JP2013124545A - Ion current detecting device for internal combustion engine - Google Patents

Ion current detecting device for internal combustion engine Download PDF

Info

Publication number
JP2013124545A
JP2013124545A JP2011271908A JP2011271908A JP2013124545A JP 2013124545 A JP2013124545 A JP 2013124545A JP 2011271908 A JP2011271908 A JP 2011271908A JP 2011271908 A JP2011271908 A JP 2011271908A JP 2013124545 A JP2013124545 A JP 2013124545A
Authority
JP
Japan
Prior art keywords
ion current
current detection
ignition
discharge
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011271908A
Other languages
Japanese (ja)
Other versions
JP5854380B2 (en
Inventor
Naoki Shimada
直樹 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Hanshin Ltd
Original Assignee
Hitachi Automotive Systems Hanshin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Hanshin Ltd filed Critical Hitachi Automotive Systems Hanshin Ltd
Priority to JP2011271908A priority Critical patent/JP5854380B2/en
Publication of JP2013124545A publication Critical patent/JP2013124545A/en
Application granted granted Critical
Publication of JP5854380B2 publication Critical patent/JP5854380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ion current detecting device for an internal combustion engine that can detect properly an ion current generated at combustion in the internal combustion engine allowing SI combustion and HCCI combustion.SOLUTION: When an electrification signal for a discharge ignition time is supplied to an ignition coil 1 in the SI combustion, a capacitor 2b for an ion current detecting electric power source of an ion current detecting circuit 2 is charged, by discharge ignition of an ignition plug, to a voltage V1 limited by a charge voltage controlling Zener diode 2a, but a capacitor 2e for the ion current detecting electric power source is blocked by a high-pass filter circuit 22 not to be charged, and ion current detection by the power source voltage V1 is carried out therein. When an electrification signal for a dischargeless ignition time is supplied to the ignition coil 1 in the HCCI combustion, a high-voltage high-frequency signal generated in a secondary side is passed through the high-pass filter circuit 22, the capacitor 2e for the ion current detecting electric power source is charged to a voltage V2e, and an ion current is detected by an electric power source voltage (V1+V2e).

Description

本発明は、自動車両に搭載される内燃機関のイオン電流検出装置、特にHCCI(予混合圧縮着火)による燃焼と通常の火花点火によるSI燃焼のような異なる2種類の燃焼方式に対応可能な内燃機関用イオン電流検出装置の改良に関する。   The present invention relates to an ion current detection device for an internal combustion engine mounted on a motor vehicle, particularly an internal combustion engine capable of dealing with two different combustion systems such as combustion by HCCI (premixed compression ignition) and SI combustion by normal spark ignition. The present invention relates to an improvement of an ion current detector for an engine.

従来から内燃機関の点火装置においては、燃焼時に発生するイオン電流を検出することで燃焼状態を判別し、内燃機関の燃焼や運転状態を把握する事により、失火やノッキングを検知して、各種燃焼制御を適切に行う技術が自動車両の内燃機関に適用されている。このような内燃機関用イオン電流検出装置として、点火プラグをイオンプローブとして用い、イオン電流検出のために別途電源を用意せずに、点火プラグの放電電流により充電されるコンデンサを設けておき、このコンデンサをイオン電流検出用の電源として用いるイオン電流検出装置が提案されている(例えば、特許文献1を参照)。   Conventionally, in an internal combustion engine ignition device, the state of combustion is determined by detecting an ionic current generated during combustion, and by detecting the misfire and knocking by grasping the combustion and operating state of the internal combustion engine, various combustions are performed. A technique for appropriately performing control is applied to an internal combustion engine of a motor vehicle. As such an ion current detection device for an internal combustion engine, a spark plug is used as an ion probe, and a capacitor charged by the discharge current of the spark plug is provided without preparing a separate power source for ion current detection. An ion current detection apparatus using a capacitor as a power source for ion current detection has been proposed (see, for example, Patent Document 1).

従来のイオン電流検出装置を図2に示す。これは、ガソリンエンジンの燃焼制御機構に適用したものであり、燃焼工程を統括的に制御するエンジン制御装置ECUから通電信号(パルス信号)が入力される点火コイル1は、点火用スイッチング素子1cが通電信号により開閉することで、点火用電源電VB+が印加された一次コイル1aの一次電流遮断時に、二次コイル1bに高電圧を発生させ、これによって点火プラグの放電ギャップgを介して放電電流が流れる。この放電電流の流路中に設けたイオン電流検出装置2にはイオン電流検出電源用コンデンサ2bが設けられ、放電電流によりイオン電流検出に必要十分な電荷が貯められる。   A conventional ion current detector is shown in FIG. This is applied to a combustion control mechanism of a gasoline engine, and an ignition coil 1 to which an energization signal (pulse signal) is input from an engine control unit ECU that comprehensively controls a combustion process includes an ignition switching element 1c. By opening and closing by the energization signal, a high voltage is generated in the secondary coil 1b when the primary current of the primary coil 1a to which the ignition power supply VB + is applied is cut off, thereby causing a discharge current via the discharge gap g of the spark plug. Flows. An ion current detection power supply capacitor 2b is provided in the ion current detection device 2 provided in the discharge current flow path, and a charge sufficient for ion current detection is stored by the discharge current.

また、イオン電流検出装置2には、イオン電流検出電源用コンデンサ2bの充電電圧を制御するための充電電圧制御用ツェナーダイオード2a、イオン電流による電圧降下を生じさせるイオン電流検出用抵抗2c、イオン電流検出用抵抗2cによる電圧降下をイオン信号として検知すると共に増幅し、イオン電流検出信号を出力するイオン信号増幅回路21を設けてあるので、燃焼サイクル毎に、点火プラグの放電によって内燃機関内の燃料が適正に燃焼し、イオン電流検出電源用コンデンサ2bが適正に充電され、燃焼によって生じたイオンにより点火プラグの放電ギャップg間にイオン電流が流れ、イオン信号増幅回路21からイオン電流検出信号が出力されることとなる。このイオン電流検出信号に基づいて、内燃機関の適正制御を行うことができるのである。   The ion current detection device 2 includes a charge voltage control Zener diode 2a for controlling the charge voltage of the ion current detection power supply capacitor 2b, an ion current detection resistor 2c that causes a voltage drop due to the ion current, and an ion current. Since an ion signal amplification circuit 21 that detects and amplifies the voltage drop due to the detection resistor 2c and outputs an ion current detection signal is provided, the fuel in the internal combustion engine is discharged by the discharge of the ignition plug every combustion cycle. Is properly burned, the ion current detection power supply capacitor 2b is properly charged, and the ion generated by the combustion causes an ion current to flow between the discharge gaps g of the spark plug, and the ion signal amplification circuit 21 outputs an ion current detection signal. Will be. Based on this ion current detection signal, appropriate control of the internal combustion engine can be performed.

また、近年は、燃焼効率が良く、窒素酸化物などの排出が少ない内燃機関として、HCCI(予混合圧縮着火)燃焼が注目されている。このHCCI燃焼は、気筒の燃焼室内の混合気を圧縮して高温にし、それにより混合気の自己着火を発生させて混合気を燃焼させるものである。HCCI燃焼は、火花による着火を行う通常のSI燃焼と違い着火のタイミング等の燃焼制御が難しいことから、通常のSI燃焼と同様に、イオン電流検出による燃焼状態の把握を行う事は重要である。また、HCCIガソリンエンジンの場合、HCCI燃焼で動作可能なスイートスポットが限られており、他の領域でもエンジンを動作させるためには、放電による点火を行う通常のSI燃焼領域を混在させることが考えられている。   In recent years, HCCI (premixed compression ignition) combustion has attracted attention as an internal combustion engine with good combustion efficiency and low emission of nitrogen oxides. In the HCCI combustion, the air-fuel mixture in the combustion chamber of the cylinder is compressed to a high temperature, thereby generating self-ignition of the air-fuel mixture and combusting the air-fuel mixture. Since HCCI combustion is difficult to control combustion such as the timing of ignition, unlike normal SI combustion in which ignition is performed by sparks, it is important to grasp the combustion state by detecting ionic current in the same manner as in normal SI combustion. . In addition, in the case of an HCCI gasoline engine, the sweet spot that can be operated by HCCI combustion is limited, and in order to operate the engine in other regions, it is considered to mix a normal SI combustion region where ignition by discharge is mixed. It has been.

特開平4−194367号公報JP-A-4-194367

しかしながら、燃焼室内における燃焼ガスの特性によって、HCCI燃焼時のイオン電流値はSI燃焼時に比べて極めて小さくなるため、特許文献1に記載されている発明のように、SI燃焼時の測定に最適な値に設定した充電電圧制御用ツェナーダイオードとイオン電流検出電源用コンデンサにより生成されるイオン電流検出用電源を用いた場合、SI燃焼時のイオン電流検出を良好に行えるものの、HCCI燃焼時に検出される値が小さ過ぎて、測定不能もしくは精度が低くなってしまう。よって、従来のSI燃焼用のイオン電流検出回路では、HCCI燃焼時のイオン電流を検出して燃焼状態を把握し、HCCI燃焼を制御する事は、非常に困難である。   However, due to the characteristics of the combustion gas in the combustion chamber, the ionic current value at the time of HCCI combustion is extremely smaller than that at the time of SI combustion, so that it is optimal for measurement during SI combustion as in the invention described in Patent Document 1. When the ion current detection power source generated by the charging voltage control Zener diode and the ion current detection power source capacitor set to the value is used, the ion current can be detected well during SI combustion, but it is detected during HCCI combustion. The value is too small and measurement is impossible or accuracy is low. Therefore, in the conventional ion current detection circuit for SI combustion, it is very difficult to detect the ion current during HCCI combustion, grasp the combustion state, and control HCCI combustion.

なお、イオン電流検出回路の回路定数を、HCCI燃焼時の測定に最適な値に設定すれば、HCCI燃焼時のイオン電流検出が可能になるものの、同回路にてSI燃焼時のイオン電流検出を行うと、検出される値が大きくなり過ぎて測定不能になり、SI燃焼時のエンジン制御が困難になる。   If the circuit constant of the ion current detection circuit is set to an optimum value for measurement during HCCI combustion, the ion current can be detected during HCCI combustion. If this is done, the detected value becomes too large to be measured, and engine control during SI combustion becomes difficult.

HCCI燃焼領域とSI燃焼領域とを混在させる制御方式を実現するために、例えば、HCCI燃焼時に用いるイオン電流検出用電源とSI燃焼時に用いるイオン電流検出用電源として、充電電圧制御用ツェナーダイオードとイオン電流検出電源用コンデンサの組み合わせを2系統用意しておき、SI燃焼時とHCCI燃焼時とで、夫々に適したイオン電流検出用電源の電圧を切り換える手法が考えられる。   In order to realize a control system that mixes the HCCI combustion region and the SI combustion region, for example, as a power source for ion current detection used during HCCI combustion and a power source for ion current detection used during SI combustion, a Zener diode for charging voltage control and an ion It is conceivable to prepare two combinations of capacitors for current detection power supply and switch the voltage of the power supply for ion current detection suitable for SI combustion and HCCI combustion.

しかし、HCCI燃焼時用のイオン電流検出用電源とSI燃焼時用のイオン電流検出用電源を予め搭載したイオン電流検出装置を構成する場合、HCCI燃焼からSI燃焼への移行時およびSI燃焼からHCCI燃焼への移行時には、各燃焼モードに対応したイオン電流検出用電源へ自動で切り替える必要があるため、燃焼モードの判定回路や判定結果に応じたイオン電流検出用電源への切替を指示する回路などが必要となる。これらの機能をイオン電流検出装置内へ設けようとすると、コスト増になる上、装置が大型化して設置スペースの確保が問題となるし、これらの機能をイオン電流検出装置の外部に設ける場合には、モード判定回路や切替指示回路等を設けた制御装置の配置スペースを確保する必要が生ずることに加えて、制御装置から指示信号をイオン電流検出装置へ導く配線や端子も必要となる。   However, when configuring an ion current detection device in which an ion current detection power source for HCCI combustion and an ion current detection power source for SI combustion are configured in advance, the transition from HCCI combustion to SI combustion and from SI combustion to HCCI When switching to combustion, it is necessary to automatically switch to an ion current detection power source corresponding to each combustion mode, so a circuit for instructing switching to the ion current detection power source according to the determination mode of the combustion mode, etc. Is required. If these functions are provided in the ion current detection device, the cost increases, and the size of the device becomes large, and securing the installation space becomes a problem. When these functions are provided outside the ion current detection device, In addition to the necessity of securing the arrangement space of the control device provided with the mode determination circuit, the switching instruction circuit, etc., wiring and terminals for guiding the instruction signal from the control device to the ion current detection device are also required.

そこで、本発明は、放電着火を伴うSI燃焼と放電着火を必要としないHCCI燃焼が可能な内燃機関の燃焼時に発生するイオン電流を適切に検出できると共に、装置自体の大型化やコスト増を抑制できる内燃機関用イオン電流検出装置の提供を目的とする。   Therefore, the present invention can appropriately detect ion current generated during combustion of an internal combustion engine capable of SI combustion with discharge ignition and HCCI combustion that does not require discharge ignition, and suppresses increase in size and cost of the device itself. An object of the present invention is to provide an ion current detection device for an internal combustion engine.

上記課題を解決するために、請求項1に係る発明は、所要長さのパルスである放電着火時用通電信号に基づいてスイッチング素子が一次コイルに流れる一次電流を遮断したときに二次コイルに発生する高電圧を燃焼室の点火プラグに供給して、点火プラグの放電ギャップに放電電流を流す点火コイルの二次コイル側に接続され、前記点火プラグでの放電電流により充電され電荷を保持するイオン電流検出電源用コンデンサと、該イオン電流検出電源用コンデンサへの印加電圧を制限する充電電圧制御用ツェナーダイオードと、から成る放電着火時用イオン電流検知回路を備え、前記点火プラグの放電電流により充電されたイオン電流検出電源用コンデンサの充電電圧を放電後の点火プラグに印加することで、内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出し、内燃機関の燃焼状態を検出する内燃機関用イオン電流検出装置において、前記充電電圧制御用ツェナーダイオードと前記イオン電流検出電源用コンデンサより成る放電着火時用イオン電流検知回路と直列に接続する充電電圧制御用ツェナーダイオードとイオン電流検出電源用コンデンより成る無放電着火時追加用イオン電流検知回路を、点火コイル側に設け、前記放電着火時用通電信号よりも短い通電信号を繰り返す無放電着火時用通電信号を前記点火コイルのスイッチング素子に印加する事で点火コイルを昇圧トランスとして機能させることで点火コイルの二次側に発生する高周波二次電圧の周波数を通過させるが、放電着火時用通電信号に基づく着火サイクルの周波数は通過させないハイパスフィルタを、前記無放電着火時追加用イオン電流検知回路の充電電圧制御用ツェナーダイオードからイオン電流検出電源用コンデンサへの充電経路に設け、前記点火プラグによる放電着火での燃焼時には、前記点火コイルへ放電着火時用通電信号を供給して二次側に発生させた高電圧がハイパスフィルタを通過できず、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサが充電されないことにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧のみによって、放電着火による内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出し、前記点火プラグによる放電着火を必要としない燃焼時には、前記点火コイルへ無放電着火時用通電信号を供給し、点火コイルの二次側に発生させた高周波二次電圧が前記ハイパスフィルタを通して無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサを充電することにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧に、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧が追加されたイオン電流検出用電源電圧によって、放電着火を伴わない内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出するようにしたことを特徴とする。   In order to solve the above problems, the invention according to claim 1 is directed to the secondary coil when the switching element cuts off the primary current flowing through the primary coil based on the energization signal for discharge ignition, which is a pulse having a required length. The generated high voltage is supplied to the ignition plug of the combustion chamber and connected to the secondary coil side of the ignition coil that causes a discharge current to flow in the discharge gap of the ignition plug, and is charged by the discharge current at the ignition plug and retains the charge. A discharge ignition ion current detection circuit comprising an ion current detection power supply capacitor and a charging voltage control Zener diode for limiting a voltage applied to the ion current detection power supply capacitor; By applying the charged voltage of the charged ion current detection power supply capacitor to the spark plug after discharge, the ignition plug In an ion current detection device for an internal combustion engine that detects an ion current generated between a pole and a combustion chamber and detects a combustion state of the internal combustion engine, a discharge composed of the charging voltage control zener diode and the ion current detection power supply capacitor A non-discharge ignition additional ion current detection circuit comprising a charge voltage control Zener diode connected in series with an ignition ion current detection circuit and an ion current detection power supply condenser is provided on the ignition coil side, and is used for the discharge ignition. A high-frequency secondary generated on the secondary side of the ignition coil by applying a non-discharge ignition energization signal that repeats an energization signal shorter than the energization signal to the switching element of the ignition coil so that the ignition coil functions as a step-up transformer. Pass the frequency of the voltage, but do not pass the frequency of the ignition cycle based on the energization signal for discharge ignition. A pass filter is provided in a charging path from the charging voltage control Zener diode of the additional ionic current detection circuit for non-discharge ignition to the ionic current detection power supply capacitor, and when ignited by discharge ignition by the ignition plug, the ignition coil The high voltage generated on the secondary side by supplying the discharge ignition energization signal to the secondary ignition cannot pass through the high-pass filter, and the ion current detection power supply capacitor of the additional ion current detection circuit during no discharge ignition is not charged. The ionic current generated between the electrode of the ignition plug and the combustion chamber during combustion of the internal combustion engine by discharge ignition is detected only by the charging voltage of the capacitor for the ionic current detection power source of the ionic current detection circuit for discharge ignition, and the ignition During combustion that does not require discharge ignition by a plug, a non-discharge ignition energization signal is supplied to the ignition coil for ignition. The high-frequency secondary voltage generated on the secondary side of the coil charges the ion current detection power supply capacitor of the additional ion current detection circuit for non-discharge ignition through the high-pass filter. An internal combustion engine that is not accompanied by discharge ignition by the power supply voltage for ion current detection in which the charge voltage for the capacitor for ion current detection power supply of the additional ion current detection circuit for non-discharge ignition is added to the charge voltage of the capacitor for ion current detection power supply An ion current generated between the electrode of the spark plug and the combustion chamber during combustion is detected.

請求項1に係る内燃機関用イオン電流検出装置によれば、前記充電電圧制御用ツェナーダイオードと前記イオン電流検出電源用コンデンサより成る放電着火時用イオン電流検知回路と直列に接続する充電電圧制御用ツェナーダイオードとイオン電流検出電源用コンデンより成る無放電着火時追加用イオン電流検知回路を、点火コイル側に設け、前記放電着火時用通電信号よりも短い通電信号を繰り返す無放電着火時用通電信号を前記点火コイルのスイッチング素子に印加する事で点火コイルを昇圧トランスとして機能させることで点火コイルの二次側に発生する高周波二次電圧の周波数を通過させるが、放電着火時用通電信号に基づく着火サイクルの周波数は通過させないハイパスフィルタを、前記無放電着火時追加用イオン電流検知回路の充電電圧制御用ツェナーダイオードからイオン電流検出電源用コンデンサへの充電経路に設け、前記点火プラグによる放電着火での燃焼時には、前記点火コイルへ放電着火時用通電信号を供給して二次側に発生させた高電圧がハイパスフィルタを通過できず、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサが充電されないことにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧のみによって、放電着火による内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出し、前記点火プラグによる放電着火を必要としない燃焼時には、前記点火コイルへ無放電着火時用通電信号を供給し、点火コイルの二次側に発生させた高周波二次電圧が前記ハイパスフィルタを通して無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサを充電することにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧に、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧が追加されたイオン電流検出用電源電圧によって、放電着火を伴わない内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出するようにしたので、放電着火時のイオン電流検出と無放電着火時のイオン電流検知とを適正な値の電源電圧で行うことができる。しかも、放電着火時のイオン電流検出機能と無放電着火時のイオン電流検出機能を別々に設けておく必要がないと共に、点火コイルへの通電信号によって放電着火時のイオン電流検出機能と無放電着火時のイオン電流検出機能を自動で切り換えることができるので、装置自体の大型化やコスト増を抑制できる。   According to the ionic current detection device for an internal combustion engine according to claim 1, for charge voltage control connected in series with an ion current detection circuit for discharge ignition comprising the Zener diode for charge voltage control and the capacitor for ion current detection power supply. A non-discharge ignition energization signal that repeats an energization signal shorter than the discharge ignition energization signal by providing a non-discharge ignition additional ion current detection circuit comprising a Zener diode and an ion current detection power supply capacitor on the ignition coil side. Is applied to the switching element of the ignition coil to allow the ignition coil to function as a step-up transformer, thereby passing the frequency of the high-frequency secondary voltage generated on the secondary side of the ignition coil. A high-pass filter that does not pass the frequency of the ignition cycle is added to the additional ion current detection circuit for non-discharge ignition. Provided in the charging path from the voltage control Zener diode to the capacitor for the ion current detection power supply, and when the ignition is burned by the spark plug, the discharge ignition energization signal is supplied to the ignition coil and generated on the secondary side The high voltage that has passed is not able to pass through the high-pass filter, and the ion current detection power supply capacitor of the additional ion current detection circuit for non-discharge ignition is not charged, so that the ion current detection power supply capacitor for the discharge ignition ion current detection circuit The ionic current generated between the electrode of the spark plug and the combustion chamber during combustion of the internal combustion engine due to discharge ignition is detected only by the charging voltage of the spark ignition, and when the combustion does not require discharge ignition by the spark plug, An energization signal for discharge ignition is supplied, and the high-frequency secondary voltage generated on the secondary side of the ignition coil is By charging the ion current detection power supply capacitor of the additional ion current detection circuit for non-discharge ignition through the battery, it is added to the charge voltage of the ion current detection power supply capacitor of the ion current detection circuit for discharge ignition during no discharge ignition. Generated between the spark plug electrode and the combustion chamber during combustion of an internal combustion engine without discharge ignition by the ion current detection power supply voltage to which the charge voltage of the ion current detection power supply capacitor of the ion current detection circuit is added Since the current is detected, the ion current detection at the time of discharge ignition and the ion current detection at the time of no discharge ignition can be performed with a power supply voltage of an appropriate value. Moreover, there is no need to provide an ion current detection function at the time of discharge ignition and an ion current detection function at the time of no discharge ignition, and an ion current detection function at the time of discharge ignition and no discharge ignition by an energization signal to the ignition coil. Since the ion current detection function at the time can be automatically switched, an increase in size and cost of the apparatus itself can be suppressed.

本発明に係るイオン電流検出装置の実施形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the ion current detection apparatus which concerns on this invention. 従来のイオン電流検出装置の概略構成図である。It is a schematic block diagram of the conventional ion current detection apparatus.

次に、本発明に係るイオン電流検出装置の実施形態を添付図面に基づいて詳細に説明する。   Next, an embodiment of an ion current detection device according to the present invention will be described in detail with reference to the accompanying drawings.

図1に示すのは、本発明をガソリンエンジンに適用した実施形態に係るイオン電流検出装置の概略構成を示すもので、前述した従来のイオン電流検出装置の構成(図2を参照)と同様に、エンジン制御装置ECU等から点火信号(放電着火時用通電信号)が入力される点火コイル1と、点火用スイッチング素子1cが点火信号により開閉することで、点火用電源電VB+が印加された一次コイル1aの一次電流遮断時に、二次コイル1bに発生した高電圧を印加する点火プラグと、これによって点火プラグの放電ギャップgを介して流れる放電電流の流路中に設けたイオン電流検出回路2を備える。   FIG. 1 shows a schematic configuration of an ion current detection device according to an embodiment in which the present invention is applied to a gasoline engine, and is similar to the configuration of the conventional ion current detection device described above (see FIG. 2). The ignition coil 1 to which an ignition signal (discharge ignition energization signal) is input from the engine control unit ECU or the like, and the ignition switching element 1c are opened and closed by the ignition signal, so that the primary power supply VB + for ignition is applied. An ignition plug that applies a high voltage generated in the secondary coil 1b when the primary current of the coil 1a is interrupted, and an ion current detection circuit 2 provided in a discharge current flow path that flows through the discharge gap g of the ignition plug. Is provided.

イオン電流検出回路2には、従来装置と同様に、イオン電流検出電源用コンデンサ2bと、その充電電圧を制御するための充電電圧制御用ツェナーダイオード2aと、イオン電流による電圧降下を生じさせるイオン電流検出用抵抗2cと、イオン電流検出用抵抗2cによる電圧降下をイオン信号として検知すると共に増幅して出力するイオン信号増幅回路21が設けてあり、点火プラグの放電によりイオン電流検出電源用コンデンサ2bが適正に充電されていれば、SI燃焼によって生じたイオンにより点火プラグの放電ギャップg間にイオン電流が流れ、イオン信号増幅回路21からイオン電流検出信号が出力される。   Similar to the conventional apparatus, the ion current detection circuit 2 includes an ion current detection power supply capacitor 2b, a charge voltage control Zener diode 2a for controlling the charge voltage, and an ion current that causes a voltage drop due to the ion current. A detection resistor 2c and an ion signal amplifier circuit 21 that detects and amplifies and outputs a voltage drop caused by the ion current detection resistor 2c as an ion signal is provided. If the battery is properly charged, an ion current flows between the discharge gaps g of the spark plug due to the ions generated by the SI combustion, and an ion current detection signal is output from the ion signal amplification circuit 21.

更に、イオン電流検出回路2には、充電電圧制御用ツェナーダイオード2aとイオン電流検出電源用コンデンサ2bより成る放電着火時用イオン電流検知回路と直列に接続する無放電着火時追加用イオン電流検知回路として、充電電圧制御用ツェナーダイオード2dとイオン電流検出電源用コンデンサ2eを点火コイル1側に設けてある。加えて、充電電圧制御用ツェナーダイオード2dからイオン電流検出電源用コンデンサ2eへの充電経路には、ハイパスフィルタ回路22を設けてある。なお、ハイパスフィルタ回路22のしきい値は、少なくともSI燃焼時の通電信号の周期(最大でも数百Hz程度)よりも高く設定しておくもので、例えば、数kHz程度で良い。   Further, the ionic current detection circuit 2 includes a non-discharge ignition additional ion current detection circuit connected in series with a discharge ignition ion current detection circuit comprising a charging voltage control zener diode 2a and an ion current detection power supply capacitor 2b. As shown, a zener diode 2d for charging voltage control and a capacitor 2e for ionic current detection power supply are provided on the ignition coil 1 side. In addition, a high-pass filter circuit 22 is provided in the charging path from the charging voltage control Zener diode 2d to the ion current detection power supply capacitor 2e. Note that the threshold value of the high-pass filter circuit 22 is set to be higher than at least the period of the energization signal during SI combustion (a few hundred Hz at the maximum), and may be about several kHz, for example.

上記のように、放電着火時用イオン電流検知回路と無放電着火時追加用イオン電流検知回路とを直列に接続したイオン電流検出回路2において、点火プラグによる放電を伴うSI燃焼時には、放電中のみ充電電圧制御用ツェナーダイオード2aの電圧と充電電圧制御用ツェナーダイオード2dの電圧(Vl+V2)が発生するが、ハイパスフィルタ回路22により阻止されるため、無放電着火時追加用イオン電流検知回路におけるイオン電流検出電源用コンデンサ2eが充電されることはなく、充電用整流ダイオード2iを通してイオン検出電源用コンデンサ2bのみが充電される。これにより、放電終了後にはSI燃焼時のイオン電流検知に適正な電圧である充電電圧制御用ツェナーダイオード2aにより制御された電圧(Vl)が、第1イオン電流検出用抵抗2f、第2イオン電流検出用抵抗2gおよびイオン電流検出用ダイオード2hを介して点火プラグに印加され、イオン電流の検出が行われる。   As described above, in the ion current detection circuit 2 in which the discharge ignition ion current detection circuit and the non-discharge ignition addition ion current detection circuit are connected in series, during SI combustion accompanied by discharge by the spark plug, only during discharge Although the voltage of the charging voltage control Zener diode 2a and the voltage of the charging voltage control Zener diode 2d (Vl + V2) are generated but are blocked by the high-pass filter circuit 22, the ionic current in the additional ionic current detection circuit during no-discharge ignition The detection power supply capacitor 2e is not charged, and only the ion detection power supply capacitor 2b is charged through the charging rectifier diode 2i. As a result, the voltage (Vl) controlled by the charging voltage control Zener diode 2a, which is an appropriate voltage for detecting the ionic current during SI combustion after the end of the discharge, becomes the first ionic current detecting resistor 2f, the second ionic current. An ionic current is detected by being applied to the spark plug via the detection resistor 2g and the ionic current detection diode 2h.

一方、HCCI等の放電着火を伴わない燃焼時には、点火コイル1へ放電着火時用通電信号を供給して点火コイルに放電火花を発生させる制御が必要ないので、点火コイル1をDC−AC昇圧回路として機能させる。斯くするためには、ECUや専用の発振回路から点火コイル1のスイッチング素子1cに短い通電信号を繰り返し印加すれば良い。   On the other hand, at the time of combustion without discharge ignition such as HCCI, it is not necessary to control the ignition coil 1 to supply a discharge ignition energization signal and generate a discharge spark in the ignition coil. To function as. In order to do so, a short energization signal may be repeatedly applied to the switching element 1c of the ignition coil 1 from the ECU or a dedicated oscillation circuit.

すなわち、放電着火時用通電信号よりも短い通電信号を繰り返す無放電着火時用通電信号をDC−AC駆動信号として点火コイル1のスイッチング素子1cへ供給すれば、点火コイルを昇圧トランスとして機能させることができ、点火コイル1の二次コイル1bには高周波二次電圧が発生する。   That is, if a non-discharge ignition energization signal that repeats an energization signal shorter than the discharge ignition energization signal is supplied to the switching element 1c of the ignition coil 1 as a DC-AC drive signal, the ignition coil functions as a step-up transformer. The secondary coil 1b of the ignition coil 1 generates a high frequency secondary voltage.

上記のようにして二次コイル1bに発生させた数百Vの高周波二次電圧は、数kHz〜数十kHzの高周波であり、ハイパスフィルタ回路22の通過条件を満たすものであるため、ハイパスフィルタ回路22を通過して、充電用整流ダイオード2kを通してイオン検出電源用コンデンサ2eが充電される。同時に、充電用整流ダイオード2iを通してイオン検出電源用コンデンサ2bも充電される。なお、イオン電流検出電源用コンデンサ2bが電圧V1まで充電され、且つイオン検出電源用コンデンサ2eが電圧V2e(ハイパスフィルタ22や充電用整流ダイオード2kによる電圧降下分だけ電圧V2よりも低い電圧)まで充電された後は、点火コイル1からの励磁電流が励磁電流リセット用ダイオード2jを通して二次コイル1b側へ回生され、励磁エネルギーがリセットされる。   The high frequency secondary voltage of several hundred volts generated in the secondary coil 1b as described above has a high frequency of several kHz to several tens kHz and satisfies the passage condition of the high pass filter circuit 22. Passing the circuit 22, the ion detection power supply capacitor 2e is charged through the charging rectifier diode 2k. At the same time, the ion detection power supply capacitor 2b is also charged through the charging rectifier diode 2i. The ion current detection power supply capacitor 2b is charged up to the voltage V1, and the ion detection power supply capacitor 2e is charged up to the voltage V2e (a voltage lower than the voltage V2 by the voltage drop caused by the high-pass filter 22 and the charging rectifier diode 2k). After that, the exciting current from the ignition coil 1 is regenerated to the secondary coil 1b side through the exciting current resetting diode 2j, and the exciting energy is reset.

よって、無放電着火用通電信号の供給が停止されて点火コイル1の二次電圧の発生が停止した時点で、充電電圧制御用ツェナーダイオード2aにより電圧制限されたイオン検出電源用コンデンサ2bは電圧V1に充電され、充電電圧制御用ツェナーダイオード2dにより電圧制限されたイオン検出電源用コンデンサ2eは電圧V2eに充電されていることから、2つの電源用コンデンサの電圧が加算された電圧(Vl+V2e)によりイオン電流検出を行うことができる。   Therefore, when the supply of the non-discharge ignition energization signal is stopped and the generation of the secondary voltage of the ignition coil 1 is stopped, the ion detection power supply capacitor 2b that is voltage-limited by the charging voltage control Zener diode 2a has the voltage V1. Since the ion detection power supply capacitor 2e charged by the charging voltage control Zener diode 2d is charged to the voltage V2e, the voltage of the two power supply capacitors is added to the voltage (Vl + V2e). Current detection can be performed.

このように、本実施形態のイオン電流検出装置によれば、充電電圧制御用ツェナーダイオード2aとイオン電流検出電源用コンデンサ2bより成る放電着火時用イオン電流検知回路と、充電電圧制御用ツェナーダイオード2dとイオン電流検出電源用コンデンサ2eより成る無放電着火時追加用イオン電流検知回路を直列に接続したイオン電流検出回路2を用いることで、放電着火時のイオン電流検出と無放電着火時のイオン電流検出とを適正な値の電源電圧で行うことができる。   As described above, according to the ion current detection device of this embodiment, the discharge ignition ion current detection circuit including the charge voltage control Zener diode 2a and the ion current detection power supply capacitor 2b, and the charge voltage control Zener diode 2d. And the ion current detection circuit for the non-discharge ignition and the ion current for the non-discharge ignition by using the ion current detection circuit 2 in series connected to the non-discharge ignition additional ion current detection circuit consisting of the capacitor for the ion current detection power supply 2e. Detection can be performed with an appropriate power supply voltage.

しかも、放電着火時のイオン電流検出機能と無放電着火時のイオン電流検出機能を別々に設けるのではなく、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサ2eが充電される条件をハイパスフィルタ回路22によって制御することで、SI燃焼時とHCCI燃焼時に適したイオン電流検出用電源電圧を得ることができ、狭小なスペースに収納できる装置の小型化に貢献できる。   In addition, the ion current detection power source capacitor 2e of the additional ion current detection circuit for non-discharge ignition is charged instead of separately providing the ion current detection function for discharge ignition and the ion current detection function for non-discharge ignition. By controlling the conditions by the high-pass filter circuit 22, it is possible to obtain a power supply voltage for ion current detection suitable for SI combustion and HCCI combustion, and contribute to downsizing of the apparatus that can be stored in a narrow space.

加えて、点火コイル1への通電信号(放電着火時用通電信号または無放電着火時用通電信号)によって放電着火時のイオン電流検出機能と無放電着火時のイオン電流検出機能を自動で切り換えることができるので、別々に設けたイオン電流検出機能を切り替えるスイッチ回路等をイオン電流検出回路2内に設ける必要がないし、イオン電流検出機能の切り替えタイミングに応じてスイッチ回路を制御する必要もない。   In addition, an ion current detection function at the time of discharge ignition and an ion current detection function at the time of non-discharge ignition are automatically switched by an energization signal to the ignition coil 1 (an energization signal for discharge ignition or an energization signal for no discharge ignition). Therefore, it is not necessary to provide a switch circuit for switching the ion current detection function provided separately in the ion current detection circuit 2, and it is not necessary to control the switch circuit in accordance with the switching timing of the ion current detection function.

以上、本発明の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態に限定されるものではなく、公知既存の等価な技術手段を転用することにより実施しても構わない。   As mentioned above, although embodiment of this invention was described based on the accompanying drawing, this invention is not limited to these embodiment, You may implement by diverting well-known existing equivalent technical means. Absent.

1 点火コイル
1a 一次コイル
1b 二次コイル
1c スイッチング素子
2 イオン電流検出回路
2a 充電電圧制御用ツェナーダイオード
2b イオン検出電源用コンデンサ
2c イオン電流検出用抵抗
2d 充電電圧制御用ツェナーダイオード(HCCI用)
2e イオン検出電源用コンデンサ(HCCI用)
2f 第1イオン電流検出用抵抗
2g 第2イオン電流検出用抵抗
2h イオン電流検出用ダイオード
2i 充電用整流ダイオード
2j 励磁電流リセット用ダイオード
2k 充電用整流ダイオード(HCCI用)
21 イオン信号増幅回路
22 ハイパスフィルタ回路
g 点火プラグの放電間隙間
DESCRIPTION OF SYMBOLS 1 Ignition coil 1a Primary coil 1b Secondary coil 1c Switching element 2 Ion current detection circuit 2a Charging voltage control Zener diode 2b Ion detection power supply capacitor 2c Ion current detection resistor 2d Charging voltage control Zener diode (for HCCI)
2e Ion detection power supply capacitor (for HCCI)
2f First ion current detection resistor 2g Second ion current detection resistor 2h Ion current detection diode 2i Charging rectifier diode 2j Excitation current reset diode 2k Charging rectifier diode (for HCCI)
21 Ion signal amplifier circuit 22 High-pass filter circuit g Spark discharge discharge gap

Claims (1)

所要長さのパルスである放電着火時用通電信号に基づいてスイッチング素子が一次コイルに流れる一次電流を遮断したときに二次コイルに発生する高電圧を燃焼室の点火プラグに供給して、点火プラグの放電ギャップに放電電流を流す点火コイルの二次コイル側に接続され、
前記点火プラグでの放電電流により充電され電荷を保持するイオン電流検出電源用コンデンサと、該イオン電流検出電源用コンデンサへの印加電圧を制限する充電電圧制御用ツェナーダイオードと、から成る放電着火時用イオン電流検知回路を備え、
前記点火プラグの放電電流により充電されたイオン電流検出電源用コンデンサの充電電圧を放電後の点火プラグに印加することで、内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出し、内燃機関の燃焼状態を検出する内燃機関用イオン電流検出装置において、
前記充電電圧制御用ツェナーダイオードと前記イオン電流検出電源用コンデンサより成る放電着火時用イオン電流検知回路と直列に接続する充電電圧制御用ツェナーダイオードとイオン電流検出電源用コンデンより成る無放電着火時追加用イオン電流検知回路を、点火コイル側に設け、
前記放電着火時用通電信号よりも短い通電信号を繰り返す無放電着火時用通電信号を前記点火コイルのスイッチング素子に印加する事で点火コイルを昇圧トランスとして機能させることで点火コイルの二次側に発生する高周波二次電圧の周波数を通過させるが、放電着火時用通電信号に基づく着火サイクルの周波数は通過させないハイパスフィルタを、前記無放電着火時追加用イオン電流検知回路の充電電圧制御用ツェナーダイオードからイオン電流検出電源用コンデンサへの充電経路に設け、
前記点火プラグによる放電着火での燃焼時には、前記点火コイルへ放電着火時用通電信号を供給して二次側に発生させた高電圧がハイパスフィルタを通過できず、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサが充電されないことにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧のみによって、放電着火による内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出し、
前記点火プラグによる放電着火を必要としない燃焼時には、前記点火コイルへ無放電着火時用通電信号を供給し、点火コイルの二次側に発生させた高周波二次電圧が前記ハイパスフィルタを通して無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサを充電することにより、放電着火時用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧に、無放電着火時追加用イオン電流検知回路のイオン電流検出電源用コンデンサの充電電圧が追加されたイオン電流検出用電源電圧によって、放電着火を伴わない内燃機関の燃焼時に点火プラグの電極と燃焼室の間に発生するイオン電流を検出するようにしたことを特徴とする内燃機関用イオン電流検出装置。
A high voltage generated in the secondary coil when the switching element cuts off the primary current flowing in the primary coil based on the discharge ignition energization signal, which is a pulse of the required length, is supplied to the ignition plug of the combustion chamber for ignition. Connected to the secondary coil side of the ignition coil that flows the discharge current through the discharge gap of the plug,
An ion current detection power supply capacitor that is charged by a discharge current at the spark plug and retains an electric charge, and a charge voltage control Zener diode that limits the voltage applied to the ion current detection power supply capacitor, for discharge ignition Ion current detection circuit
Ion current generated between the electrode of the spark plug and the combustion chamber during combustion of the internal combustion engine by applying the charging voltage of the capacitor for the ion current detection power source charged by the discharge current of the spark plug to the spark plug after discharge In the internal combustion engine ion current detection device for detecting the combustion state of the internal combustion engine,
A charge voltage control Zener diode connected in series with an ion current detection circuit for discharge ignition consisting of the Zener diode for charge voltage control and the capacitor for ion current detection power supply and a non-discharge ignition added consisting of a capacitor for ion current detection power supply connected in series An ion current detection circuit is provided on the ignition coil side,
By applying a non-discharge ignition energization signal, which repeats an energization signal shorter than the discharge ignition energization signal, to the switching element of the ignition coil, the ignition coil functions as a step-up transformer on the secondary side of the ignition coil. A high-pass filter that passes the frequency of the generated high-frequency secondary voltage but does not pass the frequency of the ignition cycle based on the energization signal for discharge ignition, and a Zener diode for charging voltage control of the additional ion current detection circuit for non-discharge ignition Provided in the charging path from the ion current detection power supply capacitor to
During combustion by discharge ignition by the spark plug, a high voltage generated on the secondary side by supplying a discharge ignition energization signal to the ignition coil cannot pass through the high-pass filter, and additional ion current for non-discharge ignition When the capacitor for the ionic current detection power supply of the detection circuit is not charged, only the charging voltage of the capacitor for the ionic current detection power supply of the ionic current detection circuit for discharge ignition causes only the ignition plug electrode and combustion during combustion of the internal combustion engine due to discharge ignition. Detects the ion current generated between the chambers,
During combustion that does not require discharge ignition by the spark plug, a no-discharge ignition energization signal is supplied to the ignition coil, and the high-frequency secondary voltage generated on the secondary side of the ignition coil passes through the high-pass filter and discharges without discharge. By charging the ion current detection power supply capacitor of the additional ion current detection circuit, the charge current of the ion current detection power supply capacitor of the discharge ignition ion current detection circuit is added to the charge voltage of the non-discharge ignition additional ion current detection circuit. The ion current generated between the spark plug electrode and the combustion chamber during combustion of the internal combustion engine without discharge ignition is detected by the ion current detection power supply voltage to which the charging voltage of the ion current detection power supply capacitor is added. An ionic current detection device for an internal combustion engine, characterized in that
JP2011271908A 2011-12-13 2011-12-13 Ion current detection device for internal combustion engine Expired - Fee Related JP5854380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271908A JP5854380B2 (en) 2011-12-13 2011-12-13 Ion current detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271908A JP5854380B2 (en) 2011-12-13 2011-12-13 Ion current detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013124545A true JP2013124545A (en) 2013-06-24
JP5854380B2 JP5854380B2 (en) 2016-02-09

Family

ID=48775982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271908A Expired - Fee Related JP5854380B2 (en) 2011-12-13 2011-12-13 Ion current detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5854380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125896A (en) * 2012-12-25 2014-07-07 Hitachi Automotive Systems Hanshin Ltd Ion current detection device for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194367A (en) * 1990-11-27 1992-07-14 Mitsubishi Electric Corp Ionic current detector
JP2003120493A (en) * 2001-10-16 2003-04-23 Honda Motor Co Ltd Misfire detector of internal combustion engine
JP2008248832A (en) * 2007-03-30 2008-10-16 Daihatsu Motor Co Ltd Ion current detection method for gasoline engine
JP2008248831A (en) * 2007-03-30 2008-10-16 Daihatsu Motor Co Ltd Ion current detection method for gasoline engine
JP2008267336A (en) * 2007-04-24 2008-11-06 Diamond Electric Mfg Co Ltd Combustion detection device for internal combustion engine
JP2009203864A (en) * 2008-02-27 2009-09-10 Nippon Soken Inc Combustion state detection device and ignition control system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194367A (en) * 1990-11-27 1992-07-14 Mitsubishi Electric Corp Ionic current detector
JP2003120493A (en) * 2001-10-16 2003-04-23 Honda Motor Co Ltd Misfire detector of internal combustion engine
JP2008248832A (en) * 2007-03-30 2008-10-16 Daihatsu Motor Co Ltd Ion current detection method for gasoline engine
JP2008248831A (en) * 2007-03-30 2008-10-16 Daihatsu Motor Co Ltd Ion current detection method for gasoline engine
WO2008126508A1 (en) * 2007-03-30 2008-10-23 Daihatsu Motor Co., Ltd. Ion current detection method of gasoline engine
JP2008267336A (en) * 2007-04-24 2008-11-06 Diamond Electric Mfg Co Ltd Combustion detection device for internal combustion engine
JP2009203864A (en) * 2008-02-27 2009-09-10 Nippon Soken Inc Combustion state detection device and ignition control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125896A (en) * 2012-12-25 2014-07-07 Hitachi Automotive Systems Hanshin Ltd Ion current detection device for internal combustion engine

Also Published As

Publication number Publication date
JP5854380B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
US10190564B2 (en) Method for actuating a spark gap
CN105917112B (en) Method for the resonant frequency detection in corona ignition
JP6832911B2 (en) Electronic ignition system for internal combustion engine and driving method of the electronic ignition system
JP6313773B2 (en) Plasma ignition device for internal combustion engine
CA2584628C (en) Triggered pulsed ignition system and method
US10844825B2 (en) Method and apparatus to control an ignition system
CN103597202A (en) System and method for controlling arc formation in a corona discharge ignition system
JP2015529774A (en) Ignition device for internal combustion engine
US20150330353A1 (en) Ignition System Including a Measurement Device for Providing Measurement Signals to a Combustion Engine's Control System
CN105579701B (en) Method and apparatus for ignition gas fuel mixture
JP2015529775A (en) Ignition device for internal combustion engine
JP6461281B1 (en) Ignition device
WO2019198119A1 (en) Ignition device for internal combustion engine
JP5854380B2 (en) Ion current detection device for internal combustion engine
JP5253144B2 (en) Ignition device for internal combustion engine
JP5773239B2 (en) Ion current detection device for internal combustion engine
JP2018526568A (en) Spark plug coil ionization detector by shorting primary inductance
CN107228040B (en) Capacitive ignition system with ion sensing and AC ringing suppression
JP2017160879A (en) High-frequency discharge ignition device
JP6824194B2 (en) Electronic ignition system for internal combustion engine and control method of the electronic ignition system
JP2007309098A (en) Ignition coil for internal combustion engine
JP5154371B2 (en) Ion current detector
RU2342558C1 (en) Electrospark ignition device
RU152101U1 (en) CAPACITOR-TYRISTOR IGNITION MODULE FOR INTERNAL COMBUSTION ENGINES WITH BUILT-IN RESEARCH AND FUNCTIONING CONTROLS
JP2010255445A (en) Ignition control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5854380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees