring device 24. The amount of increase is predicted.

この臭気指数は、嗅覚測定法(臭気指数及び臭気排出強度の算定の方法)により、あらかじめ嗅覚が正常であることの検査に合格した被検者が臭気を感じなくなるまで試料を無臭空気で希釈したときの希釈倍率(臭気濃度)を求め、その常用対数値に10を乗じた数値である。算出式は、臭気指数=10×Log(臭気濃度)で表わされる。測定の具体的方法としては「三点比較式臭袋法」が採用される。この三点比較式臭袋法は、3個の袋のうち、2個の袋には無臭の空気を入れ、残りの1個の袋に所定の希釈倍数に希釈した試料を入れ、これら3袋を1組として、6名以上の被検者により、各袋の臭いの有無を判定する作業を希釈倍率を変えながら繰り返し行い、臭いを感じなくなった希釈倍率を求める方法である。   This odor index was measured by olfactory measurement method (method of calculating odor index and odor emission intensity), and the sample was diluted with odorless air until the subject who passed the test of normal olfaction no longer felt odor. It is a numerical value obtained by multiplying the common logarithm value by 10 and calculating the dilution ratio (odor concentration). The calculation formula is expressed as odor index = 10 × Log (odor concentration). As a specific method of measurement, the “three-point comparison odor bag method” is adopted. In this three-point comparison odor bag method, two of the three bags are filled with odorless air, and the remaining one bag is filled with a sample diluted to a predetermined dilution factor. Is a method in which six or more subjects repeat the process of determining the presence or absence of odor in each bag while changing the dilution factor, and obtain the dilution factor at which no odor is felt.

また、この臭気指数と全炭化水素量とは、臭気指数=a×log(全炭化水素量)+bの関係を有しており、その定数であるa,bは廃棄物の種類等によって異なり、パイロット運転等によってあらかじめ求めておくことが行われる。   Further, the odor index and the total hydrocarbon amount have a relationship of odor index = a × log (total hydrocarbon amount) + b, and the constants a and b vary depending on the type of waste, etc. Obtaining in advance by pilot operation or the like is performed.

一方、図2は、本発明の運転制御方法が適用されるセメント製造設備を示している。このセメント製造設備1は、セメント原料を粉砕、乾燥する原料ミル及びドライヤ2と、この原料ミルで得られた粉体原料を予熱するプレヒータ3と、プレヒータ3によって予熱された粉体原料を焼成するキルン4と、キルン4で焼成された後のセメントクリンカを冷却するための図示略の冷却機等とを備えている。   On the other hand, FIG. 2 shows a cement production facility to which the operation control method of the present invention is applied. This cement production facility 1 bakes a raw material mill and dryer 2 for pulverizing and drying cement raw material, a preheater 3 for preheating the powder raw material obtained by this raw material mill, and a powder raw material preheated by the preheater 3. A kiln 4 and a cooling machine (not shown) for cooling the cement clinker after firing in the kiln 4 are provided.

キルン4は、横向きの円筒状シェルを回転させながら、プレヒータ3から供給されるセメント原料をバーナーによって1450℃以上に加熱焼成してセメントクリンカを生成するものである。この場合、キルン4からの排ガスは、プレヒータ3を経由して原料ミル及びドライヤ2に導入されるようになっており、原料ミル及びドライヤ2は、キルン4からの排ガスが導入されることにより、セメント原料の粉砕と乾燥を同時に行うようになっている。また、プレヒータ3は、下方から上方に向けて複数のサイクロンを多段に接続した多段サイクロン式のものであり、原料ミルで粉砕されたセメント原料をキルン4からの排ガスを利用して所定温度まで予熱するものである。   The kiln 4 heats and sinters the cement raw material supplied from the preheater 3 to 1450 ° C. or higher with a burner while rotating a horizontal cylindrical shell to generate a cement clinker. In this case, the exhaust gas from the kiln 4 is introduced into the raw material mill and the dryer 2 via the preheater 3, and the raw material mill and the dryer 2 are introduced by introducing the exhaust gas from the kiln 4, Cement raw materials are pulverized and dried simultaneously. The preheater 3 is of a multistage cyclone type in which a plurality of cyclones are connected in multiple stages from the bottom to the top, and the cement raw material crushed by the raw material mill is preheated to a predetermined temperature using the exhaust gas from the kiln 4. To do.

このセメント製造設備1において、図2の二重実線の矢印がセメント原料からセメントクリンカを得る流れを示している。
一方、キルン4での燃焼により発生した排ガスの流れを破線で示しており、この排ガスは、プレヒータ3、原料ミル及びドライヤ2を経由して、プレヒータ3での粉体原料の予熱の熱源、原料ミル及びドライヤ2での乾燥の熱源として利用された後、集塵機5に送られ、集塵機5でダストを除去された後に煙突6から大気に放出される。
In this cement manufacturing facility 1, the double solid line arrows in FIG. 2 indicate the flow of obtaining cement clinker from the cement raw material.
On the other hand, the flow of exhaust gas generated by combustion in the kiln 4 is indicated by broken lines. This exhaust gas passes through the preheater 3, the raw material mill and the dryer 2, and the heat source and raw material for preheating the powder raw material in the preheater 3 After being used as a heat source for drying in the mill and dryer 2, it is sent to the dust collector 5, and after dust is removed by the dust collector 5, it is discharged from the chimney 6 to the atmosphere.

この集塵機5は、例えば高電圧放電により生じる静電気を利用して排ガス中のダストを集塵する電気集塵機であり、その電極に、排ガス中に固体分として混在している灰分等のダストが捕集される。電気集塵機以外にも、排ガス中の固体分を捕集することができるものであれば、バグフィルタ、サイクロン等の周知の集塵機を用いることができる。捕集されたダストは、ダスト配送管7を通して原料ミルに投入されるようになっている。   The dust collector 5 is an electric dust collector that collects dust in exhaust gas by using static electricity generated by high voltage discharge, for example, and dust such as ash mixed as solids in the exhaust gas is collected at the electrode. Is done. In addition to the electric dust collector, a known dust collector such as a bag filter or a cyclone can be used as long as it can collect a solid content in the exhaust gas. The collected dust is input to the raw material mill through the dust delivery pipe 7.

そして、この集塵機5と煙突6との間に排ガス臭気測定装置11が設けられている。この排ガス臭気測定装置11は、集塵機5と煙突6との間の配管12に、排ガスの一部を抽出するサンプリング部13が設けられるとともに、該サンプリング部13に、THC測定器14と、特定気体として一酸化炭素の量を測定する一酸化炭素量測定器15とが並列に接続され、THC測定器14に、全炭化水素量の測定値を一酸化炭素量の測定値によって補正する補正手段16と、その補正後の全炭化水素量から排ガスの臭気指数を推定する臭気指数推定手段17とが設けられた構成とされている。   An exhaust gas odor measuring device 11 is provided between the dust collector 5 and the chimney 6. This exhaust gas odor measuring device 11 is provided with a sampling unit 13 for extracting a part of exhaust gas in a pipe 12 between the dust collector 5 and the chimney 6, and the sampling unit 13 includes a THC measuring instrument 14 and a specific gas. A carbon monoxide amount measuring device 15 for measuring the amount of carbon monoxide is connected in parallel, and the THC measuring device 14 corrects the measured value of the total hydrocarbon amount by the measured value of the carbon monoxide amount. And the odor index estimation means 17 for estimating the odor index of the exhaust gas from the corrected total hydrocarbon amount is provided.

THC測定器14は、前述の全炭化水素量測定装置21に用いられるものと同様、例えば水素イオン化検出法(FID:Flame Ionization Detector)による測定器である。   The THC measuring instrument 14 is a measuring instrument based on, for example, a hydrogen ionization detector (FID), similar to that used in the total hydrocarbon content measuring apparatus 21 described above.

一酸化炭素量測定器15は、例えば非分散型赤外線分析法による測定器であり、一酸化炭素が特定波長の赤外光を選択的に吸収する性質を有していることを利用し、その赤外線吸収量から成分濃度を測定するものである。   The carbon monoxide amount measuring device 15 is a measuring device based on, for example, a non-dispersive infrared analysis method, and utilizes the property that carbon monoxide selectively absorbs infrared light having a specific wavelength. The component concentration is measured from the amount of infrared absorption.

これらTHC測定器14及び一酸化炭素量測定器15は、排ガスの全炭化水素量及び一酸化炭素量を同じタイミングで連続的に測定している。そして、補正手段16は、THC測定器14で連続的に測定される全炭化水素量をこれと同じタイミングで測定した一酸化炭素量によって補正するものであり、一酸化炭素量の測定値にピーク部が発生した場合に、そのピーク部が発生したタイミングで全炭化水素量の測定値にピーク部が発生しているか否かを判断し、全炭化水素量の測定値にも同一タイミングでピーク部が発生している場合は、そのピーク部が不完全燃焼の影響によるものであるとして、この全炭化水素量のピーク部を除外した状態で次の臭気指数推定手段17に測定値を受け渡す。   These THC measuring device 14 and carbon monoxide amount measuring device 15 continuously measure the total hydrocarbon amount and carbon monoxide amount of the exhaust gas at the same timing. Then, the correction means 16 corrects the total hydrocarbon amount continuously measured by the THC measuring instrument 14 by the carbon monoxide amount measured at the same timing as this, and the peak value appears in the measured value of the carbon monoxide amount. When a peak is generated, it is determined whether or not a peak portion is generated in the measured value of the total hydrocarbon amount at the timing when the peak portion is generated. Is generated, the measured value is transferred to the next odor index estimating means 17 with the peak portion of the total hydrocarbon amount being excluded, assuming that the peak portion is due to the effect of incomplete combustion.

臭気指数推定手段17は、前述した臭気指数予測手段25と同様に予め全炭化水素量と臭気指数との相関関係を数式化してコンピュータに記憶しておき、補正手段16から得られた補正後の全炭化水素量の測定値から数式に従い臭気指数を推定するものである。   The odor index estimating means 17 formulates the correlation between the total hydrocarbon amount and the odor index in advance in the same manner as the odor index predicting means 25 described above and stores it in a computer, and the corrected odor obtained from the correcting means 16 is stored. The odor index is estimated from the measured value of the total hydrocarbon amount according to the mathematical formula.

次に、このセメント製造設備1において廃棄物を処理しながらセメントを製造する運転制御方法について説明する。
まず、持ち込まれた廃棄物の一部をサンプリングして全炭化水素量測定装置21により全炭化水素量を測定する。この場合、廃棄物から採取した試料28を加熱炉22の炉芯管29に設置し、キャリアガスを流して揮発ガスをTHC測定器24に輸送して測定する。廃棄物の加熱は550℃まで行われ、550℃に達するまでの間に揮発したガスの全炭化水素量を連続的に測定し、その積算量を廃棄物の全炭化水素量とする。
Next, an operation control method for manufacturing cement while processing waste in the cement manufacturing facility 1 will be described.
First, a part of the introduced waste is sampled and the total hydrocarbon amount is measured by the total hydrocarbon amount measuring device 21. In this case, the sample 28 collected from the waste is placed in the furnace core tube 29 of the heating furnace 22, the carrier gas is flowed, and the volatile gas is transported to the THC measuring device 24 for measurement. The waste is heated up to 550 ° C., and the total hydrocarbon amount of the gas volatilized until reaching 550 ° C. is continuously measured, and the accumulated amount is defined as the total hydrocarbon amount of the waste.

図3は、廃棄物を加熱した際に生じる揮発ガス中の全炭化水素量(THC量)の温度との関係を示している。データが複数あるのは、時と場所を異にして収集された廃棄物のそれぞれについて示したためである。この図3により明らかなように、いずれの廃棄物も、350℃前後でTHC量が著しく増大している。また、450℃前後で若干増大するものがあり、550℃前後で少なくなり、600℃前後でまた増大している。   FIG. 3 shows a relationship with the temperature of the total hydrocarbon amount (THC amount) in the volatile gas generated when the waste is heated. The reason for the multiple data is that it is shown for each waste collected at different times and places. As is apparent from FIG. 3, the THC content of all the wastes is remarkably increased at around 350 ° C. Some increase slightly around 450 ° C., decrease around 550 ° C., and increase again around 600 ° C.

この全炭化水素量のうち、セメント製造設備1で処理した際の臭気成分を抑えるためには、廃棄物に由来する臭気成分としてこげ臭を把握できればよい。図3の全炭化水素量では、こげ臭の原因となる臭気成分は350℃前後で大半が揮発し、450℃前後でほとんど揮発しており、600℃付近での揮発成分はこげ臭の原因となる臭気成分がほとんど含まれていない。また、600℃以上では分解が発生する。このため、廃棄物をTHCの発生が少なくなる550℃まで加熱して全炭化水素量を測定することにより、廃棄物からの揮発ガス中のこげ臭を把握することができる。   In order to suppress the odor component at the time of processing with the cement manufacturing facility 1 among the total hydrocarbon amount, it is only necessary to be able to grasp the burnt odor as the odor component derived from the waste. In the total amount of hydrocarbons in FIG. 3, most of the odor components that cause burnt odors are volatilized around 350 ° C. and almost volatilized around 450 ° C. The volatile components around 600 ° C. Contains almost no odor components. In addition, decomposition occurs at 600 ° C. or higher. For this reason, the burnt odor in the volatile gas from a waste can be grasped | ascertained by heating waste to 550 degreeC in which generation | occurrence | production of THC decreases and measuring the total amount of hydrocarbons.

図4は、550℃以下の500℃、450℃での各加熱温度における原料(廃棄物)の揮発ガス中のTHC量について、550℃でのTHC量を100としたときの比率を原料毎に示したものである。この図4で示されるように、加熱温度によるTHC量は原料の種類によって異なっており、例えば原料H及び原料Iは550℃まで加熱しなくても、500℃程度で550℃の時のTHC量にほぼ等しいTHC量となっている。逆に原料Fは加熱温度によるTHC量の変化が大きく、550℃まで加熱してTHC量を測定する必要がある。
このように、廃棄物のTHC量を測定する場合、最大550℃の範囲内で原料により決まる固有の温度まで廃棄物を加熱すればよい。
FIG. 4 shows the THC amount in the volatile gas of the raw material (waste) at each heating temperature of 500 ° C. or lower and 550 ° C. or less, and the ratio when the THC amount at 550 ° C. is 100 for each raw material. It is shown. As shown in FIG. 4, the amount of THC depending on the heating temperature varies depending on the type of the raw material. For example, the raw material H and the raw material I do not heat to 550 ° C., but the THC amount at about 500 ° C. and 550 ° C. The amount of THC is almost equal to. Conversely, the raw material F has a large change in the THC amount due to the heating temperature, and it is necessary to measure the THC amount by heating to 550 ° C.
Thus, when measuring the THC amount of waste, the waste may be heated to a specific temperature determined by the raw material within a range of 550 ° C. at the maximum.

図5は、全炭化水素量測定装置21により550℃まで加熱して測定された原料(廃棄物)のTHC量をもとに予測したセメント製造設備での排ガスのTHC量と、その原料を実際にセメント製造設備に投入した際に生じる排ガス中のTHC量との相関を示すグラフである。このグラフで明らかなように、両者の相関は高く、550℃まで加熱して測定したTHC量によりセメント製造設備1に投入した際のTHC量を正確に把握することができる。   FIG. 5 shows the THC amount of exhaust gas at a cement production facility predicted based on the THC amount of raw material (waste) measured by heating to 550 ° C. with the total hydrocarbon amount measuring device 21 and the actual raw material. It is a graph which shows the correlation with the amount of THC in the waste gas which arises when thrown into a cement manufacturing facility. As is apparent from this graph, the correlation between the two is high, and the amount of THC when charged into the cement production facility 1 can be accurately grasped from the amount of THC measured by heating to 550 ° C.

図7は、廃棄物を550℃を超えて650℃程度まで加熱して測定されたTHC量と、その廃棄物をセメント製造設備に投入した際に生じる排ガス中のTHC量との相関を示しているが、両者の相関は低いことがわかる。したがって、セメント製造設備1からの排ガス中のTHC量を予測するには、廃棄物を最大550℃まで加熱してTHC量を測定すればよい。   FIG. 7 shows the correlation between the amount of THC measured by heating waste to over 650 ° C. to about 650 ° C., and the amount of THC in the exhaust gas generated when the waste is put into a cement manufacturing facility. However, the correlation between the two is low. Therefore, in order to predict the THC amount in the exhaust gas from the cement manufacturing facility 1, the waste may be heated to a maximum of 550 ° C. and the THC amount measured.

このようにして廃棄物のTHC量を測定し、その測定値から臭気指数予測手段25ではセメント製造設備1に廃棄物を投入した場合の臭気指数の増加量を予測する。
そして、この事前の予測結果に基づき、セメント製造設備1で廃棄物を適量ずつ処理しながらセメントを製造する。
セメント製造設備1からの排ガスは、集塵機5でダストが除去された後に煙突6から大気に放出されるが、この集塵機5と煙突6との間のサンプリング部13で排ガスの一部がサンプリングされ、THC測定器14及び一酸化炭素量測定器15により全炭化水素量及び一酸化炭素量が連続的に測定され、補正手段16及び臭気指数推定手段17により排ガス中の臭気指数が推定される。
In this way, the THC amount of the waste is measured, and the odor index predicting means 25 predicts the increase amount of the odor index when the waste is input to the cement manufacturing facility 1 from the measured value.
And based on this prior prediction result, a cement is manufactured, processing an appropriate amount of wastes by the cement manufacturing equipment 1.
Exhaust gas from the cement manufacturing facility 1 is discharged into the atmosphere from the chimney 6 after dust is removed by the dust collector 5, but a part of the exhaust gas is sampled by the sampling unit 13 between the dust collector 5 and the chimney 6, The total hydrocarbon amount and the carbon monoxide amount are continuously measured by the THC measuring device 14 and the carbon monoxide amount measuring device 15, and the odor index in the exhaust gas is estimated by the correcting means 16 and the odor index estimating means 17.

図6は、セメント製造設備に廃棄物を投入した際の臭気指数の時間的変動を示しており、本発明の方法によって予測した臭気指数を一点鎖線(a)で示したように、ほぼ予測値の範囲内で変動していることがわかる。
したがって、この運転制御方法を用いれば、排ガス中の臭気指数への影響を予測した廃棄物投入計画を立てることができ、周辺住民に悪影響を及ぼすような臭気の上昇を避けることができ、セメント製造設備の操業を安定させることができる。
FIG. 6 shows the temporal variation of the odor index when the waste is put into the cement manufacturing facility, and the odor index predicted by the method of the present invention is almost the predicted value as indicated by the alternate long and short dash line (a). It can be seen that it fluctuates within the range.
Therefore, if this operation control method is used, it is possible to make a waste input plan that predicts the effect on the odor index in the exhaust gas, and it is possible to avoid an increase in odor that will adversely affect the surrounding residents. Equipment operation can be stabilized.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、廃棄物の全炭化水素量を測定して臭気指数を予測したが、全炭化水素量と臭気指数とは一定の相関があるので、臭気指数を計算することなく、全炭化水素量の測定値に基づいて廃棄物の投入量を制御するようにしてもよい。
また、上記実施形態では廃棄物を550℃まで加熱してTHC量を測定したが、廃棄物の種類によっては、例えば450℃や500℃程度で臭気成分に影響を与えるTHCをほとんど揮発させることができる場合がある。このような場合は550℃まで加熱する必要はなく、そのような場合も含めて、最大550℃までの範囲で加熱すればよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, the odor index was predicted by measuring the total amount of hydrocarbons in the waste, but there is a certain correlation between the total hydrocarbon amount and the odor index, so the total hydrocarbon amount can be measured without calculating the odor index. The amount of waste input may be controlled based on the value.
Further, in the above embodiment, the amount of THC was measured by heating the waste to 550 ° C., but depending on the type of waste, for example, THC that affects the odor component at about 450 ° C. or 500 ° C. may be almost volatilized. There are cases where it is possible. In such a case, it is not necessary to heat up to 550 ° C., and in such a case, it may be heated in a range up to 550 ° C.

1 セメント製造設備
2 原料ミル及びドライヤ
3 プレヒータ
4 キルン
5 集塵機
6 煙突
11 排ガス臭気測定装置
13 サンプリング部
14 THC測定器
15 一酸化炭素量測定器
16 補正手段
17 臭気指数推定手段
21 全炭化水素測定装置
22 加熱炉
23 キャリアガス供給系
24 THC測定器
25 臭気指数予測手段
26 ガス容器
27 流量計
28 試料
29 炉芯管
DESCRIPTION OF SYMBOLS 1 Cement manufacturing equipment 2 Raw material mill and dryer 3 Preheater 4 Kiln 5 Dust collector 6 Chimney 11 Exhaust gas odor measuring device 13 Sampling part 14 THC measuring device 15 Carbon monoxide amount measuring device 16 Correction means 17 Odor index estimating means 21 Total hydrocarbon measuring device 22 Heating furnace 23 Carrier gas supply system 24 THC measuring instrument 25 Odor index predicting means 26 Gas container 27 Flow meter 28 Sample 29 Furnace core tube

Claims (2)

セメント製造設備で廃棄物を処理しながらセメントを製造するセメント製造設備の運転制御方法であって、セメント製造設備に投入される前の廃棄物から採取した試料を加熱し、その加熱により発生する揮発ガス中の全炭化水素量を測定し、その測定結果に基づきセメント製造設備から放出される排ガス中の全炭化水素量の増加量を予測し、その予測結果に基づきセメント製造設備への廃棄物の投入量を制御することを特徴とするセメント製造設備の運転制御方法。   A method for controlling the operation of a cement manufacturing facility that manufactures cement while processing the waste at the cement manufacturing facility, wherein the sample collected from the waste before being put into the cement manufacturing facility is heated, and the volatilization generated by the heating Measure the total amount of hydrocarbons in the gas, predict the increase in the total amount of hydrocarbons in the exhaust gas released from the cement production facility based on the measurement results, and based on the prediction results, An operation control method for a cement manufacturing facility, characterized by controlling an input amount. 前記試料の加熱温度を最大550℃とすることを特徴とする請求項1記載のセメント製造設備の運転制御方法。   The method for controlling operation of a cement production facility according to claim 1, wherein the heating temperature of the sample is set to a maximum of 550 ° C.
JP2011286471A 2011-12-27 2011-12-27 Operation control method for cement manufacturing equipment Active JP5838800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286471A JP5838800B2 (en) 2011-12-27 2011-12-27 Operation control method for cement manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286471A JP5838800B2 (en) 2011-12-27 2011-12-27 Operation control method for cement manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2013133269A true JP2013133269A (en) 2013-07-08
JP5838800B2 JP5838800B2 (en) 2016-01-06

Family

ID=48910214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286471A Active JP5838800B2 (en) 2011-12-27 2011-12-27 Operation control method for cement manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5838800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031521A (en) * 2013-07-31 2015-02-16 住友大阪セメント株式会社 Cement manufacturing method, and manufacturing apparatus
WO2022044423A1 (en) * 2020-08-31 2022-03-03 株式会社日立製作所 Deodorizing device control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192482A (en) * 2008-02-18 2009-08-27 Mitsubishi Materials Corp Method and device for measuring exhaust gas odor of cement manufacturing facility
JP2009215097A (en) * 2008-03-07 2009-09-24 Ube Ind Ltd Operation method of cement manufacturing plant
JP2010151649A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192482A (en) * 2008-02-18 2009-08-27 Mitsubishi Materials Corp Method and device for measuring exhaust gas odor of cement manufacturing facility
JP2009215097A (en) * 2008-03-07 2009-09-24 Ube Ind Ltd Operation method of cement manufacturing plant
JP2010151649A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031521A (en) * 2013-07-31 2015-02-16 住友大阪セメント株式会社 Cement manufacturing method, and manufacturing apparatus
WO2022044423A1 (en) * 2020-08-31 2022-03-03 株式会社日立製作所 Deodorizing device control system
JP7431703B2 (en) 2020-08-31 2024-02-15 株式会社日立製作所 Deodorizer control system

Also Published As

Publication number Publication date
JP5838800B2 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
Glushkov et al. Environmental aspects of converting municipal solid waste into energy as part of composite fuels
Bignal et al. Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions
Tissari et al. The effects of operating conditions on emissions from masonry heaters and sauna stoves
Liu et al. Volatilization behavior of Cd and Zn based on continuous emission measurement of flue gas from laboratory-scale coal combustion
Miller et al. Partitioning of trace elements during the combustion of coal and biomass in a suspension-firing reactor
Liu et al. Fundamental study of the behavior of chlorine during the combustion of single RDF
El May et al. Measurement of gaseous and particulate pollutants during combustion of date palm wastes for energy recovery
Pan et al. Accuracy improvement of quantitative analysis of unburned carbon content in fly ash using laser induced breakdown spectroscopy
Yelverton et al. Characterization of emissions from a pilot-scale combustor operating on coal blended with woody biomass
JP5838800B2 (en) Operation control method for cement manufacturing equipment
Colom-Díaz et al. Emissions of polycyclic aromatic hydrocarbons during biomass combustion in a drop tube furnace
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
Liang et al. Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces
JP4553050B2 (en) Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP4513872B2 (en) Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP6429911B2 (en) Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
Bayram et al. Presence and control of polycyclic aromatic hydrocarbons in petroleum coke drying and calcination plants
JP6305196B2 (en) Cement kiln exhaust gas treatment equipment
Wellinger et al. Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion
Poole et al. On-line detection of metal pollutant spikes in MSW incinerator flue gases prior to clean-up
Muzyka et al. Chemometric analysis of air pollutants in raw and thermally treated coals–Low-emission fuel for domestic applications, with a reduced negative impact on air quality
Hryb et al. Mercury content in refuse-derived fuels
JP4553051B2 (en) Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP2017180964A (en) Waste treatment furnace device
JP5570106B2 (en) Cement kiln exhaust gas treatment apparatus and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5838800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250