JP2013124652A - Torsional vibration stress reduction control device, marine vessel having the same, and torsional vibration stress reduction method - Google Patents

Torsional vibration stress reduction control device, marine vessel having the same, and torsional vibration stress reduction method Download PDF

Info

Publication number
JP2013124652A
JP2013124652A JP2011275629A JP2011275629A JP2013124652A JP 2013124652 A JP2013124652 A JP 2013124652A JP 2011275629 A JP2011275629 A JP 2011275629A JP 2011275629 A JP2011275629 A JP 2011275629A JP 2013124652 A JP2013124652 A JP 2013124652A
Authority
JP
Japan
Prior art keywords
torsional vibration
vibration stress
control device
scavenging
reduction control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275629A
Other languages
Japanese (ja)
Other versions
JP5795731B2 (en
Inventor
Ryo Tsukahara
亮 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2011275629A priority Critical patent/JP5795731B2/en
Priority to KR1020147014635A priority patent/KR20140075811A/en
Priority to PCT/JP2012/007328 priority patent/WO2013088643A1/en
Priority to CN201280055865.7A priority patent/CN103917764A/en
Publication of JP2013124652A publication Critical patent/JP2013124652A/en
Application granted granted Critical
Publication of JP5795731B2 publication Critical patent/JP5795731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • B63H21/302Mounting of propulsion plant or unit, e.g. for anti-vibration purposes with active vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/04Engines having ports both in cylinder head and in cylinder wall near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • F02B2039/162Control of pump parameters to improve safety thereof
    • F02B2039/166Control of pump parameters to improve safety thereof the fluid pressure in the pump or exhaust drive being limited
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Supercharger (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a torsional vibration stress reduction control device for reducing torsional vibration stress by simple control.SOLUTION: A torsional vibration stress reduction control device 50 is configured to reduce torsional vibration stress generated in a propulsion shafting 10 in a marine vessel 100 including a propulsion shafting 10 which rotates integrally with a propulsion propeller 11, a main engine 20 for driving the propulsion shafting 10, and a supercharger 30 which has a turbine 31 driven by exhaust 27 expelled from the main engine 20 and which uses the rotational force of the turbine 31 as motive power to compress new air and supply scavenged air 24 to the main engine 20. The pressure of the scavenged air 24 is reduced when the torsional vibration stress is a predetermined value or greater.

Description

本発明は船舶の推進軸系に生じるねじり振動応力を低減するねじり振動応力低減制御装置、及び、このねじり振動応力低減制御装置を備えた船舶に関する。また、ねじり振動応力を低減するねじり振動応力低減方法に関する。   The present invention relates to a torsional vibration stress reduction control device for reducing torsional vibration stress generated in a propulsion shaft system of a ship, and a ship equipped with this torsional vibration stress reduction control device. The present invention also relates to a torsional vibration stress reduction method for reducing torsional vibration stress.

船舶に搭載される主機は、ピストンの往復運動をクランク軸によって回転運動に変換する構造であり、複数のピストンが異なる位相で往復運動するため、クランク軸にかかる力はクランク軸の回転角度位置によって異なり、クランク軸を含む推進軸系に生じるねじり応力もクランク軸の回転角度位置によって異なる。その結果、推進軸系に生じるねじり応力は、主に主機の回転に同期して変動する。一方、推進軸系は、振動モードごとに固有振動数が存在する。そして、主機の回転が推進軸系の固有振動数と一致するとき、上述のねじり応力は一気に増大し、場合によっては推進軸系が破損してしまうおそれがある。この共振時におけるねじり振動応力については、従来から対策が検討されてきた。   The main engine mounted on the ship is a structure that converts the reciprocating motion of the pistons into rotational motion by the crankshaft.Since multiple pistons reciprocate at different phases, the force applied to the crankshaft depends on the rotational angle position of the crankshaft. In contrast, the torsional stress generated in the propulsion shaft system including the crankshaft also varies depending on the rotation angle position of the crankshaft. As a result, the torsional stress generated in the propulsion shaft system varies mainly in synchronization with the rotation of the main engine. On the other hand, the propulsion shaft system has a natural frequency for each vibration mode. When the rotation of the main engine coincides with the natural frequency of the propulsion shaft system, the torsional stress described above increases at a stretch, and in some cases, the propulsion shaft system may be damaged. For the torsional vibration stress at the time of resonance, countermeasures have been studied conventionally.

ねじり振動応力の対策の1つとして、推進軸系を構成する部材の大きさや重さのバランスを変えることで推進軸系の固有振動数を変更する方法がある。この方法によれば、ねじり振動応力のピークを船舶の運用上使用頻度の低い低回転速度に移動させたり、ねじり振動応力の値を下げたりすることができる。ただし、推進軸系の構成部材の軸径を小さくするような変更は強度が低下するといった問題があり、軸径を大きくするような変更は製造コストが上がるとともに、重量が大きくなるといった問題がある。また、推進軸系の構成部材の材料を強度の高いものに変更することで、ねじり振動応力の許容値を拡大する方法もあるが、この方法も製造コストが上がるとともに、材料の変更に伴う他の問題が生じる可能性もある。このように、推進軸系の構成部材を変更するような対策は、製造コストや強度の面で問題が生じやすい。   As one of countermeasures against torsional vibration stress, there is a method of changing the natural frequency of the propulsion shaft system by changing the balance of the size and weight of the members constituting the propulsion shaft system. According to this method, the peak of the torsional vibration stress can be moved to a low rotational speed that is not frequently used for ship operation, or the value of the torsional vibration stress can be lowered. However, a change that reduces the shaft diameter of the component of the propulsion shaft system has a problem that the strength decreases, and a change that increases the shaft diameter increases the manufacturing cost and the weight. . In addition, there is a method of expanding the allowable value of torsional vibration stress by changing the material of the constituent members of the propulsion shaft system to a material having high strength. There is a possibility that this problem may occur. As described above, the measures for changing the constituent members of the propulsion shaft system are likely to cause problems in terms of manufacturing cost and strength.

これに対し、推進軸系の構成部材は変更せずに、制御面からねじれ振動応力を避けたり、低減したりする対策も検討されている。例えば、特許文献1には、主機関が増速中に通過する危険回転速度域を、ガバナ掃気圧リミッタを一時的に解除することで早期に脱出する危険回転速度域回避対策装置が開示されている。   On the other hand, measures for avoiding or reducing torsional vibration stress from the control surface without changing the constituent members of the propulsion shaft system have been studied. For example, Patent Document 1 discloses a dangerous rotational speed range avoidance countermeasure device that escapes early from a dangerous rotational speed range through which the main engine passes during acceleration by temporarily releasing a governor scavenging pressure limiter. Yes.

また、特許文献2には、エンジン回転速度が所定回転速度以上となったとき、過給圧力を高めるように構成された、クランク軸のねじり防止装置が開示されている。この装置によれば、クランク軸に対して上方向に作用する力が小さくなり、クランク軸のねじりが小さくなるとされている。   Further, Patent Document 2 discloses a crankshaft torsion prevention device configured to increase the supercharging pressure when the engine rotational speed becomes equal to or higher than a predetermined rotational speed. According to this device, the force acting upward on the crankshaft is reduced, and the torsion of the crankshaft is reduced.

また、特許文献3には、ディーゼル機関の回転速度が共振回転速度の範囲内にあるとき、燃料噴射時期若しくは燃料噴射期間を調整するように構成された、ディーゼル機関のクランク軸ねじり振動抑制装置が開示されている。この装置によれば、起振トルク成分が小さくなり、共振応力を小さくできるとされている。   Patent Document 3 discloses a diesel engine crankshaft torsional vibration suppression device configured to adjust the fuel injection timing or the fuel injection period when the rotational speed of the diesel engine is within the range of the resonant rotational speed. It is disclosed. According to this apparatus, the vibration generating torque component is reduced and the resonance stress can be reduced.

実公平06−39072号公報Japanese Utility Model Publication No. 06-39072 特開2005−273571号公報JP 2005-273571 A 特開平03−275958号公報Japanese Patent Laid-Open No. 03-275958

しかしながら、特許文献1に記載の発明は、ねじり振動応力の大きさ自体は変わらないため、根本的な解決策とはいえない。また、特許文献2に記載の発明は、エンジン回転数が高くエンジン負荷の低い、ねじり振動に対し慣性力が支配的な領域での対策であり、その対象は限定的である。特に舶用主機のような低速高負荷運転が主となるエンジンには適用が困難である。また、特許文献3に記載の発明は、制御の対象が燃料噴射であり、主機の性能に直結する制御であることから複雑な制御になるとともに、燃料噴射時期及び噴射期間を調整する機構を有していなければならないという問題がある。   However, the invention described in Patent Document 1 is not a fundamental solution because the magnitude of the torsional vibration stress itself does not change. Further, the invention described in Patent Document 2 is a countermeasure in a region where the inertial force is dominant with respect to torsional vibration where the engine speed is high and the engine load is low, and the object is limited. In particular, it is difficult to apply to engines mainly for low speed and high load operation such as marine main engines. In addition, the invention described in Patent Document 3 has a mechanism for adjusting the fuel injection timing and the injection period as well as complicated control because the object of control is fuel injection and control directly related to the performance of the main engine. There is a problem that must be done.

そこで本発明では、簡易な制御でねじり振動応力を低減することができる、ねじり振動応力低減制御装置を提供することを目的としている。   Therefore, an object of the present invention is to provide a torsional vibration stress reduction control device that can reduce torsional vibration stress by simple control.

本発明に係るねじり振動応力低減制御装置は、推進用のプロペラと一体になって回転する推進軸系と、該推進軸系を駆動する主機と、該主機から排出された排気によって駆動されるタービンを有し、該タービンの回転力を動力として新気を圧縮して掃気を前記主機に供給する過給機と、を備えた船舶における、前記推進軸系に生じるねじり振動応力を低減するためのねじり振動応力低減制御装置であって、前記ねじり振動応力が所定値以上であるとき、前記掃気の圧力を低減するように構成されている。   A torsional vibration stress reduction control device according to the present invention includes a propulsion shaft system that rotates integrally with a propeller for propulsion, a main machine that drives the propulsion shaft system, and a turbine that is driven by exhaust gas discharged from the main machine. And a supercharger that compresses fresh air using the rotational force of the turbine as a motive power and supplies the scavenged air to the main engine, for reducing torsional vibration stress generated in the propulsion shaft system The torsional vibration stress reduction control device is configured to reduce the scavenging pressure when the torsional vibration stress is a predetermined value or more.

かかる構成によれば、ねじり振動応力が所定値以上であるときに掃気の圧力が低減されるため、主機の効率が低下するリスクはあるが、ねじり振動応力は確実に低減することができる。   According to such a configuration, since the scavenging pressure is reduced when the torsional vibration stress is equal to or higher than a predetermined value, there is a risk of reducing the efficiency of the main engine, but the torsional vibration stress can be surely reduced.

また、上記のねじり振動応力低減制御装置において、前記掃気の圧力の低減は、前記過給機のタービンを駆動する前記排気の圧力を低減することによって行われるように構成してもよい。   In the torsional vibration stress reduction control apparatus, the scavenging pressure may be reduced by reducing the pressure of the exhaust gas that drives the turbine of the supercharger.

また、上記のねじり振動応力低減制御装置において、前記過給機は、前記主機から排出された排気を前記タービンに導く排気通路と、該排気通路に設けられたバイパスバルブと、を有しており、前記排気の圧力の低減は、前記バイパスバルブを開放することによって行われるように構成してもよい。   Further, in the above torsional vibration stress reduction control device, the supercharger has an exhaust passage for guiding the exhaust discharged from the main engine to the turbine, and a bypass valve provided in the exhaust passage. The exhaust pressure may be reduced by opening the bypass valve.

また、上記のねじり振動応力低減制御装置において、前記過給機は、前記タービンの前段に可変ノズルを有しており、前記排気の圧力の低減は、前記可変ノズルの開度を変更することによって行われるように構成してもよい。   In the above torsional vibration stress reduction control device, the supercharger has a variable nozzle in the front stage of the turbine, and the exhaust pressure is reduced by changing the opening of the variable nozzle. It may be configured to be performed.

また、上記のねじり振動応力低減制御装置において、前記過給機から前記主機へ供給される掃気をバイパスする掃気バイパスバルブをさらに備え、前記掃気の圧力の低減は前記掃気バイパスバルブを調整することで行われるように構成してもよい。   The torsional vibration stress reduction control device may further include a scavenging bypass valve that bypasses scavenging supplied from the supercharger to the main engine, and the scavenging pressure is reduced by adjusting the scavenging bypass valve. It may be configured to be performed.

また、上記のねじり振動応力低減制御装置において、前記ねじり振動応力が所定値以上であるか否かは、前記主機の回転速度によって判断するように構成してもよい。   The torsional vibration stress reduction control device may be configured to determine whether or not the torsional vibration stress is a predetermined value or more based on a rotation speed of the main machine.

また、上記のねじり振動応力低減制御装置において、前記ねじり振動応力が所定値以上であるか否かは、ねじり振動応力を計測することで判断するように構成してもよい。   The torsional vibration stress reduction control apparatus may be configured to determine whether or not the torsional vibration stress is a predetermined value or more by measuring the torsional vibration stress.

さらに、本発明に係る船舶は、上記のうちいずれか一のねじり振動応力低減制御装置を備えている。   Furthermore, the ship according to the present invention includes any one of the above torsional vibration stress reduction control devices.

さらに、本発明に係るねじり振動応力低減方法は、推進用のプロペラと一体になって回転する推進軸系と、該推進軸系を駆動する主機と、該主機から排出された排気によって駆動されるタービンを有し、該タービンの回転力を動力として掃気を圧縮して前記主機に供給する過給機と、を備えた船舶における前記推進軸系に生じるねじり振動応力を低減するためのねじり振動応力低減方法であって、前記ねじり振動応力が所定値以上であるか否かを判定し、前記ねじり振動応力が所定値以上であると判定したときには、前記過給機の機能を低減させる。   Furthermore, the torsional vibration stress reducing method according to the present invention is driven by a propulsion shaft system that rotates integrally with a propeller for propulsion, a main unit that drives the propulsion shaft system, and exhaust gas discharged from the main unit. A torsional vibration stress for reducing a torsional vibration stress generated in the propulsion shaft system in a ship having a turbine, and a supercharger that compresses scavenging using the rotational force of the turbine as a power and supplies the compressed scavenging gas to the main engine In this method, it is determined whether or not the torsional vibration stress is equal to or greater than a predetermined value, and when it is determined that the torsional vibration stress is equal to or greater than a predetermined value, the function of the supercharger is reduced.

本発明に係るねじり振動応力低減制御装置によれば、簡易な制御でねじり振動応力を低減することができる。   According to the torsional vibration stress reduction control device according to the present invention, the torsional vibration stress can be reduced by simple control.

図1は、本発明の一実施形態に係る船舶の概略図である。FIG. 1 is a schematic view of a ship according to an embodiment of the present invention. 図2は、主機の回転速度とねじり振動応力の関係を示したグラフである。FIG. 2 is a graph showing the relationship between the rotational speed of the main machine and the torsional vibration stress. 図3は、掃気圧制御装置の制御による可変ノズルの制御曲線を示したグラフである。FIG. 3 is a graph showing a control curve of the variable nozzle under the control of the scavenging air pressure control device. 図4は、ねじり振動応力低減制御装置の動作を示すフロー図である。FIG. 4 is a flowchart showing the operation of the torsional vibration stress reduction control device. 図5は、ねじり振動応力低減制御装置による制御が行われたときの主機の負荷と掃気圧の関係を示したグラフである。FIG. 5 is a graph showing the relationship between the load of the main engine and the scavenging pressure when the control by the torsional vibration stress reduction control device is performed. 図6は、ねじり振動応力低減制御装置による制御が行われたときの主機の回転速度とねじり振動応力の関係を示したグラフである。FIG. 6 is a graph showing the relationship between the rotational speed of the main engine and the torsional vibration stress when the control by the torsional vibration stress reduction control device is performed.

以下、本発明の実施形態について説明する。なお、以下では全ての図を通じて同一または相当する構成要素には同一の参照符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described. In the following description, the same or corresponding components are denoted by the same reference symbols throughout the drawings, and redundant description is omitted.

図1は本発明の一実施形態に係る船舶100の概略図である。図1に示すように、船舶100は、推進軸系10と、主機20と、過給機30と、掃気圧制御装置40と、ねじり振動応力低減制御装置50と、を備えている。以下、これらの各構成について順に説明する。   FIG. 1 is a schematic view of a ship 100 according to an embodiment of the present invention. As shown in FIG. 1, the ship 100 includes a propulsion shaft system 10, a main engine 20, a supercharger 30, a scavenging air pressure control device 40, and a torsional vibration stress reduction control device 50. Hereinafter, each of these components will be described in order.

推進軸系10は、推進用のプロペラ11と一体になって回転する一連の軸系である。推進軸系10は、図1の紙面左側から順に、推進用のプロペラ11、プロペラ11に連結されたプロペラ軸12、プロペラ軸12に同軸で連結された中間軸13、中間軸13の主機20近傍に取り付けられたはずみ車(フライホイール)14、主機20の構成要素であって中間軸13に連結されたクランク軸15、及びクランク軸15の中間軸13とは反対側の端部に取り付けられたチューニングホイール16によって構成されている。なお、チューニングホイール16は、必要に応じて取り付けられる。この推進軸系10は、主機20からクランク軸15を介して回転動力を受け、全体が一体となって回転する。   The propulsion shaft system 10 is a series of shaft systems that rotate integrally with the propeller 11 for propulsion. The propulsion shaft system 10 includes a propeller 11 for propulsion, a propeller shaft 12 coupled to the propeller 11, an intermediate shaft 13 coaxially coupled to the propeller shaft 12, and the vicinity of the main shaft 20 of the intermediate shaft 13 in order from the left side of FIG. A flywheel 14 attached to the crankshaft, a crankshaft 15 which is a component of the main machine 20 and connected to the intermediate shaft 13, and a tuning attached to the end of the crankshaft 15 opposite to the intermediate shaft 13 A wheel 16 is used. The tuning wheel 16 is attached as necessary. The propulsion shaft system 10 receives rotational power from the main machine 20 via the crankshaft 15 and rotates as a whole.

主機20は、推進軸系10を駆動する装置である。本実施形態に係る主機20は、ユニフロー型のディーゼルエンジンである。主機20は、次のようにして駆動する。まず、掃気管21から掃気ポート22を介してシリンダ23内に掃気(新気)24が供給される。供給された掃気24は、ピストン25が上昇することで圧縮され、これとともに燃料噴射ノズル26から噴射された燃料が着火し爆発する。この爆発により、ピストン25は下方に押し戻された後、排気(燃焼後の混合気)27は適切なタイミングで排気ポート28から外部へ放出される。ピストン25の下端にはクランク軸15が連結されており、ピストン25が上記のような上下運動を繰り返すことでクランク軸15は回転する。   The main machine 20 is a device that drives the propulsion shaft system 10. The main machine 20 according to the present embodiment is a uniflow type diesel engine. The main machine 20 is driven as follows. First, scavenging (fresh air) 24 is supplied from the scavenging pipe 21 through the scavenging port 22 into the cylinder 23. The supplied scavenging air 24 is compressed as the piston 25 rises, and the fuel injected from the fuel injection nozzle 26 ignites and explodes. Due to this explosion, the piston 25 is pushed back downward, and then the exhaust (air mixture after combustion) 27 is discharged to the outside from the exhaust port 28 at an appropriate timing. The crankshaft 15 is connected to the lower end of the piston 25, and the crankshaft 15 rotates as the piston 25 repeats the vertical movement as described above.

図2の実線は、主機20の回転速度とねじり振動応力の関係(ねじり振動応力曲線101)の一例を示している。図2の横軸は主機20の回転速度であり、縦軸はねじり振動応力である。あくまでも一例であるが、図2の場合には、主機20の65%回転速度が共振回転速度であり、その回転速度のときに、ねじり振動応力が一気に上昇している。   The solid line in FIG. 2 shows an example of the relationship between the rotational speed of the main machine 20 and the torsional vibration stress (torsional vibration stress curve 101). The horizontal axis in FIG. 2 is the rotational speed of the main machine 20, and the vertical axis is the torsional vibration stress. As an example to the last, in the case of FIG. 2, the 65% rotational speed of the main machine 20 is the resonance rotational speed, and the torsional vibration stress increases at a stretch at that rotational speed.

ここで、図2中の破線は、第1危険曲線102と第2危険曲線103を示している。このうち第1危険曲線102は、これを超えるねじり振動応力が発生した状態で連続運転が行われると推進軸系に疲労破壊が生じ得るおそれがあることを示す曲線である。また、第2危険曲線103は、これを超えるねじり振動応力が生じる推進軸系は船舶に採用できないことを示す曲線である。実際の船舶の運用では、バードレンジ(Barred Range)と呼ばれる回転速度領域が設定される。バードレンジとは、実際の運用において主機の連続使用が禁止される回転速度領域のことをいう。本実施形態では、第1危険曲線102とねじり振動応力曲線101が交差する交点間の領域をバードレンジとして設定する。   Here, the broken lines in FIG. 2 indicate the first danger curve 102 and the second danger curve 103. Of these, the first danger curve 102 is a curve indicating that there is a possibility that fatigue failure may occur in the propulsion shaft system if continuous operation is performed in a state where a torsional vibration stress exceeding this is generated. Further, the second risk curve 103 is a curve indicating that a propulsion shaft system in which a torsional vibration stress exceeding the second risk curve 103 cannot be adopted for a ship. In actual ship operation, a rotational speed region called a barred range is set. The bird range refers to a rotation speed region in which continuous use of the main engine is prohibited in actual operation. In the present embodiment, a region between intersections where the first risk curve 102 and the torsional vibration stress curve 101 intersect is set as a bird range.

過給機30は、新気を吸込み、圧縮した掃気24を、掃気管21を介して主機20に供給する装置である。過給機30は、タービン31と、可変ノズル32と、圧縮機33と、排気通路34と、バイパスバルブ35とによって主に構成されている。主機20から排出された排気27は、排気通路34を通って可変ノズル32に導入される。可変ノズル32は、タービン31の前段に位置しており、複数のノズルベーン(不図示)によって構成されている。このノズルベーンは角度を変更できるように構成されており、ノズルベーンの角度を変更することで可変ノズル32の開度を調整することができる。可変ノズル32の開度が大きくなると供給される排気27の圧力(動圧)は小さくなり、可変ノズル32の開度が小さくなると供給される排気27の圧力は大きくなる。   The supercharger 30 is a device that draws in fresh air and supplies the compressed scavenging air 24 to the main engine 20 via the scavenging pipe 21. The supercharger 30 is mainly configured by a turbine 31, a variable nozzle 32, a compressor 33, an exhaust passage 34, and a bypass valve 35. The exhaust 27 discharged from the main machine 20 is introduced into the variable nozzle 32 through the exhaust passage 34. The variable nozzle 32 is located in the front stage of the turbine 31 and includes a plurality of nozzle vanes (not shown). The nozzle vane is configured to change the angle, and the opening degree of the variable nozzle 32 can be adjusted by changing the nozzle vane angle. When the opening of the variable nozzle 32 increases, the pressure (dynamic pressure) of the supplied exhaust 27 decreases, and when the opening of the variable nozzle 32 decreases, the pressure of the supplied exhaust 27 increases.

可変ノズル32を通過した排気27は、タービン31を回転させる。タービン31と圧縮機33はロータ軸36で連結されており、タービン31の回転に伴って圧縮機33も回転する。圧縮機33は、外部から取り込んだ新気を圧縮し、掃気24を掃気管21を介して主機20に供給するが、圧縮機33の回転速度が大きくなれば圧縮機33の出口における掃気24の圧力は大きくなり、これにより掃気管21内の圧力(以下、「掃気圧」という)が大きくなる。また、上述した排気通路34には、バイパスバルブ35が設けられている。バイバスバルブ35が開放されると、タービン31へと導かれていた排気27の一部が外部にバイパスされ、供給される排気27の圧力が低下する。なお、バイパスバルブ35は、開放と閉鎖のいずれかに切り換え可能な開閉切換(ON-OFF切換)型のバルブであってもよく、開度を任意に調整できる開度調整型のバルブであってもよい。   The exhaust 27 that has passed through the variable nozzle 32 rotates the turbine 31. The turbine 31 and the compressor 33 are connected by a rotor shaft 36, and the compressor 33 rotates as the turbine 31 rotates. The compressor 33 compresses fresh air taken in from the outside and supplies the scavenging air 24 to the main engine 20 via the scavenging pipe 21. If the rotational speed of the compressor 33 increases, the scavenging air 24 at the outlet of the compressor 33 is compressed. The pressure increases, thereby increasing the pressure in the scavenging pipe 21 (hereinafter referred to as “scavenging air pressure”). The exhaust passage 34 is provided with a bypass valve 35. When the bypass valve 35 is opened, a part of the exhaust 27 guided to the turbine 31 is bypassed to the outside, and the pressure of the supplied exhaust 27 is reduced. The bypass valve 35 may be an open / close switching (ON-OFF switching) type valve that can be switched between open and closed, and is an opening adjustment type valve that can arbitrarily adjust the opening. Also good.

掃気圧制御装置40は、掃気圧を制御する装置であり、タービン31を回転させる排気27の圧力を制御することで、掃気圧を制御している。より具体的には、掃気圧制御装置40では、バイパスバルブ35及び可変ノズル32の開度を調整することで、排気27の圧力を制御し、これにより掃気圧を制御する。なお、掃気圧制御装置40は主機の部分負荷での掃気圧を上げることで主機20の効率を向上させることを目的として設けられているものである。掃気圧制御装置40は、後述する制御曲線104に基づいてバイパスバルブ35及び可変ノズル32を制御する制御信号を生成し、図1に示すように、その制御信号をねじり振動応力低減制御装置50に送信するように構成されている。また、掃気圧制御装置40は、回転速度計41から主機20の回転速度に関する信号を取得でき、燃料ポンプ60に取り付けられたフューエルインデックストランスミッタ61から燃料ラック量(燃料注油量)に関する信号を取得でき、掃気圧計42から掃気圧に関する信号を取得できるように構成されている。   The scavenging air pressure control device 40 is a device that controls the scavenging air pressure, and controls the scavenging air pressure by controlling the pressure of the exhaust 27 that rotates the turbine 31. More specifically, the scavenging air pressure control device 40 controls the pressure of the exhaust 27 by adjusting the opening degree of the bypass valve 35 and the variable nozzle 32, thereby controlling the scavenging air pressure. The scavenging air pressure control device 40 is provided for the purpose of improving the efficiency of the main engine 20 by increasing the scavenging air pressure at the partial load of the main engine. The scavenging air pressure control device 40 generates a control signal for controlling the bypass valve 35 and the variable nozzle 32 based on a control curve 104 described later, and sends the control signal to the torsional vibration stress reduction control device 50 as shown in FIG. Configured to send. Further, the scavenging air pressure control device 40 can acquire a signal related to the rotation speed of the main engine 20 from the tachometer 41 and can acquire a signal related to the fuel rack amount (fuel injection amount) from the fuel index transmitter 61 attached to the fuel pump 60. The scavenging air pressure meter 42 can acquire a signal related to the scavenging air pressure.

ここで、掃気圧制御装置40による制御(制御信号の生成方法)について、可変ノズル32を制御する場合に着目して説明する。図3の実線は、可変ノズル32の制御曲線104の一例を示している。図3の横軸は主機20の負荷であり、縦軸は掃気圧である。また、図3に示す2本の破線のうち、掃気圧の高い側の直線は、可変ノズル32の開度が通常最小であるときの掃気圧線(以下、「第1掃気圧線」という)105であり、掃気圧の低い側の直線は可変ノズルの開度が通常最大であるときの掃気圧線(以下、「第2掃気圧線」という)106である。まず、掃気圧制御装置40は、回転速度計41から主機20の回転速度を取得し、フューエルインデックストランスミッタ61から燃料ラック量を取得し、取得した主機20の回転速度及び燃料ラック量から主機20の負荷を推定する。なお、主機負荷は筒内圧力に関する信号や過給機回転に関する信号を取得することで推定しても良い。その上で、推定した主機20の負荷に対応する掃気圧を図3から読み取る。そして、図3から読み取った掃気圧と掃気圧計42によって実測した掃気圧が同じになるよう可変ノズル32を制御する(制御信号を生成する)。なお、可変ノズルの実際の開度は、大気条件等により若干異なる。   Here, the control (control signal generation method) by the scavenging air pressure control device 40 will be described focusing on the case where the variable nozzle 32 is controlled. The solid line in FIG. 3 shows an example of the control curve 104 of the variable nozzle 32. The horizontal axis in FIG. 3 is the load of the main machine 20, and the vertical axis is the scavenging pressure. Also, of the two broken lines shown in FIG. 3, the straight line on the higher scavenging pressure is the scavenging line when the opening of the variable nozzle 32 is normally minimum (hereinafter referred to as the “first scavenging line”). 105, and the straight line on the low scavenging pressure side is a scavenging line (hereinafter referred to as “second scavenging line”) 106 when the opening of the variable nozzle is normally maximum. First, the scavenging pressure control device 40 acquires the rotational speed of the main engine 20 from the tachometer 41, acquires the fuel rack amount from the fuel index transmitter 61, and determines the main engine 20 from the acquired rotational speed and fuel rack amount. Estimate the load. The main engine load may be estimated by obtaining a signal related to the in-cylinder pressure or a signal related to the turbocharger rotation. Then, the scavenging air pressure corresponding to the estimated load of the main engine 20 is read from FIG. Then, the variable nozzle 32 is controlled (a control signal is generated) so that the scavenging air pressure read from FIG. Note that the actual opening of the variable nozzle varies slightly depending on atmospheric conditions and the like.

このように、掃気圧制御装置40は、図3に基づいて制御信号を生成するため、仮に掃気圧制御装置40のみで制御が行われた場合には、掃気圧は図3に示すような制御曲線104に沿って推移することになる。つまり、図3の例でいうと、主機20の負荷が75%負荷よりも小さいときは可変ノズル32の開度は最小であり、掃気圧は第1掃気圧線105に沿って推移する。そして、主機20の負荷が75%負荷を超えると次第に可変ノズル32の開度は大きくなり、これにより掃気圧の上昇の割合が低下する。最終的に主機20の負荷が100%負荷に達したときには、可変ノズル32の開度は最大となり、掃気圧は第2掃気圧線106と交差する。なお、以上では可変ノズル32のみを制御する場合について説明したが、バイパスバルブ35も同様にして制御することができる。特に、バイパスバルブ35が開度調整型のバルブである場合には、開度を微調整できる点で可変ノズル32と同じであるため、図3と同じような制御曲線を用いて制御することができる。また、バイパスバルブ35が開閉切換型のバルブである場合には、主機20の負荷がある値(例えば、75%負荷)に達すると、バイパスバルブ35を全閉から全開に切り換えるような制御が行われる。   Thus, since the scavenging pressure control device 40 generates the control signal based on FIG. 3, if the scavenging pressure control device 40 alone performs control, the scavenging pressure is controlled as shown in FIG. It will change along the curve 104. That is, in the example of FIG. 3, when the load of the main machine 20 is smaller than the 75% load, the opening degree of the variable nozzle 32 is the minimum, and the scavenging pressure changes along the first scavenging pressure line 105. And if the load of the main machine 20 exceeds 75% load, the opening degree of the variable nozzle 32 will become large gradually, and, thereby, the rate of a raise of scavenging pressure will fall. When the load of the main engine 20 finally reaches 100% load, the opening degree of the variable nozzle 32 becomes maximum, and the scavenging pressure intersects the second scavenging pressure line 106. Although the case where only the variable nozzle 32 is controlled has been described above, the bypass valve 35 can be similarly controlled. In particular, when the bypass valve 35 is an opening adjustment type valve, it is the same as the variable nozzle 32 in that the opening can be finely adjusted. Therefore, the control can be performed using a control curve similar to FIG. it can. When the bypass valve 35 is an open / close switching type valve, when the load on the main engine 20 reaches a certain value (for example, 75% load), control is performed so that the bypass valve 35 is switched from fully closed to fully open. Is called.

ねじり振動応力低減制御装置50は、ねじり振動応力を低減させるための制御装置である。図1に示すように、ねじり振動応力低減制御装置50は、掃気圧制御装置40から可変ノズル32及びバイパスバルブ35を制御するための制御信号を受信し、回転速度計41から主機20の回転速度に関する信号を受信し、可変ノズル32及びバイパスバルブ35に制御信号を送信できるように構成されている。ねじり振動応力低減制御装置50は、次のようにして動作する。   The torsional vibration stress reduction control device 50 is a control device for reducing torsional vibration stress. As shown in FIG. 1, the torsional vibration stress reduction control device 50 receives a control signal for controlling the variable nozzle 32 and the bypass valve 35 from the scavenging air pressure control device 40, and the rotational speed of the main engine 20 from the tachometer 41. And a control signal can be transmitted to the variable nozzle 32 and the bypass valve 35. The torsional vibration stress reduction control device 50 operates as follows.

図4は、ねじり振動応力低減制御装置50の動作を示すフロー図である。まず、図4に示すように、ねじり振動応力低減制御装置50は、ねじり振動応力が所定値以上であるか否かを判定する(ステップS1)。本実施形態では、回転速度計41から主機20の回転速度を取得し、主機20の回転速度が危険回転速度領域にあるか否かによってねじり振動応力が所定値以上であるか否かを判定する。ここで、危険回転速度領域とは、ねじり振動応力が所定値以上であるときの回転速度の領域であり、図2に示すねじり振動応力曲線に基づいて予め設定される(図6参照)。本実施形態では、危険回転速度領域は、上述したバードレンジよりも若干広い領域に設定される。なお、本実施形態では、ねじり振動応力が所定値以上であるか否かを主機20の回転速度によって判定しているが、推進軸系10にねじり応力の測定装置を設け、直接ねじり振動応力の値を測定して判定するようにしてもよい。また、ねじり振動応力が所定値以上であるか否かの判定では、主機20の回転速度に依存しない一定の値を所定値としてもよく、主機20の回転速度に応じて変動する値を所定値としてもよい。   FIG. 4 is a flowchart showing the operation of the torsional vibration stress reduction control device 50. First, as shown in FIG. 4, the torsional vibration stress reduction control device 50 determines whether or not the torsional vibration stress is equal to or greater than a predetermined value (step S1). In the present embodiment, the rotational speed of the main machine 20 is acquired from the tachometer 41, and it is determined whether or not the torsional vibration stress is greater than or equal to a predetermined value depending on whether or not the rotational speed of the main machine 20 is in the dangerous rotational speed region. . Here, the critical rotational speed region is a region of rotational speed when the torsional vibration stress is equal to or greater than a predetermined value, and is set in advance based on the torsional vibration stress curve shown in FIG. 2 (see FIG. 6). In the present embodiment, the dangerous rotation speed region is set to a region slightly wider than the above-described bird range. In this embodiment, whether or not the torsional vibration stress is greater than or equal to a predetermined value is determined based on the rotational speed of the main engine 20, but a torsional stress measuring device is provided in the propulsion shaft system 10 to directly measure the torsional vibration stress. You may make it determine by measuring a value. In determining whether the torsional vibration stress is equal to or greater than a predetermined value, a predetermined value that does not depend on the rotational speed of the main machine 20 may be set as the predetermined value, and a value that varies according to the rotational speed of the main machine 20 may be set to the predetermined value. It is good.

続いて、ねじり振動応力が所定値以上でないと判定した場合(ステップS1でNO)、ねじり振動応力低減制御装置50は、掃気圧制御装置40から受信した制御信号をそのまま可変ノズル32及びバイパスバルブ35へ転送する(ステップS3)。つまり、このとき、可変ノズル32及びバイパスバルブ35は、掃気圧制御装置40によって制御される。一方、ねじり振動応力が所定値以上であると判定した場合(ステップS1でYES)、ねじり振動応力低減制御装置50は、可変ノズル32に対しては開度を最大にするような制御信号を送信し、開度調整型のバイパスバルブ35に対しては開度を最大にするような制御信号を送信し、開閉切換型のバイパスバルブ35に対してはバルブを開放するような制御信号を送信する(ステップS2)。つまり、ねじり振動応力が所定値以上であると判定した場合には、タービン31に供給される排気の圧力を最大限低下させるように、換言すれば、過給機30の機能が低減されるように制御する。以上が、ねじり振動応力低減制御装置50による制御である。   Subsequently, when it is determined that the torsional vibration stress is not equal to or greater than the predetermined value (NO in step S1), the torsional vibration stress reduction control device 50 directly receives the control signal received from the scavenging air pressure control device 40 and the variable nozzle 32 and the bypass valve 35. (Step S3). That is, at this time, the variable nozzle 32 and the bypass valve 35 are controlled by the scavenging air pressure control device 40. On the other hand, when it is determined that the torsional vibration stress is equal to or greater than the predetermined value (YES in step S1), the torsional vibration stress reduction control device 50 transmits a control signal that maximizes the opening degree to the variable nozzle 32. Then, a control signal for maximizing the opening degree is transmitted to the opening adjustment type bypass valve 35, and a control signal for opening the valve is transmitted to the opening / closing switching type bypass valve 35. (Step S2). That is, when it is determined that the torsional vibration stress is equal to or greater than a predetermined value, the function of the supercharger 30 is reduced so that the pressure of the exhaust gas supplied to the turbine 31 is reduced to the maximum. To control. The above is the control by the torsional vibration stress reduction control device 50.

ねじり振動応力低減制御装置50が上記のような制御を行うことにより、掃気圧は図5のように推移する。図5の実線は、ねじり振動応力低減制御装置50による制御が行われたときの主機20の負荷と掃気圧の関係(掃気圧曲線107)を示している。図5の横軸は主機20の負荷であり、縦軸は掃気圧である。なお、図5は、図3の場合と同様に、可変ノズル32のみを制御した場合の図である。図5に示す破線は、図3で示した第1掃気圧線105と第2掃気圧線106である。図5に示すように、主機20の負荷が危険回転速度領域に対応する負荷よりも小さい場合には、掃気圧制御装置40の制御信号はそのまま可変ノズル32に転送されるため、図3に示す制御曲線104の推移と同じように掃気圧は第1掃気圧線105に沿って推移する。そして、主機20の負荷が、危険回転速度領域に対応する負荷であるときは、可変ノズル32には開度を最大にするような制御信号が送信されるため、掃気圧は一気に低下し、第2掃気圧線106に沿って推移する。さらに、主機20の負荷が、危険回転速度領域に対応する負荷よりも大きい場合には、掃気圧制御装置40の制御信号はそのまま可変ノズル32に転送されるため、図3に示す制御曲線104の推移と同じようにして掃気圧は主機20の負荷が75%負荷になるまで第1掃気圧線105に沿って推移した後、第2掃気圧線106に向かって推移する。以上のように、ねじり振動応力低減制御装置50の制御によれば、ねじり振動応力が所定値以上であるとき(主機20が危険回転速度にあるとき)、掃気圧は低減される。   When the torsional vibration stress reduction control device 50 performs the above control, the scavenging pressure changes as shown in FIG. The solid line in FIG. 5 shows the relationship between the load of the main engine 20 and the scavenging pressure (scavenging pressure curve 107) when the control by the torsional vibration stress reduction control device 50 is performed. The horizontal axis of FIG. 5 is the load of the main machine 20, and the vertical axis is the scavenging pressure. FIG. 5 is a diagram when only the variable nozzle 32 is controlled, as in the case of FIG. 3. The broken lines shown in FIG. 5 are the first scavenging line 105 and the second scavenging line 106 shown in FIG. As shown in FIG. 5, when the load of the main engine 20 is smaller than the load corresponding to the dangerous rotational speed region, the control signal of the scavenging air pressure control device 40 is transferred to the variable nozzle 32 as it is. As with the transition of the control curve 104, the scavenging air pressure changes along the first scavenging air pressure line 105. When the load of the main engine 20 is a load corresponding to the dangerous rotation speed region, a control signal for maximizing the opening degree is transmitted to the variable nozzle 32. Transition along the two scavenging line 106. Further, when the load of the main engine 20 is larger than the load corresponding to the dangerous rotation speed region, the control signal of the scavenging air pressure control device 40 is transferred to the variable nozzle 32 as it is, so that the control curve 104 shown in FIG. In the same manner as the transition, the scavenging air pressure changes along the first scavenging air pressure line 105 until the load of the main engine 20 becomes 75% load, and then changes toward the second scavenging air pressure line 106. As described above, according to the control of the torsional vibration stress reduction control device 50, when the torsional vibration stress is greater than or equal to a predetermined value (when the main engine 20 is at a dangerous rotational speed), the scavenging air pressure is reduced.

ねじり振動応力低減制御装置50の制御により、掃気圧が図5に示すように推移する結果、ねじり振動応力は図6で示すように推移する。図6の実線は、ねじり振動応力低減制御装置50による制御が行われたときの主機20の回転速度とねじり振動応力の関係(ねじり振動応力曲線108)を示している。図6の横軸は主機20の回転速度であり、縦軸はねじり振動応力である。ここで、図6の一点破線で示す2つの曲線のうち、ねじり振動応力が大きい側の曲線は、図2のねじり振動応力曲線101と同じ曲線であり、可変ノズル32の開度が最小であるときの(いわば通常運転のときの)ねじり振動応力曲線(以下、「第1ねじり振動応力曲線」という)109である。また、ねじり振動応力が小さい側の曲線は可変ノズル32の開度が最大であるときの(つまり掃気圧を低下させたときの)ねじり振動応力曲線(以下、「第2ねじり振動応力曲線」という)110である。さらに、図2の場合と同様に、図6には第1危険曲線102および第2危険曲線103も描かれている。   As a result of the scavenging pressure changing as shown in FIG. 5 under the control of the torsional vibration stress reduction controller 50, the torsional vibration stress changes as shown in FIG. The solid line in FIG. 6 shows the relationship (torsional vibration stress curve 108) between the rotational speed of the main engine 20 and the torsional vibration stress when the control by the torsional vibration stress reduction control device 50 is performed. The horizontal axis of FIG. 6 is the rotational speed of the main machine 20, and the vertical axis is the torsional vibration stress. Here, of the two curves shown by the one-dot broken line in FIG. 6, the curve having the larger torsional vibration stress is the same as the torsional vibration stress curve 101 in FIG. 2, and the opening of the variable nozzle 32 is the smallest. This is a torsional vibration stress curve (hereinafter referred to as a “first torsional vibration stress curve”) 109 during normal operation (so-called normal operation). Further, the curve on the side where the torsional vibration stress is small is the torsional vibration stress curve when the opening degree of the variable nozzle 32 is maximum (that is, when the scavenging pressure is lowered) (hereinafter referred to as “second torsional vibration stress curve”). ) 110. Further, as in the case of FIG. 2, the first danger curve 102 and the second danger curve 103 are also drawn in FIG. 6.

以上をふまえ、ねじり振動応力低減制御装置50による制御が行われた場合のねじり振動応力の推移について図6を参照しながら説明する。主機20の回転速度が危険回転速度領域よりも小さいときは、可変ノズル32は開度が最小となるように制御されるため、ねじり振動応力は第1ねじり振動応力曲線109に沿って推移する。そして、主機20の回転速度が危険回転速度領域に入ると、可変ノズル32は開度が最大となるように制御されるため、掃気圧が一気に低下し、ねじり振動応力が一気に低下する。そして、主機20の回転速度が危険回転速度領域にある間、ねじり振動応力は第2ねじり振動応力曲線110に沿って推移する。さらに、主機20の回転速度が危険回転速度領域よりも大きいときは、可変ノズル32は開度が最小となるように制御されるため、ねじり振動応力はもとに戻って、第1ねじり振動応力曲線109に沿って推移する。このように、ねじり振動応力低減制御装置50による制御によれば、危険回転速度領域において(本来、ねじり振動応力が高くなる領域において)、ねじり振動応力を低減することができる。   Based on the above, the transition of the torsional vibration stress when the control by the torsional vibration stress reduction control device 50 is performed will be described with reference to FIG. When the rotational speed of the main engine 20 is smaller than the critical rotational speed region, the variable nozzle 32 is controlled so that the opening degree is minimized, so that the torsional vibration stress changes along the first torsional vibration stress curve 109. When the rotational speed of the main engine 20 enters the dangerous rotational speed region, the variable nozzle 32 is controlled so that the opening degree is maximized, so that the scavenging pressure is reduced at a stretch and the torsional vibration stress is reduced at a stretch. The torsional vibration stress changes along the second torsional vibration stress curve 110 while the rotation speed of the main engine 20 is in the critical rotation speed region. Further, when the rotational speed of the main engine 20 is larger than the critical rotational speed region, the variable nozzle 32 is controlled so as to minimize the opening, so that the torsional vibration stress returns to the original and the first torsional vibration stress. Transition along curve 109. As described above, according to the control by the torsional vibration stress reduction control device 50, the torsional vibration stress can be reduced in the dangerous rotational speed region (originally in the region where the torsional vibration stress becomes high).

なお、以上では図5および図6を参照して、ねじり振動応力低減制御装置50が可変ノズル32を制御する場合について説明したが、バイパスバルブ35のみを制御した場合および可変ノズル32とバイパスバルブ35の両方を制御した場合にも同じような結果が得られる。また、バイパスバルブ35は、開度調整型のバルブであっても主機20の回転速度が危険回転速度領域に入ると全開となるため、バルブの種類によって結果が異なるようなことはない。このように、本実施形態のねじり振動応力低減制御装置50による制御は、可変ノズル32やバイパスバルブ35の開度を調整するだけで、ねじり振動応力を低減させることができるため、非常に簡易な制御であるといえる。なお、可変ノズルや開度調整型バルブにおいては、安定した制御を実現するため、危険回転速度でのノズル/バルブ開度調整を段階的、あるいは緩やかに連続的に変化させてもよい。   In the above, the case where the torsional vibration stress reduction control device 50 controls the variable nozzle 32 has been described with reference to FIGS. 5 and 6. However, the case where only the bypass valve 35 is controlled and the variable nozzle 32 and the bypass valve 35 are controlled. Similar results are obtained when both are controlled. Even if the bypass valve 35 is an opening adjustment type valve, the result is not different depending on the type of the valve because the bypass valve 35 is fully opened when the rotational speed of the main engine 20 enters the dangerous rotational speed region. As described above, the control by the torsional vibration stress reduction control device 50 of the present embodiment is very simple because the torsional vibration stress can be reduced only by adjusting the opening of the variable nozzle 32 and the bypass valve 35. It can be said that it is control. In the variable nozzle and the opening adjustment type valve, the nozzle / valve opening adjustment at the dangerous rotational speed may be changed stepwise or gradually in order to realize stable control.

以上のように、本実施形態のねじり振動応力低減制御装置50によれば、本来であればねじり振動応力が高い領域において、ねじり振動応力を低減することができるため、例えば、ねじり振動応力が第2危険曲線103を超えるような推進軸系10であっても、推進軸系10の構成部材を変更せずに船舶100に用いることができる。また、図6と図2を対比すれば明らかなように、ねじり振動応力低減制御装置50の制御によれば、バードレンジの範囲を狭くすることができ、より効率的な運用が可能となる。また、本実施形態に係るねじり振動応力低減制御装置50は、制御面からねじり振動応力を低減させるものであるため、推進軸系10の構成部材を変更する必要もない。   As described above, according to the torsional vibration stress reduction control device 50 of the present embodiment, the torsional vibration stress can be reduced in a region where the torsional vibration stress is originally high. Even the propulsion shaft system 10 that exceeds the two danger curves 103 can be used in the ship 100 without changing the constituent members of the propulsion shaft system 10. Further, as apparent from the comparison between FIG. 6 and FIG. 2, according to the control of the torsional vibration stress reduction control device 50, the range of the bird range can be narrowed, and more efficient operation is possible. Moreover, since the torsional vibration stress reduction control device 50 according to the present embodiment reduces the torsional vibration stress from the control surface, it is not necessary to change the components of the propulsion shaft system 10.

以上、本発明の実施形態に係る船舶100について説明したが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。例えば、上記の実施形態では、掃気圧を低減させるために排気27の圧力を低減させていたが、圧縮機33の入口に設けられるガイドベーンの角度を調整することにより掃気圧を低減させてもよい。また、圧縮機出口に過給機から主機へ供給される掃気をバイパスする掃気バイパスバルブを設け、その掃気バイパスバルブを調整することで掃気圧を低減させてもよい。   As mentioned above, although the ship 100 which concerns on embodiment of this invention was demonstrated, a concrete structure is not restricted to these embodiment, Even if there is a design change etc. of the range which does not deviate from the summary of this invention, this book Included in the invention. For example, in the above embodiment, the pressure of the exhaust 27 is reduced in order to reduce the scavenging air pressure, but the scavenging air pressure may be reduced by adjusting the angle of the guide vane provided at the inlet of the compressor 33. Good. Further, a scavenging air bypass valve that bypasses the scavenging gas supplied from the supercharger to the main engine may be provided at the compressor outlet, and the scavenging air pressure may be reduced by adjusting the scavenging gas bypass valve.

また、上記の実施形態では、ねじり振動応力低減制御装置50と掃気圧制御装置40を直列に配置する場合について説明したが、これらを並列に配置し、両装置から可変ノズル32やバイパスバルブ35に直接信号を送信するように構成してもよい。   In the above embodiment, the torsional vibration stress reduction control device 50 and the scavenging air pressure control device 40 are arranged in series. However, these devices are arranged in parallel, and the variable nozzle 32 and the bypass valve 35 are connected from both devices. You may comprise so that a signal may be transmitted directly.

本発明に係る送ねじり振動応力低減制御装置は、簡易な制御でねじり振動応力を低減することができるため、船舶などの技術分野において有益である。   Since the torsional vibration stress reduction control device according to the present invention can reduce the torsional vibration stress by simple control, it is useful in technical fields such as ships.

10 推進軸系
11 プロペラ
20 主機
24 掃気
27 排気
30 過給機
31 タービン
32 可変ノズル
33 圧縮機
34 排気通路
35 バイパスバルブ
50 ねじり振動応力低減制御装置
100 船舶
DESCRIPTION OF SYMBOLS 10 Propulsion shaft system 11 Propeller 20 Main machine 24 Scavenging 27 Exhaust 30 Supercharger 31 Turbine 32 Variable nozzle 33 Compressor 34 Exhaust passage 35 Bypass valve 50 Torsional vibration stress reduction control device 100 Ship

Claims (9)

推進用のプロペラと一体になって回転する推進軸系と、該推進軸系を駆動する主機と、該主機から排出された排気によって駆動されるタービンを有し、該タービンの回転力を動力として新気を圧縮して掃気を前記主機に供給する過給機と、を備えた船舶における、前記推進軸系に生じるねじり振動応力を低減するためのねじり振動応力低減制御装置であって、
前記ねじり振動応力が所定値以上であるとき、前記掃気の圧力を低減するように構成されている、ねじり振動応力低減制御装置。
A propulsion shaft system that rotates integrally with a propeller for propulsion, a main machine that drives the propulsion shaft system, and a turbine that is driven by exhaust gas discharged from the main machine, and using the rotational force of the turbine as power A torsional vibration stress reduction control device for reducing torsional vibration stress generated in the propulsion shaft system in a ship equipped with a supercharger that compresses fresh air and supplies scavenging air to the main engine,
A torsional vibration stress reduction control device configured to reduce the scavenging pressure when the torsional vibration stress is equal to or greater than a predetermined value.
前記掃気の圧力の低減は、前記過給機のタービンを駆動する前記排気の圧力を低減することによって行われる、請求項1に記載のねじり振動応力低減制御装置。   The torsional vibration stress reduction control device according to claim 1, wherein the reduction of the scavenging pressure is performed by reducing the pressure of the exhaust that drives a turbine of the supercharger. 前記過給機は、前記主機から排出された排気を前記タービンに導く排気通路と、該排気通路に設けられたバイパスバルブと、を有しており、
前記排気の圧力の低減は、前記バイパスバルブを開放することによって行われる、請求項2に記載のねじり振動応力低減制御装置。
The supercharger has an exhaust passage that guides exhaust discharged from the main engine to the turbine, and a bypass valve provided in the exhaust passage,
The torsional vibration stress reduction control device according to claim 2, wherein the exhaust pressure is reduced by opening the bypass valve.
前記過給機は、前記タービンの前段に可変ノズルを有しており、
前記排気の圧力の低減は、前記可変ノズルの開度を変更することによって行われる、請求項2に記載のねじり振動応力低減制御装置。
The supercharger has a variable nozzle in the front stage of the turbine,
The torsional vibration stress reduction control device according to claim 2, wherein the exhaust pressure is reduced by changing an opening of the variable nozzle.
前記過給機から前記主機へ供給される掃気をバイパスする掃気バイパスバルブをさらに備え、
前記掃気の圧力の低減は前記掃気バイパスバルブを調整することで行われる、請求項1に記載のねじり振動応力低減制御装置。
A scavenging bypass valve for bypassing scavenging supplied from the supercharger to the main engine;
The torsional vibration stress reduction control device according to claim 1, wherein the scavenging pressure is reduced by adjusting the scavenging bypass valve.
前記ねじり振動応力が所定値以上であるか否かは、前記主機の回転速度によって判断する、請求項1乃至4のうちいずれか一の項に記載のねじり振動応力低減制御装置。   The torsional vibration stress reduction control device according to any one of claims 1 to 4, wherein whether or not the torsional vibration stress is equal to or greater than a predetermined value is determined based on a rotation speed of the main machine. 前記ねじり振動応力が所定値以上であるか否かは、ねじり振動応力を計測することで判断する、請求項1乃至4のうちいずれか一の項に記載のねじり振動応力低減制御装置。   The torsional vibration stress reduction control device according to any one of claims 1 to 4, wherein whether the torsional vibration stress is equal to or greater than a predetermined value is determined by measuring the torsional vibration stress. 請求項1乃至7のうちいずれか一の項に記載のねじり応力低減制御装置を備えた船舶。   The ship provided with the torsional stress reduction control apparatus as described in any one of Claims 1 thru | or 7. 推進用のプロペラと一体になって回転する推進軸系と、該推進軸系を駆動する主機と、該主機から排出された排気によって駆動されるタービンを有し、該タービンの回転力を動力として新気を圧縮して掃気を前記主機に供給する過給機と、を備えた船舶における、前記推進軸系に生じるねじり振動応力を低減するための、ねじり振動応力低減方法であって、
前記ねじり振動応力が所定値以上であるか否かを判定し、前記ねじり振動応力が所定値以上であると判定したときには、前記過給機の機能を低減させる、ねじり振動応力低減方法。
A propulsion shaft system that rotates integrally with a propeller for propulsion, a main machine that drives the propulsion shaft system, and a turbine that is driven by exhaust gas discharged from the main machine, and using the rotational force of the turbine as power A torsional vibration stress reducing method for reducing torsional vibration stress generated in the propulsion shaft system in a ship equipped with a supercharger that compresses fresh air and supplies scavenging air to the main engine,
A torsional vibration stress reduction method for determining whether or not the torsional vibration stress is greater than or equal to a predetermined value and reducing the function of the supercharger when it is determined that the torsional vibration stress is greater than or equal to a predetermined value.
JP2011275629A 2011-12-16 2011-12-16 Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method Expired - Fee Related JP5795731B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011275629A JP5795731B2 (en) 2011-12-16 2011-12-16 Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method
KR1020147014635A KR20140075811A (en) 2011-12-16 2012-11-15 Torsional vibration stress reduction control device, marine vessel comprising same, and torsional vibration stress reduction method
PCT/JP2012/007328 WO2013088643A1 (en) 2011-12-16 2012-11-15 Torsional vibration stress reduction control device, marine vessel comprising same, and torsional vibration stress reduction method
CN201280055865.7A CN103917764A (en) 2011-12-16 2012-11-15 Torsional vibration stress reduction control device, marine vessel comprising same, and torsional vibration stress reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275629A JP5795731B2 (en) 2011-12-16 2011-12-16 Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method

Publications (2)

Publication Number Publication Date
JP2013124652A true JP2013124652A (en) 2013-06-24
JP5795731B2 JP5795731B2 (en) 2015-10-14

Family

ID=48612123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275629A Expired - Fee Related JP5795731B2 (en) 2011-12-16 2011-12-16 Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method

Country Status (4)

Country Link
JP (1) JP5795731B2 (en)
KR (1) KR20140075811A (en)
CN (1) CN103917764A (en)
WO (1) WO2013088643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131254B2 (en) 2018-03-16 2021-09-28 Ihi Corporation Marine engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468046B (en) * 2016-01-08 2017-08-11 中国船舶重工集团公司第七0四研究所 The many branched power local vibration control methods of ship basic propulsion system
JP6938141B2 (en) * 2016-11-30 2021-09-22 三菱重工業株式会社 Marine diesel engine
JP6734796B2 (en) * 2017-02-24 2020-08-05 三菱重工業株式会社 Marine diesel engine and engine control device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639072Y2 (en) * 1985-02-25 1994-10-12 三菱重工業株式会社 Device for avoiding dangerous speed range
JP3004307B2 (en) * 1990-03-23 2000-01-31 三菱重工業株式会社 Diesel engine crankshaft torsional vibration suppressor
JP2976342B2 (en) * 1990-03-23 1999-11-10 三信工業株式会社 Ship propulsion
DK170123B1 (en) * 1993-06-04 1995-05-29 Man B & W Diesel Gmbh Method for reducing extra stresses from torsional vibrations in a main shaft to a large two-stroke diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131254B2 (en) 2018-03-16 2021-09-28 Ihi Corporation Marine engine
EP3767094A4 (en) * 2018-03-16 2021-12-15 Ihi Corporation Marine engine

Also Published As

Publication number Publication date
CN103917764A (en) 2014-07-09
KR20140075811A (en) 2014-06-19
WO2013088643A1 (en) 2013-06-20
JP5795731B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
US10815918B2 (en) Controller and control method for supercharger-equipped internal combustion engine
JP6135875B2 (en) Engine fuel injection control device
WO2012132931A1 (en) Gas-fired engine
JP5795731B2 (en) Torsional vibration stress reduction control device, ship equipped with the same, and torsional vibration stress reduction method
JP6378251B2 (en) Internal combustion engine supercharging system
JP2016153628A (en) Controller of internal combustion engine
US20100083657A1 (en) Method for Controlling and/or Adjusting a Charging Pressure of an Exhaust Gas Turbocharger as well as an Internal Combustion Engine
JP3174346U (en) A reciprocating piston combustion engine operable by using a method for optimizing the operating parameters of a reciprocating piston combustion engine
CN109113886B (en) Large turbocharged two-stroke compression ignition internal combustion engine and method of operating the same
JP6370716B2 (en) Supercharging system and operating method of supercharging system
KR20170102564A (en) Engine start-up device, start-up method, and ship equipped with start-up device
JP6509610B2 (en) Control method of supercharged internal combustion engine and supercharger internal combustion engine
JP2009047009A (en) Engine equipped with turbocharger and turbocharger input-torque control device for engine equipped with turbocharger
WO2006128974A1 (en) Method and arrangement for improving load acceptance of piston engine
JP6296079B2 (en) Turbocharged engine
JP2023162135A (en) Large turbocharged type two-stroke internal combustion engine with turbo supercharger and method for operating the same
US20180149077A1 (en) Gas turbine system with pulsating gas flow from an internal combustion engine
JP2017214891A (en) Engine with turbosupercharger
JP3875067B2 (en) Diesel engine with turbocharger
CN108699976B (en) Control device for internal combustion engine and internal combustion engine
EP3066327A1 (en) A combustion engine having two turbochargers connected in series and a method for operating this engine
JP2016089738A (en) Suction bypass control method for internal combustion engine and suction bypass control system for internal combustion engine
Miemois et al. Power Generation Stability and Response in DP Applications–An Overview of Modern Diesel Engine Performance
JP2016079821A (en) Internal combustion engine
JP2005273571A (en) Device and method for twist prevention of crankshaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150814

R150 Certificate of patent or registration of utility model

Ref document number: 5795731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees