JP2013124556A - Exhaust gas treatment device for internal combustion engine - Google Patents

Exhaust gas treatment device for internal combustion engine Download PDF

Info

Publication number
JP2013124556A
JP2013124556A JP2011272410A JP2011272410A JP2013124556A JP 2013124556 A JP2013124556 A JP 2013124556A JP 2011272410 A JP2011272410 A JP 2011272410A JP 2011272410 A JP2011272410 A JP 2011272410A JP 2013124556 A JP2013124556 A JP 2013124556A
Authority
JP
Japan
Prior art keywords
discharge
exhaust gas
electrode
dust collecting
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011272410A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
博 田中
Yoshihiko Matsui
良彦 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011272410A priority Critical patent/JP2013124556A/en
Publication of JP2013124556A publication Critical patent/JP2013124556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment device for electrically charging and agglomerating particulate matters in an exhaust gas using corona discharge in which the shape and the arrangement of a discharge electrode are optimized to efficiently treat the particulate matters without making a device structure complicated and without increasing the scale of the device structure, and thereby, the particulate matters are prevented from slipping through and the number of the particles is reduced.SOLUTION: A cylindrical pipeline-like dust collecting electrode 4 connected to an engine exhaust pipe is disposed and the inside is used as an exhaust gas passage 11 through which the exhaust gas containing the particulate matters passes and an electric dust collecting part 1 generating the corona discharge between the discharge electrode 3 and the dust collecting electrode 4 arranged in the passage center of the exhaust gas passage 11. The discharge electrode 3 has a plurality of discharge bodies 32 formed by radially arranging a plurality of projected electrodes 33 at the outer periphery along the center axis of the exhaust passage 11. The projected electrodes 33 adjacent to each other in the peripheral direction and the axial direction of the exhaust gas passage 11 are arranged so that regions 52 regulated by electric force lines 51 emitted from the respective projected electrodes 33 and reaching the dust collecting electrode 4 are brought into contact with each other on the surface of the dust collecting electrode.

Description

本発明は、内燃機関の排ガスに含まれる粒子状物質を、コロナ放電を利用して集塵捕集する排ガス処理装置に関する。   The present invention relates to an exhaust gas treatment apparatus that collects and collects particulate matter contained in exhaust gas of an internal combustion engine using corona discharge.

車両内燃機関の筒内に直接燃料を噴射する直噴ガソリンエンジンやディーゼルエンジンは、リーン燃焼により燃費性能に優れる反面、粒子状物質(パティキュレートマター;PM)が発生しやすいという問題がある。粒子状物質は、主に煤(Soot)と可溶性有機成分(SOF)からなり、特に、例えば直径10μm以下と微小な浮遊粒子状物質(SPM)は、空気中に長期間浮遊してしまう懸念がある。   A direct-injection gasoline engine or diesel engine that injects fuel directly into a cylinder of a vehicle internal combustion engine has excellent fuel efficiency performance due to lean combustion, but has a problem that particulate matter (PM) is likely to be generated. Particulate matter is mainly composed of soot and soluble organic component (SOF), and in particular, fine suspended particulate matter (SPM) having a diameter of 10 μm or less, for example, may be suspended in the air for a long time. is there.

粒子状物質を含む排ガスの後処理装置として、例えば、ディーゼルエンジンでは、ハニカム構造のパティキュレートフィルタを設置することが一般に行なわれている。ところが、微小な浮遊粒子状物質(SPM)を捕集するために、パティキュレートフィルタの孔径を小さくすると目詰まりしやすく、気孔率を大きくするとすり抜けが生じるおそれがある。また、ディーゼルエンジンに比し熱効率の低い直噴ガソリンエンジンでは、パティキュレートフィルタは有効ではなく、ポンピングロスによりさらに燃費が低下するおそれがある。   As an exhaust gas aftertreatment device containing particulate matter, for example, in a diesel engine, a particulate filter having a honeycomb structure is generally installed. However, in order to collect minute suspended particulate matter (SPM), if the pore size of the particulate filter is reduced, clogging is likely to occur, and if the porosity is increased, slipping may occur. Further, in a direct-injection gasoline engine having lower thermal efficiency than a diesel engine, the particulate filter is not effective, and the fuel consumption may be further reduced due to the pumping loss.

これに対して、パティキュレートフィルタを用いない後処理装置として、コロナ放電を利用した電気集塵器がある。電気集塵器は、一般に、コロナ放電電極と接地電極を対向させて配し、両電極の間に高電圧を印加することによりコロナ放電を発生させて、粒子状物質を帯電凝集させる構成となっている。このような電気集塵器を、ディーゼルエンジンや直噴ガソリンエンジンの排ガス処理装置に適用することが提案されており、従来技術としては、例えば、特許文献1、2がある。   On the other hand, there is an electrostatic precipitator using corona discharge as a post-processing device that does not use a particulate filter. In general, an electrostatic precipitator has a configuration in which a corona discharge electrode and a ground electrode are opposed to each other and a corona discharge is generated by applying a high voltage between the two electrodes to charge and aggregate particulate matter. ing. It has been proposed to apply such an electric dust collector to an exhaust gas treatment device of a diesel engine or a direct injection gasoline engine. As conventional techniques, for example, there are Patent Documents 1 and 2.

特許文献1は、筒内周に集塵極および集塵フィルタからなる集塵フィルタ装置を設け、その内側に形成される排ガス流路に、放電電極を配置している。放電電極は、粒子状物質を含む排ガス流と直交する方向に2次流れを誘起形成するイオン風を発生するもので、棒状の放電極主部と、その外周に複数配設される円盤または多角形状の放電板により構成されている。   In Patent Document 1, a dust collection filter device including a dust collection electrode and a dust collection filter is provided on the inner periphery of a cylinder, and a discharge electrode is disposed in an exhaust gas passage formed inside the dust collection filter device. The discharge electrode generates an ionic wind that induces and forms a secondary flow in a direction perpendicular to the exhaust gas flow containing particulate matter. The discharge electrode main part and a plurality of disks or polygons arranged on the outer periphery thereof. It is constituted by a shaped discharge plate.

特許文献2は、管体内部に、放電電極を設け、その下流に、流路の中心軸方向に沿って棒状の集塵電極を配置した構成としている。具体的には、図12に示すように、管体100内において上流側に配置される放電電極101は、円盤102の両面にそれぞれ流路方向に突出する多数の針状放電体102aを設けて、その周囲にコロナ放電を発生させるようになっている。集塵電極103は、管体内径の2倍以上の長さの棒状体104とその周囲の管体内壁105との間に電界を形成するもので、コロナ放電により荷電した粒子状物質を、管体内壁面に捕捉する。これらコロナ放電領域と電界形成領域を組み合わせて浮遊粒子状物質の個数を減少させるようになっている。   Patent Document 2 has a configuration in which a discharge electrode is provided inside a tubular body, and a rod-shaped dust collection electrode is disposed downstream of the discharge electrode along the central axis direction of the flow path. Specifically, as shown in FIG. 12, the discharge electrode 101 disposed on the upstream side in the tubular body 100 is provided with a large number of needle-like discharge bodies 102 a that protrude in the flow path direction on both surfaces of the disk 102. Corona discharge is generated around it. The dust collecting electrode 103 forms an electric field between the rod-like body 104 having a length of twice or more of the inner diameter of the tube and the surrounding tube wall 105, and the particulate matter charged by corona discharge is supplied to the tube. Capture on the body wall. These corona discharge regions and electric field forming regions are combined to reduce the number of suspended particulate matter.

特開2010−22949号公報JP 2010-22949 A 特開2011−52544号公報JP 2011-52544 A

近年、自動車の排出ガス規制が一段と強化されており、さらに、粒子状物質に関しては、排出重量の低減のみならず排出粒子数の規制が重要とされるようになっている(PM粒子数規制)。しかしながら、従来のコロナ放電を用いた電気集塵器では、より厳しくなる排出規制へ対応するために、必ずしも十分な処理能力が得られていないことが判明した。   In recent years, exhaust gas regulations for automobiles have been further strengthened. Furthermore, regarding particulate matter, not only the reduction of the emission weight but also the regulation of the number of emitted particles has become important (PM particle number regulation). . However, it has been found that a conventional electrostatic precipitator using corona discharge does not necessarily have a sufficient processing capacity in order to cope with stricter discharge regulations.

特許文献1の集塵フィルタ装置は、放電板の製作や組み立てを容易にすることを課題として、円盤または多角形状の放電板を採用しているが、これら形状は放電電流量の向上に最適とはいえない。また、複数の放電板を軸方向に並設して処理能力の向上を図っているが、各放電板によって発生する電界強度が小さいために、粒子状物質のすり抜けを防止することは容易でない。あるいは、これを補うために放電板の設置数が多くなって、大型化しコスト増となる懸念がある。   The dust collection filter device of Patent Document 1 employs a disk or polygonal discharge plate for the purpose of facilitating the manufacture and assembly of the discharge plate, but these shapes are optimal for improving the amount of discharge current. I can't say that. In addition, a plurality of discharge plates are arranged side by side in the axial direction to improve the processing capability. However, since the electric field intensity generated by each discharge plate is small, it is not easy to prevent the particulate matter from slipping through. Or in order to make up for this, there is a concern that the number of installed discharge plates increases, resulting in an increase in size and cost.

特許文献2の排気ガス処理装置は、上流のコロナ放電領域と、下流の電界形成領域を区別することで、コロナ放電による荷電と電界による集塵が、効率よく行われるようにしている。しかしながら、コロナ放電領域における放電電流量を大きくするために、放電電極101は、支持基盤となる円盤102の両面から多数の針状放電体102aが突出する複雑な形状となっている。電界形成領域の集塵電極103も、棒状体104の長さが管径の2〜5倍とする必要があり、両電極の強度や支持構造に難がある。このため、電極の製作や装置の大型化によるコスト増が避けられない。   The exhaust gas treatment device of Patent Document 2 distinguishes between an upstream corona discharge region and a downstream electric field forming region, so that charging by corona discharge and dust collection by an electric field are efficiently performed. However, in order to increase the amount of discharge current in the corona discharge region, the discharge electrode 101 has a complicated shape in which a large number of needle-like discharge bodies 102a protrude from both surfaces of the disk 102 serving as a support base. The dust collecting electrode 103 in the electric field forming region also requires the length of the rod-like body 104 to be 2 to 5 times the tube diameter, and there is difficulty in the strength and support structure of both electrodes. For this reason, the increase in cost by manufacture of an electrode and the enlargement of an apparatus cannot be avoided.

そこで、本発明の目的は、内燃機関から排出される排ガス中の粒子状物質を、コロナ放電を利用して帯電凝集させる排ガス処理装置において、放電電極の形状およびその配置を最適化することにより、装置構成の複雑化や大型化を伴わずに、装置内に流入する粒子状物質を効率的に処理し、すり抜け防止と粒子数の低減に高い能力を発生する排ガス処理装置を提供することにある。   Therefore, an object of the present invention is to optimize the shape and arrangement of the discharge electrode in an exhaust gas treatment apparatus that charges and aggregates particulate matter in exhaust gas discharged from an internal combustion engine using corona discharge. An object of the present invention is to provide an exhaust gas treatment apparatus that efficiently processes particulate matter flowing into the apparatus without complicating or increasing the size of the apparatus, and that has a high ability for preventing slip-through and reducing the number of particles. .

本発明請求項1の排ガス処理装置は、内燃機関の排気管に接続される円筒管路状の集塵電極を設けて、その内部を、粒子状物質を含む排ガスが通過する排ガス通路とし、該排ガス通路の通路中心に配設した放電電極と上記集塵電極との間にコロナ放電を生起してイオン風を発生させる電気集塵部を備えており、該電気集塵部において、
上記放電電極は、外周に複数の突起状電極を放射状に配置した放電体を、上記排ガス通路の中心軸に沿って複数配置してなり、
かつ上記排ガス通路の周方向および軸方向に隣り合う上記突起状電極は、各突起状電極から上記集塵電極に到達する電気力線によって規定される領域が、上記集塵電極面において互いに接するように配置されている。
An exhaust gas treatment apparatus according to claim 1 of the present invention is provided with a cylindrical pipe-shaped dust collecting electrode connected to an exhaust pipe of an internal combustion engine, and the inside thereof is used as an exhaust gas passage through which exhaust gas containing particulate matter passes, An electric dust collecting part that generates corona discharge between the discharge electrode disposed in the center of the exhaust gas passage and the dust collecting electrode to generate ion wind is provided.
The discharge electrode is formed by arranging a plurality of discharge bodies radially arranged on the outer periphery along the central axis of the exhaust gas passage.
In addition, the protruding electrodes adjacent in the circumferential direction and the axial direction of the exhaust gas passage are such that regions defined by electric lines of force reaching each dust collecting electrode from each protruding electrode are in contact with each other on the dust collecting electrode surface. Is arranged.

本発明請求項2の排ガス処理装置において、上記放電電極は、周方向および軸方向に隣り合う上記突起状電極を、各突起状電極によって形成される電気力線が互いに干渉しないように配置する。   In the exhaust gas treatment apparatus according to the second aspect of the present invention, the discharge electrode arranges the protruding electrodes adjacent to each other in the circumferential direction and the axial direction so that electric lines of force formed by the protruding electrodes do not interfere with each other.

本発明請求項3の排ガス処理装置において、上記放電電極は、軸方向に隣り合う上記放電体が、外周の上記突起状電極の放射方向が重ならないように配置されている。   In the exhaust gas treatment apparatus according to claim 3 of the present invention, the discharge electrodes are arranged such that the discharge bodies adjacent in the axial direction do not overlap the radial directions of the protruding electrodes on the outer periphery.

本発明請求項4の排ガス処理装置において、上記放電電極は、上記排ガス通路の中心軸に沿う棒状支持部の外周に、上記複数の放電体を等間隔で配置してなる。   In the exhaust gas treatment apparatus according to claim 4 of the present invention, the discharge electrode is formed by arranging the plurality of discharge bodies at equal intervals on the outer periphery of a rod-like support portion along the central axis of the exhaust gas passage.

本発明請求項5の排ガス処理装置において、上記放電電極は、上記放電体の外周に4本以上12本以下の上記突起状電極を有し、軸方向に隣り合う上記放電体の間隔を、10mmを超え30mm以下の範囲で設定する。   In the exhaust gas treatment apparatus according to claim 5, the discharge electrode has 4 or more and 12 or less protruding electrodes on the outer periphery of the discharge body, and an interval between the discharge bodies adjacent in the axial direction is 10 mm. Over 30 mm or less.

本発明請求項1の排ガス処理装置において、円筒管路状の集塵電極内に配置した放電電極に電圧が印加されると、その周囲にコロナ放電が発生し、生成するイオンや気体分子が対向する集塵電極へ向かうイオン風となる。この電気集塵部に内燃機関からの排ガスが導入されると、排ガス中の粒子状物質が帯電し、イオン風によって外周の集塵電極へ移動し、凝集する。ここで、生成するイオンは、放電電極と集塵電極の間に形成される電気力線に沿って移動することから、電気集塵部内の全域に、電気力線によって規定される領域が形成されることが必要となる。   In the exhaust gas treatment apparatus of the present invention, when a voltage is applied to the discharge electrode disposed in the cylindrical tube-shaped dust collecting electrode, a corona discharge is generated around the discharge electrode, and the generated ions and gas molecules face each other. Ion wind toward the dust collecting electrode. When the exhaust gas from the internal combustion engine is introduced into the electric dust collector, the particulate matter in the exhaust gas is charged, and is moved to the outer dust collecting electrode by the ionic wind and aggregates. Here, since the ions to be generated move along the electric lines of force formed between the discharge electrode and the dust collecting electrode, a region defined by the electric lines of force is formed in the entire area of the electric dust collecting part. It is necessary to

本発明の放電電極は、排ガス通路の中心軸に沿って、外周に複数の突起状電極を有する放電体を複数配置する際に、各突起状電極が形成する電気力線領域が、集塵電極面において境界を接するようにしたから、各突起状電極が形成する電気力線領域が、周方向および軸方向においてそれぞれ電気力線が作用する領域が効果的に形成される。したがって、電気集塵部の全体に排ガス流れと直交するイオン風が形成され、排ガス中の粒子状物質が、電気集塵部をすり抜けることなく、集塵電極面に集塵捕集される。粒子状物質は集塵電極面で凝集して、凝集粒子となり、微小な浮遊粒子の数を大幅に低減させる。   In the discharge electrode of the present invention, when a plurality of discharge bodies having a plurality of protruding electrodes are arranged on the outer periphery along the central axis of the exhaust gas passage, the electric lines of force formed by the protruding electrodes are the dust collecting electrodes. Since the boundary is in contact with the surface, the electric field lines formed by the protruding electrodes are effectively formed in areas where the electric lines of force act in the circumferential direction and the axial direction, respectively. Therefore, an ion wind perpendicular to the exhaust gas flow is formed in the entire electric dust collector, and particulate matter in the exhaust gas is collected on the surface of the dust collector electrode without passing through the electric dust collector. Particulate matter aggregates on the surface of the dust collecting electrode to form aggregated particles, which greatly reduces the number of fine suspended particles.

このように、本発明の放電電極は、周方向および軸方向の両方において、隣り合う突起状電極が接近しすぎず、離れすぎない最適配置となり、コンパクトで高性能な電気集塵部を構成する。よって、装置の大型化や複雑化を伴わずに、効率よく排ガス中の粒子状物質を帯電凝集して、すり抜け防止と粒子数の低減に高い能力を発生する排ガス処理装置を低コストに実現できる。   As described above, the discharge electrode of the present invention has an optimal arrangement in which the adjacent protruding electrodes are not too close and not too far apart in both the circumferential direction and the axial direction, and constitutes a compact and high-performance electric dust collecting part. . Therefore, it is possible to realize an exhaust gas treatment device that efficiently charges and aggregates particulate matter in the exhaust gas and generates a high ability to prevent slipping and reduce the number of particles without increasing the size and complexity of the device. .

本発明請求項2の排ガス処理装置によれば、周方向および軸方向において、隣り合う突起状電極の配置を、各突起状電極によって形成される電気力線が互いに干渉しないように配置することで、放電電流量を最大とすることができる。したがって、一定体積の電気集塵部内における集塵能力を最大限に発揮することができる。   According to the exhaust gas treatment apparatus of the present invention, in the circumferential direction and the axial direction, the adjacent protruding electrodes are arranged so that the electric lines of force formed by the protruding electrodes do not interfere with each other. The amount of discharge current can be maximized. Therefore, it is possible to maximize the dust collection capability in the electric dust collection unit having a constant volume.

本発明請求項3の排ガス処理装置によれば、隣り合う放電体において、外周の突起状電極の位置が軸方向に重ならないので、各突起状電極が形成する電気力線領域が互い違いに位置して周方向に隙間なく形成され、デッドスペースを低減する。したがって、電気集塵部からの排気微粒子のすり抜けを防止する効果を高めることができる。   According to the exhaust gas treatment apparatus of the present invention, since the positions of the projecting electrodes on the outer periphery do not overlap in the axial direction in the adjacent discharge bodies, the electric lines of force formed by the projecting electrodes are alternately positioned. Thus, there is no gap in the circumferential direction, reducing dead space. Therefore, it is possible to enhance the effect of preventing the exhaust particulates from slipping through the electrostatic precipitator.

本発明請求項4の排ガス処理装置によれば、具体的には、放電電極は排ガス通路の中心軸に沿って配置した棒状支持部を備え、その外周に複数の放電体を配置した構成とすることができ、各突起状電極の形成する電気力線領域が集塵電極面で接するように、等間隔で配置することで高い集塵効果が得られる。   According to the exhaust gas treatment apparatus of claim 4 of the present invention, specifically, the discharge electrode is provided with a rod-like support portion disposed along the central axis of the exhaust gas passage, and a plurality of discharge bodies are disposed on the outer periphery thereof. In addition, a high dust collection effect can be obtained by arranging them at equal intervals so that the electric lines of force formed by the protruding electrodes are in contact with each other on the dust collection electrode surface.

本発明請求項5の排ガス処理装置によれば、放電電極は、具体的には、突起状電極の数を、放電体の外周に4本以上12本以下の範囲とし、また、軸方向に隣り合う放電体の間隔を、10mmを超え30mm以下の範囲として、各突起状電極の形成する電気力線領域が集塵電極面で接するように配置することで、内燃機関からの排気微粒子に十分高い集塵効果が得られる。   According to the exhaust gas treating apparatus of claim 5 of the present invention, specifically, the discharge electrodes have a number of protruding electrodes in the range of 4 to 12 on the outer periphery of the discharge body, and are adjacent in the axial direction. The interval between the matching discharge bodies is in the range of more than 10 mm and less than or equal to 30 mm, and the electric field lines formed by the protruding electrodes are arranged so as to be in contact with the dust collection electrode surface. A dust collection effect is obtained.

(a)は本発明の第1実施形態における排ガス処理装置の全体概略構成図、(b)は主要部である放電部の側面図および正面図、(c)の放電部の要部拡大図である。(A) is the whole schematic block diagram of the exhaust-gas-treatment apparatus in 1st Embodiment of this invention, (b) is the side view and front view of the discharge part which are principal parts, (c) It is the principal part enlarged view of the discharge part. is there. (a)は第1実施形態における電気集塵部の模式的な図、(b)は突起と平板間の放電特性を説明するための図である。(A) is a schematic diagram of the electric dust collector in the first embodiment, (b) is a diagram for explaining the discharge characteristics between the protrusion and the flat plate. (a)はイオン風の生成メカニズムを説明するための図であり、(b)は隣り合う突起状電極が形成する電気力線領域を表わす模式的な図である。(A) is a figure for demonstrating the production | generation mechanism of ion wind, (b) is a typical figure showing the electric-force-line area | region which an adjacent protruding electrode forms. (a)は電極形状と電界強度および放電量の関係を示す図、(b)は電界強度と放電量の関係を示す図である。(A) is a figure which shows the relationship between an electrode shape, electric field strength, and discharge amount, (b) is a figure which shows the relationship between electric field strength and discharge amount. (a)は突起状電極の突起数と放電電流量の関係を示す図、(b)は突起間隔と放電電流量の関係を示す図である。(A) is a figure which shows the relationship between the number of protrusions of a protruding electrode, and discharge current amount, (b) is a figure which shows the relationship between protrusion space | interval and discharge current amount. (a)は突起状電極の突起長さと突起先端の電界強度の関係を示す図、(b)は突起状電極の電界強度分布図である。(A) is a figure which shows the relationship between the protrusion length of a protruding electrode, and the electric field strength of a protrusion tip, (b) is an electric field strength distribution map of a protruding electrode. (a)は突起状電極の突起先端半径と電界強度の関係を示す図、(b)は突起状電極表面の電界強度の算出手法を説明するための図である。(A) is a figure which shows the relationship between the protrusion tip radius of a protruding electrode, and electric field strength, (b) is a figure for demonstrating the calculation method of the electric field strength of the protruding electrode surface. 突起状電極の配置を最適化した放電電極の一実施例であり、(a)は突起状電極の周方向の配置例を示す図、(b)は突起状電極の軸方向の配置例を示す図である。It is one Example of the discharge electrode which optimized arrangement | positioning of a protruding electrode, (a) is a figure which shows the example of arrangement | positioning of the circumferential direction of a protruding electrode, (b) shows the example of arrangement | positioning of the axial direction of a protruding electrode. FIG. (a)は本発明の排ガス処理装置による粒子状物質(PM)低減のメカニズムを示す模式的な図、(b)は放電電流量とPM数低減率の関係を示す図である。(A) is a typical figure which shows the mechanism of particulate matter (PM) reduction by the exhaust gas processing apparatus of this invention, (b) is a figure which shows the relationship between discharge current amount and PM number reduction rate. (a)は突起状電極の間隔が小さい場合の影響を示す図、(b)は突起状電極の間隔が広い場合の影響を示す図である。(A) is a figure which shows the influence when the space | interval of a protruding electrode is small, (b) is a figure which shows the influence when the space | interval of a protruding electrode is wide. (a)は本発明の第2実施形態における放電電極の構造を示す模式的な図であり、(b)は、本発明の第3実施形態における放電電極の構造を示す模式的な図である。(A) is a schematic diagram which shows the structure of the discharge electrode in 2nd Embodiment of this invention, (b) is a schematic diagram which shows the structure of the discharge electrode in 3rd Embodiment of this invention. . 従来の排ガス処理装置の全体概略構成図である。It is a whole schematic block diagram of the conventional exhaust gas processing apparatus.

以下、本発明を内燃機関の排ガス処理装置に適用した第1の実施形態について、図面を用いて説明する。図1(a)は、排ガス処理装置の全体概略構成を示す断面図であり、図1(b)は、電気集塵部1を構成する放電部2の側面図および正面図、図1(c)は、図1(b)の要部である放電電極3の一部を拡大した斜視図である。本実施形態の排ガス処理装置は、内燃機関である自動車用エンジンへの適用例であり、図1(a)において、図示しないエンジン排気管の途中に接続されるハウジングHを有し、ハウジングH内に電気集塵部1を備えている。エンジンは、直噴ガソリンエンジンまたはディーゼルエンジンであり、インジェクタから筒内に燃料を直接噴射する方式となっている。   Hereinafter, a first embodiment in which the present invention is applied to an exhaust gas treatment apparatus for an internal combustion engine will be described with reference to the drawings. FIG. 1A is a cross-sectional view showing an overall schematic configuration of an exhaust gas treatment apparatus, and FIG. 1B is a side view and a front view of a discharge part 2 constituting an electrostatic precipitator 1, FIG. FIG. 2 is an enlarged perspective view of a part of the discharge electrode 3 which is a main part of FIG. The exhaust gas treatment apparatus of the present embodiment is an example applied to an automobile engine that is an internal combustion engine, and has a housing H connected in the middle of an engine exhaust pipe (not shown) in FIG. The electric dust collecting unit 1 is provided. The engine is a direct-injection gasoline engine or a diesel engine, and has a system in which fuel is directly injected into a cylinder from an injector.

本実施形態において、排ガス処理装置の電気集塵部1は、円筒管よりなるハウジングHの一部を、円筒管路状の集塵電極4とし、その内部に放電電極3を備える放電部2を配置して電気集塵部1を構成している。ハウジングH内は、エンジンからの燃焼排気ガス(以下、排ガスと称する)が流通する排ガス通路11であり、ここでは、図の左方を排ガス流れの上流側、右方を下流側とし、ハウジングHの左端開口部をエンジンからの排ガスが導入される入口部12として説明する。ハウジングHは車体に接続されており集塵電極4は接地電位となっている。   In the present embodiment, the electric dust collection unit 1 of the exhaust gas treatment apparatus includes a discharge unit 2 having a cylindrical tube-shaped dust collection electrode 4 as a part of a housing H made of a cylindrical tube and having a discharge electrode 3 therein. The electrostatic precipitator 1 is arranged. Inside the housing H is an exhaust gas passage 11 through which combustion exhaust gas (hereinafter referred to as exhaust gas) from the engine flows. Here, the left side of the figure is the upstream side of the exhaust gas flow, the right side is the downstream side, and the housing H Will be described as an inlet 12 into which exhaust gas from the engine is introduced. The housing H is connected to the vehicle body, and the dust collection electrode 4 is at ground potential.

放電部2は、ハウジングH壁に保持固定される絶縁碍子部21と、絶縁碍子部21に支持される放電電極3からなる。放電電極3は、ハウジングHの中心軸に沿って配置される棒状支持部31と、棒状支持部31の外周に等間隔で配置される多数の放電体32を有している。絶縁碍子部21は筒状体で、図の上半部がハウジングH外部に露出し、図の下半部は排ガス通路11内に突出位置している。絶縁碍子部21の筒内には、棒状の導電部22が挿通保持され、その基端部(図の上端部)は、ハウジングH外部に露出して端子部23を構成し、図示しない直流高圧電源に接続される。   The discharge part 2 includes an insulator part 21 held and fixed to the wall of the housing H, and a discharge electrode 3 supported by the insulator part 21. The discharge electrode 3 has a rod-shaped support portion 31 disposed along the central axis of the housing H, and a large number of discharge bodies 32 disposed on the outer periphery of the rod-shaped support portion 31 at equal intervals. The insulator part 21 is a cylindrical body, the upper half part of the figure is exposed to the outside of the housing H, and the lower half part of the figure protrudes into the exhaust gas passage 11. A rod-shaped conductive portion 22 is inserted and held in the cylinder of the insulator portion 21, and its base end portion (upper end portion in the figure) is exposed to the outside of the housing H to form a terminal portion 23, which is not shown in the figure. Connected to power.

導電部22の先端部(図の下端部)は、絶縁碍子部21の筒内から下方に突出し、ガス流れの中心部においてL字状に屈曲して、放電電極3の棒状支持部31を構成している。図1(b)に示すように、放電電極3の放電体32は、ガス流れに対向するように配置された板状体で、外周に多数の突起状電極33が放射状に配置されている。これら突起状電極33は、径方向に突出して、放電電極3を同心状に取り囲む筒状の集塵電極4に対向している。   The front end portion (lower end portion in the figure) of the conductive portion 22 protrudes downward from the cylinder of the insulator portion 21 and bends in an L shape at the center of the gas flow to constitute the rod-shaped support portion 31 of the discharge electrode 3. doing. As shown in FIG. 1B, the discharge body 32 of the discharge electrode 3 is a plate-like body arranged so as to face the gas flow, and a large number of protruding electrodes 33 are arranged radially on the outer periphery. These protruding electrodes 33 protrude in the radial direction and face the cylindrical dust collecting electrode 4 that concentrically surrounds the discharge electrode 3.

排ガス処理装置の排ガス通路11には、図示しないエンジン排気管に接続される入口部12から燃焼排ガスが流入する。燃焼排ガスには、煤(Soot)と可溶性有機成分(SOF)からなる粒子状物質(パティキュレートマター;PM)が含まれており、排ガス処理装置は、電気集塵部1内にコロナ放電を生起し、排ガスの流れと直交する方向に誘起されるイオン風を利用して、内部を通過する粒子状物質を集塵捕集する。特に、微小な浮遊粒子状物質(SPM)は、排気管外への放出に対する規制が厳しくなっており、帯電凝集により粒子状物質の数を低減することが要求されている。   Combustion exhaust gas flows into the exhaust gas passage 11 of the exhaust gas processing apparatus from an inlet 12 connected to an engine exhaust pipe (not shown). Combustion exhaust gas contains particulate matter (particulate matter; PM) composed of soot and soluble organic components (SOF), and the exhaust gas treatment device generates corona discharge in the electrostatic precipitator 1. The particulate matter passing through the inside is collected and collected using an ionic wind induced in a direction orthogonal to the flow of the exhaust gas. In particular, fine suspended particulate matter (SPM) is strictly regulated for release to the outside of the exhaust pipe, and it is required to reduce the number of particulate matter by charging aggregation.

このため、本発明では、電気集塵部1の全域において粒子状物質を良好に集塵可能となるように、放電電極3の放電体32形状と配置を設定している。具体的には、図1(b)に示す放電電極3の棒状支持部31の長さLによって、電気集塵部1となる領域が定められ、放電電極3と対向する集塵電極4の間に放電空間が形成される。そして、棒状支持部31の長さLに対して放電体32が設置される間隔Sと、放電体32外周の突起数Nを、最適に設定することにより、電気集塵部1における集塵性能を向上させる。   For this reason, in this invention, the discharge body 32 shape and arrangement | positioning of the discharge electrode 3 are set so that a particulate matter can be favorably collected in the whole region of the electric dust collection part 1. FIG. Specifically, a region to be the electrostatic precipitator 1 is determined by the length L of the rod-like support 31 of the discharge electrode 3 shown in FIG. A discharge space is formed. And the dust collection performance in the electric dust collection part 1 is set by optimizing the space | interval S in which the discharge body 32 is installed with respect to the length L of the rod-shaped support part 31, and the protrusion number N of the discharge body 32 outer periphery. To improve.

図1(c)に示すように、本実施形態において、各放電体32は概略星形の平板形状で、先端ほど細くなる針状の突起状電極33が外周の複数個所から放射状に、等間隔で配置されている。放電体32は板面中央に取付穴を有し、板面がガス流れに対向するように棒状支持部31の外周に挿通固定されている。図示するように、各放電体32は、例えば、外周の8箇所から突起状電極33が径方向に突出する形状であり、図1(a)において、各突起状電極33は、ガス流れと直交する方向に延びて、先端が集塵電極4に対向している。また、例えば、突起状電極33は、棒状支持部31の先端を含む軸方向の10箇所に所定の等間隔で配置される。この放電体32の配置(間隔Sと突起数N)の設定方法は、本発明の特徴部分であり、詳細を以下に説明する。   As shown in FIG. 1C, in the present embodiment, each discharge body 32 has a substantially star-shaped flat plate shape, and needle-like protruding electrodes 33 that become thinner toward the tip end radially from a plurality of locations on the outer periphery. Is arranged in. The discharge body 32 has a mounting hole in the center of the plate surface, and is inserted and fixed to the outer periphery of the rod-like support portion 31 so that the plate surface faces the gas flow. As shown in the figure, each discharge body 32 has, for example, a shape in which protruding electrodes 33 protrude radially from eight locations on the outer periphery. In FIG. 1A, each protruding electrode 33 is orthogonal to the gas flow. The tip is opposed to the dust collecting electrode 4. In addition, for example, the protruding electrodes 33 are arranged at predetermined equal intervals at 10 positions in the axial direction including the tip of the rod-shaped support portion 31. The method of setting the arrangement (interval S and number of protrusions N) of the discharge bodies 32 is a characteristic part of the present invention, and will be described in detail below.

図2(a)は、本実施形態の電気集塵部1を模式的に表した図であり、ここでは、外周の8箇所に突起状電極33を設けた放電体32を、棒状支持部31の軸方向の7箇所に等間隔で配置したものとして図示している。ここで、放電体32の各突起状電極33と集塵電極4との間の放電特性は、図2(b)に示すように、突起(突起状電極33)と対向する平板(集塵電極4)間の放電特性として近似することができる。高圧電源から突起状電極33に電圧(負の高電圧)を印加すると、突起状電極33の周囲に電界が集中してコロナ放電が発生し、電子が放出される。   FIG. 2 (a) is a diagram schematically showing the electrostatic precipitator 1 of the present embodiment. Here, a discharge body 32 provided with protruding electrodes 33 at eight locations on the outer periphery is used as a rod-like support 31. These are illustrated as being arranged at equal intervals at seven locations in the axial direction. Here, as shown in FIG. 2 (b), the discharge characteristics between the protruding electrodes 33 of the discharge body 32 and the dust collecting electrode 4 are flat plates (dust collecting electrodes) facing the protrusions (the protruding electrodes 33). It can be approximated as the discharge characteristic between 4). When a voltage (negative high voltage) is applied from the high voltage power source to the projecting electrode 33, the electric field concentrates around the projecting electrode 33, corona discharge is generated, and electrons are emitted.

図3(a)に示すように、突起状電極33から放出された電子(e)は、電気集塵部1内に存在する酸素分子(O)に衝突して、酸素イオン(O2−)を生成する。生成した酸素イオン(O2−)は電界によりクーロン力を受けながら、電気力線上を集塵電極4へ向けて移動していく。この間に、電気力線上を移動する酸素イオン(O2−)は、他の気体分子、例えば窒素分子(N)、二酸化炭素分子(CO)等と運動量交換する。この運動量交換により生成される流れがイオン風となり、電気集塵部1内を軸方向に流れる排ガスの流れに対して直交する方向の流れとなる。 As shown in FIG. 3A, the electrons (e) emitted from the protruding electrodes 33 collide with oxygen molecules (O 2 ) present in the electrostatic precipitator 1 to generate oxygen ions (O 2− ) Is generated. The generated oxygen ions (O 2− ) move toward the dust collection electrode 4 on the lines of electric force while receiving the Coulomb force by the electric field. During this time, oxygen ions (O 2− ) moving on the lines of electric force exchange momentum with other gas molecules such as nitrogen molecules (N 2 ), carbon dioxide molecules (CO 2 ), and the like. The flow generated by the exchange of momentum becomes an ionic wind, and the flow is in a direction orthogonal to the flow of exhaust gas flowing in the axial direction in the electrostatic precipitator 1.

電気集塵部1内に流入する排ガス中の粒子状物質(PM)は、周囲の電子(e)や酸素イオン(O2−)と接触することで帯電する。そして、静電力とイオン風によって外周の集塵電極4に向かって移動する間に、または、集塵電極4の表面において凝集する。このようにして、粒子状物質(PM)を帯電凝集させて捕集することができ、特に10μm以下の微小粒子を凝集粒子とすることで、大気中に浮遊する微小な粒子状物質(SPM)の個数を大幅に低減することができる。 Particulate matter (PM) in the exhaust gas flowing into the electric dust collector 1 is charged by contacting with surrounding electrons (e) and oxygen ions (O 2− ). Then, while moving toward the dust collecting electrode 4 on the outer periphery by electrostatic force and ion wind, or agglomerates on the surface of the dust collecting electrode 4. In this way, the particulate matter (PM) can be charged and aggregated and collected, and in particular, the fine particulate matter (SPM) floating in the atmosphere can be collected by using the fine particles of 10 μm or less as the aggregated particles. Can be significantly reduced.

本発明では、粒子状物質(PM)の凝集効果を向上させるために、イオン風生成に大きく寄与する放電電極3と集塵電極4間の放電特性を制御する。具体的には、複数の突起状電極33を有する放電体32を用いて、放電電極3周囲の電界強度を高くし、集塵電極4との間に形成される電気力線にて規定される領域が、電気集塵部1内の全域に密に配置されるようにするとよい。ここで、図2(b)に示すように、突起状電極33の表面から放射され集塵電極4に到達する仮想的な電気力線51は、集塵電極4面における電流密度分布に対応し、電気力線51にて規定される領域(以下、電気力線領域5と称する)は中央ほど電流密度が大きく、境界では電流密度が実質0となる。この電気力線領域5は、突起状電極33から放射される電子の放射角度θにて規定することができ、同一条件の突起状電極33が形成する電気力線領域5の放射角度θは一定となる。   In the present invention, in order to improve the aggregation effect of the particulate matter (PM), the discharge characteristics between the discharge electrode 3 and the dust collection electrode 4 that greatly contribute to the generation of ion wind are controlled. Specifically, the electric field strength around the discharge electrode 3 is increased by using the discharge body 32 having the plurality of protruding electrodes 33 and is defined by the lines of electric force formed between the dust collection electrode 4 and the electric field. It is preferable that the area is densely arranged in the entire area within the electric dust collector 1. Here, as shown in FIG. 2B, the virtual electric lines of force 51 radiated from the surface of the protruding electrode 33 and reaching the dust collecting electrode 4 correspond to the current density distribution on the dust collecting electrode 4 surface. In the region defined by the electric lines of force 51 (hereinafter referred to as electric line of force region 5), the current density increases toward the center, and the current density is substantially zero at the boundary. The electric field line region 5 can be defined by the radiation angle θ of electrons emitted from the projecting electrode 33, and the radiation angle θ of the electric field line region 5 formed by the projecting electrode 33 under the same conditions is constant. It becomes.

そこで、本発明では、放電電極3の各突起状電極33に対応する電気力線領域5が、集塵電極4面上において、電気集塵部1の周方向および軸方向に互いに接するように、複数の放電体32を配置する。図2(a)は、これを模式的に示す図で、平面状に展開した集塵電極4の表面に、放電電極3の各突起状電極33が形成する電気力線領域5を投影させた領域52を表している。図中の上下方向には、各放電体32の外周に設けた8つの突起状電極33に対応する8つの領域52が、互いに接して整列配置され、図中の左右方向には、軸方向に配置した7つの放電体32に対応して、それぞれ8つの突起状電極33による領域52が、互いに接して整列配置されている。なお、これら領域52は、図示するように楕円形状であり、各突起状電極33からの放射角度θが、円周方向で大きく、軸方向で小さいことを表している。   Therefore, in the present invention, the electric field lines 5 corresponding to the protruding electrodes 33 of the discharge electrode 3 are in contact with each other in the circumferential direction and the axial direction of the electrostatic dust collecting portion 1 on the dust collecting electrode 4 surface. A plurality of discharge bodies 32 are arranged. FIG. 2A schematically shows this, and the electric field lines 5 formed by the protruding electrodes 33 of the discharge electrode 3 are projected onto the surface of the dust collecting electrode 4 developed in a planar shape. Region 52 is represented. In the vertical direction in the figure, eight regions 52 corresponding to the eight projecting electrodes 33 provided on the outer periphery of each discharge body 32 are arranged in contact with each other, and in the horizontal direction in the figure, in the axial direction. Corresponding to the seven discharge bodies 32 arranged, the regions 52 formed by the eight protruding electrodes 33 are arranged in contact with each other. These regions 52 are elliptical as shown in the figure, and represent that the radiation angle θ from each protruding electrode 33 is large in the circumferential direction and small in the axial direction.

この時、図3(b)に示されるように、隣り合う突起状電極33が形成する電気力線領域5が重なることなく、また、離れすぎることなく配置され、電流密度分布すなわち放電電流量を最大とすることができる。このために、放電体32の突起状電極33形状、突起状電極33の間隔の設定が重要であり、本発明では、周方向(ガス流れと直交する方向)および軸方向(ガス流れ方向)において、隣り合う突起状電極33が集塵電極4面上に形成する楕円状の領域52が密接するように設定することで、集塵性能を大きく向上させる。これら設定手法について、次に説明する。   At this time, as shown in FIG. 3 (b), the electric field lines 5 formed by the adjacent protruding electrodes 33 are arranged without being overlapped or separated from each other, and the current density distribution, that is, the discharge current amount is reduced. Can be maximum. Therefore, it is important to set the shape of the protruding electrode 33 of the discharge body 32 and the interval between the protruding electrodes 33. In the present invention, in the circumferential direction (direction perpendicular to the gas flow) and the axial direction (gas flow direction). The dust collection performance is greatly improved by setting so that the elliptical regions 52 formed by the adjacent protruding electrodes 33 on the surface of the dust collection electrode 4 are in close contact with each other. These setting methods will be described next.

まず、図4により放電体32の形状について検討する。図4(a)は、本発明の突起状電極33を有する放電体32と、従来の多角形状(例えば六角形)または円盤状の放電体について、電界強度および放電量を比較したものである。電界強度は、同一条件においてシミュレーションにより計算した結果であり、放電量(放電電流量)は、図4(b)に示すように、オームの法則に基づき電界強度と放電量(放電電流量)の関係から求めた。
ここで、オームの法則より、I=σES
ただし、I:放電電流量(A) σ:電気伝導率(1/Ωm) E:電界強度(V/m) S:放電部断面積(m)である。
すなわち、電界強度が大きいほど、放電電流量は大きくなり、放電体32の形状は、電極周囲の電界強度がより大きくなる突起状電極33を有する形状が最適となる。
First, the shape of the discharge body 32 will be examined with reference to FIG. FIG. 4A compares the electric field strength and the discharge amount of the discharge body 32 having the protruding electrode 33 of the present invention and the conventional polygonal (for example, hexagonal) or disk-shaped discharge body. The electric field strength is a result calculated by simulation under the same conditions, and the discharge amount (discharge current amount) is calculated from the electric field strength and the discharge amount (discharge current amount) based on Ohm's law as shown in FIG. It was calculated from the relationship.
Here, from Ohm's law, I = σES
Where I: discharge current amount (A) σ: electrical conductivity (1 / Ωm) E: electric field strength (V / m) S: discharge section cross-sectional area (m 2 )
That is, as the electric field strength increases, the amount of discharge current increases, and the shape of the discharge body 32 is optimally the shape having the protruding electrodes 33 that increase the electric field strength around the electrodes.

さらに、放電体32の外周に形成する突起状電極33の突起数Nと間隔Sについて検討する。図5(a)は、突起状電極33の突起数(N=1〜4)と放電電流量の関係を示したものであり、突起数に比例して放電電流量が増加している。したがって、好適には、放電体32の外周に配置する突起状電極33の数を4本ないしそれ以上とすることがよい。   Further, the number N of protrusions and the spacing S of the protruding electrodes 33 formed on the outer periphery of the discharge body 32 will be examined. FIG. 5A shows the relationship between the number of protrusions (N = 1 to 4) of the protruding electrode 33 and the amount of discharge current, and the amount of discharge current increases in proportion to the number of protrusions. Therefore, it is preferable that the number of the protruding electrodes 33 arranged on the outer periphery of the discharge body 32 be four or more.

この関係から、放電体32の外周に配置する突起状電極33の数を多くするほど、放電電流量の増加が見込まれ、従来は、放電電流量を増加させるためには、本数を多くするほどよいとされている。ところが、図5(b)に示すように、突起間隔が所定範囲より小さくなると放電電流量が減少し、20mm以下、特に10mm以下で急減することが判明した。このため、突起状電極33の数が多くなり、突起間隔が狭くなることは、むしろ集塵性能に悪影響を与えることになる。   From this relationship, as the number of the protruding electrodes 33 arranged on the outer periphery of the discharge body 32 is increased, the amount of discharge current is expected to increase. Conventionally, in order to increase the amount of discharge current, the number is increased. It is said to be good. However, as shown in FIG. 5B, it has been found that when the protrusion interval is smaller than the predetermined range, the amount of discharge current decreases and rapidly decreases below 20 mm, particularly below 10 mm. For this reason, the increase in the number of the protruding electrodes 33 and the decrease in the protrusion interval adversely affects the dust collection performance.

したがって、放電体32および突起状電極33の形状または大きさ等に応じて、所望の放電電流量が得られるように、突起状電極33の数や間隔を最適となるように設定するのがよい。図6(a)、(b)は、突起状電極33の突起長さの影響を調べた結果である。図6(b)に示すように、突起状電極33を先端が半球状である針状電極とし、突起長さh(基端部からの先端部までの突出長さ)を変化させた時の電界強度分布を、シミュレータにより算出した。図6(a)は、電位一定(10kV)の条件で、突起長さh(1〜20mm)と突起先端の電界強度の関係を示したもので、突起長さhが長いほど、突起先端の電界強度が大きくなっている。ただし、15mmを超えると電界強度の増加は小さくなり、20mmを超えても大きな変化は見込めない。そこで、好適には、突起長さhが20mm以下の範囲で、集塵電極4との間に所望の電気力線領域5が形成されるように、突起長さhを適宜選択するのがよい。   Therefore, it is preferable to set the number and interval of the projecting electrodes 33 to be optimum so that a desired discharge current amount can be obtained according to the shape or size of the discharge body 32 and the projecting electrodes 33. . 6A and 6B show the results of examining the influence of the protrusion length of the protruding electrode 33. FIG. As shown in FIG. 6B, the protruding electrode 33 is a needle-like electrode having a hemispherical tip, and the protruding length h (the protruding length from the proximal end to the distal end) is changed. The electric field strength distribution was calculated by a simulator. FIG. 6A shows the relationship between the projection length h (1 to 20 mm) and the electric field strength at the tip of the projection under the condition of a constant potential (10 kV). The electric field strength is increasing. However, if it exceeds 15 mm, the increase in electric field strength is small, and even if it exceeds 20 mm, no significant change can be expected. Therefore, preferably, the projection length h is appropriately selected so that a desired electric field line region 5 is formed between the projection length h and the dust collecting electrode 4 within a range of 20 mm or less. .

図7(a)、(b)は、突起状電極33の突起先端半径の影響を調べた結果である。図7(b)に示すように、突起状電極33の先端を球状とみなして、その半径をr、表面電位をV、真空の誘電率をε0とすると、球表面に帯電する電荷Qは、下記式で表される。
Q=4πε0rV[C]
また、球表面の電荷密度ρ、球表面近くの電界強度Eは、それぞれ下記式で表される。
ρ=Q[C]/4πr[m]=ε0V/r[C/m
E=ρ[C/m]/ε0[F/m]=V/r[V/m]
この関係式から、電界強度Eと半径r
したがって、表面電位Vを一定(10kV)とした時の、電界強度Eと半径r(0.1〜1mm)の関係は、図7(a)に示すようになり、半径rが小さいほど、球表面の電界強度は大となっている。そこで、好適には、半径rが1mm以下の範囲で、集塵電極4との間に所望の電気力線領域5が形成されるように、半径rを適宜選択するのがよい。
7A and 7B show the results of examining the influence of the protrusion tip radius of the protruding electrode 33. FIG. As shown in FIG. 7B, assuming that the tip of the protruding electrode 33 is spherical, the radius is r, the surface potential is V, and the vacuum dielectric constant is ε 0 , the charge Q charged on the spherical surface is Is represented by the following formula.
Q = 4πε 0 rV [C]
Further, the charge density ρ on the surface of the sphere and the electric field intensity E near the surface of the sphere are represented by the following equations, respectively.
ρ = Q [C] / 4πr 2 [m 2 ] = ε 0 V / r [C / m 2 ]
E = ρ [C / m 2 ] / ε 0 [F / m] = V / r [V / m]
From this relational expression, electric field strength E and radius r
Accordingly, the relationship between the electric field strength E and the radius r (0.1 to 1 mm) when the surface potential V is constant (10 kV) is as shown in FIG. 7A. The electric field strength on the surface is large. Therefore, it is preferable to appropriately select the radius r so that a desired electric field line region 5 is formed between the radius r and the dust collecting electrode 4 within a range of 1 mm or less.

これら図6、7の結果より、突起状電極33を突起長さhが長く、突起先端の半径rが小さい、尖った形状とすることで、より高い電界強度が得られることがわかる。本発明の放電体32は、このために、先端ほど細くなる針状の突起状電極33を放射状に配置し、全体が星形形状となっている。さらに、本発明では、これら突起状電極33の配置を最適化することによって、集塵電極4との間の放電空間に放出される放電電流量を最大とする。その具体的手法について、次に説明する。   From the results of FIGS. 6 and 7, it can be seen that a higher electric field strength can be obtained by making the protruding electrode 33 have a sharp shape with a long protrusion length h and a small radius r at the protrusion tip. For this purpose, the discharge body 32 of the present invention has needle-shaped protruding electrodes 33 that are arranged so as to be thinner toward the tip, and is arranged in a star shape. Further, in the present invention, by optimizing the arrangement of the protruding electrodes 33, the amount of discharge current discharged to the discharge space between the dust collecting electrodes 4 is maximized. The specific method will be described next.

図8(a)、(b)は、本発明により突起状電極33の配置を最適化した放電電極3の一実施例を図示したもので、図8(a)は突起状電極33の周方向の配置、図8(b)は突起状電極33の軸方向の配置例である。放電電極3は、一般的な車両用の直噴ガソリンの排気管に接続されるハウジングH内に収容され、突起状電極33は、図6、7に示した突起長さh、突起先端の半径rの好適範囲となる所定形状に設定されている。この時、各突起状電極33と集塵電極4との間の放電特性は、上述した図2(b)に示した通りであり、電圧印加によって各突起状電極33から放出される電子の放射角度θは一定である。そこで、各突起状電極33が形成する電気力線領域5を、集塵電極4面に投影させた領域52を密接させて電気集塵部1内に配置することで、集塵性能を最大限に発揮することができる。   FIGS. 8A and 8B show an embodiment of the discharge electrode 3 in which the arrangement of the protruding electrodes 33 is optimized according to the present invention. FIG. 8A shows the circumferential direction of the protruding electrodes 33. FIG. 8B shows an arrangement example of the protruding electrodes 33 in the axial direction. The discharge electrode 3 is housed in a housing H connected to a general vehicle direct injection gasoline exhaust pipe, and the protrusion electrode 33 has a protrusion length h and a protrusion tip radius shown in FIGS. It is set to a predetermined shape that is a suitable range of r. At this time, the discharge characteristics between each protruding electrode 33 and the dust collecting electrode 4 are as shown in FIG. 2B, and the emission of electrons emitted from each protruding electrode 33 by voltage application. The angle θ is constant. Therefore, the electric field lines 5 formed by the protruding electrodes 33 are arranged in the electric dust collecting unit 1 in close contact with the region 52 projected onto the surface of the dust collecting electrode 4 to maximize the dust collecting performance. Can be demonstrated.

まず、この電子放出に支配的な電気力線51の放射角度θを算出し、複数の突起状電極33が形成する電気力線領域5をそれぞれ集塵電極4に投影させた領域52が密接するように突起状電極33の数を決定する。具体的には、図8(a)の左図に示すように、放電体32の突起状電極33の数と放電電流量の関係から、電気力線の円周方向の放射角度θを知ることができる。ここで、突起状電極33の数は2〜16本の範囲で変更し、放電体32の外周に等間隔で配置した。また、印加電圧は−10kV、−15kV、−20kVの3段階とし、それぞれ放電電流量(図2(b)の電流密度分布曲線で囲まれる面積に対応)の変化を調べた。   First, the radiation angle θ of the electric force lines 51 dominant in the electron emission is calculated, and the regions 52 in which the electric force line areas 5 formed by the plurality of protruding electrodes 33 are respectively projected onto the dust collecting electrode 4 are in close contact with each other. Thus, the number of the protruding electrodes 33 is determined. Specifically, as shown in the left diagram of FIG. 8A, the radiation angle θ in the circumferential direction of the electric lines of force is known from the relationship between the number of the protruding electrodes 33 of the discharge body 32 and the amount of discharge current. Can do. Here, the number of the projecting electrodes 33 was changed in the range of 2 to 16 and arranged on the outer periphery of the discharge body 32 at equal intervals. Further, the applied voltage was set at three stages of −10 kV, −15 kV, and −20 kV, and changes in the discharge current amount (corresponding to the area surrounded by the current density distribution curve in FIG. 2B) were examined.

その結果、針状の突起状電極33の数(図中、針数n)が8本前後で放電電流量が極大となり、それ以下でも以上でも放電電流量の低下が見られた。これは、突起状電極33が8本以下の領域では、突起数(針数n)に比例して電子が放出される領域が増加し、総放電電流量が増加しているためで、印加電圧が大きいほどこの傾向が顕著になる。一方、突起状電極33が8本以上の領域では、大きな変化はないものの突起数(針数n)に比例して放電電流量が緩やかに低下する傾向が見られた。つまり、図8(a)の右図に示すように、突起状電極33が8本の時に、放電体32の外周に放射される電気力線51を集塵電極4に投影した領域52が互いに最近接していることになる。ただし8本を超えると、集塵電極4へ投影させた領域52の境界が重なり、干渉が生じやすくなって、電流密度分布のピーク値を低くするものと考えられる。   As a result, the discharge current amount reached a maximum when the number of needle-like projecting electrodes 33 (the number of needles n in the figure) was about 8, and a decrease in the discharge current amount was observed even below this. This is because in the region where the number of protruding electrodes 33 is 8 or less, the number of regions from which electrons are emitted increases in proportion to the number of protrusions (number of needles n), and the total discharge current amount increases. This tendency becomes more prominent as is larger. On the other hand, in the area of 8 or more protruding electrodes 33, although there was no significant change, the discharge current amount tended to decrease gradually in proportion to the number of protrusions (number of needles n). That is, as shown in the right diagram of FIG. 8A, when the number of the projecting electrodes 33 is eight, the regions 52 in which the electric lines of force 51 radiated to the outer periphery of the discharge body 32 are projected on the dust collecting electrode 4 are mutually connected. I have been in contact with you recently. However, if the number exceeds eight, the boundary of the region 52 projected onto the dust collecting electrode 4 overlaps and interference is likely to occur, and the peak value of the current density distribution is considered to be lowered.

したがって、本実施例の構成において、突起状電極33の数は、周方向については8本が最適であり、この時、円周方向の放射角度θ=57°となる。また、8本前後であれば、ほぼ同等の効果が得られ、通常は、4〜12本、好適には6〜10本の範囲で適宜選択することができる。   Therefore, in the configuration of this embodiment, the optimal number of the protruding electrodes 33 is 8 in the circumferential direction, and at this time, the radiation angle θ in the circumferential direction is 57 °. Moreover, if it is around eight, a substantially equivalent effect is acquired and it can select suitably in the range of 4-12 normally, Preferably 6-10.

また、図8(b)に示すように、放電体32の突起状電極33を軸方向に等間隔で配置し、その間隔と放電電流量の関係から、電気力線51の軸方向の放射角度θを知ることができる。ここで、突起状電極33を取り付ける棒状支持部31の長さLは、120mmで一定とした。突起状電極33の間隔は10〜60mmの範囲で変更し、印加電圧は−15kV、−20kVの2段階とした。その結果、突起状電極33の間隔(図中、電極間隔S)が20mmで放電電流量が極大となり、それ以下でも以上でも放電電流量の低下が見られた。つまり、突起状電極33の間隔が20mm前後で、電気力線51を集塵電極4に投影させた領域52が重なることなく、離れることのない最近接状態となる。   Further, as shown in FIG. 8B, the protruding electrodes 33 of the discharge body 32 are arranged at equal intervals in the axial direction, and the radiation angle in the axial direction of the electric lines of force 51 from the relationship between the interval and the discharge current amount. θ can be known. Here, the length L of the rod-like support portion 31 to which the protruding electrode 33 is attached is constant at 120 mm. The interval between the protruding electrodes 33 was changed within a range of 10 to 60 mm, and the applied voltage was set in two stages of −15 kV and −20 kV. As a result, the discharge current amount was maximized when the interval between the protruding electrodes 33 (electrode interval S in the figure) was 20 mm, and a decrease in the discharge current amount was observed even below or above. That is, the distance between the projecting electrodes 33 is around 20 mm, and the region 52 where the electric lines of force 51 are projected onto the dust collecting electrode 4 does not overlap and is in the closest state without separation.

一方、電極間隔Sが20mmを超える領域では、間隔が広くなるほど、配置可能な突起状電極33の数が減少して、放電電流量が減少しやすい。また、電極間隔Sが20mm未満の領域では、電気力線51を集塵電極4に投影させた領域52が重なって、干渉しやすくなり、電流密度分布のピーク値が低下することにより放電電流量が減少する。   On the other hand, in the region where the electrode interval S exceeds 20 mm, the number of projecting electrodes 33 that can be arranged decreases as the interval increases, and the amount of discharge current tends to decrease. Further, in the region where the electrode spacing S is less than 20 mm, the region 52 where the electric lines of force 51 are projected onto the dust collecting electrode 4 overlaps and interferes easily, and the peak value of the current density distribution decreases, thereby reducing the discharge current amount. Decrease.

したがって、本実施例の構成において、突起状電極33の数は、軸方向については、電極間隔20mmとなるように配置すると最適であり、この時、軸方向の放射角度θ=34°となる。また、20mm前後であれば、ほぼ同等の効果が得られ、通常は、10mmを超え30mm以下の範囲で適宜選択することができる。   Therefore, in the configuration of the present embodiment, the number of the protruding electrodes 33 is optimally arranged so that the electrode interval is 20 mm in the axial direction. At this time, the radial radiation angle θ is 34 °. Moreover, if it is around 20 mm, the substantially equivalent effect will be acquired and it can usually select suitably in 10 to 30 mm or less.

以上のように、本発明では、予め放電電極3に設ける突起状電極33の周方向および軸方向の放射角度を知り、その集塵電極4への投影領域の境界が密接するように、突起状電極33の数や間隔を調整する。これによって、集塵電極4に到達する電気力線の干渉を防止し、電子の放射されない領域を最小限として、総放電電流量を増大させ、電気集塵部1内の放電空間を最大限に活用することができる。   As described above, in the present invention, the projection-like electrode 33 provided in the discharge electrode 3 is known in advance in the circumferential direction and the axial radiation angle, and the projection area on the dust collection electrode 4 is closely contacted. The number and interval of the electrodes 33 are adjusted. As a result, interference of electric lines of force reaching the dust collecting electrode 4 is prevented, the area where electrons are not emitted is minimized, the total discharge current amount is increased, and the discharge space in the electric dust collecting unit 1 is maximized. Can be used.

図9(a)は、本発明の排ガス処理装置による粒子状物質(PM)低減のメカニズムを示す模式的な図である。本発明の放電電極3は、隣り合う突起状電極33の間隔を適切に設定していることにより、各突起状電極33から放射される電気力線51が、電気力線が互いに干渉することなく、また離れすぎずに、対向する集塵電極4に到達する。これにより、電気集塵部1内の放電電流量が増大し、各突起状電極33から集塵電極4へ向かうイオン風が良好に形成される。そして、排ガス中の粒子状物質(PM)が、電子または負イオンの流れと運動量交換することによって、外周壁面の集塵電極4へ運ばれ、ここで粒子状物質(PM)同士が凝集する。凝集することにより、排出される粒子状物質(PM)数を低減させることができる。   FIG. 9A is a schematic diagram showing the mechanism of particulate matter (PM) reduction by the exhaust gas treatment apparatus of the present invention. In the discharge electrode 3 of the present invention, the interval between the adjacent protruding electrodes 33 is appropriately set, so that the electric lines of force 51 radiated from each protruding electrode 33 are not interfered with each other. And, it reaches the opposite dust collecting electrode 4 without being too far away. As a result, the amount of discharge current in the electrostatic precipitator 1 is increased, and an ion wind from each protruding electrode 33 toward the dust collecting electrode 4 is well formed. The particulate matter (PM) in the exhaust gas is transferred to the dust collecting electrode 4 on the outer peripheral wall surface by exchanging momentum with the flow of electrons or negative ions, where the particulate matter (PM) is aggregated. Aggregation can reduce the number of particulate matter (PM) discharged.

図9(b)は、放電電流量とPM数低減率の関係を示す図で、放電電極3の放電体32および突起状電極33の数を調整することにより、放電電流量を増減させた時のPM数低減率を調べた結果である。図示されるように、放電電流量を増加により粒子状物質(PM)に衝突する確率が高まったからであると推測される。   FIG. 9B is a diagram showing the relationship between the discharge current amount and the PM number reduction rate, and when the discharge current amount is increased or decreased by adjusting the number of the discharge bodies 32 and the protruding electrodes 33 of the discharge electrode 3. It is the result of investigating the PM number reduction rate. As shown in the figure, it is presumed that the probability of colliding with the particulate matter (PM) is increased by increasing the discharge current amount.

これに対して、図10(a)、(b)に、突起状電極33の配置が最適化されていない場合の影響を示す。例えば、図10(a)のように、軸方向に隣り合う突起状電極33の間隔が、上記好適範囲より狭い場合(電極間隔S=10mm)には、近接する電気力線52同士が干渉することにより、突起状電極33の先端周囲の電界強度が小さくなる。その結果、突起状電極33から集塵電極4に到達する電気力線51の形成する電気力線領域5が変化し、集塵電極4における電流密度分布のピークが小さくなる。そして、所望の電流密度分布が得られないために、電流密度分布の面積の総和で規定される総放電電流量が小さくなる。   On the other hand, FIGS. 10A and 10B show the effects when the arrangement of the protruding electrodes 33 is not optimized. For example, as shown in FIG. 10A, when the interval between the protruding electrodes 33 adjacent in the axial direction is narrower than the preferred range (electrode interval S = 10 mm), the adjacent electric force lines 52 interfere with each other. As a result, the electric field strength around the tip of the protruding electrode 33 is reduced. As a result, the electric force line region 5 formed by the electric force lines 51 reaching the dust collection electrode 4 from the protruding electrode 33 changes, and the peak of the current density distribution in the dust collection electrode 4 becomes small. Since the desired current density distribution cannot be obtained, the total discharge current amount defined by the sum of the areas of the current density distribution becomes small.

また、図10(b)のように、軸方向に隣り合う突起状電極33の間隔が、上記好適範囲より広い場合(電極間隔S=40mm)には、近接する電気力線51同士が干渉することはないものの、突起状電極33からの電子の放射角度θによって決まる電気力線領域5が離れてしまう。その結果、突起状電極33によって形成される電気力線領域5の外側にデッドスペースが形成され、放電のない空間が形成されるために、粒子状物質のすり抜けが生じやすくなって、所望の集塵性能が得られない。   Further, as shown in FIG. 10B, when the interval between the protruding electrodes 33 adjacent in the axial direction is wider than the above preferable range (electrode interval S = 40 mm), the adjacent electric force lines 51 interfere with each other. Although there is nothing, the electric field lines 5 determined by the electron emission angle θ from the protruding electrode 33 are separated. As a result, a dead space is formed outside the electric field lines 5 formed by the protruding electrodes 33, and a space without discharge is formed. Therefore, it is easy for the particulate matter to slip through, and a desired concentration is obtained. Dust performance cannot be obtained.

図11(a)、(b)は、本発明の第2、3実施形態であり、放電電極3の放電体32の形状および配置を変更している。それ以外の構成は同様であり、以下、主要部である放電電極3の構成について説明する。図11(a)に示す本発明の第2実施形態において、放電体32の形状は、図1に示した本発明の第1実施形態と同様であり、外周に8本の突起状電極33が放射状に、等間隔で配置されている。本実施形態では、図示するように、隣り合う放電体32において、突起状電極33の放射方向が重ならないように、所定角度回転させて、各放電体32の突起状電極33の先端が、排ガス流れ方向の正面から見た時に、互い違いに位置するようにしている。   11A and 11B show the second and third embodiments of the present invention, in which the shape and arrangement of the discharge body 32 of the discharge electrode 3 are changed. The rest of the configuration is the same, and the configuration of the discharge electrode 3 as the main part will be described below. In the second embodiment of the present invention shown in FIG. 11A, the shape of the discharge body 32 is the same as that of the first embodiment of the present invention shown in FIG. 1, and eight protruding electrodes 33 are provided on the outer periphery. It is radially arranged at equal intervals. In this embodiment, as shown in the figure, the adjacent discharge bodies 32 are rotated by a predetermined angle so that the radial directions of the projection electrodes 33 do not overlap, and the tips of the projection electrodes 33 of each discharge body 32 are exhaust gas. When viewed from the front in the flow direction, they are positioned alternately.

このようにすると、隣り合う2つの放電体32を所定間隔で配置した時に、隣り合う2つの突起状電極33の間隔が最大となり、各突起状電極33が形成する電気力線領域5の間のデッドスペースが小さくなる。つまり、図中に示す集塵電極4の展開図において、放電体32の各突起状電極33が形成する電気力線領域5を投影した領域52が、軸方向において互い違いに配置され、より密接する。したがって、電気集塵部1に流入する粒子状物質(PM)のすり抜けを低減する効果が高く、集塵性能を向上させることができる。   In this manner, when the two adjacent discharge bodies 32 are arranged at a predetermined interval, the interval between the two adjacent protruding electrodes 33 is maximized, and the electric field lines 5 formed by the protruding electrodes 33 are formed. Dead space is reduced. That is, in the developed view of the dust collecting electrode 4 shown in the figure, the areas 52 projected from the electric field lines 5 formed by the respective projecting electrodes 33 of the discharge body 32 are alternately arranged in the axial direction and are closer to each other. . Therefore, the effect of reducing slipping of the particulate matter (PM) flowing into the electric dust collection unit 1 is high, and the dust collection performance can be improved.

図11(b)は、本発明の第3実施形態であり、放電体32の形状を、図1に示した本発明の第1実施形態よりも突起状電極33の数を少なく配置している。具体的には、外周に4本の突起状電極33を放射状に、90度間隔で配置する。本実施形態においても、図示するように、隣り合う放電体32について、放射方向が重ならないように45度回転させて配置し、各放電体32の突起状電極33の先端が、正面から見た時に互い違いとなるように配置している。   FIG. 11B shows a third embodiment of the present invention, in which the shape of the discharge body 32 is arranged with a smaller number of protruding electrodes 33 than in the first embodiment of the present invention shown in FIG. . Specifically, four protruding electrodes 33 are arranged radially at intervals of 90 degrees on the outer periphery. Also in the present embodiment, as shown in the drawing, adjacent discharge bodies 32 are arranged so as to be rotated by 45 degrees so that the radiation directions do not overlap, and the tips of the protruding electrodes 33 of each discharge body 32 are viewed from the front. Sometimes they are staggered.

このようにすると、放電体32の各突起状電極33の間隔が上記第1、2実施形態より離れるために、軸方向に隣り合う放電体32の間隔をより小さくすることができる。したがって、排ガス処理装置の軸方向長を短縮することができ、全体をコンパクトにできる。よって、設置スペースが限られている場合に有利である。   In this case, since the interval between the protruding electrodes 33 of the discharge body 32 is separated from that of the first and second embodiments, the interval between the discharge bodies 32 adjacent in the axial direction can be further reduced. Therefore, the axial length of the exhaust gas treatment apparatus can be shortened and the whole can be made compact. Therefore, it is advantageous when the installation space is limited.

以上のように、本発明によれば、放電電極3が、周方向および軸方向の両方において、隣り合う突起状電極33が接近しすぎず、離れすぎない最適配置となり、コンパクトで高性能な電気集塵部1を構成する。よって、装置の大型化や複雑化を伴わずに、効率よく排ガス中の粒子状物質を帯電凝集して、すり抜け防止と粒子数の低減に高い能力を発生する排ガス処理装置を低コストに実現できる。   As described above, according to the present invention, the discharge electrode 3 is optimally disposed so that the adjacent protruding electrodes 33 are not too close and not too far apart in both the circumferential direction and the axial direction, and is compact and has high performance. The dust collection part 1 is comprised. Therefore, it is possible to realize an exhaust gas treatment device that efficiently charges and aggregates particulate matter in the exhaust gas and generates a high ability to prevent slipping and reduce the number of particles without increasing the size and complexity of the device. .

本発明の排ガス処理装置は、直噴方式のガソリンエンジンやディーゼルエンジンに限らず、内燃機関から排出される粒子状物質の低減に利用することができる。   The exhaust gas treatment apparatus of the present invention is not limited to a direct-injection gasoline engine or diesel engine, but can be used to reduce particulate matter discharged from an internal combustion engine.

H ハウジング
1 電気集塵部
11 排気通路
12 入口部
2 放電部
21 絶縁碍子部
22 導電部
23 端子部
3 放電電極
31 棒状支持部
32 放電体
33 突起状電極
4 集塵電極
5 電気力線領域
51 電気力線
52 領域
H Housing 1 Electric dust collecting part 11 Exhaust passage 12 Inlet part 2 Discharge part 21 Insulator part 22 Conductive part 23 Terminal part 3 Discharge electrode 31 Rod-shaped support part 32 Discharge body 33 Protruding electrode 4 Dust collecting electrode 5 Electric field line area 51 Electric field lines 52 area

Claims (5)

内燃機関の排気管に接続される円筒管路状の集塵電極を設けて、その内部を、粒子状物質を含む排ガスが通過する排ガス通路とし、該排ガス通路の通路中心に配設した放電電極と上記集塵電極との間にコロナ放電を生起してイオン風を発生させる電気集塵部を備えており、
該電気集塵部において、
上記放電電極は、外周に複数の突起状電極を放射状に配置した放電体を、上記排ガス通路の中心軸に沿って複数配置してなり、
かつ上記排ガス通路の周方向および軸方向に隣り合う上記突起状電極は、各突起状電極から上記集塵電極に到達する電気力線によって規定される領域が、上記集塵電極面において互いに接するように配置されていることを特徴とする内燃機関の排ガス処理装置。
Discharge electrode disposed in the center of the exhaust gas passage, provided with a dust collection electrode in the form of a cylindrical pipe connected to the exhaust pipe of the internal combustion engine, and the inside thereof as an exhaust gas passage through which exhaust gas containing particulate matter passes And an electric dust collecting part that generates corona discharge and generates ion wind between the dust collecting electrode and the dust collecting electrode,
In the electric dust collector,
The discharge electrode is formed by arranging a plurality of discharge bodies radially arranged on the outer periphery along the central axis of the exhaust gas passage.
In addition, the protruding electrodes adjacent in the circumferential direction and the axial direction of the exhaust gas passage are such that regions defined by electric lines of force reaching each dust collecting electrode from each protruding electrode are in contact with each other on the dust collecting electrode surface. An exhaust gas treatment apparatus for an internal combustion engine, wherein
上記放電電極は、周方向および軸方向に隣り合う上記突起状電極が、各突起状電極によって形成される電気力線が互いに干渉しないように配置されている請求項1記載の内燃機関の排ガス処理装置。   2. The exhaust gas treatment for an internal combustion engine according to claim 1, wherein the discharge electrodes are arranged such that the projecting electrodes adjacent in the circumferential direction and the axial direction do not interfere with the electric lines of force formed by the projecting electrodes. apparatus. 上記放電電極は、軸方向に隣り合う上記放電体が、外周の上記突起状電極の放射方向が重ならないように配置されている請求項1または2記載の内燃機関の排ガス処理装置。   The exhaust gas treatment apparatus for an internal combustion engine according to claim 1 or 2, wherein the discharge electrodes are arranged such that the discharge bodies adjacent in the axial direction do not overlap the radial directions of the protruding electrodes on the outer periphery. 上記放電電極は、上記排ガス通路の中心軸に沿う棒状支持部の外周に、上記複数の放電体が等間隔で配置されている請求項1ないし3のいずれか1項に記載の内燃機関の排ガス処理装置。   The exhaust gas of the internal combustion engine according to any one of claims 1 to 3, wherein the discharge electrode has the plurality of discharge bodies arranged at equal intervals on an outer periphery of a rod-like support portion along a central axis of the exhaust gas passage. Processing equipment. 上記放電電極は、上記放電体の外周に4本以上12本以下の上記突起状電極を有し、軸方向に隣り合う上記放電体の間隔が10mmを超え30mm以下の範囲で設定されている請求項1ないし4のいずれか1項に記載の内燃機関の排ガス処理装置。   The discharge electrode has 4 or more and 12 or less protruding electrodes on the outer periphery of the discharge body, and an interval between the discharge bodies adjacent in the axial direction is set in a range of more than 10 mm and 30 mm or less. Item 6. The exhaust gas treatment apparatus for an internal combustion engine according to any one of Items 1 to 4.
JP2011272410A 2011-12-13 2011-12-13 Exhaust gas treatment device for internal combustion engine Pending JP2013124556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272410A JP2013124556A (en) 2011-12-13 2011-12-13 Exhaust gas treatment device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011272410A JP2013124556A (en) 2011-12-13 2011-12-13 Exhaust gas treatment device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013124556A true JP2013124556A (en) 2013-06-24

Family

ID=48775990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272410A Pending JP2013124556A (en) 2011-12-13 2011-12-13 Exhaust gas treatment device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013124556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061483A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Electric discharge device and air purifying device
KR101989384B1 (en) * 2017-12-21 2019-06-14 두산중공업 주식회사 Boiler and method for preventing adhesion of combustion gas particles
KR20190107385A (en) * 2018-03-12 2019-09-20 김효수 The electric precipitation hood
JP7414819B2 (en) 2018-06-22 2024-01-16 トゥボール,ダニエル Device for purification of gaseous media containing particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028897A (en) * 1996-07-19 1998-02-03 Mitsubishi Heavy Ind Ltd Electric precipitator
US20040025497A1 (en) * 2000-11-21 2004-02-12 Truce Rodney John Electrostatic filter
JP2010022949A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Exhaust treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028897A (en) * 1996-07-19 1998-02-03 Mitsubishi Heavy Ind Ltd Electric precipitator
US20040025497A1 (en) * 2000-11-21 2004-02-12 Truce Rodney John Electrostatic filter
JP2010022949A (en) * 2008-07-22 2010-02-04 Mitsubishi Heavy Ind Ltd Exhaust treatment apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061483A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Electric discharge device and air purifying device
JP2018056103A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Discharge device, and air purification device
CN109716605A (en) * 2016-09-30 2019-05-03 大金工业株式会社 Electric discharge device and air cleaning unit
EP3487017A4 (en) * 2016-09-30 2020-03-04 Daikin Industries, Ltd. Electric discharge device and air purifying device
CN109716605B (en) * 2016-09-30 2020-07-24 大金工业株式会社 Discharge device and air purification device
US11318478B2 (en) 2016-09-30 2022-05-03 Daikin Industries, Ltd. Electric discharge device and air purifying device
KR101989384B1 (en) * 2017-12-21 2019-06-14 두산중공업 주식회사 Boiler and method for preventing adhesion of combustion gas particles
US10731853B2 (en) 2017-12-21 2020-08-04 DOOSAN Heavy Industries Construction Co., LTD Combustion gas particle adhesion prevention boiler and method
KR20190107385A (en) * 2018-03-12 2019-09-20 김효수 The electric precipitation hood
KR102032046B1 (en) * 2018-03-12 2019-10-14 김효수 The electric precipitation hood
JP7414819B2 (en) 2018-06-22 2024-01-16 トゥボール,ダニエル Device for purification of gaseous media containing particles

Similar Documents

Publication Publication Date Title
US7758675B2 (en) Gas treatment device
CN101869872B (en) Bipolar charge reinforced fine particle aggregation device
JPH11512651A (en) Method and apparatus for exhaust gas purification and noise reduction using high voltage electric field
US8521455B2 (en) System and method for estimating corona power loss in a dust-loaded electrostatic precipitator
JP2013124556A (en) Exhaust gas treatment device for internal combustion engine
US20090038300A1 (en) Exhaust gas purification method and exhaust gas purification system
JP2014500430A (en) Equipment for treating exhaust gas containing soot particles
JP2011052544A (en) Exhaust gas treatment apparatus
JP2006342730A (en) Exhaust processing system of internal combustion engine
Yuan et al. Corona discharge characteristics in electrostatic precipitator under high temperature
KR20240078429A (en) High-efficiency particle bed filtration device with enhanced coalescence of ultra-fine particles
Tian et al. Development and experimental investigation of the narrow-gap coated electrostatic precipitator with a shield pre-charger for indoor air cleaning
JP2008051037A (en) Exhaust gas treatment apparatus
CN109967239B (en) Microparticle purifier based on electrocoagulation technology
CN108204651B (en) Ion air supply equipment
JP5531978B2 (en) Exhaust treatment device for internal combustion engine
CN213349300U (en) Charged magnetoelectric grading coagulation device
US9333512B2 (en) Electrostatic screen device and method for emission control
TWI693970B (en) Electric dust collector
Huang et al. RETRACTED: Influence of negative corona discharge on the Zeta potential of diesel particles
JP2013180272A (en) Exhaust emission control device for internal combustion engine
JP4345568B2 (en) Aggregator for exhaust treatment equipment
CN206158822U (en) Processing apparatus , diesel engine and car behind low temperature plasma
Kim et al. Effect of temperature on carbon nanoparticle collection efficiency using photoelectric ESP
JP7366366B2 (en) electrostatic precipitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020