JP2013127404A - Zirconium-based alloy for reactor fuel assembly, and reactor fuel assembly - Google Patents

Zirconium-based alloy for reactor fuel assembly, and reactor fuel assembly Download PDF

Info

Publication number
JP2013127404A
JP2013127404A JP2011277000A JP2011277000A JP2013127404A JP 2013127404 A JP2013127404 A JP 2013127404A JP 2011277000 A JP2011277000 A JP 2011277000A JP 2011277000 A JP2011277000 A JP 2011277000A JP 2013127404 A JP2013127404 A JP 2013127404A
Authority
JP
Japan
Prior art keywords
zirconium
based alloy
reactor fuel
value
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011277000A
Other languages
Japanese (ja)
Other versions
JP5787741B2 (en
Inventor
Kazuo Kakiuchi
一雄 垣内
Hitoshi Kamimura
仁 上村
Koichi Ohira
幸一 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2011277000A priority Critical patent/JP5787741B2/en
Publication of JP2013127404A publication Critical patent/JP2013127404A/en
Application granted granted Critical
Publication of JP5787741B2 publication Critical patent/JP5787741B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zirconium-based alloy for reactor fuel assembly that exhibits superior nodular corrosion resistance and hydrogen absorption resistance characteristics even in a nuclear reactor after long-time operation under a condition of a high degree of combustion, and a reactor fuel assembly using the same.SOLUTION: There is provided a Zr-based alloy that includes Sn, Fe, Cr, Ni, Si, and Zr, where a value [Ni] (unit: mass%) of a content of a Ni component is 0.005-0.04, an inequality (1) of 0.8<([Cr]+[Ni])/(10×[Si])<1.5 holds for a value [Cr] (unit: mass%) of a content of a Cr component, a value [Si] (unit: mass%) of a content of a Si component, and the value [Ni], and an inequality (2) of P≤4500×[Ni]+120 holds for a value P (unit: nm) of a particle size of a contained inter-metal compound.

Description

本発明は、原子炉燃料集合体用ジルコニウム基合金及び原子炉燃料集合体に関し、特に、高燃焼度の条件下で長時間稼動する原子炉内で用いられる燃料集合体の素材として特に好適に使用される原子炉燃料集合体用ジルコニウム基合金、及びこの原子炉燃料集合体用ジルコニウム基合金を採用した原理祖燃料集合体に関する。   The present invention relates to a zirconium-based alloy for a nuclear reactor fuel assembly and a nuclear reactor fuel assembly, and particularly suitably used as a material for a fuel assembly used in a reactor operating for a long time under a high burnup condition. The present invention relates to a zirconium-based alloy for a nuclear reactor fuel assembly and a principle fuel assembly employing the zirconium-based alloy for a nuclear reactor fuel assembly.

ジルコニウム基合金は、原子炉、特に沸騰水型軽水炉を構成する各種部材の素材として有用であることが知られており、実際、多くの原子炉燃料集合体、及び前記原子炉燃料集合体を収める容器であるチャンネルボックスの構成部材の素材として、現実に利用されている。一般に、稼動中の前記沸騰水型軽水炉における前記燃料集合体、及びチャンネルボックスの耐久性、寸法安定性の観点から、その素材となる前記ジルコニウム基合金には、耐ノジュラー腐食性及び耐水素吸収特性の2つの要求特性を同時に満たすことが求められる。   Zirconium-based alloys are known to be useful as materials for various members constituting nuclear reactors, particularly boiling water light water reactors, and actually contain many nuclear reactor fuel assemblies and the reactor fuel assemblies. It is actually used as a material for a component of a channel box that is a container. In general, from the viewpoint of durability and dimensional stability of the fuel assembly and channel box in the boiling water reactor in operation, the zirconium-based alloy as the material has nodular corrosion resistance and hydrogen absorption resistance. It is required to satisfy the two required characteristics simultaneously.

ここで、ノジュラー腐食とは、稼動中の原子炉内において前記原子炉燃料集合体等の構成部材の表面で進行する金属酸化による腐食であり、また、水素吸収とは同じく稼動中の原子炉内で発生する水素が前記原子炉燃料集合体の構成部材に吸収される現象をいい、かかる吸収された水素に起因して前記原子炉燃料集合体の構成部材の脆弱化が進行する。前記ノジュラー腐食、又は前記水素吸収が進行した前記原子炉燃料集合体の構成部材は、いずれもその機械強度が低下するので、その結果として原子炉を稼動し続けることができなくなる。よって、前記原子炉燃料集合体の構成部材の素材として用いられる前記ジルコニウム基合金においては、前記ノジュラー腐食、前記水素吸収の進行を極力抑えることのできる前記耐ノジュラー腐食性及び前記耐水素吸収特性を備えていることが望ましい。   Here, the nodular corrosion is corrosion due to metal oxidation that proceeds on the surface of the structural member such as the nuclear reactor fuel assembly in an operating nuclear reactor, and the hydrogen absorption is the same as in an operating nuclear reactor. This is a phenomenon in which the hydrogen generated in the reactor is absorbed by the constituent members of the nuclear reactor fuel assembly, and the constituent members of the nuclear reactor fuel assembly are weakened due to the absorbed hydrogen. Since the mechanical strength of all the constituent members of the nuclear reactor fuel assembly in which the nodular corrosion or the hydrogen absorption has progressed decreases, it becomes impossible to continue operating the nuclear reactor as a result. Therefore, in the zirconium-based alloy used as a material of the structural member of the nuclear reactor fuel assembly, the nodular corrosion resistance and the hydrogen absorption absorption characteristic capable of suppressing the progression of the nodular corrosion and the hydrogen absorption as much as possible. It is desirable to have it.

特開2003−277859号公報には、前記ジルコニウム基合金に含まれる種々の金属成分の含有量を調整することにより、前記耐ノジュラー腐食性及び前記耐水素吸収特性を前記ジルコニウム基合金に付与する技術が開示されている。また、特開2004−257942号公報には、累積焼鈍パラメータΣAiを調整することにより、更に、特開2005−146381号公報には、前記ジルコニウム基合金に含まれる金属析出物の平均サイズを調整することにより、同様に前記耐ノジュラー腐食性及び前記耐水素吸収特性を前記ジルコニウム基合金に付与する技術が開示されている。   Japanese Patent Application Laid-Open No. 2003-277859 discloses a technique for imparting the nodular corrosion resistance and the hydrogen absorption resistance to the zirconium-based alloy by adjusting the contents of various metal components contained in the zirconium-based alloy. Is disclosed. Japanese Patent Application Laid-Open No. 2004-257742 adjusts the cumulative annealing parameter ΣAi, and Japanese Patent Application Laid-Open No. 2005-146181 further adjusts the average size of the metal precipitates contained in the zirconium-based alloy. Similarly, a technique for imparting the nodular corrosion resistance and the hydrogen absorption resistance to the zirconium-based alloy is disclosed.

しかしながら、近年原子炉の稼動条件が高燃焼度化及び前記原子炉燃料集合体の原子炉内滞在期間が長期化に向かう傾向にあり、この傾向に応じて前記原子炉燃料集合体の構成部材の素材としての前記ジルコニウム基合金についても前記耐ノジュラー腐食性及び前記耐水素吸収特性の尚一層の向上が求められている。   However, in recent years, the operating conditions of the reactor tend to increase the burnup and the staying period of the reactor fuel assembly in the reactor tends to become longer, and according to this tendency, the components of the reactor fuel assembly The zirconium-based alloy as a material is also required to further improve the nodular corrosion resistance and the hydrogen absorption resistance.

特開2003−277859号公報JP 2003-277859 A 特開2004−257942号公報JP 2004-257842 A 特開2005−146381号公報JP 2005-146181 A

本発明の課題は、高燃焼度の条件下で長時間稼動する原子炉内においても優れた前記耐ノジュラー腐食性及び前記耐水素吸収特性を示す前記原子炉燃料集合体の構成部材の素材として有用な前記ジルコニウム基合金及びかかる前記ジルコニウム基合金を用いた原子炉燃料集合体を提供することにある。   An object of the present invention is useful as a material for a constituent member of the nuclear reactor fuel assembly exhibiting excellent nodular corrosion resistance and hydrogen absorption resistance even in a reactor operating for a long time under conditions of high burnup. Another object of the present invention is to provide a zirconium-based alloy and a reactor fuel assembly using the zirconium-based alloy.

前記課題を解決するための手段は、
(1)原子炉原子炉原子炉少なくとも、錫、鉄、クロム、ニッケル、ケイ素、及びジルコニウムを含有する原子炉燃料集合体用ジルコニウム基合金であって、
前記原子炉燃料集合体用ジルコニウム基合金に対するニッケルの含有量の値[Ni](単位:質量%)が、0.005以上0.04以下の範囲内にあり、
前記原子炉燃料集合体用ジルコニウム基合金に対するクロムの含有量の値[Cr](単位:質量%)、ニッケルの含有量の値[Ni](単位:質量%)、及びケイ素の含有量の値[Si](単位:質量%)が以下の式(1)で表される関係を満たし、
前記原子炉燃料集合体用ジルコニウム基合金に含有される金属間化合物の粒径の値P(単位:nm)が以下の式(2)で表される関係を満たす前記原子炉燃料集合体用ジルコニウム基合金である。
0.8<([Cr]+[Ni])/(10×[Si])<1.5 ・・・(1)
P≦4500×[Ni]+120 ・・・(2)
Means for solving the problems are as follows:
(1) A nuclear reactor nuclear reactor, a zirconium-based alloy for a nuclear reactor fuel assembly containing at least tin, iron, chromium, nickel, silicon, and zirconium,
The nickel content value [Ni] (unit: mass%) with respect to the zirconium-based alloy for nuclear reactor fuel assemblies is in the range of 0.005 to 0.04,
Chromium content value [Cr] (unit: mass%), nickel content value [Ni] (unit: mass%), and silicon content value for the zirconium-based alloy for nuclear reactor fuel assemblies [Si] (unit: mass%) satisfies the relationship represented by the following formula (1),
Zirconium for nuclear reactor fuel assemblies satisfying the relationship represented by the following formula (2) in the particle size value P (unit: nm) of the intermetallic compound contained in the zirconium-based alloy for nuclear reactor fuel assemblies It is a base alloy.
0.8 <([Cr] + [Ni]) / (10 × [Si]) <1.5 (1)
P ≦ 4500 × [Ni] +120 (2)

また、前記原子炉燃料集合体用ジルコニウム基合金の好適な態様は、
(2)前記原子炉燃料集合体用ジルコニウム基合金に対する錫の含有量の値[Sn](単位:質量%)が1.2以上1.7以下の範囲内にあり、鉄の含有量の値[Fe](単位:質量%)が0.3以上0.5以下の範囲内にあり、及び前記[Cr]が0.15以上0.25以下の範囲内にある前記(1)に記載の原子炉燃料集合体用ジルコニウム基合金である。
A preferred embodiment of the zirconium-based alloy for the nuclear reactor fuel assembly is as follows:
(2) The value [Sn] (unit:% by mass) of tin in the zirconium-based alloy for nuclear reactor fuel assemblies is in the range of 1.2 to 1.7, and the value of iron content. [Fe] (unit: mass%) is in the range of 0.3 to 0.5, and [Cr] is in the range of 0.15 to 0.25. Zirconium-based alloy for nuclear fuel assemblies.

また、前記原子炉燃料集合体用ジルコニウム基合金の好適な態様は、
(3)前記[Cr]、[Ni]、及び[Si]が以下の式(3)で表される関係を満たす前記(1)又は(2)に記載の原子炉燃料集合体用ジルコニウム基合金である。
0.9<(Cr+Ni)/(10×[Si])<1.3 ・・・(3)
A preferred embodiment of the zirconium-based alloy for the nuclear reactor fuel assembly is as follows:
(3) The zirconium-based alloy for a reactor fuel assembly according to (1) or (2), wherein the [Cr], [Ni], and [Si] satisfy the relationship represented by the following formula (3): It is.
0.9 <(Cr + Ni) / (10 × [Si]) <1.3 (3)

また、前記課題を解決するための他の手段は、
(4)前記(1)から(3)までのいずれか1項に記載の原子炉燃料集合体用ジルコニウム基合金からなる原子炉燃料集合体である。
In addition, other means for solving the above-described problems are:
(4) A nuclear reactor fuel assembly comprising the zirconium-based alloy for nuclear reactor fuel assemblies according to any one of (1) to (3).

本発明によれば、平均燃焼度45GWd/t以上の高燃焼度の条件下、1500日以上稼動した後の原子炉内においても優れた前記耐ノジュラー腐食性及び前記耐水素吸収特性を発揮するため、かかる高燃焼度下で長時間稼動する原子炉内においても、優れた耐久性、寸法安定性を示す、前記燃料集合体、及びチャンネルボックスを構成する素材として好適な前記ジルコニウム基合金及びかかる前記ジルコニウム基合金からなる原子炉燃料集合体を提供することができる。   According to the present invention, in order to demonstrate the excellent nodular corrosion resistance and hydrogen absorption resistance even in a nuclear reactor after operating for 1500 days or more under conditions of high burnup with an average burnup of 45 GWd / t or more. The zirconium-based alloy suitable as a material constituting the fuel assembly and the channel box, which exhibits excellent durability and dimensional stability even in a nuclear reactor operating for a long time under such a high burnup, and the above-mentioned A nuclear reactor fuel assembly made of a zirconium-based alloy can be provided.

図1は、[Cr]、[Ni]、[Si]とノジュラー腐食の関係を説明する模式図である。FIG. 1 is a schematic diagram illustrating the relationship between [Cr], [Ni], [Si] and nodular corrosion. 図2は、[Ni]と金属間化合物の粒径の値[P]との関係を説明する模式図である。FIG. 2 is a schematic diagram illustrating the relationship between [Ni] and the particle size value [P] of the intermetallic compound.

本願発明に係る原子炉燃料集合体用ジルコニウム基合金(以下、単に「ジルコニウム基合金」と称することがある。)は、少なくとも錫、鉄、クロム、ニッケル、及びケイ素を含有するジルコニウム基合金である。   A zirconium-based alloy for a nuclear reactor fuel assembly according to the present invention (hereinafter sometimes simply referred to as “zirconium-based alloy”) is a zirconium-based alloy containing at least tin, iron, chromium, nickel, and silicon. .

このうちニッケル成分の前記ジルコニウム基合金における含有量の値[Ni](単位:質量%)は、0.005以上0.04以下の範囲内にある。前記[Ni]が、0.005未満の場合前記ジルコニウム基合金の充分な前記耐ノジュラー腐食性が得られず、0.04より大きいときは前記ジルコニウム基合金の充分な前記耐水素吸収特性が得られない。   Among these, the content value [Ni] (unit: mass%) of the nickel component in the zirconium-based alloy is in the range of 0.005 to 0.04. When the [Ni] is less than 0.005, the sufficient nodular corrosion resistance of the zirconium-based alloy cannot be obtained, and when it is greater than 0.04, the sufficient hydrogen-absorbing property of the zirconium-based alloy is obtained. I can't.

また、本発明においては、前記ジルコニウム基合金における、前記ケイ素成分の含有量の値[Si](単位:質量%)が上限値と下限値とを有し、前記上限値及び下限値はいずれも、前記[Ni]および前記クロム成分の含有量の値[Cr](単位:質量%)に依存する。具体的には、前記上限値が(([Cr]+[Ni])/8)で表され、下限値が(([Cr]+[Ni])/15)で表される値である。すなわち、前記[Ni]、[Cr]、及び[Si]は、前記式(1)で表される関係を満たさなければならない。このことを以下、図1を参照しつつ説明する。   Further, in the present invention, the value [Si] (unit: mass%) of the content of the silicon component in the zirconium-based alloy has an upper limit value and a lower limit value, and the upper limit value and the lower limit value are both , [Ni] and the content of the chromium component [Cr] (unit: mass%). Specifically, the upper limit value is represented by (([Cr] + [Ni]) / 8), and the lower limit value is represented by (([Cr] + [Ni]) / 15). That is, [Ni], [Cr], and [Si] must satisfy the relationship expressed by the above formula (1). This will be described below with reference to FIG.

本発明のジルコニウム基合金においては、前記耐ノジュラー腐食性と前記式(1)により算出される値との関係が、図1に示されるように、下に凸の曲線Aで表される。ここで、図1の縦軸に表された腐食増量は、稼動中の原子炉内において前記ジルコニウム基合金からなる前記原子炉燃料集合体の構成部材に発生する前記ノジュラー腐食の程度を示す。よって、図1に依れば、前記ジルコニウム基合金の前記腐食増量が所定のレベルB以下にあるためには、言い換えれば、前記ジルコニウム基合金が充分な前記耐ノジュラー腐食性を有するためは、図1の横軸に表された前記式(1)により算出される値がその上限値D及び下限値Cで画される数値範囲内になければならないことが分かる。   In the zirconium-based alloy of the present invention, the relationship between the nodular corrosion resistance and the value calculated by the equation (1) is represented by a downwardly convex curve A as shown in FIG. Here, the increase in corrosion represented on the vertical axis in FIG. 1 indicates the degree of the nodular corrosion that occurs in the constituent members of the nuclear reactor fuel assembly made of the zirconium-based alloy in an operating nuclear reactor. Thus, according to FIG. 1, in order for the increase in corrosion of the zirconium-based alloy to be below a predetermined level B, in other words, because the zirconium-based alloy has sufficient nodular corrosion resistance, It can be seen that the value calculated by the equation (1) represented on the horizontal axis of 1 must be within the numerical range defined by the upper limit value D and the lower limit value C.

前記式(1)により算出される値が、0.8以下である場合、または、1.5以上である場合は、前記ジルコニウム基合金の充分な前記耐ノジュラー腐食性が得られない上、後述する金属間化合物の粒径Pの値が小さいときは、充分な前記耐水素吸収特性も得られないことがある。前記ジルコニウム基合金のより優れた耐ノジュラー腐食性を実現するための、前記式(1)により算出されるより好ましい値は、0.9以上1.3以下の範囲内にある。   When the value calculated by the formula (1) is 0.8 or less, or 1.5 or more, sufficient nodular corrosion resistance of the zirconium-based alloy cannot be obtained, and will be described later. When the value of the particle size P of the intermetallic compound is small, sufficient hydrogen resistance absorption characteristics may not be obtained. A more preferable value calculated by the equation (1) for realizing the superior nodular corrosion resistance of the zirconium-based alloy is in the range of 0.9 to 1.3.

更に、本発明においては、前記ジルコニウム基合金に含有される金属間化合物の粒径の値P(単位:nm)が上限値を有し、前記上限値は、前記[Ni]に依存する。具体的には、前記P及び前記[Ni]は、前記式(2)で表される関係を満たさなければならない。ここで、前記金属間化合物とは、前記ジルコニウム基合金成分の一部からなる金属間化合物を意味し、前記ジルコニウム基合金内部に粒状物として含まれるものである。前記Pは、かかる粒状物の粒径を意味する。このことを以下、図2を参照しつつ説明する。   Further, in the present invention, the particle size value P (unit: nm) of the intermetallic compound contained in the zirconium-based alloy has an upper limit value, and the upper limit value depends on the [Ni]. Specifically, P and [Ni] must satisfy the relationship represented by the formula (2). Here, the intermetallic compound means an intermetallic compound composed of a part of the zirconium-based alloy component, and is contained as a granular material inside the zirconium-based alloy. Said P means the particle size of such a granular material. This will be described below with reference to FIG.

前記Pと前記[Ni]との関係を表す前記式(2)は、図2における直線Eで表される。一般に、前記ジルコニウム基合金の前記Pが所定の値以下であって、前記ジルコニウム基合金が、図(2)における領域Fに属するときには、充分な前記耐ノジュラー腐食性を有する。よって、前記ジルコニウム基合金の充分な前記耐ノジュラー腐食性を達成するためには、前記ジルコニウム基合金の前記Pを前記所定の値、すなわち前記Pの上限値以下に抑えなければならない。図2における前記直線Eは、前記Pの上限値を表しており、前記Pの上限値が前記ジルコニウム基合金の前記[Ni]に依存し、前記[Ni]が大きい程、前記Pの上限値も大きくなることを示している。つまり、前記[Ni]の大きい領域では、比較的前記Pの大きい前記金属間化合物を有する前記ジルコニウム基合金でも充分な前記耐ノジュラー腐食性が達成される。   The formula (2) representing the relationship between the P and the [Ni] is represented by a straight line E in FIG. Generally, when the P of the zirconium-based alloy is not more than a predetermined value and the zirconium-based alloy belongs to the region F in FIG. (2), it has sufficient nodular corrosion resistance. Therefore, in order to achieve sufficient nodular corrosion resistance of the zirconium-based alloy, the P of the zirconium-based alloy must be suppressed to the predetermined value, that is, the upper limit value of the P or less. The straight line E in FIG. 2 represents the upper limit value of P. The upper limit value of P depends on the [Ni] of the zirconium-based alloy, and the higher the [Ni], the higher the upper limit value of P. It also shows that it will grow. That is, in the region where [Ni] is large, sufficient nodular corrosion resistance is achieved even with the zirconium-based alloy having the intermetallic compound having a relatively large P.

前記Pが、前記式(2)により算出される前記Pの上限値を超えるときは、前記ジルコニウム基合金の充分な前記耐ノジュラー腐食性が得られない。なお、前記Pの下限値については特に制限はないが、前記ジルコニウム基合金成分の含有量の値、例えば[Cr]、[Si]等に依っては、前記Pが小さい場合前記ジルコニウム基合金の前記耐水素吸収特性が低下する傾向にあるので、前記Pは、できるだけ前記式(2)により算出される前記Pの上限値に近いことが好ましい。   When the P exceeds the upper limit value of P calculated by the formula (2), sufficient nodular corrosion resistance of the zirconium-based alloy cannot be obtained. The lower limit value of P is not particularly limited, but depending on the content value of the zirconium-based alloy component, for example, [Cr], [Si], etc. Since the hydrogen absorption resistance tends to decrease, the P is preferably as close as possible to the upper limit of the P calculated by the equation (2).

本発明における前記[Cr]は、前記式(1)の関係を満たす限り特に制限はないが、前記ジルコニウム基合金の更に良好な耐ノジュラー腐食性の確保、及び前記ジルコニウム基合金の良好な加工性の観点から、0.15以上0.25以下の範囲内にあるのが好ましい。   The [Cr] in the present invention is not particularly limited as long as the relationship of the formula (1) is satisfied. However, it is possible to ensure better nodular corrosion resistance of the zirconium-based alloy and good workability of the zirconium-based alloy. In view of the above, it is preferably within the range of 0.15 or more and 0.25 or less.

本発明における前記錫の含有量の値[Sn](単位:質量%)は、特に制限はないが、前記ジルコニウム基合金の加工性の観点から、好ましくは1.2以上1.7以下の範囲内にある。   The value [Sn] (unit: mass%) of the tin content in the present invention is not particularly limited, but is preferably in the range of 1.2 to 1.7 from the viewpoint of workability of the zirconium-based alloy. Is in.

本発明における鉄の含有量の値[Fe](単位:質量%)は、前記ジルコニウム基合金の更に良好な耐水素吸収特性の確保、及び前記ジルコニウム基合金の良好な加工性の観点から、好ましくは0.3以上0.5以下の範囲内にある。   The value [Fe] (unit: mass%) of the iron content in the present invention is preferably from the viewpoint of ensuring better hydrogen absorption resistance of the zirconium-based alloy and good workability of the zirconium-based alloy. Is in the range of 0.3 to 0.5.

本発明の前記ジルコニウム基合金は、本発明の目的とする効果に影響を及ぼさない範囲で、他の金属成分、添加剤等を含有していてもよい。   The zirconium-based alloy of the present invention may contain other metal components, additives and the like as long as the effects intended by the present invention are not affected.

本発明の前記ジルコニウム基合金はその製法に特に制限はない。ジルコニウム基合金の耐食性は構造材としての最終製品に至るまでの製造工程中における熱処理条件により、影響を受ける。本発明の前記ジルコニウム基合金で形成される構造材は、ビレットの段階でβ焼き入れと称される溶体化処理を行い、次に熱間押し出し、焼鈍を行い、その後に冷間圧延及び真空焼鈍を3回繰り返して製造することができる。   The zirconium-based alloy of the present invention is not particularly limited in its production method. The corrosion resistance of zirconium-based alloys is affected by heat treatment conditions during the manufacturing process up to the final product as a structural material. The structural material formed of the zirconium-based alloy of the present invention is subjected to a solution treatment called β-quenching at the billet stage, followed by hot extrusion and annealing, followed by cold rolling and vacuum annealing. Can be repeated three times.

以下、実施例において更に詳細に本発明を説明する。尚、本発明の実施の態様は、これら実施例により開示された態様のみに制限されるものではない。   Hereinafter, the present invention will be described in more detail in Examples. The embodiments of the present invention are not limited to the embodiments disclosed by these examples.

1.ジルコニウム基合金の調製
前記所定の方法に従い、前記[Ni]、[Cr]、[Si]、及び金属間化合物の粒径の値、[P]の異なる前記ジルコニウム基合金(a)〜(i)を調製した。
1. Preparation of Zirconium-Based Alloy According to the predetermined method, the zirconium-based alloys (a) to (i) having different [Ni], [Cr], [Si], and intermetallic compound particle size values, [P]. Was prepared.

前記ジルコニウム基合金(a)〜(i)についての前記[Ni]、前記P、並びに前記式(1)及び式(2)により算出される値を表1に記載した。   Table 1 shows the values calculated by the [Ni], the P, and the formulas (1) and (2) for the zirconium-based alloys (a) to (i).

2.耐ノジュラー腐食性評価試験
耐ノジュラー腐食特性を評価するために、オートクレーブ内で525℃、10.3MPaの条件下に24時間前記ジルコニウム基合金(a)〜(i)からなる試験片を置いたのちに、外観観察、及び腐食増量を測定した。その結果を表1に記載した。
[耐ノジュラー腐食性の評価基準]
○:良好な耐ノジュラー腐食性を示した。
×:耐ノジュラー腐食性が劣る。
2. Nodular Corrosion Resistance Evaluation Test In order to evaluate the nodular corrosion resistance property, after placing a test piece made of the zirconium-based alloy (a) to (i) for 24 hours in an autoclave at 525 ° C. and 10.3 MPa. The appearance observation and the increase in corrosion were measured. The results are shown in Table 1.
[Evaluation criteria for nodular corrosion resistance]
○: Good nodular corrosion resistance was exhibited.
X: Nodular corrosion resistance is inferior.

3.耐水素吸収特性評価試験
オートクレーブ内に、400℃、10.3MPaの条件下に1000時間前記ジルコニウム基合金(a)〜(i)からなる試験片を置いた後に、水素吸収率を測定し、以下の基準に基づき評価した。結果を表1に記載した。
[耐水素吸収特性の評価基準]
○:前記試験片の試験後の試験片の水素吸収率が50%よりも小さく、良好な耐水素吸収特性を示した。
×:前記試験片の試験後の水素吸収率が50%以上であり、耐水素吸収特性が劣る。
3. Hydrogen absorption resistance evaluation test After placing a test piece made of the zirconium-based alloy (a) to (i) for 1000 hours under conditions of 400 ° C. and 10.3 MPa in an autoclave, the hydrogen absorption rate was measured, Based on the criteria of The results are shown in Table 1.
[Evaluation criteria for hydrogen absorption resistance]
○: The hydrogen absorption rate of the test piece after the test of the test piece was less than 50%, and good hydrogen absorption resistance was exhibited.
X: The hydrogen absorption rate after the test of the test piece is 50% or more, and the hydrogen absorption resistance is inferior.

4.考察
表1から明らかなように、前記ジルコニウム基合金(a)〜(i)のうち、前記[Ni]が、0.005以上でかつ0.04以下であり、また、前記式(1)により算出される値が0.8よりも大きくかつ1.5未満の範囲であり、更に、前記Pが前記式(2)により算出される値以下である(a)、(b)、(c)、(d)、及び(e)は、充分な前記耐ノジュラー腐食性及び前記耐水素吸収特性を有していた。
4). Discussion As is apparent from Table 1, among the zirconium-based alloys (a) to (i), the [Ni] is 0.005 or more and 0.04 or less, and according to the formula (1) (A), (b), (c) where the calculated value is in a range greater than 0.8 and less than 1.5, and further, the P is equal to or less than the value calculated by the equation (2). , (D), and (e) had sufficient nodular corrosion resistance and hydrogen absorption resistance.

これに対して、前記式(1)により算出される値が1.5以上である(f)、同値が0.8以下である(g)、及び、前記Pが前記式(2)により算出される値よりも大きい(h)及び(i)については、充分な前記耐ノジュラー腐食性が得られず、更に、前記(f)については、前記式(1)により算出される値が所定の範囲内にないだけでなく、そのPも比較的小さく、よって、充分な前記耐水素吸収特性も得られていない。   On the other hand, the value calculated by the equation (1) is 1.5 or more (f), the value is 0.8 or less (g), and the P is calculated by the equation (2). When (h) and (i) are larger than the above values, sufficient nodular corrosion resistance is not obtained. Further, for (f), the value calculated by the equation (1) is a predetermined value. Not only within the range, but also its P is relatively small, so that sufficient hydrogen-resistant absorption characteristics are not obtained.

すなわち、表1に記載された結果より、前記ジルコニウム基合金において充分な前記耐ノジュラー腐食性及び前記耐水素吸収特性のいずれもが達成されるためには、前記ジルコニウム基合金の前記[Ni]、P、及び式(1)により算出される値が所定の範囲内になければならないことが分かる。   That is, from the results shown in Table 1, in order to achieve both of the nodular corrosion resistance and the hydrogen absorption resistance sufficient in the zirconium-based alloy, the [Ni] of the zirconium-based alloy, It can be seen that P and the value calculated by equation (1) must be within a predetermined range.

Figure 2013127404
Figure 2013127404

A 耐ノジュラー腐食性と式(1)により算出される値との関係を示す曲線。
B 望ましい耐ノジュラー腐食性のレベル。
C 式(1)により算出される値についての下限値。
D 式(1)により算出される値についての上限値。
E 式(2)を表す直線。
F 充分な耐ノジュラー腐食性を有するジルコニウム基合金の[P]と[Ni]の範囲。
A A curve showing the relationship between the nodular corrosion resistance and the value calculated by equation (1).
B Desirable level of nodular corrosion resistance.
C Lower limit value for the value calculated by equation (1).
D Upper limit value for the value calculated by equation (1).
E A straight line representing formula (2).
F [P] and [Ni] ranges for zirconium-based alloys with sufficient nodular corrosion resistance.

Claims (4)

少なくとも、錫、鉄、クロム、ニッケル、ケイ素、及びジルコニウムを含有する原子炉燃料集合体用ジルコニウム基合金であって、
前記原子炉燃料集合体用ジルコニウム基合金に対するニッケルの含有量の値[Ni](単位:質量%)が、0.005以上0.04以下の範囲内にあり、
前記原子炉燃料集合体用ジルコニウム基合金に対するクロムの含有量の値[Cr](単位:質量%)、ニッケルの含有量の値[Ni](単位:質量%)、及びケイ素の含有量の値[Si](単位:質量%)が以下の式(1)で表される関係を満たし、
前記原子炉燃料集合体用ジルコニウム基合金に含有される金属間化合物の粒径の値P(単位:nm)が以下の式(2)で表される関係を満たす前記原子炉燃料集合体用ジルコニウム基合金。
0.8<([Cr]+[Ni])/(10×[Si])<1.5 ・・・(1)
P≦4500×[Ni]+120 ・・・(2)
A zirconium-based alloy for a nuclear reactor fuel assembly containing at least tin, iron, chromium, nickel, silicon, and zirconium,
The nickel content value [Ni] (unit: mass%) with respect to the zirconium-based alloy for nuclear reactor fuel assemblies is in the range of 0.005 to 0.04,
Chromium content value [Cr] (unit: mass%), nickel content value [Ni] (unit: mass%), and silicon content value for the zirconium-based alloy for nuclear reactor fuel assemblies [Si] (unit: mass%) satisfies the relationship represented by the following formula (1),
Zirconium for nuclear reactor fuel assemblies satisfying the relationship represented by the following formula (2) in the particle size value P (unit: nm) of the intermetallic compound contained in the zirconium-based alloy for nuclear reactor fuel assemblies Base alloy.
0.8 <([Cr] + [Ni]) / (10 × [Si]) <1.5 (1)
P ≦ 4500 × [Ni] +120 (2)
前記原子炉燃料集合体用ジルコニウム基合金に対する錫の含有量の値[Sn](単位:質量%)が1.2以上1.7以下の範囲内にあり、鉄の含有量の値[Fe](単位:質量%)が0.3以上0.5以下の範囲内にあり、前記[Cr]が0.15以上0.25以下の範囲内にある前記請求項1に記載の原子炉燃料集合体用ジルコニウム基合金。   The value [Sn] (unit: mass%) of tin in the zirconium-based alloy for nuclear reactor fuel assemblies is in the range of 1.2 to 1.7, and the value of iron content [Fe] The nuclear reactor fuel assembly according to claim 1, wherein (unit: mass%) is in a range of 0.3 to 0.5, and [Cr] is in a range of 0.15 to 0.25. Zirconium-based alloy for body. 前記[Cr]、[Ni]、及び[Si]が以下の式(3)で表される関係を満たす請求項1又は2に記載の原子炉燃料集合体用ジルコニウム基合金。
0.9<(Cr+Ni)/(10×[Si])<1.3 ・・・(3)
The zirconium-based alloy for a nuclear reactor fuel assembly according to claim 1 or 2, wherein the [Cr], [Ni], and [Si] satisfy a relationship represented by the following formula (3).
0.9 <(Cr + Ni) / (10 × [Si]) <1.3 (3)
請求項1から3までのいずれか1項に記載の原子炉燃料集合体用ジルコニウム基合金からなる原子炉燃料集合体。   A reactor fuel assembly comprising the zirconium-based alloy for a reactor fuel assembly according to any one of claims 1 to 3.
JP2011277000A 2011-12-19 2011-12-19 Zirconium-based alloy for boiling water type light water reactor fuel assemblies and boiling water type light water reactor fuel assemblies Expired - Fee Related JP5787741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277000A JP5787741B2 (en) 2011-12-19 2011-12-19 Zirconium-based alloy for boiling water type light water reactor fuel assemblies and boiling water type light water reactor fuel assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277000A JP5787741B2 (en) 2011-12-19 2011-12-19 Zirconium-based alloy for boiling water type light water reactor fuel assemblies and boiling water type light water reactor fuel assemblies

Publications (2)

Publication Number Publication Date
JP2013127404A true JP2013127404A (en) 2013-06-27
JP5787741B2 JP5787741B2 (en) 2015-09-30

Family

ID=48778018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277000A Expired - Fee Related JP5787741B2 (en) 2011-12-19 2011-12-19 Zirconium-based alloy for boiling water type light water reactor fuel assemblies and boiling water type light water reactor fuel assemblies

Country Status (1)

Country Link
JP (1) JP5787741B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228442A (en) * 1985-12-09 1987-10-07 Hitachi Ltd Highly corrosion-resistant zirconium-base alloy and reactor fuel assembly by use of same
JPH07504229A (en) * 1992-02-28 1995-05-11 シーメンス アクチエンゲゼルシヤフト Fuel rod cladding tube for boiling water reactors
JPH0815470A (en) * 1994-03-21 1996-01-19 General Electric Co <Ge> Coating pipe
JPH08253828A (en) * 1995-03-14 1996-10-01 Sumitomo Metal Ind Ltd Highly corrosion resistant zirconium alloy
JPH08260081A (en) * 1994-11-21 1996-10-08 General Electric Co <Ge> Long-life corrosion-resistant zirconium alloy for coating fuel
JP2002540437A (en) * 1999-03-29 2002-11-26 フラマトム アンプ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel element for pressurized water reactor and method for producing clad tube
JP2003277859A (en) * 2002-03-19 2003-10-02 Zirco Products Co Ltd Zirconium alloy having excellent corrosion resistance and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228442A (en) * 1985-12-09 1987-10-07 Hitachi Ltd Highly corrosion-resistant zirconium-base alloy and reactor fuel assembly by use of same
JPH07504229A (en) * 1992-02-28 1995-05-11 シーメンス アクチエンゲゼルシヤフト Fuel rod cladding tube for boiling water reactors
JPH0815470A (en) * 1994-03-21 1996-01-19 General Electric Co <Ge> Coating pipe
JPH08260081A (en) * 1994-11-21 1996-10-08 General Electric Co <Ge> Long-life corrosion-resistant zirconium alloy for coating fuel
JPH08253828A (en) * 1995-03-14 1996-10-01 Sumitomo Metal Ind Ltd Highly corrosion resistant zirconium alloy
JP2002540437A (en) * 1999-03-29 2002-11-26 フラマトム アンプ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel element for pressurized water reactor and method for producing clad tube
JP2003277859A (en) * 2002-03-19 2003-10-02 Zirco Products Co Ltd Zirconium alloy having excellent corrosion resistance and production method therefor

Also Published As

Publication number Publication date
JP5787741B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
US9738953B2 (en) Hot-forgeable Ni-based superalloy excellent in high temperature strength
DE102013004365A1 (en) Nickel-based alloy with silicon, aluminum and chrome
JP2014512452A (en) Cu-Ni-Zn-Mn alloy
JP5725630B1 (en) Ni-base alloy with excellent hot forgeability and corrosion resistance
CZ2193A3 (en) Nuclear fuel element and process for producing thereof
EP2692887B1 (en) Cast austenitic stainless steel
CN117385212B (en) Nickel-based high-temperature alloy foil with excellent medium-temperature strength and preparation method thereof
US20170167005A1 (en) Austenitic stainless steel and method for producing the same
CN105312793A (en) Fe-Ni based high-temperature alloy welding wire for high-temperature component for 700 DEG C ultra-supercritical thermal power and application of Fe-Ni based high-temperature alloy welding wire
JP2017145478A (en) Ni-BASED SUPER ALLOY FOR HOT FORGING
JP2022512995A (en) A type of alloy material and its production process
CN107090556B (en) Ni base superalloy for hot forging
CN104988357A (en) Nickel base alloy material for ultra-supercritical steam turbine
JP5787741B2 (en) Zirconium-based alloy for boiling water type light water reactor fuel assemblies and boiling water type light water reactor fuel assemblies
KR20160079997A (en) Low nickel stainless steel
CN112553504B (en) Precipitation strengthening type nickel-cobalt-based alloy with high oxidation resistance and preparation method thereof
JP2007239030A (en) Alpha plus beta type titanium alloy with high specific strength, and its manufacturing method
JP2515172B2 (en) Manufacturing method of cladding tube for nuclear fuel
JP5675957B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
CN108950330B (en) A kind of high thermal stability aluminium alloy and its preparation process
US20140294653A1 (en) Martensitic oxide dispersion strengthened alloy with enhanced high-temperature strength and creep property, and method of manufacturing the same
CN117418153B (en) Nickel-based high-temperature alloy foil with stable long-term structure and preparation method and application thereof
KR102416315B1 (en) Rolled stainless steel plate for neutron shielding and manufacturing method thereof
EP2889387B1 (en) Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
JP2000001754A (en) Austenitic alloy and structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R150 Certificate of patent or registration of utility model

Ref document number: 5787741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees