JP2013127455A - Device and method for measuring oxidation reduction potential of air - Google Patents

Device and method for measuring oxidation reduction potential of air Download PDF

Info

Publication number
JP2013127455A
JP2013127455A JP2012249705A JP2012249705A JP2013127455A JP 2013127455 A JP2013127455 A JP 2013127455A JP 2012249705 A JP2012249705 A JP 2012249705A JP 2012249705 A JP2012249705 A JP 2012249705A JP 2013127455 A JP2013127455 A JP 2013127455A
Authority
JP
Japan
Prior art keywords
air
oxidation
measurement
potential
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012249705A
Other languages
Japanese (ja)
Other versions
JP2013127455A5 (en
Inventor
Yoshitaka Otomo
慶孝 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012249705A priority Critical patent/JP2013127455A/en
Publication of JP2013127455A publication Critical patent/JP2013127455A/en
Publication of JP2013127455A5 publication Critical patent/JP2013127455A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which the environmental pollution including air pollution, soil pollution and complex environmental pollution causes a variety of diseases due to which human beings and animals requiring water, air and food to live cannot live in a good condition, despite the progress of the life-prolonging treatment, and therefore medical expenses for curing the diseases have been significantly increasing every year.SOLUTION: By using the device for measuring the oxidation reduction potential of air of the present invention, measurement and comparison are performed with respect to the inside of a sick house that is contaminated by chemicals and an office building, a place where vehicles passing through while discharging carbon dioxide (CO2), the atmospheric air inside and outside a room where an air refresher or the like is used, and the air at a place where the air is discharged from an urban building. As a result, as illustrated in Table 1, it has become clear that the reasons why people desire healing in a deep forest, the fresh air generated near a waterfall, the beach air and the plateau air act on the reduction significance in oxidation reduction potential. The device for measuring oxidation reduction potential of air and the measuring method enables a user to check the oxidation-reduction reaction of air which is indispensable to life support and to take an early action in order to obtain safe and good air for health maintenance.

Description

技術Technology

本発明は大気(すなわち空気中)に含まれる湿度を捉え、気体の中に存在する水蒸気(水分)の酸化体と還元体との活量比率を測定し、少なくとも参照電極と指示電極を設け、指示電極に当接する試料溶液である気体の状態で存在する水蒸気(水分)により、空気中の酸化還元電位値を確認することに用いることを特徴とする空気の酸化還元電位測定装置に関する。The present invention captures the humidity contained in the atmosphere (that is, in the air), measures the activity ratio of the oxidant and reductant of water vapor (moisture) present in the gas, and provides at least a reference electrode and an indicator electrode, The present invention relates to an apparatus for measuring an oxidation-reduction potential of air, which is used for confirming an oxidation-reduction potential value in air using water vapor (moisture) present in a gaseous state as a sample solution in contact with an indicator electrode.

本発明における酸化還元電位測定装置は、従来の酸化還元電位測定装置は工業用の水質検査の経時変化の測定や人間の唾液測定とは異なり、空気中の主要成分である窒素、酸素、アルゴン、二酸化炭素その他の微量の元素等を含む複合物質の混合電位を総合演算して酸化還元電位測定することを主眼とした空気の酸化還元電位測定装置である。The oxidation-reduction potential measuring device in the present invention is different from conventional redox potential measurement devices in industrial water quality tests and saliva measurement in humans, unlike nitrogen, oxygen, argon, which are main components in the air. This is a device for measuring the oxidation-reduction potential of air with the main purpose of measuring the oxidation-reduction potential by comprehensively calculating the mixed potential of the composite material containing carbon dioxide and other trace elements.

導電性物質を指示電極とし、指示電極と溶液との界面に生ずる電位、電流を測定する電気化学的な測定装置に、例えば、酸化還元電位測定装置がある。酸化還元電位測定装置は、金属などの導電性物質の指示電極と参照電極とを備え、指示電極に溶液を接触させ、溶液中の電解質の濃度や酸化体・還元体のイオン濃度比などを測定する。すなわち酸化体と還元体を含む溶液に対して、この溶液に侵されない白金などの電極を浸すとその電極は溶液に対して電位を持って平衡に達する。この電位を酸化還元電位という。
酸化体をOx,還元体をRedとすると酸化還元反応は

Figure 2013127455
であり、酸化還元電位Eは次のネルンストの式で示される。
E=Eo+nF−RT 1n [Red] [Ox]
ここに、Eo:標準酸化還元電位([Ox]=[Red])のときのEで、系に固有の 値)
R:ガス定数T:絶対温度F:ファラデー定数
n:反応に関与する電子数
[]:濃度(活量)An electrochemical reduction device that measures the potential and current generated at the interface between the indicator electrode and the solution using a conductive substance as an indicator electrode is, for example, an oxidation-reduction potential measurement device. The oxidation-reduction potential measuring device is equipped with an indicator electrode and a reference electrode of a conductive substance such as metal, and the solution is brought into contact with the indicator electrode to measure the concentration of the electrolyte in the solution and the ion concentration ratio of the oxidant / reductant. To do. That is, when an electrode such as platinum that is not affected by this solution is immersed in a solution containing an oxidant and a reductant, the electrode reaches an equilibrium with a potential with respect to the solution. This potential is called a redox potential.
If the oxidant is Ox and the reductant is Red, the redox reaction is
Figure 2013127455
The oxidation-reduction potential E is expressed by the following Nernst equation.
E = Eo + nF-RT 1n [Red] [Ox]
Here, Eo: E when standard oxidation-reduction potential ([Ox] = [Red]), a value specific to the system)
R: Gas constant T: Absolute temperature F: Faraday constant n: Number of electrons involved in the reaction []: Concentration (activity)

しかし従来の酸化還元電位測定装置は主に、工業用の水質検査の経時変化の測定や人間の唾液測定があるが、空気中の主要成分の総合的な酸化還元電位測定は、大気中の水蒸気濃度となる水分溶液などの披検液が極小の乾燥状態の大気では千分の1mVを要求する酸化還元電位測定は困難な領域とされていたのである。However, conventional redox potential measuring devices mainly measure changes over time in industrial water quality tests and human saliva measurement, but comprehensive redox potential measurements of major components in the air can be performed using water vapor in the atmosphere. In a dry atmosphere where the test solution such as a water solution having a concentration is extremely small, the oxidation-reduction potential measurement requiring 1 / 1,000 mV has been regarded as a difficult region.

街中の道路、河川や湖沼、底泥など土壌においても溶存酸素が減少し、嫌気状態になり、リン、鉄、マンガンなどが底泥より溶出し、水環境が汚染されてきている。これらの状態の泥の直上の水質は、溶存酸素(DO)水中に溶解している酸素量も結合性の酸素(NOX−のO)より多くの酸素を結合させるものもない状態であり、無酸素状態に近いか、あるいはその状態で溶存酸素がなく、亜硝酸、硝酸の中の酸素だけが存在する。すなわち人間が生きていける環境下ではないことを意味するのである。Dissolved oxygen also decreases in soil such as roads, rivers, lakes, and bottom mud in the city, and it becomes anaerobic. Phosphorus, iron, manganese, etc. are eluted from the bottom mud, and the water environment has been polluted. The water quality directly above the mud in these states is in a state where there is no oxygen dissolved in dissolved oxygen (DO) water and no more oxygen than bound oxygen (NOx-O) is bound. It is close to the oxygen state or there is no dissolved oxygen, and only oxygen in nitrous acid and nitric acid is present. In other words, it means not in an environment where humans can live.

人間が生きていく上で利用可能な酸素分子が存在している好気状態であることが重要で、土壌や水質のみならず空気が酸化体と還元体の活量が自然摂理に基づいて混在することが望ましいのである。このような実情をふまえ、空気の酸化還元電位値をリアルタイムに確認できる酸化還元測定装置および方法に着眼したのである。It is important to be in an aerobic state where oxygen molecules that can be used by human beings are present, and not only soil and water quality, but also air is a mixture of oxidant and reductant activities based on natural providence. It is desirable to do. In light of this situation, the present inventors have focused on a redox measurement apparatus and method that can confirm the redox potential value of air in real time.

従来には、工業用の水質検査の経時変化の測定や人間の唾液測定があるが、測定対象が水および生体唾液などの披検液であり、水と同じく生命維持に欠かせない空気が複合的な要因で汚染されてきている実情がある。例えば(特許文献1参照)酸化還元電位測定装置および方法は、人間などの体内の唾液成分などの生体液を対象としている。また、(特許文献2参照)汚水処理装置においては酸化槽中の酸化還元電位を測定する酸化還元電位計を提供したものである。Conventionally, there are measurement of changes over time in industrial water quality tests and human saliva measurement, but the measurement target is test liquid such as water and biological saliva, and like water, air essential for life support is complex There is a fact that it has been polluted by various factors. For example (see Patent Document 1), an oxidation-reduction potential measuring apparatus and method are intended for biological fluids such as saliva components in the body of humans and the like. Moreover, in the wastewater treatment apparatus (refer patent document 2), the oxidation-reduction potentiometer which measures the oxidation-reduction potential in an oxidation tank is provided.

これら特許文献には、生命維持に絶対必要な空気が酸化有意か還元有意なのかを測定する意識は盛りこめられていないことから、本発明とは技術的意義を全く異にする。
特許第4154884号 特許第3067241号
Since these patent documents do not include the consciousness of measuring whether the air absolutely necessary for life support is significant for oxidation or reduction, the technical significance is completely different from that of the present invention.
Japanese Patent No. 4154484 Patent No. 30672241

今日、様々な複合的な要因において大気汚染が深刻な問題となっている中で、新鮮で体に良い空気への関心が高まり、森林浴ならびに滝のそばに発生するすがすがしい空気を取り込みたいと森や滝の流水を求め自然豊富な場所を訪れる人々が増えている。Today, air pollution has become a serious problem in various complex factors, and interest in fresh and healthy air has increased, and forests and forests and waters that are generated by the waterfalls are being taken in. An increasing number of people are visiting nature-rich places in search of waterfall water.

過去において保育器内でアイマスクをしないで人口の酸素を大量に用いたことにより未熟児網膜症という視力障害が起きたことは周知のことである。このことに象徴されるように、生命維持に欠かせない空気の取り入れ、すなわち酸素欠乏や自然素材の空気ではなく人工的な大量の酸素吸入によって、さまざまな機能障害の引き金になると懸念されているが、近年、生きる上で欠かすことの出来ない空気が、ホコリによる空気汚染、化学物質による空気汚染、ダニなどの死骸、鶏糞などによる空気が汚染され樹木豊かな森林環境下における清新な空気を人間および動物が摂取することが難しい環境になってきているのである。In the past, it has been well known that visual impairment called retinopathy of prematurity occurred due to the use of a large amount of oxygen in the population without wearing an eye mask in the incubator. As symbolized by this, there is a concern that the intake of air essential for life support, that is, oxygen deficiency and artificial oxygen inhalation rather than natural air, will trigger various functional disorders However, in recent years, air that is indispensable for living has become a human being with fresh air in forest environments rich in trees that are contaminated with dust, air pollution with chemical substances, dead bodies such as mites, and air due to chicken dung. And the environment is becoming difficult for animals to ingest.

発明が解決しようする課題Problems to be solved by the invention

従来にある酸化還元電位測定装置とは異なり、空気中の主要成分である窒素、酸素、アルゴン、その他の微量の元素等含む複合物質の混合電位を総合演算して酸化還元電位測定をしようとするものである。空気の化学物質を吸着する吸着材が不活性な保持部を構成する多孔質ポリマーおよび多孔性物質である天然麻、綿、絹織り布、綿花布、織布、スポンジ等を用いる理由は、導電性を帯びる金属素材では電位差を求めるために2極の電極に電子授受導通ではなく、直接に電流導通が生じ測定はできないのである。Unlike conventional oxidation-reduction potential measurement devices, it tries to measure the oxidation-reduction potential by comprehensively calculating the mixed potential of complex substances including nitrogen, oxygen, argon, and other trace elements that are the main components in the air. Is. The reason for using the porous polymer and the porous material natural hemp, cotton, silk woven fabric, cotton fabric, woven fabric, sponge, etc., that the adsorbent that adsorbs air chemicals constitutes the inert holding part, is conductive In order to obtain a potential difference, a metal material having a property is not an electron transfer conduction between two electrodes, but a current conduction occurs directly and measurement cannot be performed.

課題を解決するための手段Means for solving the problem

本発明は空気中の流動流体中の化学物質を捉え、酸化還元電位を測定する手段として指示電極の白金から基準電極となる参照電極に導通するKCL溶液に導く細溝導線の液落部に接触する試料溶液に対して不活性な保持部を構成する多孔質ポリマーもしくは天然麻、綿、絹織り布、綿花布、織布、スポンジ等の多孔性物質は精製水(純水)を含浸し、流動流体中の化学物質を捉え、指示電極である白金電極に接触することにより1回目の酸化還元電位を測定した後、つづいて測定対象とする場所の大気(すなわち空気)を1回目に測定した多孔性物質の部位に所定時間送風流動したのち2回目の酸化還元電位測定を演算し1回目と2回目の電位差により最終的に空気中の酸化還元電位が測定されることを特徴とする。多孔質ポリマーおよび多孔性物質素材を精製水(純水)であらかじめ含浸させ真空パックで1本ずつ包装されたものを使用又は、測定時に精製水(純水)を多孔質ポリマーおよび多孔性物質素材に含浸させる方法は限定しない。The present invention captures a chemical substance in a flowing fluid in the air and contacts a liquid drop portion of a narrow groove lead as a means for measuring an oxidation-reduction potential from platinum as an indicator electrode to a KCL solution conducted to a reference electrode as a reference electrode. Porous materials such as porous polymer or natural hemp, cotton, silk woven cloth, cotton cloth, woven cloth, sponge, etc. that constitute an inert holding part for the sample solution to be impregnated with purified water (pure water), After capturing the chemical substance in the flowing fluid and measuring the first redox potential by contacting the platinum electrode that is the indicator electrode, the atmosphere (ie, air) at the location to be measured was measured for the first time. It is characterized in that the second redox potential measurement is calculated after the air flow to the porous material portion for a predetermined time, and the redox potential in the air is finally measured by the first and second potential differences. Use porous polymer and porous material material impregnated with purified water (pure water) in advance and package one by one in a vacuum pack, or use purified polymer (pure water) for porous polymer and porous material material during measurement The method of impregnating into is not limited.

空気中の主要成分である体積比%窒素は約78.1%、酸素は約20.968%、アルゴンは約0.9%、二酸化炭素は約0.032%であり、酸素は空気中の主要成分の総体の体積比を100%とすると約21%である。この酸素濃度が16%以下になり3分以上酸素吸入が途絶えると生命維持が危険になり、何とか生命を維持できたとしても重篤な後遺症が残る原因になることは医学的にも周知されているのである。The main components in the air are volume ratio% nitrogen about 78.1%, oxygen about 20.968%, argon about 0.9%, carbon dioxide about 0.032%, oxygen is in the air If the volume ratio of the main components is 100%, it is about 21%. It is well known medically that if this oxygen concentration drops below 16% and oxygen inhalation stops for 3 minutes or more, life support becomes dangerous, and even if life can be managed somehow, serious sequelae remain. It is.

生体の代謝は食物から取り入れた栄養素を体内で使える形にしたりする生体活動ですが、酸素が十分にあることで代謝は、より活発にスムーズに行なわれるのである。すなわち酸素は代謝に不可欠なものなのであるが、身近な場所の酸素濃度は、街中や森林では約21%、通常の車中では約19.2%、換気ができている場所では約21%、窓を閉め冷暖房をつけて10分後には約20.3%、さらにその部屋で3人が1時間過ごすと酸素濃度は約18.0%に減少するなど、今日における住環境は機密性が高いことで酸素不足におちいりやすいのである。Metabolism in the living body is a biological activity that makes nutrients taken from food into a form that can be used in the body, but with sufficient oxygen, metabolism is performed more actively and smoothly. In other words, oxygen is indispensable for metabolism, but oxygen concentration in familiar places is about 21% in towns and forests, about 19.2% in ordinary cars, about 21% in well-ventilated places, 10 minutes after closing the window and turning on / off the air, it is about 20.3%, and if 3 people spend 1 hour in that room, the oxygen concentration decreases to about 18.0%. Therefore, it is easy to fall short of oxygen.

しかしながら、酸素濃度ばかりに注意していても、空気中の主要成分である窒素、酸素、アルゴン、二酸化炭素その他の微量元素を含む酸化還元電位という総合指標において総合演算した結果として酸化数値が高ければ、酸素濃度の有無にかかわらず生体内は体調不良を訴えることにつながる恐れが出てくるのである。However, even if attention is paid only to the oxygen concentration, if the oxidation value is high as a result of a comprehensive calculation in a comprehensive index of oxidation-reduction potential including nitrogen, oxygen, argon, carbon dioxide and other trace elements which are main components in the air, Regardless of the presence or absence of oxygen concentration, there is a risk that the living body may complain of poor physical condition.

本発明では大気中に含まれる複合物質は、酸化還元反応をもたらす点に着目し、これら化学物質である、硫黄化合物、窒素化合物、炭水化物、ハロゲン化物、オゾン、粒子状物質、有害物質、さらには大気中の光化学における対流圏(地表から14キロメートル至る15キロメートル内外)および成層圏(地表より10キロメートル至る50キロメートル領域)において成層圏のオゾンは減少しているが対流圏のオゾンは増加していることは、近年の研究発表で周知されている。対流圏のオゾン濃度が高濃度になると、人体への影響があるのも周知されている。近年、人類の科学文明の進化が地球環境に深刻なダメージをもたらし、複合的な環境汚染を引き起こしていると言われている。In the present invention, paying attention to the fact that the complex substance contained in the atmosphere brings about an oxidation-reduction reaction, these chemical substances such as sulfur compounds, nitrogen compounds, carbohydrates, halides, ozone, particulate substances, harmful substances, and further In recent years, the ozone in the troposphere has decreased but the ozone in the troposphere has increased in the troposphere (inside and outside 15 km from the surface to 14 km) and the stratosphere (in the 50 km region from 10 km to the surface) in atmospheric photochemistry. It is well known in the research announcement. It is well known that when the tropospheric ozone concentration becomes high, there is an effect on the human body. In recent years, it is said that the evolution of human scientific civilization has caused serious damage to the global environment, causing complex environmental pollution.

すなわち、本発明は人間が生活する地表圏における放射性物質による大気汚染やホコリによる空気汚染、化学物質による空気汚染、ダニなどの死骸、鶏糞などによる空気が汚染される状態は、大気中(すなわち空気中)とは一体であることから空気中の成分それぞれの体積比%の割合のバランスが崩れたりすることで地上近くの空気中の酸化還元反応の重要性に着眼したのである。That is, according to the present invention, air pollution caused by radioactive substances in the surface area where humans live and dust, air pollution caused by chemicals, air pollution caused by chemical substances, dead bodies such as mites, and air caused by chicken dung, etc. In the middle, the balance of the volume ratio% of each component in the air collapses, and the importance of the oxidation-reduction reaction in the air near the ground was noticed.

本発明は、多孔質ポリマーおよび綿、絹織り布、綿花布、織布、スポンジ等を用い緩衝能が低い純水の酸化影響を受けやすい性質を利用することに気づいたのである。The present invention has noticed that it utilizes a porous polymer and a property that is susceptible to oxidation of pure water having a low buffer capacity using cotton, silk woven fabric, cotton fabric, woven fabric, sponge and the like.

多孔質の素材の利用は、空気を測定しようとする対象場所において多孔質の素材に精製水(純水)を含浸させる手段と多孔質の素材にあらかじめ純水を含ませ酸化しないように1本ずつ若しくは複数の本数で真空パックで密閉保管され測定対象とする場所の空気を測定するようにしたのである。The use of a porous material includes a means for impregnating a porous material with purified water (pure water) at a target location where air is to be measured, and a porous material that contains pure water in advance and does not oxidize. The air in a place to be measured is stored in a vacuum pack, one by one or a plurality, and is measured.

そこで、本発明の空気の酸化還元電位測定装置および方法によって、緑豊かな森林浴や滝のそばに発生するすがすがしい空気、海辺と高原の大気。そして化学薬品で汚染されているシックハウスやオフィスビル内、二酸化炭素(CO2)を排出する混雑状態の自動車走行箇所、化学消臭材などの室内外の大気、さらには都会のビルから排出される空調箇所の大気などを測定比較したことにより、生命維持に欠かせない空気の酸化還元反応を確認し、早期の対応に役立てるようにすることを目的としたのである。Therefore, refreshing air generated near a lush forest bath or waterfall, seaside and plateau atmosphere by the apparatus and method for measuring the oxidation-reduction potential of air of the present invention. And in sick houses and office buildings that are contaminated with chemicals, crowded automobile driving locations that emit carbon dioxide (CO2), indoor and outdoor air such as chemical deodorizers, and air conditioning exhausted from urban buildings The purpose is to confirm the redox reaction of air, which is indispensable for life support, by measuring and comparing the air at the location, and to make use of it early.

以下、本発明の空気中の酸化還元電位測定装置および方法を実施するための最良の形態について説明する。図1フローチャートにおいて本発明の空気の酸化還元電位想定装置に内臓のCPUを要する基板1である。酸化還元電位測定装置で対極する基準電極となるKCL溶液に浸した銀−塩化銀電極は2、空気の流動流体中の化学物質を吸着する多孔性物質である多孔質ポリマーおよび天然麻、綿、絹織り布、綿花布、織布、スポンジ等を含む3に純水4を含浸させ、化学物質を吸着する多孔質3に接触する不活性金属の指示電極5である。The best mode for carrying out the apparatus and method for measuring oxidation-reduction potential in air of the present invention will be described below. 1 is a substrate 1 that requires a built-in CPU in the apparatus for assuming an oxidation-reduction potential of air according to the present invention. A silver-silver chloride electrode immersed in a KCL solution serving as a reference electrode opposite to the oxidation-reduction potential measuring apparatus is a porous polymer that adsorbs a chemical substance in a flowing fluid of air and natural hemp, cotton, This is an indicator electrode 5 made of an inert metal that comes into contact with a porous 3 that adsorbs a chemical substance by impregnating 3 containing silk woven fabric, cotton fabric, woven fabric, sponge, etc. with pure water 4.

しかるに本発明の空気の酸化還元電位測定装置における測定結果の動作システムについて図2において説明する。空気の流動流体中の化学物質を吸着する吸着材に用いる多孔性物質である多孔質ポリマーおよび天然麻、綿、絹織り布、綿花布、織布、スポンジ等3の多孔性物質には大気中の化学物質の吸着を高めるために丸い空洞穴を複数設け精製水(純水)4を含浸させ1回目の酸化還元電位を測定6したのち、つづいて測定対象とする場所の大気(すなわち空気)を1回目に測定した多孔性物質の部位3に所定時間(任意設定可能)送風流動するファン装置7を稼動し空気の流動流体中の化学物質を吸着させ送風稼動を停止した後、2回目の酸化還元電位を測定8したのち。1回目と2回目の測定を総合的に演算した電位差により最終的に測定対象場所の空気中の酸化還元電位の結果9が表示され、測定結果の表示方法10は、数字で液晶表示、又は音声、点字表示(プリント点字含む)表示される。However, the operation system of the measurement result in the air oxidation-reduction potential measuring apparatus of the present invention will be described with reference to FIG. Porous polymer, which is a porous material used as an adsorbent for adsorbing chemical substances in a flowing fluid of air, and 3 porous substances such as natural hemp, cotton, silk fabric, cotton fabric, woven fabric, sponge, etc. in the atmosphere In order to enhance the adsorption of chemical substances, a plurality of round hollow holes are provided, impregnated with purified water (pure water) 4 and measured for the first oxidation-reduction potential 6, and then the atmosphere (ie, air) at the location to be measured After the fan device 7 that blows and flows in the porous material portion 3 measured for the first time for a predetermined time (can be arbitrarily set), adsorbs the chemical substance in the flowing fluid of the air and stops the blowing operation, the second time After measuring the redox potential 8 The result 9 of the oxidation-reduction potential in the air at the measurement target location is finally displayed by the potential difference obtained by comprehensively calculating the first measurement and the second measurement. , Braille display (including print Braille) is displayed.

さらに左側面からの断面図の図3について説明する。内部液を格納する液槽16には、例えば、塩化カリウム溶液17が収納されている。基準電極である2のリード線11を介して電位差計24が連結されている。ガラスやカーボンなどの不活性素材からなる筒部18内にリード線11に通じた銀線15を配設するとともに銀線15を取り囲む銀粉19が格納する内部液の液槽内に流出しないようにコットン20を詰め込み、細溝14に通じている。空気中の化学物質を吸着する多孔性物質3は、より吸着を高めるための複数の丸い空洞穴22を設けている。多孔性物質である保持部3を配置部21に設置する。多孔性物質である白金棒を差込む縦筒穴23に指示電極5である白金棒12が差込まれた保持部3が液絡部13に接触すると、試料溶液は基準電極2に対する指示電極5の電位がリード線11を通じて電位差計24で測定される。Furthermore, FIG. 3 of sectional drawing from the left side surface is demonstrated. For example, a potassium chloride solution 17 is accommodated in the liquid tank 16 for storing the internal liquid. A potentiometer 24 is connected through two lead wires 11 which are reference electrodes. A silver wire 15 leading to the lead wire 11 is disposed in a cylindrical portion 18 made of an inert material such as glass or carbon, and the silver powder 19 surrounding the silver wire 15 is prevented from flowing into the liquid bath of the internal liquid stored therein. Cotton 20 is packed into the narrow groove 14. The porous substance 3 that adsorbs chemical substances in the air is provided with a plurality of round hollow holes 22 for enhancing adsorption. The holding unit 3, which is a porous substance, is installed in the arrangement unit 21. When the holding portion 3 into which the platinum rod 12 as the indicator electrode 5 is inserted into the vertical cylindrical hole 23 into which the platinum rod as the porous material is inserted contacts the liquid junction portion 13, the sample solution becomes the indicator electrode 5 with respect to the reference electrode 2. Is measured by the potentiometer 24 through the lead wire 11.

つづいて平面図4について説明する。内部液を格納する液槽16および基準電極2のリード線11であり、リード線11を介して銀線15を配設される。細溝14を通じて液絡部13に多孔性物質である保持部3が接触するとともに、多孔性物質である保持部3の多孔性物質に設けられている縦筒穴23に白金棒12を差込むことで試料溶液は基準電極2に対する指示電極5の電位がリード11を通じて電位差計24で測定される。
1回目の測定後、指示電極5および白金棒12と多孔性物質の部位3をそのままにしておき所定時間(任意設定可能)送風流動するファン装置7を稼動し矢印方向に空気の流動流体25を発生させ大気中の化学物質を多孔性物質3に適正時間吸着させ送風稼動を停止した後、2回目の酸化還元電位を測定したのち、1回目と2回目の測定を総合的に演算した電位差によって最終的に測定対象場所の空気中の酸化還元電位の結果9が表示される。測定結果の表示方法10は、数字で液晶表示、又は音声、点字表示(プリント点字含む)。
Next, the plan view 4 will be described. A liquid tank 16 for storing the internal liquid and a lead wire 11 for the reference electrode 2, and a silver wire 15 is disposed through the lead wire 11. The holding portion 3 that is a porous material contacts the liquid junction 13 through the narrow groove 14, and the platinum rod 12 is inserted into the vertical cylindrical hole 23 provided in the porous material of the holding portion 3 that is a porous material. Thus, the potential of the indicator electrode 5 with respect to the reference electrode 2 is measured by the potentiometer 24 through the lead 11.
After the first measurement, the indicator device 5, the platinum rod 12, and the porous material portion 3 are left as they are, and the fan device 7 that blows and flows for a predetermined time (can be arbitrarily set) is operated, and the air fluid 25 is flown in the direction of the arrow. After the generated chemical substance in the atmosphere is adsorbed to the porous material 3 for a proper time and the air blowing operation is stopped, the second oxidation-reduction potential is measured, and then the first and second measurements are calculated based on the potential difference calculated comprehensively. Finally, the result 9 of the oxidation-reduction potential in the air at the measurement target location is displayed. The measurement result display method 10 is a liquid crystal display with numbers, or voice and Braille display (including printed Braille).

なお、左側面からの断面図の図5について説明する。本発明は、上記の図3、4に限定されず、溶液測定に於いてつぎなる構成の指示電極にも対応できる。配置部21に指示電極5である白金棒12を差込み配置部21の底部をボンド接着させ封鎖26したものである。なお、配置部21の中面に指示電極5である白金棒12を差込みボンド接着させ封鎖する26箇所は底部に限定されない。内部液を格納する液槽16には、例えば、塩化カリウム溶液17が収納されている。基準電極である2のリード線11を介して電位差計24が連結されている。ガラスやカーボンなどの不活性素材からなる筒部18内にリード線11に通じた銀線15を配設するとともに銀線15を取り囲む銀粉19が格納する内部液の液槽内に流出しないようにコットン20を詰め込み、細溝14に通じている。空気中の化学物質を吸着する多孔性物質3は、より吸着を高めるための複数の丸い空洞穴22を設けている。多孔性物質である保持部3を配置部21に設置し液絡部13に多孔性物質である保持部3が接触すると試料溶液は基準電極2に対する指示電極5の電位がリード線11を通じて電位差計24で測定される。In addition, FIG. 5 of sectional drawing from the left side is demonstrated. The present invention is not limited to FIGS. 3 and 4 described above, and can be applied to an indicator electrode having the following configuration in solution measurement. A platinum rod 12 as an indicator electrode 5 is inserted into the placement portion 21 and the bottom portion of the placement portion 21 is bonded and sealed 26. It should be noted that the 26 locations where the platinum rod 12 serving as the indicating electrode 5 is inserted and bonded to the inner surface of the arrangement portion 21 to be sealed are not limited to the bottom portion. For example, a potassium chloride solution 17 is accommodated in the liquid tank 16 for storing the internal liquid. A potentiometer 24 is connected through two lead wires 11 which are reference electrodes. A silver wire 15 leading to the lead wire 11 is disposed in a cylindrical portion 18 made of an inert material such as glass or carbon, and the silver powder 19 surrounding the silver wire 15 is prevented from flowing into the liquid bath of the internal liquid stored therein. Cotton 20 is packed into the narrow groove 14. The porous substance 3 that adsorbs chemical substances in the air is provided with a plurality of round hollow holes 22 for enhancing adsorption. When the holding unit 3, which is a porous material, is installed in the placement unit 21, and the holding unit 3, which is a porous material, contacts the liquid junction 13, the potential of the indicator electrode 5 with respect to the reference electrode 2 passes through the lead wire 11 to the sample solution. Measured at 24.

本発明は、同じ測定場所における空気の酸化還元電位を経時変化としてビフォーアフター確認することを可能にしたのである。The present invention makes it possible to confirm the before-after confirmation of the redox potential of air at the same measurement location as a change with time.

すなわち1回目の測定で得られた酸化還元電位よりさらにプラス方向にmV電位が加算された測定電位の場合は、その電位差を酸化度の数値として、若しくは1回目の測定で得られた酸化還元電位より、さらにマイナス方向にmV電位が加算された測定電位の場合は、その電位差を還元度の数値として計測表示できるのである。That is, in the case of a measured potential obtained by adding an mV potential further in the positive direction than the redox potential obtained in the first measurement, the potential difference is used as the numerical value of the oxidation degree or the redox potential obtained in the first measurement. Further, in the case of a measured potential in which mV potential is further added in the minus direction, the potential difference can be measured and displayed as a numerical value of the reduction degree.

化学分野においては化学物質を蓄積するための吸着材は周知であり、それぞれ、化学物質を蓄積するために吸着する(ひいてはその化学物質を蓄積する)物質に相当する。In the chemical field, adsorbents for accumulating chemical substances are well known, and each correspond to a substance that adsorbs (and thus accumulates the chemical substances) to accumulate chemical substances.

空気の流動流体中の化学物質を吸着する吸着剤に用いる多孔性物質である多孔質ポリマーおよび天然麻、綿、絹織り布、綿花布、織布、スポンジナ等に含浸させる溶液は精製水(純水)が必須である。なぜなら、精製水(純水)以外の溶液はいろいろな混合物によりそれぞれの固有の酸化還元反応により酸化還元電位の再現精度を妨げることになる。精製水(純水)のように緩衝能が極めて低い溶液を本発明に用いる多孔性物質に含浸させることで1回目の測定から所定の時間、当該多孔性物質に送風流動することで測定対象場所の大気の化学物質の酸化若しくは還元影響を素早く受け吸着させることができる。よって、1回目と2回目の測定を総合的に演算した電位差により最終的に測定対象場所の空気中の酸化還元電位の結果が得られることに着眼し実施したのである。Porous polymer, which is a porous material used as an adsorbent for adsorbing chemical substances in air fluids, and solutions to be impregnated in natural hemp, cotton, silk fabric, cotton fabric, woven fabric, and sponge, are purified water (pure water). Water) is essential. This is because a solution other than purified water (pure water) impedes the reproducibility of the redox potential due to its own redox reaction due to various mixtures. Measurement target location by blowing and flowing into the porous material for a predetermined time from the first measurement by impregnating the porous material used in the present invention with a solution having extremely low buffer capacity such as purified water (pure water) It is possible to quickly absorb and adsorb the effects of oxidation or reduction of chemical substances in the atmosphere. Therefore, it was carried out paying attention to the fact that the result of the oxidation-reduction potential in the air at the measurement target location is finally obtained by the potential difference obtained by comprehensively calculating the first measurement and the second measurement.

有意性を確認するため、本発明の空気の酸化還元電位を計測する装置を用いて、それぞれの測定場所と条件、1回目の測定、1回目の測定から所定の時間、当該多孔性物質に送風流動させた後で当該多孔性物質に吸着した化学物質の酸化還元反応が安定して数値変動がなくなった2回目の測定結果を表[1]に示す。In order to confirm the significance, using the apparatus for measuring the oxidation-reduction potential of air according to the present invention, each measurement location and condition, the first measurement, the first measurement, the predetermined time from the first measurement, blown to the porous material Table [1] shows the second measurement result in which the oxidation-reduction reaction of the chemical substance adsorbed on the porous substance after flowing was stable and the numerical value was not changed.

Figure 2013127455
Figure 2013127455

本発明の測定結果は表1で示されたように、測定場所における空気の酸化還元電位の経時変化ならびに、当該多孔性物質である綿棒に純水を用いた含浸により、所定時間送風流動させ吸着した化学物質の酸化還元反応が安定する時間を突き止めたことで、乾燥した空気の測定場所においても酸化還元電位測定できることを証明するものである。As shown in Table 1, the measurement results of the present invention are shown in Table 1 by the time-dependent change in the oxidation-reduction potential of air at the measurement site and the impregnation using pure water on the cotton swab that is the porous material. This proves that the oxidation-reduction potential can be measured even in a dry air measurement place by determining the time during which the oxidation-reduction reaction of the chemical substance is stabilized.

精製水(純水)は、製造メーカー及び製造月日により酸化還元電位値に多少の値差はあるが、そのときに開封した精製水(純水)を含ませた綿棒若しくは溶液の1回目の測定結果と照らし合わせて、引き続いて行う2回目の測定によって酸化度と還元度は計測できることであり、さらには5分〜至る20分経過後における酸化還元反応が動かなく安定した時間帯を突き止めた状態での測定結果となることで精製水(純水)溶液を介して電子導通の授受交換が可能となり、測定場所の空気の酸化還元電位を測定することを可能にしたのである。Purified water (pure water) has a slight difference in redox potential depending on the manufacturer and date of manufacture, but the first swab or solution containing purified water (pure water) opened at that time In comparison with the measurement results, the degree of oxidation and reduction can be measured by the second measurement that is carried out subsequently, and furthermore, the oxidation-reduction reaction after 20 minutes from 5 minutes to 20 minutes has passed and the stable time zone has been identified. As a result of the measurement in the state, it is possible to exchange electron conduction through the purified water (pure water) solution, and to measure the oxidation-reduction potential of the air at the measurement location.

表1に示されたとおり、▲1▼の測定における人がいない密閉された室内では酸化還元電位の電位差はわずかですが▲2▼の測定における密閉された室内に人が混雑し人間が呼吸をしている室内の酸素濃度が減少した酸化還元電位はプラスの酸化方向に作用していることが確認され、▲3▼の測定における換気で外気の酸素を室内に取り入れた状態での室内の酸化還元電位はマイナスの還元方向に作用していくことがわかる。As shown in Table 1, the potential difference of redox potential is small in a sealed room where there is no person in the measurement of (1), but people are congested in the sealed room in the measurement of (2) and humans breathe. It is confirmed that the redox potential with the reduced oxygen concentration in the room is acting in the positive oxidation direction, and the oxidation in the room with the outside oxygen taken into the room by ventilation in the measurement of (3) It can be seen that the reduction potential acts in the negative reduction direction.

一方、▲4▼及び▲5▼ならびに▲6▼測定における酸化還元電位はプラスの酸化方向に作用し、▲7▼及び▲8▼ならびに▲9▼の測定場所における酸化還元電位はマイナスの還元方向に作用していることが、本発明の空気の酸化還元電位を計測する装置で確認できたのである。On the other hand, the redox potential in the measurements (4), (5) and (6) acts in the positive oxidation direction, and the redox potentials in the measurement locations (7), (8) and (9) are in the negative reduction direction. It has been confirmed by the apparatus for measuring the oxidation-reduction potential of the air according to the present invention that it acts on the air.

発明の効果Effect of the invention

本発明では基準電極となる参照電極はKCL溶液に浸している。すでに公知されているKCL溶液をゲル状にしたものや、水銀をペースト状に混合したカロメル電極。水素ガス電極等があるが、化学分析等の専門家以外が使用する際の安全面で問題が起こるのをさけるため用いていない。In the present invention, the reference electrode serving as the reference electrode is immersed in the KCL solution. Alkaline electrodes made by mixing a known KCL solution in a gel or mercury paste. There are hydrogen gas electrodes etc., but they are not used in order to avoid problems in terms of safety when used by non-chemical analysts.

産業分野で用いられる極めて純度の高い超純水の使用はしない。なぜなら、超純水になるほどあらゆる物質を微量に酸化させ溶解する能力が高いため、多孔性物質を超純水で含浸させて密閉保管し使用する際に保管容器を溶解することがあってはならない、大気(すなわち空気)の酸化還元反応を捉える前に当該発明の測定装置に用いる多孔性物質や多孔性物質を配置する素材を微量に酸化させ(あるいはその恐れがある)空気中の酸化還元電位測定値の再現精度を低下させてはならない。We do not use ultrapure water with extremely high purity used in the industrial field. Because ultra-pure water has a high ability to oxidize and dissolve all substances in trace amounts, so that the storage container should not be dissolved when the porous substance is impregnated with ultra-pure water and sealed and used. Before capturing the redox reaction in the atmosphere (that is, air), the porous material used in the measurement apparatus of the present invention or the material on which the porous material is placed is oxidized in a small amount (or there is a risk of it). The reproducibility of measured values must not be reduced.

本発明の空気中の酸化還元電に(ORP)の測定方法は、所定時間送風流動するファン装備によって精製水(純水)を含浸させた多孔性物質ならびに指示電極である白金棒を1回目の測定後、配置部にセットしたままにして測定対象とする場所の大気(すなわち空気)を所定時間送風流動することで、当該多孔性物質に吸着した化学物質の酸化還元反応が安定して対極する2極の基準電極および指示電極ページへのマイナスとプラスの電子導通の情報が双方に平衡状態になる所定時間ならびに1回目測定から2回目の測定は5分〜至る20分以内で当該多孔性物質に吸着した化学物質の酸化還元反応が安定して動かない状態となることを突き止め1回目の測定から2回目の測定開始時間を自動及び任意設定できるようにし、任意設定を解除した場合は自動的に2回目の測定を開始できる継続測定とすることで、乾燥地帯における空気中の酸化還元電位測定も1回目と2回目の電位差によって最終的に空気中の酸化還元電位測定ができるようにしたのである。The method for measuring (ORP) in redox electricity in the air of the present invention is the first time for a porous material impregnated with purified water (pure water) by a fan equipped with air flow for a predetermined time and a platinum rod as an indicator electrode for the first time. After measurement, the air in the place to be measured (that is, air) is blown and flown for a predetermined time while being set in the arrangement portion, so that the redox reaction of the chemical substance adsorbed on the porous material is stably countered. Porous material within 20 minutes from the first measurement to the second measurement within 5 minutes to 20 minutes from the first measurement to the time when the negative and positive electronic conduction information to both the reference electrode and the indicator electrode page is in equilibrium. Ascertain that the oxidation-reduction reaction of the chemical substance adsorbed on the surface becomes stable and does not move so that the second measurement start time can be automatically and arbitrarily set from the first measurement, and the arbitrary setting is canceled. In this case, it is possible to automatically measure the oxidation-reduction potential in the air based on the difference between the first and second potentials in the air in the dry zone by making continuous measurement that can automatically start the second measurement. I did it.

本発明の空気の酸化還元電位測定装置および使用方法においては、PH計のように、単一の水素イオンによる反応電位だけを測定対象にしているのではなく、酸化還元電位(ORP)は、空気中の全てのイオンや分子などのそれぞれの反応エネルギーの加重平均として表れた複合物質の混合電位を対象とするのである。従って、空気中に存在する水蒸気(水分)および空気中の主要成分である窒素、酸素、アルゴン、二酸化炭素その他の微量の元素等に含まれる酸化体と還元体との活量比率を測定し、これら複合物質の混合電位を総合演算して酸化還元電位測定することを主眼とした空気中の酸化還元電位測定装置および使用方法である。In the air oxidation-reduction potential measuring apparatus and method of use of the present invention, not only the reaction potential due to a single hydrogen ion is measured, as in the PH meter, but the oxidation-reduction potential (ORP) The target is the mixed potential of the composite material expressed as a weighted average of the reaction energies of all the ions and molecules in it. Therefore, the activity ratio of oxidant and reductant contained in water vapor (moisture) present in the air and nitrogen, oxygen, argon, carbon dioxide and other trace elements that are the main components in the air is measured. This is an apparatus for measuring redox potential in air and a method of using the same, mainly for measuring the redox potential by comprehensively calculating the mixed potential of these composite substances.

日本では大震災後において、今日ほど、人間はお互いを助け合い介護しあう必要性が求められる。本発明では、視覚ならびに聴覚において不自由をされている場合においても酸化還元電位の測定結果を液晶画面で数値表示するだけでなく音声又は点字表示(プリント点字含む)で酸化還元電位測定結果を確認ができるようにする。In Japan, humans need to help each other and care for each other after the Great East Japan Earthquake. In the present invention, the measurement result of the oxidation-reduction potential is displayed not only numerically on the liquid crystal screen but also the voice or Braille display (including printed Braille), even if the visual and auditory inconvenience is inconvenient. To be able to.

本発明の空気中の酸化還元電位測定装置の利用において、室内などにおいては空気の流動が隔絶された環境で循環されているので住まいやオフィス、工場および乗り物内、電車、車、飛行機(宇宙船内も含む)、船舶(遊覧用も含めた潜水艇)、水族館など隔絶された各種乗り物内および地下空間の空気中の酸化還元電位値を確認することで、体調状態を維持する上で大いに資すると考える。In the use of the apparatus for measuring the oxidation-reduction potential in air of the present invention, indoors and the like are circulated in an environment in which the air flow is isolated, so that they are housed, offices, factories and vehicles, trains, cars, airplanes (in spacecraft) ), Ships (submersibles including those for sightseeing), aquariums and other isolated vehicles and underground air, confirming the redox potential value in the air will greatly contribute to maintaining the physical condition. Think.

本発明の酸化還元電位測定装置のフローチャート。The flowchart of the oxidation-reduction potential measuring apparatus of this invention. 本発明を構成する多孔質ポリマーおよび多孔性物質で空気中の流動流体中の化学物質を捉え、酸化還元電位測定のフローチャート。The flowchart of the oxidation-reduction potential measurement which catches the chemical substance in the flowing fluid in air with the porous polymer and porous substance which comprise this invention. 本発明の酸化還元電位測定装置における左側面の断面図。Sectional drawing of the left side surface in the oxidation-reduction potential measuring apparatus of this invention. 本発明の酸化還元電位測定装置における平面図。The top view in the oxidation-reduction potential measuring apparatus of this invention. 本発明の酸化還元電位測定装置における底部をボンド接着させ封鎖した左側面の断面図。Sectional drawing of the left side surface which bonded and sealed the bottom part in the oxidation-reduction potential measuring apparatus of this invention.

1 CPU基板
2 基準電極のKCL溶液に浸した銀−塩化銀電極
3 多孔性物質吸着素材(多孔質ポリマーおよび多孔性物質である天然麻、綿、絹織り布、綿花布、織布、スポンジ等を含む吸着素材)
4 多孔性物質に精製水(純水)を含浸
5 指示電極
6 1回目測定
7 多孔性物質吸着素材に大気を送風流動させるファン装置
8 2回目測定
9 1回目と2回目の測定を総合的に演算した電位差を測定
10 数字で液晶表示又は音声、点字でプリント表示
11 リード線
12 白金棒
13 液絡部
14 KCL溶液導通の細溝
15 基準電極の銀線
16 内部液を格納する液槽
17 塩化カリウム
18 ガラスやカーボン等の不活性素材からなる筒部
19 銀線を包み込む銀粉
20 コットン
21 多孔性物質配置部
22 吸着を高めるための丸い空洞穴
23 多孔性物質に白金棒を差込む縦筒穴
24 電位差計
25 送風流動の流れ
26 指示電極差込み配置部の底部をボンド接着させ封鎖
DESCRIPTION OF SYMBOLS 1 CPU substrate 2 Silver-silver chloride electrode immersed in KCL solution of reference electrode 3 Porous material adsorbing material (porous polymer and porous material natural hemp, cotton, silk woven fabric, cotton cloth, woven fabric, sponge, etc. Adsorption material including
4 Impregnated porous material with purified water (pure water) 5 Indicator electrode 6 First measurement 7 Fan device that blows and flows air to porous material adsorbing material 8 Second measurement 9 First and second measurements comprehensively Measured potential difference 10 Liquid crystal display with numbers or voice, print display with Braille 11 Lead wire 12 Platinum rod 13 Liquid junction 14 KCL solution conducting narrow groove 15 Silver wire 16 of reference electrode Liquid tank 17 for storing internal liquid Chloride Potassium 18 Cylindrical portion 19 made of an inert material such as glass or carbon Silver powder 20 wrapping silver wire 20 Cotton 21 Porous material arrangement portion 22 Round hollow hole 23 for enhancing adsorption Vertical cylindrical hole for inserting platinum rod into porous material 24 Potentiometer 25 Flow of blast flow 26 The bottom of the indicator electrode insertion arrangement part is bonded and sealed

Claims (12)

大気(すなわち空気)の中に存在する水蒸気(水分)の酸化体と還元体との活性比率を測定し少なくとも参照電極と指示電極を設け、指示電極に接する試料溶液である気体の状態で存在する水蒸気(水分)および空気中の主要成分である窒素、酸素、アルゴン、二酸化炭素その他の微量の元素等に含まれるこれら複合物質の酸化還元電位を総合的に演算して空気の酸化還元電位を計測する装置。The active ratio of the oxidant and reductant of water vapor (moisture) present in the atmosphere (ie, air) is measured, and at least a reference electrode and an indicator electrode are provided, and the sample solution exists in the state of a gas in contact with the indicator electrode. Measures the redox potential of air by comprehensively calculating the redox potential of these complex substances contained in water vapor (moisture) and the main components of air, such as nitrogen, oxygen, argon, carbon dioxide and other trace elements. Device to do. 大気(すなわち空気)の酸化還元電位測定に用いる多孔質ポリマーおよび綿、絹織り布、綿花布、織布、スポンジ等は酸化しないように真空パックに密閉保管され、測定対象とする場所の空気を測定するときに開封して使用することを特徴とする空気の酸化還元電位測定に用いる多孔性物質。The porous polymer used for measuring the oxidation-reduction potential of the atmosphere (ie, air) and cotton, silk woven fabric, cotton fabric, woven fabric, sponge, etc. are stored in a vacuum pack so as not to oxidize. A porous material used for measuring the oxidation-reduction potential of air, which is used by opening when measuring. 基準電極となる参照電極に導通するKCL溶液に導く細溝導線の液接触部に接触する試料溶液に対して丸棒、球体、平板など形状は問わない不活性な保持部を構成する多孔質ポリマーおよび、綿、絹織り布、綿花布、織布、スポンジ等の多孔性物質は測定時において純水を含ませ、指示電極である白金電極に接触することにより大気中の酸化還元電位が測定されることを特徴とする請求項1又は2に記載の空気の酸化還元電位を計測する装置。A porous polymer that forms an inactive holding portion such as a round bar, a sphere, or a flat plate with respect to a sample solution that contacts a liquid contact portion of a narrow groove conducting wire that leads to a KCL solution that is conducted to a reference electrode that is a reference electrode Porous materials such as cotton, silk fabric, cotton fabric, woven fabric, and sponge contain pure water at the time of measurement, and the oxidation-reduction potential in the atmosphere is measured by contacting the indicator electrode with the platinum electrode. The apparatus for measuring an oxidation-reduction potential of air according to claim 1 or 2. 1回目の酸化還元電位を測定した後、純水を含浸させた綿棒及び白金電極はそのままにしておき測定対象とする場所の空気を1回目に測定した多孔性物質に所定時間送風流動し、2回目の酸化還元電位を測定した後で1回目の測定と2回目の測定を総合的に演算した電位差で測定対象場所の酸化還元電位を測定することを特徴とする請求項1、2又は3に記載の空気の酸化還元電位を計測する装置を利用した測定方法。After measuring the first oxidation-reduction potential, the cotton swab impregnated with pure water and the platinum electrode are left as they are, and the air in the place to be measured is blown and flowed to the porous material measured for the first time for 2 hours. 4. The oxidation-reduction potential at a measurement target location is measured by a potential difference obtained by comprehensively calculating the first measurement and the second measurement after measuring the first oxidation-reduction potential. The measuring method using the apparatus which measures the oxidation-reduction potential of the described air. 1回目の酸化還元電位を測定した後、純水を含浸させた綿棒及び白金電極はそのままにしておき測定対象とする場所の空気を1回目に測定した多孔性物質に所定時間送風流動し、2回目の酸化還元電位を測定した後で1回目の測定で得られた酸化還元電位よりさらにプラス方向にmV電位が加算された測定電位の場合は、その電位差を酸化度の数値として、若しくは1回目の測定で得られた酸化還元電位より、さらにマイナス方向にmV電位が加算された測定電位の場合は、その電位差を還元度の数値として計測表示とすることを特徴とする請求項1、2、3又は4に記載の空気の酸化還元電位を計測する装置を利用した測定方法。After measuring the first oxidation-reduction potential, the cotton swab impregnated with pure water and the platinum electrode are left as they are, and the air in the place to be measured is blown and flowed to the porous material measured for the first time for 2 hours. In the case of a measured potential in which an mV potential is further added in the positive direction from the redox potential obtained in the first measurement after the first redox potential is measured, the potential difference is used as a numerical value of the degree of oxidation or the first time In the case of a measured potential in which an mV potential is further added in the negative direction from the oxidation-reduction potential obtained in the measurement of (1), the potential difference is displayed as a numerical value of the reduction degree, and is displayed as a measurement. 5. A measurement method using an apparatus for measuring the oxidation-reduction potential of air according to 3 or 4. 精製水(純水)を含浸させた多孔性物質ならびに指示電極である白金棒を1回目の測定後、配置部にセットしたままにして測定対象とする場所の大気(すなわち空気)を所定時間送風流動することで、当該多孔性物質に吸着した化学物質の酸化還元反応が安定して対極する2極の基準電極および指示電極へのマイナスとプラスの電子導通の情報が双方に平衡状態になる所定時間ならびに1回目測定から2回目の測定は5分〜至る20分以内で当該多孔性物質に吸着した化学物質の酸化還元反応が安定して動かない状態となることを突き止め1回目の測定から2回目の測定開始時間を自動及び任意設定できるようにし、任意設定を解除した場合は自動的に1回目の測定から2回目の測定を開始することを特徴とする請求項1、2、3、4又は5に記載の空気の酸化還元電位を計測する装置を利用した測定方法。After the first measurement of the porous material impregnated with purified water (pure water) and the platinum rod that is the indicator electrode, the air in the place to be measured (ie, air) is blown for a predetermined time while it is set in the placement section. By flowing, the information on the negative and positive electron conduction to the bipolar reference electrode and the indicator electrode that stably counters the oxidation-reduction reaction of the chemical substance adsorbed on the porous substance is in a balanced state. From the first measurement to the second measurement, it is determined that the oxidation-reduction reaction of the chemical substance adsorbed on the porous material is not stably moved within 5 minutes to 20 minutes. The second measurement start time can be automatically and arbitrarily set, and when the arbitrary setting is canceled, the second measurement is automatically started from the first measurement. Or 5 Measuring method using an apparatus for measuring the redox potential of air according. 室内外の空気中に含まれる湿度すなわち、住まいやオフィス、工場および乗り物内、電車、車、飛行機、船舶(遊覧用も含めた潜水艇)、水族館など各種乗り物内および隔絶された地下空間の室内の空気中に含まれる多孔性物質に吸着した化学物質の酸化還元反応を捉え、空気中に存在する酸化体と還元体との質量比率を捉え参照電極と指示電極を設け、指示電極に接する試料溶液である気体の状態で存在する微量の水蒸気(水分)により、空気の酸化還元電位値を確認することに用いることを特徴とする請求項1、2、3、4、5又は6に記載の空気の酸化還元電位を計測する装置を利用した測定方法。Humidity in indoor and outdoor air, that is, in homes, offices, factories and vehicles, trains, cars, airplanes, ships (including submersible boats for sightseeing), aquariums, and other vehicles and isolated underground spaces A sample in contact with the indicator electrode by capturing the oxidation-reduction reaction of the chemical substance adsorbed on the porous material contained in the air, and by providing the reference electrode and indicator electrode by capturing the mass ratio of the oxidant and the reductant present in the air It is used for confirming the oxidation-reduction potential value of air by a very small amount of water vapor (moisture) present in a gaseous state as a solution. A measurement method using a device that measures the oxidation-reduction potential of air. 空気中の酸化還元電位の結果が数字並びに酸化還元領域が液晶表示、又は音声、点字表示又はプリント点字されることを特徴とする請求項1、2、3、4、5、6又は7に記載の空気の酸化還元電位を計測する装置を利用した測定方法。The result of the oxidation-reduction potential in air is a number, and the oxidation-reduction region is displayed on a liquid crystal display, or voice, Braille display, or print Braille. Method using a device that measures the redox potential of air. 多孔性物質の部位に測定対象とする場所の大気(すなわち空気)を所定時間送風流動するためのファンを装備したことを特徴とする請求項1、2、3、4、5、6、7又は8に記載の空気の酸化還元電位を計測する装置を利用した測定方法。A fan for blowing and flowing the atmosphere (that is, air) of a place to be measured for a predetermined time is provided at a porous material portion. 9. A measuring method using an apparatus for measuring the oxidation-reduction potential of air according to 8. 不活性な保持部を構成する多孔質ポリマーおよび綿、絹織り布、綿花布、織布、スポンジ等の多孔性物質によって測定場所の空気の流動流体中の化学物質を吸着させる素材は、あらかじめ純水を含ませ真空パックに収納しておき、測定対象とする場所の空気を測定するときに開封して使用することを特徴とする請求項1、2、3、4、5又は6に記載の空気の酸化還元電位を計測する装置を利用した測定方法。The material that adsorbs the chemical substance in the fluid flowing in the air at the measurement location by the porous polymer that constitutes the inert holding part and the porous material such as cotton, silk woven cloth, cotton cloth, woven cloth, sponge, etc. is pure in advance. It is stored in a vacuum pack soaked in water, and is opened and used when measuring air in a place to be measured. A measurement method using a device that measures the oxidation-reduction potential of air. 大気(すなわち空気)の酸化還元電位測定に用いる多孔質ポリマーおよび綿、絹織り布、綿花布、織布、スポンジ等は、あらかじめ純水を含ませ酸化しないように1本ずつ若しくは複数本の真空パックで密閉保管され、測定対象とする場所の空気を測定するときに開封して使用する多孔性物質であることを特徴とする請求項2、3又は9に記載の空気の酸化還元電位を計測する装置を利用した測定方法。Porous polymer and cotton, silk woven fabric, cotton fabric, woven fabric, sponge, etc. used to measure the oxidation-reduction potential of the atmosphere (ie, air) contain pure water in advance and vacuum one by one or multiple so as not to oxidize 10. The air oxidation-reduction potential according to claim 2, 3 or 9, wherein the porous material is sealed and stored in a pack, and is opened and used when measuring air at a place to be measured. A measurement method using a device to perform. 大気(すなわち空気)の酸化還元電位測定に用いる多孔質ポリマーおよび綿、絹織り布、綿花布、織布、スポンジ等の形状は円筒、円錐、四角、多角形、棒状、平たい等にこだわらない多孔性物質であることを特徴とする請求項2、3、10又は1に記載の空気の酸化還元電位を計測する装置を利用した測定方法。The porous polymer used for measuring the redox potential of the atmosphere (ie, air) and the shape of cotton, silk woven fabric, cotton fabric, woven fabric, sponge, etc. are not sticking to cylinders, cones, squares, polygons, rods, flats, etc. The measurement method using the apparatus for measuring an oxidation-reduction potential of air according to claim 2, 3, 10 or 1, wherein the measurement method is an ionic substance.
JP2012249705A 2011-11-15 2012-10-27 Device and method for measuring oxidation reduction potential of air Pending JP2013127455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249705A JP2013127455A (en) 2011-11-15 2012-10-27 Device and method for measuring oxidation reduction potential of air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011265248 2011-11-15
JP2011265248 2011-11-15
JP2012249705A JP2013127455A (en) 2011-11-15 2012-10-27 Device and method for measuring oxidation reduction potential of air

Publications (2)

Publication Number Publication Date
JP2013127455A true JP2013127455A (en) 2013-06-27
JP2013127455A5 JP2013127455A5 (en) 2014-04-24

Family

ID=48778057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249705A Pending JP2013127455A (en) 2011-11-15 2012-10-27 Device and method for measuring oxidation reduction potential of air

Country Status (1)

Country Link
JP (1) JP2013127455A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251878B1 (en) * 2016-11-18 2017-12-27 オルプ株式会社 Oxidation reduction potential (ORP) measuring apparatus and method of use
JP6253171B1 (en) * 2017-07-25 2017-12-27 慶孝 大友 ORP digitization determination apparatus and method of use
WO2019246208A1 (en) 2018-06-19 2019-12-26 Avails Medical, Inc. Devices, systems, and methods for measuring a solution characteristic of a sample comprising microorganisms
JP2020193851A (en) * 2019-05-28 2020-12-03 株式会社豊田中央研究所 Corrosion invasion hydrogen measurement device, and corrosion invasion hydrogen evaluation method
JP7057553B1 (en) * 2020-12-16 2022-04-20 有子 三輪 Redox potential measurement system, redox potential control system, environmental management system, air conditioner, air purifier, redox potential measurement method, redox potential control method, environmental management method, air conditioner conditioning method, and air cleaning method
WO2022264389A1 (en) * 2021-06-17 2022-12-22 株式会社バイオケミカルイノベーション Air management device, air management method, and program
WO2024128152A1 (en) * 2022-12-12 2024-06-20 株式会社バイオケミカルイノベーション Air management device, air management method, program, and computer-readable storage medium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251878B1 (en) * 2016-11-18 2017-12-27 オルプ株式会社 Oxidation reduction potential (ORP) measuring apparatus and method of use
JP2018081068A (en) * 2016-11-18 2018-05-24 オルプ株式会社 Redox potential (ORP) measuring apparatus and method of use
JP6253171B1 (en) * 2017-07-25 2017-12-27 慶孝 大友 ORP digitization determination apparatus and method of use
JP2019023597A (en) * 2017-07-25 2019-02-14 慶孝 大友 Orp digitalization determination device and method for using the same
EP3813646A4 (en) * 2018-06-19 2022-03-30 Avails Medical, Inc. Devices, systems, and methods for measuring a solution characteristic of a sample comprising microorganisms
US11536682B2 (en) 2018-06-19 2022-12-27 Avails Medical, Inc. Devices, systems, and methods for measuring a solution characteristic of a sample comprising microorganisms
CN112584754A (en) * 2018-06-19 2021-03-30 阿威尔斯医疗公司 Device, system and method for measuring solution properties of a sample comprising microorganisms
JP2021527821A (en) * 2018-06-19 2021-10-14 アバイルズ メディカル,インコーポレイテッド Devices, systems and methods for measuring solution properties of samples containing microorganisms
WO2019246208A1 (en) 2018-06-19 2019-12-26 Avails Medical, Inc. Devices, systems, and methods for measuring a solution characteristic of a sample comprising microorganisms
CN112584754B (en) * 2018-06-19 2024-10-01 阿威尔斯医疗公司 Device, system and method for measuring a characteristic of a solution of a sample comprising microorganisms
US12007350B2 (en) 2018-06-19 2024-06-11 Avails Medical, Inc. Devices, systems, and methods for measuring a solution characteristic of a sample comprising microorganisms
JP7132886B2 (en) 2019-05-28 2022-09-07 株式会社豊田中央研究所 Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method
JP2020193851A (en) * 2019-05-28 2020-12-03 株式会社豊田中央研究所 Corrosion invasion hydrogen measurement device, and corrosion invasion hydrogen evaluation method
WO2022130532A1 (en) * 2020-12-16 2022-06-23 有子 三輪 Oxidation-reduction potential measurement system, oxidation-reduction potential control system, environment management system, air conditioner, air cleaner, oxidation-reduction potential measurement method, oxidation-reduction potential control method, environment management method, air-conditioning method, and air-cleaning method
JP7057553B1 (en) * 2020-12-16 2022-04-20 有子 三輪 Redox potential measurement system, redox potential control system, environmental management system, air conditioner, air purifier, redox potential measurement method, redox potential control method, environmental management method, air conditioner conditioning method, and air cleaning method
WO2022264389A1 (en) * 2021-06-17 2022-12-22 株式会社バイオケミカルイノベーション Air management device, air management method, and program
JPWO2022264389A1 (en) * 2021-06-17 2022-12-22
WO2024128152A1 (en) * 2022-12-12 2024-06-20 株式会社バイオケミカルイノベーション Air management device, air management method, program, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
JP2013127455A (en) Device and method for measuring oxidation reduction potential of air
Yamazoe Toward innovations of gas sensor technology
Yin et al. Electrochemical oxidation determination and voltammetric behaviour of 4-nitrophenol based on Cu2O nanoparticles modified glassy carbon electrode
EP2975390B2 (en) Amperometric electrochemical gas sensing apparatus and method for measuring oxidising gases
RU2613199C2 (en) Sensor for fluid-soluble gas
JP2013127455A5 (en)
CN107356652A (en) A kind of ammonia gas sensor
ES2285739T3 (en) NALITIC CELL.
Dimakopoulou et al. Determinants of personal exposure to ozone in school children. Results from a panel study in Greece
CN107817281B (en) NO electrochemical sensor for breath detection
US4552624A (en) Electrochemical apparatus for monitoring and/or measuring a component of a gas and a method of using said apparatus
JPH08500444A (en) Chlorine sensor
Navrátil et al. Transport of heavy metals across the supported phospholipid bilayers
World Health Organization Hydrogen sulfide
Cetinkaya et al. Development of an MFC-biosensor for determination of Pb+ 2: An assessment from computational fluid dynamics and life cycle assessment perspectives
Levesque et al. Determination of total mercury and carbon in a national baseline study of urban house dust
Albery et al. The polarographic measurement of halothane
Skare et al. Reactions between mercury vapor and chlorine gas at occupational exposure levels
JPS5848844A (en) Ion activity measuring device
Kumagai et al. Passive sampling and head space analysis for quantitative determination of nitrous oxide exposure
Vouk et al. Respirators for Protection Against Mercury Vapour
Aslan et al. Electrochemical Carbon Dioxide Detection
CN106943868B (en) Artificial red cell polarity carbon fiber filter element and its application are contained for sudden release of toxic gas
Jorga et al. Kinetics of hypochlorous acid reactions with organic and chloride-containing tropospheric aerosol
Singh et al. Silica gel detector tubes for toxic chemicals and their evaluation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022