JP2013129865A - Stirred reaction tank, stirred reaction device and method for controlling chlorine leaching reaction oxidation-reduction potential - Google Patents

Stirred reaction tank, stirred reaction device and method for controlling chlorine leaching reaction oxidation-reduction potential Download PDF

Info

Publication number
JP2013129865A
JP2013129865A JP2011278762A JP2011278762A JP2013129865A JP 2013129865 A JP2013129865 A JP 2013129865A JP 2011278762 A JP2011278762 A JP 2011278762A JP 2011278762 A JP2011278762 A JP 2011278762A JP 2013129865 A JP2013129865 A JP 2013129865A
Authority
JP
Japan
Prior art keywords
chlorine
tank
reaction
difference
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278762A
Other languages
Japanese (ja)
Other versions
JP5768701B2 (en
Inventor
Hiroshi Naito
大志 内藤
Shinsuke Suganuma
慎介 菅沼
Koichiro Maki
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011278762A priority Critical patent/JP5768701B2/en
Publication of JP2013129865A publication Critical patent/JP2013129865A/en
Application granted granted Critical
Publication of JP5768701B2 publication Critical patent/JP5768701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stirred reaction tank, a stirred reaction device and a method for controlling chlorine leaching reaction oxidation-reduction potential, when nonferrous metal is leached from nonferrous metal sulfide-containing nonferrous metal raw material using a chlorine gas, which can obtain the high leaching rate of a metallic element(s) without causing the reduction in the availability of the chlorine gas and the increase in a sulfur oxidation rate.SOLUTION: Using a stirred reaction tank 50 provided with: a chlorine gas feeding part 30 including a chlorine blowing nozzle 32 in which the position in the tank of a nozzle tip part 32A provided with a chlorine blowing port 31 is freely adjusted from the outside of the tank; and sensors 40A, 40B for measuring oxidation-reduction potential of measuring oxidation-reduction potential at a plurality of positions including the upper part of the tank and the lower part of the tank, a chlorine gas is fed into the tank by the chlorine gas feeding means, whether or not a difference in the oxidation-reduction potential measured values obtained with the sensors lies within a prescribed value is determined by a controller 60, and the control of moving the tip position of the chlorine blowing nozzle in the stirred reaction tank till the difference reaches within the prescribed value is performed.

Description

本発明は、非鉄金属硫化物などのニッケル原料を塩素浸出するための攪拌反応槽、攪拌反応装置及び塩素浸出反応酸化還元電位の制御方法に関する。   The present invention relates to a stirring reaction vessel, a stirring reaction apparatus, and a method for controlling a chlorine leaching reaction oxidation-reduction potential for leaching nickel raw materials such as non-ferrous metal sulfides.

従来、ニッケル、コバルトなどを含有する非鉄金属原料からニッケル等を回収する方法として、非鉄金属硫化物中の金属元素を塩素浸出した後、電解採取により電気ニッケルを得る塩素浸出電解採取法が一般的に知られている。   Conventionally, as a method for recovering nickel from non-ferrous metal raw materials containing nickel, cobalt, etc., a chlorine leaching electrowinning method in which metal elements in nonferrous metal sulfides are leached with chlorine, and electro nickel is obtained by electrowinning. Known to.

塩素浸出電解採取法では、原料のニッケルマットは、まず粉砕工程においてミルで粉砕された後、電解工程で発生する電解廃液と混合してスラリーとされ、その大部分がセメンテーション工程に供給される。セメンテーション工程には塩素浸出工程の母液が供給されており、この母液中に含まれる銅はマット中のニッケルと置換反応を起こし、硫化銅として析出する。析出した硫化銅はマットのセメンテーション残渣と共に分離され、残りのマットスラリー及び電解工程で発生した塩素と一緒に塩素浸出工程に供給される。   In the chlorine leaching electrowinning method, the raw material nickel mat is first pulverized by a mill in the pulverization process, then mixed with the electrolytic waste liquid generated in the electrolysis process to form a slurry, and most of it is supplied to the cementation process. . In the cementation process, the mother liquor of the chlorine leaching process is supplied, and the copper contained in the mother liquor undergoes a substitution reaction with nickel in the mat and precipitates as copper sulfide. The precipitated copper sulfide is separated together with the mat cementation residue and supplied to the chlorine leaching process together with the remaining mat slurry and chlorine generated in the electrolysis process.

塩素浸出工程では、塩素浸出槽に吹き込まれる塩素ガスの酸化力によって、セメンテーション工程の残渣及び硫化銅に含まれるニッケル、コバルト、鉄、銅、鉛等が浸出され、この浸出工程母液が上記セメンテーション工程に繰り返して供給される。また、塩素浸出工程では、原料に含まれている硫黄は殆ど浸出されずに浸出残渣として分離され、硫黄回収工程に供給される。   In the chlorine leaching process, the residue of the cementation process and nickel, cobalt, iron, copper, lead, etc. contained in the copper sulfide are leached by the oxidizing power of the chlorine gas blown into the chlorine leaching tank. Repeatedly supplied to the tentation process. In the chlorine leaching process, sulfur contained in the raw material is hardly leached but separated as a leaching residue and supplied to the sulfur recovery process.

セメンテーション工程の終液は浄液工程に送られ、塩素ガスと炭酸ニッケルを添加する酸化中和法によって、終液中に含まれるニッケル以外のコバルト、鉄、銅、亜鉛、鉛などの元素が浄液澱物として除去される。一方、浄液工程の終液は、pH調整された後、電解工程に送られ、電解採取により電気ニッケルが回収される。電解工程で発生する塩素ガスは、上記塩素浸出工程及び浄液工程に繰り返して供給される。   The final liquid of the cementation process is sent to the liquid purification process, and elements such as cobalt, iron, copper, zinc and lead other than nickel are contained in the final liquid by the oxidation neutralization method in which chlorine gas and nickel carbonate are added. Removed as purified starch. On the other hand, the final liquid of the liquid purification process is adjusted to pH and then sent to the electrolysis process, and the electronickel is recovered by electrowinning. Chlorine gas generated in the electrolysis process is repeatedly supplied to the chlorine leaching process and the liquid purification process.

このような塩素浸出電解採取法のプロセスにおいて、電解工程で発生する塩素ガスを用い、塩化ニッケル溶液中において硫化物原料中の金属元素を酸化還元反応により浸出する塩素浸出工程では、塩素浸出反応の酸化還元電位が低い場合には、浸出残渣中に金属元素が溶け残るため、高い浸出率が得られず、ニッケルのロスが発生する等の問題が生じ、逆に酸化還元電位が高くなり過ぎると、硫化物原料中の硫黄酸化率の上昇や、更には塩素ガスが未反応のまま気相側へリークするため、塩素の利用率が低下するので、例えば、特許文献1に記載されているように、浸出反応の酸化還元電位を規定値に調節する必要がある。この規定値からの変動幅を小さく抑えることにより、塩素ガスの利用率の低下や硫黄酸化率の上昇を招くことなく、金属元素の高い浸出率を達成することが可能となる。   In such a chlorine leaching electrowinning process, chlorine gas generated in the electrolysis process is used, and in the chlorine leaching process in which the metal element in the sulfide raw material is leached by oxidation-reduction reaction in the nickel chloride solution, the chlorine leaching reaction is performed. When the oxidation-reduction potential is low, the metal element remains in the leaching residue, so that a high leaching rate cannot be obtained, causing problems such as nickel loss. Conversely, if the oxidation-reduction potential is too high, Since the sulfur oxidation rate in the sulfide raw material is increased and the chlorine gas leaks to the gas phase side without being reacted, the utilization rate of chlorine is reduced. For example, as described in Patent Document 1 In addition, it is necessary to adjust the redox potential of the leaching reaction to a specified value. By suppressing the fluctuation range from the specified value to a small value, it is possible to achieve a high leaching rate of the metal element without causing a decrease in the utilization rate of chlorine gas or an increase in the sulfur oxidation rate.

上記特許文献1の開示技術では、非鉄金属硫化物等のニッケル原料の塩素浸出操作において、塩素浸出槽内の酸化還元電位(ORP)を所定の時間間隔で測定し、反応応答の時間変化を考慮した偏差を事前に補正しながら塩素ガス流量調節弁の開度を調節することにより、制御のオーバーシュートを防止して、常に最適なORPに調整することを可能としている。   In the technique disclosed in Patent Document 1, in the chlorine leaching operation of nickel raw materials such as non-ferrous metal sulfides, the oxidation-reduction potential (ORP) in the chlorine leaching tank is measured at a predetermined time interval, and the change in the reaction response over time is taken into consideration. By adjusting the opening degree of the chlorine gas flow rate control valve while correcting the deviation in advance, it is possible to prevent the control overshoot and always adjust to the optimum ORP.

特開2009−91646号公報JP 2009-91646 A

しかしながら、高い浸出率を安定的に維持するためには、塩素浸出槽内の酸化還元電位の変動幅を小さく抑えることが必要である。そこで、攪拌槽内部の複数個所で塩素濃度を調査したところ、操業条件によっては、塩素吹き込みノズル付近で濃度が高く、ノズルから遠ざかるにしたがって低く不均一であり、このことが原因で局所的に塩素濃度(または、酸化還元電位)が高いと、硫黄酸化率上昇などの不具合が生じることが明らかとなった。また、真(または、平均)の酸化還元電位が設定値に対して低すぎるときは十分な浸出率が得られないが、逆に酸化還元電位が設定値に対して高くなると気相への塩素ガスのリークが心配され、塩素の利用率が低下するため設定値を低くせざるを得なくなり、高い浸出率の確保が難しいという問題があった。   However, in order to stably maintain a high leaching rate, it is necessary to keep the fluctuation range of the oxidation-reduction potential in the chlorine leaching tank small. Therefore, when the chlorine concentration was investigated at a plurality of locations inside the stirring tank, depending on the operation conditions, the concentration was high near the chlorine blowing nozzle, and it was low and non-uniform as it moved away from the nozzle. It has been clarified that when the concentration (or redox potential) is high, problems such as an increase in sulfur oxidation rate occur. In addition, when the true (or average) redox potential is too low with respect to the set value, a sufficient leaching rate cannot be obtained. Conversely, when the redox potential is higher than the set value, chlorine into the gas phase can be obtained. There was a problem that gas leakage was concerned, and the utilization rate of chlorine decreased, so that the set value had to be lowered, and it was difficult to ensure a high leaching rate.

そこで、本発明の目的は、上述の如き従来の問題点に鑑み、塩素浸出反応における酸化還元電位の攪拌槽内での空間的な偏りを従来よりも小さくし、塩素ガスの利用率の低下や硫黄酸化率の上昇を招くことなく、金属元素の高い浸出率を得ることができる攪拌反応槽、攪拌反応装置及び塩素浸出反応酸化還元電位の制御方法塩素ガスの供給制御方法を提供することにある。   Therefore, in view of the conventional problems as described above, the object of the present invention is to make the spatial bias in the stirring tank of the oxidation-reduction potential in the chlorine leaching reaction smaller than in the past, and to reduce the utilization rate of chlorine gas. To provide a stirring reaction vessel, a stirring reaction apparatus, a chlorine leaching reaction oxidation-reduction potential control method, and a chlorine gas supply control method capable of obtaining a high leaching rate of a metal element without causing an increase in sulfur oxidation rate. .

本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.

本発明者らは、上記目的を達成するために、塩素浸出電解採取法により非鉄金属原料からニッケル等を回収するための攪拌反応装置における塩素の供給制御方法について、鋭意研究を重ねた結果、攪拌槽内の槽下部を含む複数の位置における酸化還元電位測定値を用いて、塩素吹き込みノズルの先端位置を調節することにより、塩素浸出反応における酸化還元電位の攪拌槽内での空間的な偏りを従来よりも小さくし、塩素ガスの利用率の低下や硫黄酸化率の上昇を招くことなく、金属元素の高い浸出率を得ることができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted earnest research on a chlorine supply control method in a stirring reaction apparatus for recovering nickel and the like from a nonferrous metal raw material by a chlorine leaching electrowinning method. By adjusting the tip position of the chlorine blowing nozzle using the redox potential measurement values at multiple positions including the lower part of the tank in the tank, the spatial bias in the stirring tank of the redox potential in the chlorine leaching reaction can be reduced. The present invention has been completed by finding that it is possible to obtain a high leaching rate of a metal element without reducing the utilization rate of chlorine gas and increasing the sulfur oxidation rate.

すなわち、本発明は、原料から反応用ガスを用いて反応生成物を生成するための攪拌反応槽であって、 反応用ガス吹き込み口が設けられたノズル先端部の槽内における位置を調節自在とした反応用ガス吹き込みノズルを備える反応用ガス供給手段を備え、上記反応用ガス供給手段により上記反応用吹き込みノズルを介して上記反応用吹き込み口から槽内に反応用ガスが供給されることを特徴とする。   That is, the present invention is a stirred reaction tank for generating a reaction product from a raw material using a reaction gas, and the position of the nozzle tip provided with the reaction gas blowing port in the tank is adjustable. The reaction gas supply means is provided with the reaction gas blowing nozzle, and the reaction gas is supplied from the reaction blowing nozzle into the tank through the reaction blowing nozzle by the reaction gas supply means. And

本発明に係る攪拌反応槽は、上記原料は非鉄金属の硫化物を含む非鉄金属原料であって、上記反応用ガス供給手段により上記反応用ガス吹き込みノズルを介して上記反応用ガス吹き込み口から槽内に塩素ガスが供給され、上記非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するものとすることができる。   The stirred reaction tank according to the present invention is a non-ferrous metal raw material containing a non-ferrous metal sulfide, and the tank from the reaction gas blowing port through the reaction gas blowing nozzle by the reaction gas supply means. Chlorine gas is supplied into the inside, and the non-ferrous metal can be leached from the non-ferrous metal raw material using the chlorine gas.

上記攪拌反応槽は、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備えるものとすることができる。   The agitation reaction tank may be provided with oxidation-reduction potential measuring means for measuring the oxidation-reduction potential at a plurality of positions including the upper part of the tank and the lower part of the tank.

また、本発明に係る攪拌反応槽において、上記反応用ガス供給手段は、上記反応用ガス吹き込みノズルのノズル先端部に電動制御により突出量が調整される内筒を備えるものとすることができる。   Moreover, the stirring reaction tank which concerns on this invention WHEREIN: The said reaction gas supply means shall be equipped with the inner cylinder by which protrusion amount is adjusted by electric control in the nozzle front-end | tip part of the said reaction gas blowing nozzle.

また、本発明は、攪拌反応装置であって、塩素吹き込み口が設けられたノズル先端部の槽内における位置を槽外より調節自在とした塩素吹き込みノズルを備える塩素ガス供給手段と、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備え、上記塩素ガス供給手段により上記塩素吹き込みノズルを介して上記塩素吹き込み口から槽内に塩素ガスが供給され、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するための攪拌反応槽と、上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が規定値以内にあるか否かを判定し、上記差分が規定値以内にない場合には、上記差分が規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における塩素吹き込みノズルの先端位置を移動させる制御を行う制御手段とを備え、上記制御手段は、上記槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズルの上記ノズル先端部の上記攪拌反応槽内における位置の粗調整位置情報を蓄積したデータベースを備え、上記データベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部の位置の粗調整を行い、上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が差分規定値以内にあるか否かを判定し、上記差分が差分規定値以内にない場合には、上記差分が差分規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における上記ノズル先端部を移動させる制御を行い、上記差分が差分規定値以内にある状態において、上記槽上部における酸化還元電位測定値が規定値になるように上記塩素ガス供給手段による塩素ガス供給量を制御することを特徴とする。   Further, the present invention is a stirring reaction apparatus, a chlorine gas supply means comprising a chlorine blowing nozzle, wherein the position in the tank of the nozzle tip provided with a chlorine blowing port is adjustable from the outside of the tank; A redox potential measuring means for measuring a redox potential at a plurality of positions including the lower part of the tank is provided. Chlorine gas is supplied into the tank from the chlorine inlet through the chlorine inlet nozzle by the chlorine gas supply means. The difference between the redox potential measured values at the plurality of positions obtained by the stirring reaction tank for leaching the nonferrous metal from the nonferrous metal raw material containing metal sulfide using chlorine gas and the redox potential measuring means is It is determined whether the difference is within the specified value. If the difference is not within the specified value, the difference is increased until the difference is within the specified value. Control means for controlling the position of the tip of the chlorine blowing nozzle in the stirred reaction tank, and the control means obtains the relationship between the deviation from the average chlorine concentration in the lower part of the tank and the chlorine blowing position by fluid simulation. And a database in which coarse adjustment position information of the position of the nozzle tip of the chlorine blowing nozzle in the stirring reaction tank is accumulated, and based on the coarse adjustment position information accumulated in the database, the nozzle tip Coarse adjustment of the position of the part, it is determined whether or not the difference between the redox potential measured values at the plurality of positions obtained by the redox potential measuring means is within a difference prescribed value, and the difference is a difference prescribed value If not within the stirring reaction tank, the difference becomes smaller until the difference falls within the specified difference value. The amount of chlorine gas supplied by the chlorine gas supply means is controlled so that the measured value of the oxidation-reduction potential at the upper part of the tank becomes a specified value in a state where the nozzle tip is moved and the difference is within the specified difference value. It is characterized by controlling.

本発明に係る攪拌反応装置において、上記塩素ガス供給手段は、上記塩素吹き込みノズルのノズル先端部に電動制御により突出量が調整される内筒を備えるものとすることができる。   In the stirring reaction apparatus according to the present invention, the chlorine gas supply means may include an inner cylinder whose protruding amount is adjusted by electric control at the nozzle tip of the chlorine blowing nozzle.

さらに、本発明は、塩素吹き込み口が設けられたノズル先端部の槽内における位置を槽外より調節自在とした塩素吹き込みノズルを備える塩素ガス供給手段と、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備え、上記塩素ガス供給手段により上記塩素吹き込みノズルを介して上記塩素吹き込み口から槽内に塩素ガスが供給される攪拌反応槽により、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出する浸出処理における塩素浸出反応酸化還元電位の制御方法であって、上記槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズルの上記ノズル先端部の上記攪拌反応槽内における位置の粗調整位置情報を蓄積したデータベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部の位置の粗調整を行い、上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が差分規定値以内にあるか否かを判定し、上記差分が差分規定値以内にない場合には、上記差分が差分規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における上記ノズル先端部を移動させる制御を行い、上記差分が差分規定値以内にある状態において、上記槽上部における酸化還元電位測定値が規定値になるように上記塩素ガス供給手段による塩素ガス供給量を制御することを特徴とする。   Furthermore, the present invention provides a chlorine gas supply means comprising a chlorine blowing nozzle that allows the position of the nozzle tip provided with a chlorine blowing port in the tank to be adjusted from the outside of the tank, and a plurality of positions including a tank upper part and a tank lower part. And a redox potential measuring means for measuring a redox potential in the reactor, and a stirring reaction tank in which chlorine gas is supplied from the chlorine blowing port into the tank through the chlorine blowing nozzle by the chlorine gas supply means. A control method of a chlorine leaching reaction oxidation-reduction potential in a leaching process for leaching the non-ferrous metal from a non-ferrous metal raw material containing sulfide using chlorine gas, the deviation from the average of the chlorine concentration in the lower part of the tank and the chlorine blowing position Of the position of the nozzle tip of the chlorine blowing nozzle in the stirring reaction tank. Based on the rough adjustment position information stored in the database storing the adjustment position information, the position of the nozzle tip is roughly adjusted, and the redox potentials at the plurality of positions obtained by the redox potential measuring means are obtained. It is determined whether or not the difference between the measurement values is within the specified difference value. If the difference is not within the specified difference value, the difference is reduced in the direction until the difference is within the specified difference value. The chlorine gas supply means controls the movement of the nozzle tip in the stirring reaction tank so that the measured oxidation-reduction potential at the upper part of the tank becomes a specified value when the difference is within the specified difference. It is characterized by controlling the supply amount of chlorine gas.

本発明では、槽内に反応用ガスを供給する反応用ガス供給手段は、反応用ガス吹き込み口が設けられたノズル先端部の槽内における位置を調節自在とした反応用ガス吹き込みノズルを備えるので、上記槽内における上記反応用ガス吹き込み口の位置を反応効率の良い最適位置に調整することができ、原料から反応用ガスを用いて反応生成物を効率よく生成することができる。   In the present invention, the reaction gas supply means for supplying the reaction gas into the tank includes a reaction gas blowing nozzle that can adjust the position of the nozzle tip provided with the reaction gas blowing port in the tank. The position of the reaction gas blowing port in the tank can be adjusted to an optimal position with good reaction efficiency, and a reaction product can be efficiently generated from the raw material using the reaction gas.

例えば、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するための攪拌反応槽に、塩素吹き込み口が設けられたノズル先端部の槽内における位置を槽外より調節自在とした塩素吹き込みノズルを備える塩素ガス供給手段を備えることにより、ガス吹き込み量や攪拌翼の回転速度の変更、攪拌翼の磨耗、反応物の堆積などよって、最適な吹き込みノズル位置が変化した場合でも、塩素吹き込みノズルの位置を流速が速いなどの適切な位置に調整することが可能となり、塩素浸出反応における酸化還元電位の攪拌槽内での空間的な偏りを小さくし、局所反応による塩素ガスの利用率の低下や硫黄酸化率の上昇などを抑えて、金属元素の高い浸出率を得ることができる。   For example, in the stirring reaction tank for leaching the non-ferrous metal from a non-ferrous metal raw material containing sulfide of non-ferrous metal using chlorine gas, the position in the tank at the tip of the nozzle provided with a chlorine inlet is from the outside of the tank. By providing chlorine gas supply means with an adjustable chlorine blowing nozzle, the optimal blowing nozzle position has changed due to changes in gas blowing amount and stirring blade rotation speed, stirring blade wear, deposition of reactants, etc. Even in this case, it is possible to adjust the position of the chlorine blowing nozzle to an appropriate position such as a high flow rate, to reduce the spatial bias in the stirring tank of the oxidation-reduction potential in the chlorine leaching reaction, and A high leaching rate of the metal element can be obtained while suppressing a decrease in the gas utilization rate and an increase in the sulfur oxidation rate.

本発明を適用した攪拌反応装置の構成例を模式的に示す断面図である。It is sectional drawing which shows typically the structural example of the stirring reaction apparatus to which this invention is applied. 上記攪拌反応装置の塩素ガス供給部の構造を模式的に示す拡大図である。It is an enlarged view which shows typically the structure of the chlorine gas supply part of the said stirring reaction apparatus. 上記攪拌反応装置の運転手順を説明するためのフローチャートである。It is a flowchart for demonstrating the driving | operation procedure of the said stirring reaction apparatus. 上記攪拌反応装置における運転条件に応じたガス供給位置を示す特性図である。It is a characteristic view which shows the gas supply position according to the operating condition in the said stirring reaction apparatus.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明は、例えば図1に示すような構成の攪拌反応装置100に適用される。   The present invention is applied to, for example, an agitation reaction apparatus 100 configured as shown in FIG.

この攪拌反応装置100は、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するための攪拌反応槽50と、この攪拌反応槽50を運転するための制御部60を備える。   The stirring reaction apparatus 100 includes a stirring reaction tank 50 for leaching the non-ferrous metal from a non-ferrous metal raw material containing sulfide of non-ferrous metal using chlorine gas, and a control unit 60 for operating the stirring reaction tank 50. Is provided.

上記攪拌反応槽50は、非鉄金属の硫化物を含む非鉄金属原料スラリーが装入される反応槽本体10と、上記反応槽本体10内に収納された非鉄金属原料スラリーを攪拌する攪拌機20と、上記反応槽本体10内に塩素ガスを供給する塩素ガス供給部30を備える。   The stirring reaction tank 50 includes a reaction tank body 10 charged with a non-ferrous metal raw material slurry containing a non-ferrous metal sulfide, a stirrer 20 for stirring the non-ferrous metal raw material slurry stored in the reaction tank main body 10, and A chlorine gas supply unit 30 for supplying chlorine gas into the reaction vessel main body 10 is provided.

上記攪拌機20は、上記反応槽本体10の上部中央に設置された攪拌モータ21と、上記反応槽本体10内に垂下装入された上記攪拌モータ21の回転軸22と、上記回転軸22に取り付けられた攪拌翼23からなる。   The agitator 20 is attached to the agitation motor 21 installed in the upper center of the reaction vessel main body 10, the rotation shaft 22 of the agitation motor 21 suspended in the reaction vessel body 10, and the rotation shaft 22. The stirring blade 23 thus formed.

上記塩素ガス供給部30は、塩素吹き込み口31が設けられたノズル先端部32Aの上記反応槽本体10内における位置を槽外より調節自在とした塩素吹き込みノズル32を備える塩素ガス供給手段である。   The chlorine gas supply unit 30 is a chlorine gas supply means including a chlorine blowing nozzle 32 that allows the position of the nozzle tip 32A provided with the chlorine blowing port 31 in the reaction tank body 10 to be adjusted from the outside of the tank.

図2に上記塩素ガス供給部30の拡大図に示すように、この攪拌反応槽50において、上記塩素ガス供給部30の塩素吹き込みノズル32は、塩素ガスが供給される固定筒33と、内筒位置調整モータ34によりヘリコイド機構35を介して直線移動される可動内筒36からなる。   As shown in the enlarged view of the chlorine gas supply unit 30 in FIG. 2, in this stirring reaction tank 50, the chlorine blowing nozzle 32 of the chlorine gas supply unit 30 includes a fixed cylinder 33 and an inner cylinder to which chlorine gas is supplied. It consists of a movable inner cylinder 36 that is linearly moved by a position adjusting motor 34 via a helicoid mechanism 35.

上記ヘリコイド機構35は、上記可動内筒36の外周面に形成された雄ねじ35Aと螺合する図示しない雌ねじが内周面に形成された回転部37を備え、上記回転部37の回転を上記可動内筒36直線移動に変換する機構である。上記回転部37の外周面には、上記内筒位置調整モータ34の回転軸34Aに形成されたギヤと噛合するギヤが形成されている。   The helicoid mechanism 35 includes a rotating portion 37 in which an internal thread (not shown) that engages with an external screw 35A formed on the outer peripheral surface of the movable inner cylinder 36 is formed on the inner peripheral surface. The inner cylinder 36 is a mechanism for converting into linear movement. A gear that meshes with a gear formed on the rotation shaft 34 </ b> A of the inner cylinder position adjusting motor 34 is formed on the outer peripheral surface of the rotating portion 37.

そして、上記可動内筒36は、その外周面に回転防止用溝36Aが形成されており、上記固定筒33の先端部に形成された図示しない凸部を上記回転防止用溝36Aで係止することにより、回転することなく、上記内筒位置調整モータ34により上記ヘリコイド機構35を介して直線移動される。   The movable inner cylinder 36 has an anti-rotation groove 36A formed on the outer peripheral surface thereof, and a projection (not shown) formed at the tip of the fixed cylinder 33 is locked by the anti-rotation groove 36A. Thus, the inner cylinder position adjusting motor 34 moves linearly through the helicoid mechanism 35 without rotating.

すなわち、上記塩素吹き込みノズル32は、そのノズル先端部に電動制御により突出量が調整される可動内筒36を備える。   That is, the chlorine blowing nozzle 32 includes a movable inner cylinder 36 whose protruding amount is adjusted by electric control at the nozzle tip.

なお、上記内筒位置調整モータ34及び上記ヘリコイド機構35は、上記固定筒33の外周を囲む筐体38内に設けられている。   The inner cylinder position adjustment motor 34 and the helicoid mechanism 35 are provided in a housing 38 that surrounds the outer periphery of the fixed cylinder 33.

上記内筒位置調整モータ34は、その動作が制御部60により制御される。上記制御部60は、上記反応槽本体10の外部に設けられている。   The operation of the inner cylinder position adjustment motor 34 is controlled by the control unit 60. The control unit 60 is provided outside the reaction vessel main body 10.

そして、この攪拌反応槽50では、上記塩素ガス供給部30により上記塩素吹き込みノズル32を介して上記塩素吹き込み口31から槽内に塩素ガスが供給される。   In the stirring reaction tank 50, chlorine gas is supplied into the tank from the chlorine blowing port 31 through the chlorine blowing nozzle 32 by the chlorine gas supply unit 30.

すなわち、この攪拌反応槽50において、槽内に塩素ガスを吹き込む上記塩素ガス供給部30の塩素吹き込みノズル32は、上記内筒位置調整モータ34によりヘリコイド機構35を介して直線移動される可動内筒36の先端部、すなわち、塩素吹き込み口31が設けられたノズル先端部32Aの上記反応槽本体10内における位置を槽外より調節自在としてある。   That is, in this stirring reaction tank 50, the chlorine blowing nozzle 32 of the chlorine gas supply unit 30 for blowing chlorine gas into the tank is a movable inner cylinder that is linearly moved by the inner cylinder position adjusting motor 34 via the helicoid mechanism 35. The position of the tip 36 of the nozzle, that is, the nozzle tip 32A provided with the chlorine inlet 31 in the reaction tank body 10 is adjustable from the outside of the tank.

この攪拌反応槽50では、例えば、ニッケル、コバルトなどを含有する非鉄金属の硫化物を含む非鉄金属原料スラリーを上記反応槽本体10に装入し、上記反応槽本体10内に上記塩素ガス供給部30により塩素ガスを吹込みながら、上記反応槽本体10内に収納された非鉄金属原料スラリーを攪拌機20により攪拌することにより、上記非鉄金属の浸出が行われる。   In this stirring reaction tank 50, for example, a non-ferrous metal raw material slurry containing a non-ferrous metal sulfide containing nickel, cobalt and the like is charged into the reaction tank body 10, and the chlorine gas supply unit is placed in the reaction tank body 10. The non-ferrous metal leaching is performed by stirring the non-ferrous metal raw material slurry stored in the reaction vessel main body 10 with the stirrer 20 while blowing chlorine gas through 30.

そして、この攪拌反応槽50では、上記塩素吹き込み口31が設けられたノズル先端部32Aの上記反応槽本体10内における位置を槽外より調節自在としてあるので、上記非鉄金属の浸出を行う際に、最適な吹き込みノズル位置に調整することができる。   And in this stirring reaction tank 50, since the position in the said reaction tank main body 10 of the nozzle front-end | tip part 32A in which the said chlorine blowing inlet 31 was provided is adjustable from the outside of a tank, when performing the said nonferrous metal leaching , Can be adjusted to the optimal blowing nozzle position.

このような構成の攪拌反応槽50では、非鉄金属の硫化物を含む非鉄金属原料から上記非鉄金属を浸出するための反応槽本体10に塩素ガスを供給する塩素ガス供給部30は、塩素吹き込み口31が設けられたノズル先端部32Aの槽内における位置を槽外より調節自在とした塩素吹き込みノズル32を備えるので、ガス吹き込み量や攪拌翼23の回転速度の変更、攪拌翼23の磨耗、反応物の堆積などによって、最適な吹き込みノズル位置が変化した場合でも、塩素吹き込みノズル32の位置を流速が速いなどの適切な位置に調整することが可能できる。したがって、塩素浸出反応における酸化還元電位の攪拌槽内での空間的な偏りを小さくし、局所反応による塩素ガスの利用率の低下や硫黄酸化率の上昇などを抑えて、金属元素の高い浸出率を得ることができる。   In the stirring reaction tank 50 having such a configuration, the chlorine gas supply unit 30 for supplying chlorine gas to the reaction tank main body 10 for leaching the non-ferrous metal from the non-ferrous metal raw material containing the sulfide of the non-ferrous metal has a chlorine inlet port. Since the chlorine blowing nozzle 32 is provided so that the position of the nozzle tip 32A provided with the nozzle 31 in the tank can be adjusted from the outside of the tank, the gas blowing amount and the rotation speed of the stirring blade 23 are changed, the abrasion of the stirring blade 23, the reaction Even when the optimum blowing nozzle position changes due to accumulation of objects, the position of the chlorine blowing nozzle 32 can be adjusted to an appropriate position such as a high flow rate. Therefore, the spatial deviation of the oxidation-reduction potential in the chlorine leaching reaction in the stirring tank is reduced, and the decrease in the utilization rate of chlorine gas and the increase in the sulfur oxidation rate due to local reactions are suppressed. Can be obtained.

なお、上記攪拌反応槽50に備えられる攪拌機20においては、スラリー攪拌と塩素ガス浸出反応の両方の性能が高い攪拌翼23、例えば、傾斜型ディスクタービン翼を用いることが望ましい。   In the agitator 20 provided in the agitation reaction tank 50, it is desirable to use an agitation blade 23, for example, an inclined disk turbine blade, having high performance in both slurry agitation and chlorine gas leaching reaction.

ここで、この攪拌反応槽50では、上記反応槽本体10の外部に設けられた上記制御部60を作業者が手動で操作して、上記内筒位置調整モータ34の動作を制御することにより、上記塩素吹き込みノズル32の位置を調整することができるが、後述する如く、上記反応槽本体10内に収納された非鉄金属原料スラリーの酸化還元電位の測定結果に応じて上記制御部60により上記内筒位置調整モータ34の動作を自動制御して、上記塩素吹き込みノズル32の位置を調整するようにしてもよい。   Here, in the agitation reaction tank 50, an operator manually operates the control unit 60 provided outside the reaction tank body 10 to control the operation of the inner cylinder position adjustment motor 34. Although the position of the chlorine blowing nozzle 32 can be adjusted, as will be described later, the control unit 60 performs the above-mentioned internal control according to the measurement result of the oxidation-reduction potential of the non-ferrous metal raw material slurry accommodated in the reaction vessel body 10. The operation of the cylinder position adjusting motor 34 may be automatically controlled to adjust the position of the chlorine blowing nozzle 32.

上記攪拌反応槽50は、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段として例えば2つの酸化還元電位測定用センサ40A,40Bを備えるものとすることができる。   The stirring reaction tank 50 may include, for example, two oxidation-reduction potential measurement sensors 40A and 40B as oxidation-reduction potential measuring means for measuring the oxidation-reduction potential at a plurality of positions including the upper part and the lower part of the tank. .

この攪拌反応槽50では、上記反応槽本体10内の液相部、すなわち、上記反応槽本体10内に収納された非鉄金属原料スラリーの酸化還元電位を測定する2つの酸化還元電位センサ40A,40Bを備え、酸化還元電位センサ40Aにより槽上部の位置における酸化還元電位を測定するとともに、酸化還元電位センサ40Bにより槽下部の位置における酸化還元電位を測定するようになっている。   In this stirring reaction tank 50, two redox potential sensors 40A and 40B for measuring the redox potential of the liquid phase portion in the reaction tank body 10, that is, the non-ferrous metal raw material slurry accommodated in the reaction tank body 10 are used. And the redox potential at the upper position of the tank is measured by the redox potential sensor 40A, and the redox potential at the lower position of the tank is measured by the redox potential sensor 40B.

そして、この攪拌反応槽50では、上記反応槽本体10の外部に設けられた上記制御部60を作業者が手動で操作して、上記内筒位置調整モータ34の動作を制御することにより、上記塩素吹き込みノズル32の位置を調整することができるが、この攪拌反応槽50を備える攪拌反応装置100では、上記2つの酸化還元電位センサ40A,40Bによる検出出力が上記制御部60に供給されており、上記制御部60により上記内筒位置調整モータ34の動作を自動制御して、上記塩素吹き込みノズル32の位置が調整される。   In the stirring reaction tank 50, the operator manually operates the control unit 60 provided outside the reaction tank main body 10 to control the operation of the inner cylinder position adjustment motor 34. Although the position of the chlorine blowing nozzle 32 can be adjusted, in the stirring reaction apparatus 100 including the stirring reaction tank 50, detection outputs from the two oxidation-reduction potential sensors 40A and 40B are supplied to the control unit 60. The position of the chlorine blowing nozzle 32 is adjusted by automatically controlling the operation of the inner cylinder position adjusting motor 34 by the controller 60.

なお、この攪拌反応装置100では、上記塩素ガス供給部30を介して上記反応槽本体10内に供給する塩素ガスの流量が流量制御弁45により制御できるようになっている。   In the stirring reaction apparatus 100, the flow rate of the chlorine gas supplied into the reaction vessel main body 10 via the chlorine gas supply unit 30 can be controlled by the flow rate control valve 45.

この攪拌反応装置100は、上記制御部60により、図3にフローチャートに示す手順に従って運転される。   The stirring reaction apparatus 100 is operated by the control unit 60 according to the procedure shown in the flowchart of FIG.

この攪拌反応装置100において、上記制御部60は、上記酸化還元電位センサ40A,40Bすなわち酸化還元電位測定手段により得られる酸化還元電位測定値の差分が規定値以内にあるか否かを判定し、上記差分が規定値以内にない場合には、上記差分が規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽50内における塩素吹き込みノズル32の先端位置を移動させる制御を行う制御手段として機能する。   In the stirring reaction apparatus 100, the control unit 60 determines whether or not the difference between the redox potential measured values obtained by the redox potential sensors 40A and 40B, that is, the redox potential measuring means is within a specified value, If the difference is not within the specified value, control is performed to move the tip position of the chlorine blowing nozzle 32 in the stirring reaction tank 50 in a direction in which the difference becomes smaller until the difference is within the specified value. Functions as a means.

すなわち、この攪拌反応装置100では、流体シミュレーションによって操業条件や堆積物の状況などによって異なる塩素濃度分布、および、流速が大きく最適な塩素吹き込み位置を求めてデータベースを予め作成しておき、上記制御部60は、上記データベースを参照し(ステップS1)、上記2つの酸化還元電位センサ40A,40Bによる検出出力と上記データベースに基づいて、図4に示すように運転条件に応じたガス供給位置を決定し(ステップS2)、上記内筒位置調整モータ34の動作を制御して上記塩素吹き込みノズル32の上記可動内筒36の位置の粗調整を行う(ステップS3)。   That is, in this agitation reaction apparatus 100, a database is created in advance by obtaining an optimum chlorine blowing position with a large chlorine flow rate distribution and a large flow velocity, which varies depending on operating conditions, deposit conditions, and the like by fluid simulation. 60 refers to the database (step S1), and determines the gas supply position according to the operating conditions as shown in FIG. 4 based on the detection outputs from the two oxidation-reduction potential sensors 40A and 40B and the database. (Step S2) The operation of the inner cylinder position adjusting motor 34 is controlled to roughly adjust the position of the movable inner cylinder 36 of the chlorine blowing nozzle 32 (Step S3).

上記データベースは、槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズル32の上記ノズル先端部32の上記攪拌反応槽50内における位置の粗調整位置情報を蓄積することにより作成される。   The database obtains the relationship between the deviation from the average chlorine concentration in the lower part of the tank and the chlorine blowing position by fluid simulation, and roughly adjusts the position of the nozzle tip 32 of the chlorine blowing nozzle 32 in the stirring reaction tank 50. It is created by accumulating position information.

そして、上記制御部60は、上記ステップS3において、上記データベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部32Aの位置の粗調整を行う。   In step S3, the control unit 60 performs coarse adjustment of the position of the nozzle tip 32A based on the coarse adjustment position information stored in the database.

次に、上記制御部60は、上記2つの酸化還元電位センサ40A,40Bによる検出出力に基づいて、ガス流量一定で槽上部と下部の酸化還元電位の差分が規定値以下であるか否かを判定し(ステップS4)、その判定結果が「NO」、すなわち、差分が規定値以下でない場合には、上記規定値以下となるように、上記内筒位置調整モータ34の動作を制御して上記差分が小さくなる方向に上記可動内筒36の位置の微調整を行う(ステップS5)。   Next, the control unit 60 determines whether or not the difference between the oxidation-reduction potentials at the upper and lower tanks is equal to or less than a specified value at a constant gas flow rate, based on the detection outputs from the two oxidation-reduction potential sensors 40A and 40B. If the determination result is “NO”, that is, if the difference is not equal to or less than the specified value, the operation of the inner cylinder position adjusting motor 34 is controlled so as to be equal to or less than the specified value. Fine adjustment of the position of the movable inner cylinder 36 is performed in the direction in which the difference becomes smaller (step S5).

次に、上記制御部60は、上記ステップS4における判定結果が「YES」、すなわち、上記ガス流量一定で槽上部と下部の酸化還元電位の差が規定値以下となったら、上記塩素ガス供給部30を介して上記反応槽本体10内に供給する塩素ガスの流量を制御する流量制御弁45を制御して、上記差分が差分規定値以内にある状態において、槽上部の酸化還元電位が設定値になるようにガス流量を調節する(ステップS6)。   Next, when the determination result in step S4 is “YES”, that is, when the difference between the oxidation-reduction potentials at the upper part and the lower part of the tank is equal to or less than a specified value, the control unit 60 determines that the chlorine gas supply unit The flow rate control valve 45 for controlling the flow rate of the chlorine gas supplied into the reaction vessel main body 10 through 30 is controlled, and the oxidation-reduction potential at the upper portion of the vessel is set to a set value in the state where the difference is within the specified difference value. The gas flow rate is adjusted so as to become (step S6).

そして、上記制御部60は、この運転状態を5〜10分保持し(ステップS7)、さらに、運転条件や槽内状況を確認して(ステップS8)、上記ステップ1に戻って、上記ステップ1〜ステップS8を繰り返すことで、操業条件や堆積物の状況などによって異なる塩素濃度分布、および、流速が大きく最適な塩素吹き込み位置に、上記塩素吹き込みノズル32の上記可動内筒36を位置させる。   And the said control part 60 hold | maintains this driving | running state for 5 to 10 minutes (step S7), and also confirms an operating condition and the condition in a tank (step S8), returns to the said step 1, and returns to the said step 1 By repeating Step S8, the movable inner cylinder 36 of the chlorine blowing nozzle 32 is positioned at the optimum chlorine blowing position where the chlorine concentration distribution and the flow velocity differ depending on the operation conditions and the state of the deposit.

このように、この攪拌反応装置100では、槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズル32の上記ノズル先端部32Aの上記攪拌反応槽50内における位置の粗調整位置情報を蓄積したデータベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部32Aの位置の粗調整を行い、上記2つの酸化還元電位センサ40A,40Bにより得られる酸化還元電位測定値の差分が差分規定値以内にあるか否かを判定し、上記差分が差分規定値以内にない場合には、上記差分が差分規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における上記ノズル先端部を移動させる制御を行い、上記差分が差分規定値以内にある状態において、上記槽上部における酸化還元電位測定値が規定値になるように上記塩素ガス供給部30による塩素ガス供給量を制御することにより、塩素浸出反応における酸化還元電位の攪拌槽内での空間的な偏りを小さくし、局所反応による塩素ガスの利用率の低下や硫黄酸化率の上昇などを抑えて、金属元素の高い浸出率を得ることができる。   Thus, in this stirring reaction apparatus 100, the relationship between the deviation from the average chlorine concentration in the lower part of the tank and the chlorine blowing position is obtained by fluid simulation, and the stirring reaction tank of the nozzle tip 32A of the chlorine blowing nozzle 32 is obtained. 50, coarse adjustment of the position of the nozzle tip 32A is performed based on the rough adjustment position information stored in the database that stores the rough adjustment position information of the position within 50, and the two oxidation-reduction potential sensors 40A, 40B. It is determined whether or not the difference between the measured oxidation-reduction potential values is within a prescribed difference value. If the difference is not within the prescribed difference value, the difference is continued until the difference is within the prescribed difference value. The control is performed to move the nozzle tip in the stirring reaction tank in a direction in which the difference becomes smaller, and the difference is within the specified difference value. In this state, the amount of redox potential in the chlorine leaching reaction in the stirring tank is controlled by controlling the amount of chlorine gas supplied by the chlorine gas supply unit 30 so that the measured value of redox potential in the upper part of the tank becomes a specified value. Therefore, it is possible to obtain a high leaching rate of the metal element by reducing the general bias and suppressing the decrease in the utilization rate of chlorine gas and the increase in the sulfur oxidation rate due to local reactions.

この攪拌反応装置100を用いた非鉄金属硫化物の塩素浸出工程において、ORPの設定値を550mVとし、操業条件の変動した場合でも槽上部と下部の測定値の差を10mV以内に制御することが可能であった。
(比較例1)
In the chlorine leaching process of non-ferrous metal sulfide using this stirring reactor 100, the set value of ORP is set to 550 mV, and the difference between the measured values of the upper and lower tanks can be controlled within 10 mV even when the operating conditions fluctuate. It was possible.
(Comparative Example 1)

実施例1と同様の塩素浸出工程において、ORPの設定値を550mVとして、塩素吹き込みノズルの先端位置を固定した従来の方法では、操業条件の変動に伴う、槽上部と下部の測定値の差は、50mVから100mVであった。   In the conventional chlorine leaching process similar to that in Example 1, the ORP set value was set to 550 mV, and the tip position of the chlorine blowing nozzle was fixed. 50 mV to 100 mV.

なお、以上説明した実施の形態では、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するための攪拌反応槽50を備える攪拌反応装置100に本発明を適用したが、上記実施の形態のみに限定されるものでなく、本発明は、例えば、原料から反応用ガスを用いて反応生成物を生成するための攪拌反応槽に適用することもでき、槽内に反応用ガスを供給する反応用ガス供給手段は、反応用ガス吹き込み口が設けられたノズル先端部の槽内における位置を調節自在とした反応用ガス吹き込みノズルを備えることにより、上記槽内における上記反応用ガス吹き込み口の位置を反応効率の良い最適位置に調整して、原料から反応用ガスを用いて反応生成物を効率よく生成することができる。   In the embodiment described above, the present invention is applied to the stirring reaction apparatus 100 including the stirring reaction tank 50 for leaching the non-ferrous metal from the non-ferrous metal raw material containing sulfide of the non-ferrous metal using chlorine gas. However, the present invention is not limited only to the above embodiment, and the present invention can be applied to, for example, a stirred reaction tank for generating a reaction product from a raw material using a reaction gas. The reaction gas supply means for supplying the reaction gas is provided with a reaction gas blowing nozzle in which the position in the tank of the nozzle tip provided with the reaction gas blowing port is adjustable. By adjusting the position of the reaction gas inlet to the optimum position with good reaction efficiency, the reaction product can be efficiently generated from the raw material using the reaction gas.

10 反応槽本体、20 攪拌機、21 攪拌モータ、22 回転軸、23 攪拌翼、30 塩素ガス供給部、31 塩素吹き込み口、32 塩素吹き込みノズル、32A ノズル先端部、33 固定筒、34 内筒位置調整モータ、35 ヘリコイド機構、35A 雄ねじ35A、36 可動内筒、36A 回転防止用溝、37 回転部、38 筐体、40A,40B 酸化還元電位測定用センサ、45 流量制御弁、50 攪拌反応槽、60 制御部、100攪拌反応装置   DESCRIPTION OF SYMBOLS 10 Reaction tank main body, 20 Stirrer, 21 Stirrer motor, 22 Rotating shaft, 23 Stirring blade, 30 Chlorine gas supply part, 31 Chlorine blowing inlet, 32 Chlorine blowing nozzle, 32A Nozzle tip, 33 Fixed cylinder, 34 Inner cylinder position adjustment Motor, 35 Helicoid mechanism, 35A Male thread 35A, 36 Movable inner cylinder, 36A Anti-rotation groove, 37 Rotating part, 38 Housing, 40A, 40B Redox potential measurement sensor, 45 Flow control valve, 50 Stirring reaction tank, 60 Control unit, 100 stirring reactor

Claims (7)

原料から反応用ガスを用いて反応生成物を生成するための攪拌反応槽であって、
反応用ガス吹き込み口が設けられたノズル先端部の槽内における位置を調節自在とした反応用ガス吹き込みノズルを備える反応用ガス供給手段を備え、
上記反応用ガス供給手段により上記反応用吹き込みノズルを介して上記反応用吹き込み口から槽内に反応用ガスが供給されることを特徴とする攪拌反応槽。
A stirred reaction tank for producing a reaction product from a raw material using a reaction gas,
A reaction gas supply means including a reaction gas injection nozzle that can adjust the position in the tank of the nozzle tip provided with the reaction gas injection port;
A stirring reaction tank, wherein the reaction gas is supplied from the reaction blowing port into the tank through the reaction blowing nozzle by the reaction gas supply means.
上記原料は非鉄金属の硫化物を含む非鉄金属原料であって、上記反応用ガス供給手段により上記反応用ガス吹き込みノズルを介して上記反応用ガス吹き込み口から槽内に塩素ガスが供給され、上記非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出することを特徴とする請求項1記載の攪拌反応槽。   The raw material is a non-ferrous metal raw material containing a non-ferrous metal sulfide, and chlorine gas is supplied into the tank from the reaction gas blowing port through the reaction gas blowing nozzle by the reaction gas supply means, The stirred reaction tank according to claim 1, wherein the nonferrous metal is leached from a nonferrous metal raw material using chlorine gas. 槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備えることを特徴とする請求項2記載の攪拌反応槽。  The stirred reaction tank according to claim 2, further comprising oxidation-reduction potential measuring means for measuring the oxidation-reduction potential at a plurality of positions including the upper part of the tank and the lower part of the tank. 上記反応用ガス供給手段は、上記反応用ガス吹き込みノズルのノズル先端部に電動制御により突出量が調整される内筒を備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載の攪拌反応槽。   The said reaction gas supply means is provided with the inner cylinder from which the protrusion amount is adjusted by electric control at the nozzle front-end | tip part of the said reaction gas blowing nozzle, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The stirred reaction tank described. 塩素吹き込み口が設けられたノズル先端部の槽内における位置を槽外より調節自在とした塩素吹き込みノズルを備える塩素ガス供給手段と、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備え、上記塩素ガス供給手段により上記塩素吹き込みノズルを介して上記塩素吹き込み口から槽内に塩素ガスが供給され、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出するための攪拌反応槽と、
上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が規定値以内にあるか否かを判定し、上記差分が規定値以内にない場合には、上記差分が規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における塩素吹き込みノズルの先端位置を移動させる制御を行う制御手段と
を備え、
上記制御手段は、上記槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズルの上記ノズル先端部の上記攪拌反応槽内における位置の粗調整位置情報を蓄積したデータベースを備え、上記データベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部の位置の粗調整を行い、上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が差分規定値以内にあるか否かを判定し、上記差分が差分規定値以内にない場合には、上記差分が差分規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における上記ノズル先端部を移動させる制御を行い、上記差分が差分規定値以内にある状態において、上記槽上部における酸化還元電位測定値が規定値になるように上記塩素ガス供給手段による塩素ガス供給量を制御することを特徴とする攪拌反応装置。
Measure the redox potential at multiple locations including a chlorine gas supply means with a chlorine blowing nozzle that allows the position of the nozzle tip provided with a chlorine blowing port in the tank to be adjusted from the outside of the tank, and the tank upper and lower parts The chlorine gas is supplied from the chlorine blowing port into the tank through the chlorine blowing nozzle by the chlorine gas supplying means, and chlorine gas is supplied from the nonferrous metal raw material containing sulfide of nonferrous metal. A stirred reaction tank for leaching the non-ferrous metal using,
It is determined whether or not the difference between the redox potential measurement values at the plurality of positions obtained by the redox potential measuring means is within a specified value. If the difference is not within the specified value, the difference is specified. Control means for performing control to move the tip position of the chlorine blowing nozzle in the stirring reaction tank in a direction in which the difference becomes smaller until it falls within a value,
The control means obtains the relationship between the deviation from the average of the chlorine concentration in the lower part of the tank and the chlorine blowing position by fluid simulation, and roughly adjusts the position of the tip of the chlorine blowing nozzle in the stirring reaction tank. A database storing information, and performing rough adjustment of the position of the nozzle tip based on the rough adjustment position information stored in the database, at the plurality of positions obtained by the oxidation-reduction potential measuring means. It is determined whether or not the difference between the oxidation-reduction potential measurement values is within a specified difference value. If the difference is not within the specified difference value, the difference is decreased until the difference is within the specified difference value. In the state where the nozzle tip in the stirring reaction tank is moved in the direction and the difference is within the specified difference value. Stirred reactor and controlling the chlorine gas supply amount of the chlorine gas supply means such oxidation reduction potential measurements at the tank top is a specified value.
上記塩素ガス供給手段は、上記塩素吹き込みノズルのノズル先端部に電動制御により突出量が調整される内筒を備えることを特徴とする請求項5に記載の攪拌反応装置。   6. The stirring reaction apparatus according to claim 5, wherein the chlorine gas supply means includes an inner cylinder whose protrusion amount is adjusted by electric control at a nozzle tip of the chlorine blowing nozzle. 塩素吹き込み口が設けられたノズル先端部の槽内における位置を槽外より調節自在とした塩素吹き込みノズルを備える塩素ガス供給手段と、槽上部と槽下部を含む複数の位置において酸化還元電位を測定する酸化還元電位測定手段を備え、上記塩素ガス供給手段により上記塩素吹き込みノズルを介して上記塩素吹き込み口から槽内に塩素ガスが供給される攪拌反応槽により、非鉄金属の硫化物を含む非鉄金属原料から塩素ガスを用いて上記非鉄金属を浸出する浸出処理における塩素浸出反応酸化還元電位の制御方法であって、
上記槽下部における塩素濃度の平均からのずれと塩素吹き込み位置の関係を流体シミュレーションによって求めて、上記塩素吹き込みノズルの上記ノズル先端部の上記攪拌反応槽内における位置の粗調整位置情報を蓄積したデータベースに蓄積されている上記粗調整位置情報に基づいて、上記ノズル先端部の位置の粗調整を行い、
上記酸化還元電位測定手段により得られる上記複数の位置における酸化還元電位測定値の差分が差分規定値以内にあるか否かを判定し、
上記差分が差分規定値以内にない場合には、上記差分が差分規定値以内になるまで、上記差分が小さくなる方向に上記攪拌反応槽内における上記ノズル先端部を移動させる制御を行い、
上記差分が差分規定値以内にある状態において、上記槽上部における酸化還元電位測定値が規定値になるように上記塩素ガス供給手段による塩素ガス供給量を制御する
ことを特徴とする塩素浸出反応酸化還元電位の制御方法。
Measure the redox potential at multiple locations including a chlorine gas supply means with a chlorine blowing nozzle that allows the position of the nozzle tip provided with a chlorine blowing port in the tank to be adjusted from the outside of the tank, and the tank upper and lower parts A non-ferrous metal containing sulfide of non-ferrous metal by a stirring reaction tank having a redox potential measuring means for supplying chlorine gas to the tank from the chlorine blowing nozzle through the chlorine blowing nozzle by the chlorine gas supply means A control method for a chlorine leaching reaction oxidation-reduction potential in a leaching process for leaching the nonferrous metal from a raw material using chlorine gas,
A database in which the relationship between the deviation of the chlorine concentration from the average in the lower part of the tank and the chlorine blowing position is obtained by fluid simulation, and roughly adjusted position information of the position of the nozzle tip of the chlorine blowing nozzle in the stirring reaction tank is accumulated Based on the rough adjustment position information stored in the
Determining whether or not the difference between the redox potential measurement values at the plurality of positions obtained by the redox potential measuring means is within a prescribed difference value;
If the difference is not within the prescribed difference value, until the difference is within the prescribed difference value, control to move the nozzle tip in the stirring reaction tank in a direction to reduce the difference,
Chlorine leaching reaction oxidation characterized by controlling the chlorine gas supply amount by the chlorine gas supply means so that the redox potential measured value in the upper part of the tank becomes a specified value when the difference is within the specified difference value. Control method of reduction potential.
JP2011278762A 2011-12-20 2011-12-20 Stirring reaction tank, stirring reactor, and method for controlling chlorine leaching reaction redox potential Active JP5768701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278762A JP5768701B2 (en) 2011-12-20 2011-12-20 Stirring reaction tank, stirring reactor, and method for controlling chlorine leaching reaction redox potential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278762A JP5768701B2 (en) 2011-12-20 2011-12-20 Stirring reaction tank, stirring reactor, and method for controlling chlorine leaching reaction redox potential

Publications (2)

Publication Number Publication Date
JP2013129865A true JP2013129865A (en) 2013-07-04
JP5768701B2 JP5768701B2 (en) 2015-08-26

Family

ID=48907660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278762A Active JP5768701B2 (en) 2011-12-20 2011-12-20 Stirring reaction tank, stirring reactor, and method for controlling chlorine leaching reaction redox potential

Country Status (1)

Country Link
JP (1) JP5768701B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114302A (en) * 2013-12-16 2015-06-22 住友金属鉱山株式会社 Fitting structure of oxidation reduction electrometer in reaction tank
JP2015182038A (en) * 2014-03-25 2015-10-22 住友金属鉱山株式会社 Shaft sleeve of agitator and production method of the same
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
CN104762469B (en) * 2015-04-19 2016-09-07 郴州福鑫有色金属有限公司 A kind of leaching equipment
CN107460347A (en) * 2017-08-11 2017-12-12 王森杰 A kind of rare-earth substance extraction element
CN110699549A (en) * 2019-09-27 2020-01-17 荆门市格林美新材料有限公司 Recovery unit of valuable metal in old and useless foam nickel
CN113462894A (en) * 2021-06-03 2021-10-01 甘肃康兴科技有限公司 Device and method for recovering nickel, copper and cobalt from nickel smelting water-quenched slag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197533A (en) * 1989-01-25 1990-08-06 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JPH0489541U (en) * 1990-12-14 1992-08-05
JPH08209374A (en) * 1994-12-01 1996-08-13 Falconbridge Ltd Method of compression leaching of nickel/cobalt
JP2008081824A (en) * 2006-09-29 2008-04-10 Nikko Kinzoku Kk Apparatus for removing ruthenium from solution containing platinum group
JP2009091646A (en) * 2007-10-12 2009-04-30 Sumitomo Metal Mining Co Ltd Method for controlling oxidation-reduction potential in reaction of leaching sulfide of nonferrous metal with chlorine
US20090315232A1 (en) * 2008-06-24 2009-12-24 Korea Institute Of Geoscience And Mineral Resources (Kigam) Dissolution Apparatus for Noble Metals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197533A (en) * 1989-01-25 1990-08-06 Sumitomo Metal Mining Co Ltd Separation of valuable metal
JPH0489541U (en) * 1990-12-14 1992-08-05
JPH08209374A (en) * 1994-12-01 1996-08-13 Falconbridge Ltd Method of compression leaching of nickel/cobalt
JP2008081824A (en) * 2006-09-29 2008-04-10 Nikko Kinzoku Kk Apparatus for removing ruthenium from solution containing platinum group
JP2009091646A (en) * 2007-10-12 2009-04-30 Sumitomo Metal Mining Co Ltd Method for controlling oxidation-reduction potential in reaction of leaching sulfide of nonferrous metal with chlorine
US20090315232A1 (en) * 2008-06-24 2009-12-24 Korea Institute Of Geoscience And Mineral Resources (Kigam) Dissolution Apparatus for Noble Metals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114302A (en) * 2013-12-16 2015-06-22 住友金属鉱山株式会社 Fitting structure of oxidation reduction electrometer in reaction tank
JP2015182038A (en) * 2014-03-25 2015-10-22 住友金属鉱山株式会社 Shaft sleeve of agitator and production method of the same
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
CN104762469B (en) * 2015-04-19 2016-09-07 郴州福鑫有色金属有限公司 A kind of leaching equipment
CN107460347A (en) * 2017-08-11 2017-12-12 王森杰 A kind of rare-earth substance extraction element
CN107460347B (en) * 2017-08-11 2019-05-07 新昌县寅源医疗器械有限公司 A kind of rare-earth substance extraction element
CN110699549A (en) * 2019-09-27 2020-01-17 荆门市格林美新材料有限公司 Recovery unit of valuable metal in old and useless foam nickel
CN110699549B (en) * 2019-09-27 2021-06-15 荆门市格林美新材料有限公司 Recovery unit of valuable metal in old and useless foam nickel
CN113462894A (en) * 2021-06-03 2021-10-01 甘肃康兴科技有限公司 Device and method for recovering nickel, copper and cobalt from nickel smelting water-quenched slag

Also Published As

Publication number Publication date
JP5768701B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768701B2 (en) Stirring reaction tank, stirring reactor, and method for controlling chlorine leaching reaction redox potential
JP6559754B2 (en) Process for the preparation of lithium carbonate, lithium hydroxide and lithium sulfate
JP6135609B2 (en) How to blow gas into the autoclave
Azimi et al. Thermodynamic modeling and experimental measurement of calcium sulfate in complex aqueous solutions
CN105980297B (en) It is used to prepare the method for bromide
JP6770252B2 (en) Cobalt carbonate manufacturing equipment and manufacturing method
WO2013185153A2 (en) Process for the production of crystalline titanium powder
Jovani-Abril et al. Synthesis of nc-UO2 by controlled precipitation in aqueous phase
EP4011834A1 (en) Process for making an electrode active material
JP6593191B2 (en) Leach tank
CN104212981A (en) Method for leaching antimony from antimony ore
Xie et al. Distributed parameter modeling and optimal control of the oxidation rate in the iron removal process
CA2923570C (en) Method for neutralizing sulfuric acid acidic solution and hydrometallurgical method for nickel oxide ore
CA2919026C (en) Multi-compartment reactor and method for controlling retention time in a multi-compartment reactor
Schlender et al. Combined Carboreduction–Iodination Reaction of TiO2 and FeTiO3 as the Basic Step toward a Shortened Titanium Production Process
JP6375937B2 (en) Leaching control system and leaching control method
Ilhan et al. The use of Langmuir–Hinshelwood mechanism to explain the kinetics of calcium molybdate leaching in oxalic acid solution
CN102042768A (en) Positioning control device of spraying gun
CN201926324U (en) Spray-gun positioning-control device
JP2009091646A (en) Method for controlling oxidation-reduction potential in reaction of leaching sulfide of nonferrous metal with chlorine
CN105740605B (en) A kind of zinc hydrometallurgy copper removal process production status appraisal procedure
CN112437757A (en) Controlled removal of ions from aqueous fluids
Reddy Kallam et al. Bench-Scale Electrowinning of Electrolytic Manganese Dioxide Using Ferruginous Mn Ores as Precursor
JP2012188327A (en) Method for making hypochlorite
Darin et al. Automatic control scheme development for process of sulfatizing roasting of iron-manganese concretions in fluidized bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150