JP2013122425A - Radiation monitor and method of monitoring radiation dose - Google Patents

Radiation monitor and method of monitoring radiation dose Download PDF

Info

Publication number
JP2013122425A
JP2013122425A JP2011271324A JP2011271324A JP2013122425A JP 2013122425 A JP2013122425 A JP 2013122425A JP 2011271324 A JP2011271324 A JP 2011271324A JP 2011271324 A JP2011271324 A JP 2011271324A JP 2013122425 A JP2013122425 A JP 2013122425A
Authority
JP
Japan
Prior art keywords
light
radiation
radiation monitor
detector
stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011271324A
Other languages
Japanese (ja)
Other versions
JP6012171B2 (en
Inventor
Takahiro Tadokoro
孝広 田所
Hiroshi Kitaguchi
博司 北口
Katsunobu Ueno
克宜 上野
Akihisa Kaihara
明久 海原
Hitoshi Kuwabara
均 桑原
Yoshinobu Sakakibara
吉伸 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011271324A priority Critical patent/JP6012171B2/en
Publication of JP2013122425A publication Critical patent/JP2013122425A/en
Application granted granted Critical
Publication of JP6012171B2 publication Critical patent/JP6012171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radiation monitor in a nuclear power plant, especially a radiation monitor suitable for measurement in a wide range.SOLUTION: Plural radiation monitoring detectors including radiation light-emitting elements having different excitation or emission wavelengths are optically coupled in series using optical fibers. One end of the detectors optically coupled in series is optically coupled with a light source on which light with plural wavelengths can be incident. The other end is optically coupled with a measuring device that measures the intensity of light of each wavelength. An arithmetic device specifies a radiation monitoring detector among the plural detectors and obtains a radiation dose rate of the specified detector, on the basis of the intensity of light of each excitation and emission wavelength. In another embodiment, a light reflector or the like is coupled with one end of radiation monitoring detectors optically coupled in series in order to reflect light. The other end is optically branched. The branched end is optically coupled with a light source on which light of plural wavelengths can be incident and the other end is optically coupled with a measuring device that measures the intensity of light of each wavelength.

Description

本発明は、原子力発電所等における放射線モニタに係り、特に、広範囲での測定に好適な放射線モニタ及び放射線量をモニタする方法に関する。   The present invention relates to a radiation monitor in a nuclear power plant or the like, and more particularly to a radiation monitor suitable for measurement over a wide range and a method for monitoring a radiation dose.

従来、原子力発電所における放射線モニタは、シンチレーション検出器または半導体検出器を使用している。シンチレーション検出器は、放射線が入射すると発光するシンチレーション素子を用いており、検出器の設置位置に検出器用の高圧電源及び前置増幅器用の電源を供給する必要があった。半導体検出器においても、半導体素子にバイアス電圧を印加する必要があり、シンチレーション検出器と同様に前置増幅器が必要であることから、検出器の設置位置に高圧電源及び前置増幅器用の電源を供給する必要があった。それゆえ、検出器の設置位置に、高圧印加用及び前置増幅器用の電源ケーブル、及び信号ケーブルを敷設する必要があり、放射線強度分布を測定するために複数の検出器を設置した場合、多数本のケーブルを敷設する必要があった。   Conventionally, radiation monitors in nuclear power plants use scintillation detectors or semiconductor detectors. The scintillation detector uses a scintillation element that emits light when radiation is incident, and it is necessary to supply a high voltage power source for the detector and a power source for the preamplifier to the installation position of the detector. Also in the semiconductor detector, it is necessary to apply a bias voltage to the semiconductor element, and since a preamplifier is necessary like the scintillation detector, a high voltage power source and a power source for the preamplifier are installed at the detector installation position. There was a need to supply. Therefore, it is necessary to lay the power cable for high voltage application and preamplifier and the signal cable at the installation position of the detector, and when multiple detectors are installed to measure the radiation intensity distribution, many There was a need to lay a cable of books.

高圧印加用及び前置増幅器用の電源ケーブルを不要とする放射線計測装置としては、シンチレーション光を光ファイバで伝送して測定する装置が、特許文献1、特許文献2等に示されている。特許文献1は、シンチレーションファイバを用いるものであり、特許文献2は、複数のシンチレータを伝送用光ファイバの途中に設ける構成のものである。これらは、ファイバ両端のシンチレーション光到達時間差からシンチレーション位置を決定し、各位置での発光頻度から放射線強度分布を求めるものである。   As a radiation measurement apparatus that does not require a power cable for applying a high voltage and a preamplifier, apparatuses that transmit and measure scintillation light through an optical fiber are disclosed in Patent Document 1, Patent Document 2, and the like. Patent Document 1 uses a scintillation fiber, and Patent Document 2 has a configuration in which a plurality of scintillators are provided in the middle of a transmission optical fiber. These determine the scintillation position from the difference in arrival time of the scintillation light at both ends of the fiber, and obtain the radiation intensity distribution from the light emission frequency at each position.

シンチレーションファイバを用いる構成の装置は、シンチレーションファイバの光伝送損失が大きく、数10m以上の伝送が困難である。したがって、長い伝送距離(〜100m以上)を必要とする放射線強度分布を測定する装置の構築はできない。また、一つの伝送用光ファイバの途中に複数のシンチレータを設けた場合、シンチレータ内外の散乱等による散乱・反射成分の影響でシンチレーション光到達時間差によるシンチレーション位置の決定には、不確実性を伴う。   A device using a scintillation fiber has a large optical transmission loss of the scintillation fiber, and it is difficult to transmit several tens of meters or more. Therefore, it is impossible to construct an apparatus for measuring a radiation intensity distribution that requires a long transmission distance (up to 100 m or more). In addition, when a plurality of scintillators are provided in the middle of one transmission optical fiber, the determination of the scintillation position due to the difference in arrival time of the scintillation light is accompanied by uncertainties due to the influence of scattering and reflection components due to scattering inside and outside the scintillator.

高圧印加用及び前置増幅器用の電源ケーブルを不要とする放射線計測装置としては、他に、光輝尽性OSL(Optically Stimulated Luminescence)結晶と光ファイバを組合せた装置が、特許文献3及び特許文献4に示されている。特許文献3は、刺激光の入射から放射光の光電子変換素子への到達時までの時間から発光位置を特定するものであるが、シンチレータの場合と同様に、発光位置での散乱等による散乱・反射成分の影響で光到達時間差による発光位置の決定には、不確実性を伴う。特許文献4は、光ファイバの先端にOSL結晶を設けた光ファイバにレーザ光を照射し、OSL結晶から放出するOSL光を光ファイバを介して受光計測する装置であるが、一つの検出器に対して光ファイバケーブルを二本使用する必要があることから、放射線強度分布を測定するために複数の検出器を設置した場合、多数本の光ファイバケーブルを敷設する必要があるという問題点がある。   As a radiation measurement apparatus that does not require a power cable for applying a high voltage and a preamplifier, there are other apparatuses that combine a photoluminescent OSL (Optically Stimulated Luminescence) crystal and an optical fiber. Is shown in Patent Document 3 specifies the light emission position from the time from the arrival of the stimulation light to the time when the radiated light reaches the photoelectric conversion element. As in the case of the scintillator, scattering / The determination of the light emission position based on the light arrival time difference due to the influence of the reflection component involves uncertainty. Patent Document 4 is a device that irradiates an optical fiber having an OSL crystal at the tip of the optical fiber with laser light, and receives and measures the OSL light emitted from the OSL crystal through the optical fiber. On the other hand, since it is necessary to use two optical fiber cables, there is a problem that when a plurality of detectors are installed to measure the radiation intensity distribution, it is necessary to lay many optical fiber cables. .

特開平5−249247号公報JP-A-5-249247 特開平6−258446号公報JP-A-6-258446 特許第2891198号公報Japanese Patent No. 2891198 特許第3591275号公報Japanese Patent No. 3591275

本発明の目的は、原子力発電所における放射線モニタに係り、特に広範囲での測定に好適な放射線モニタを提供することである。   An object of the present invention relates to a radiation monitor in a nuclear power plant, and particularly to provide a radiation monitor suitable for measurement in a wide range.

上記の目的を達成するため、本発明に係る放射線モニタは、刺激又は発光波長が異なる放射線発光素子をそれぞれ有する複数の放射線モニタ用検出器が光学的に直列に接続された放射線モニタ用検出器の列と、前記列の一端に光学的に接続された、複数の波長の光を入射できる光源と、前記列の他の一端に光学的に接続された、波長毎の光の強度を測定する測定装置と、及び刺激及び発光波長の波長毎の光の強度から前記複数の放射線モニタ用検出器の中の特定された検出器における放射線の線量率を求める演算装置と、を有することを特徴とする放射線モニタ。   In order to achieve the above object, a radiation monitor according to the present invention is a radiation monitor detector in which a plurality of radiation monitor detectors each having radiation emitting elements having different stimulation or emission wavelengths are optically connected in series. A row, a light source optically connected to one end of the row and capable of receiving light of multiple wavelengths, and a measurement optically connected to the other end of the row to measure the intensity of light per wavelength And an arithmetic unit for obtaining a dose rate of radiation in the specified detector among the plurality of detectors for radiation monitoring from the intensity of light for each wavelength of stimulation and emission wavelengths. Radiation monitor.

本発明に係る放射線量をモニタする方法は、刺激又は発光波長が異なる放射線発光素子をそれぞれ有する複数の放射線モニタ用検出器が光学的に直列に接続された放射線モニタ用検出器の列を用意するステップと、前記複数の放射線モニタ用検出器の中から、モニタする放射線モニタ用検出器に応じた刺激光を入射するステップと、前記刺激光の照射中に発光した発光波長の光の強度を測定するステップと、前記刺激光の前回の照射終了時刻から今回の照射開始時刻までの時間を測定するステップと、前記モニタする放射線モニタ用検出器について測定された前記光の強度と前記時間から、前記検出器における線量率を導出するステップと、を含むことを特徴とする。   The method for monitoring radiation dose according to the present invention provides a row of radiation monitor detectors in which a plurality of radiation monitor detectors each having a radiation emitting element having a different stimulus or emission wavelength are optically connected in series. Measuring the intensity of the light having the emission wavelength emitted during irradiation of the stimulating light, and entering the stimulating light according to the radiation monitor detector to be monitored from the plurality of radiation monitoring detectors From the step of measuring the time from the previous irradiation end time of the stimulus light to the current irradiation start time, the intensity of the light measured for the radiation monitor detector to be monitored, and the time, Deriving a dose rate at the detector.

本発明によれば、多数本のケーブルを敷設する必要がなく、長い伝送距離を必要とする放射線強度分布を測定する際にも対応可能であるので、例えば原子力発電所における広範囲の放射線モニタを測定することができる。   According to the present invention, it is not necessary to lay a large number of cables and it is possible to measure a radiation intensity distribution that requires a long transmission distance. For example, a wide range of radiation monitors in a nuclear power plant can be measured. can do.

本発明の実施例1の放射線モニタの構成を示す。1 shows a configuration of a radiation monitor according to a first embodiment of the present invention. 本発明の実施例2の放射線モニタの構成を示す。The structure of the radiation monitor of Example 2 of this invention is shown. 本発明の実施例3の放射線モニタの構成を示す。The structure of the radiation monitor of Example 3 of this invention is shown. 本発明の実施例4の放射線モニタの構成を示す。The structure of the radiation monitor of Example 4 of this invention is shown. 本発明の実施例1から4に用いられる放射線モニタ用検出器の一例の構成を示す。The structure of an example of the detector for radiation monitors used for Examples 1 to 4 of the present invention is shown. 本発明の実施例1から4に用いられる放射線モニタ用検出器の他例の構成を示す。The structure of the other example of the detector for a radiation monitor used for Example 1-4 of this invention is shown. 本発明の実施例2、4に用いられる放射線モニタ用検出器の一例の構成を示す。The structure of an example of the detector for radiation monitors used for Example 2, 4 of this invention is shown. 本発明の実施例2、4に用いられる放射線モニタ用検出器の他例の構成を示す。The structure of the other example of the detector for radiation monitors used for Example 2, 4 of this invention is shown. 本発明に係る計数率の時刻変化の一例を示す。An example of the time change of the count rate which concerns on this invention is shown. 本発明の実施例5に係る線量率測定手順の一例を示す。An example of the dose rate measurement procedure which concerns on Example 5 of this invention is shown. 本発明の実施例5に係る線量率測定手順の他例を示す。The other example of the dose rate measurement procedure which concerns on Example 5 of this invention is shown. 本発明の実施例5に係る波高値スペクトルの一例を示す。An example of the peak value spectrum which concerns on Example 5 of this invention is shown. 本発明に係る検出素子の刺激波長と発光波長の一例を示す。An example of the stimulation wavelength and light emission wavelength of the detection element which concerns on this invention is shown.

刺激又は発光波長の異なる放射線発光素子を用いた複数の放射線モニタ用検出器を、光ファイバを用いて光学的に直列に接続し、光学的に直列に接続した一端を複数の波長の光を入射できる光源と光学的に接続し、他の一端を波長毎の光の強度を測定する測定装置と光学的に接続する。   Multiple radiation monitor detectors using radiation emitting elements with different stimuli or emission wavelengths are optically connected in series using optical fibers, and one end of the optically connected series is incident on multiple wavelengths. The other end is optically connected to a measuring device that measures the intensity of light for each wavelength.

測定対象位置の検出器を選定し、検出器に応じた刺激波長の光を照射する。検出器に照射した刺激光によって、検出器では検出素子に応じた特定の波長の光を発光する。発光した光は、光ファイバを通して波長毎の光の強度を測定する測定装置に入射する。測定装置は、入射した光の波高値を弁別するための分光フィルタ又は分光器を有し、検出素子に応じた特定の波長の光に弁別される。弁別された光は、光電子増倍管、増幅器及び多チャンネル波高分析器により、強度を測定される。光電子増倍管の代わりに、アバランシェフォトダイオード等の光-電子変換素子を用いてもよい。   Select the detector at the position to be measured, and irradiate the light of the stimulation wavelength according to the detector. The detector emits light having a specific wavelength corresponding to the detection element by the stimulation light applied to the detector. The emitted light is incident on a measuring device that measures the intensity of light for each wavelength through an optical fiber. The measuring device has a spectral filter or a spectroscope for discriminating the peak value of incident light, and is discriminated into light having a specific wavelength corresponding to the detection element. The discriminated light is measured for intensity by a photomultiplier tube, an amplifier, and a multichannel wave height analyzer. Instead of the photomultiplier tube, a photoelectric conversion element such as an avalanche photodiode may be used.

前回刺激光の照射を終了した時刻と、今回刺激光の照射を開始した時刻の差を測定時間とする。測定した光強度と、予め測定により求めた光強度と線量との関係のデータベース及び測定時間の情報を用いて線量率が導出する。検出器毎に線量率の測定を繰り返すことにより、線量率分布の時刻変化を導出する。高圧印加用及び前置増幅器用の電源ケーブルが不要で、複数の計測点を一本の光ケーブルで測定できることから、広範囲での測定に好適な放射線モニタを提供することができる。   The difference between the time when the last stimulation light irradiation ends and the time when the stimulation light irradiation starts this time is taken as the measurement time. The dose rate is derived using the measured light intensity, the database of the relationship between the light intensity and the dose obtained in advance by measurement, and information on the measurement time. The time change of the dose rate distribution is derived by repeating the measurement of the dose rate for each detector. Since a power cable for high voltage application and a preamplifier is not required and a plurality of measurement points can be measured with a single optical cable, a radiation monitor suitable for measurement over a wide range can be provided.

以下、本発明のいくつかの実施例を、図面を参照して説明する。
[実施例1]
図1は、本発明の好適な一つの実施形態である実施例1の放射線モニタの構成を示す。実施例1の放射線モニタは、図1に示すように、光ファイバ1を用いて、刺激及び発光波長の異なる放射線モニタ用検出器2aを光学的に直列に接続している。図13は、検出素子の刺激波長と発光波長の一例を示す。光学的に直列に接続した一端は、光スイッチ3と接続する。この光スイッチ3は、発光波長の異なる複数のレーザダイオード9とレーザダイオード9を駆動するレーザダイオードドライバ10に接続しており、データ収集制御用パソコン8の制御信号11によって、測定対象位置の放射線モニタ用検出器2aに刺激波長に対応する波長のレーザを放射線モニタ用検出器2aに照射するように制御する。
Several embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
FIG. 1 shows the configuration of a radiation monitor of Example 1, which is a preferred embodiment of the present invention. As shown in FIG. 1, the radiation monitor of the first embodiment uses optical fibers 1 to optically connect radiation monitor detectors 2 a having different stimulation and emission wavelengths in series. FIG. 13 shows an example of the stimulation wavelength and the emission wavelength of the detection element. One end optically connected in series is connected to the optical switch 3. The optical switch 3 is connected to a plurality of laser diodes 9 having different emission wavelengths and a laser diode driver 10 for driving the laser diode 9, and a radiation monitor at a measurement target position is controlled by a control signal 11 of a data collection control personal computer 8. The radiation detector 2a is controlled to irradiate the radiation detector 2a with a laser having a wavelength corresponding to the stimulation wavelength.

放射線モニタ用検出器2aに照射した刺激光によって、検出器内の検出素子から素子の発光波長に応じた特定の波長の光を発光する。これに対し、刺激波長は素子によって異なるように選択されているので、異なる刺激波長の検出素子が内部に設置してある放射線モニタ用検出器2aからは、発光されない。このように、刺激波長を選択することで、複数の放射線モニタ用検出器2aの中の任意の検出器を選択することができる。   With the stimulation light irradiated to the radiation monitor detector 2a, light having a specific wavelength corresponding to the emission wavelength of the element is emitted from the detection element in the detector. On the other hand, since the stimulation wavelength is selected to be different depending on the element, no light is emitted from the radiation monitor detector 2a in which detection elements having different stimulation wavelengths are installed. Thus, by selecting the stimulation wavelength, an arbitrary detector among the plurality of radiation monitor detectors 2a can be selected.

刺激光によって生成した発光と刺激光は、光ファイバ1を通して、光学的に直列につないだ複数の放射線モニタ用検出器2aの他の一端に設置された光スイッチ3によって振り分けられ、分光フィルタ4に入射する。異なる波長の光を通す複数の分光フィルタ4を並列に設置し、光スイッチ3に送ったデータ収集制御用パソコン8の制御信号11によって、測定対象位置の放射線モニタ用検出器2aの発光波長に対応する波長のみを選択的に透過する分光フィルタ4に、刺激光と発光した光が導かれる。   The emitted light and the stimulation light generated by the stimulation light are distributed by the optical switch 3 installed at the other end of the plurality of radiation monitor detectors 2a optically connected in series through the optical fiber 1, and are distributed to the spectral filter 4. Incident. Multiple spectral filters 4 that pass light of different wavelengths are installed in parallel, and correspond to the emission wavelength of the radiation monitor detector 2a at the measurement target position by the control signal 11 of the data collection control personal computer 8 sent to the optical switch 3 Stimulation light and emitted light are guided to the spectral filter 4 that selectively transmits only the wavelength to be emitted.

分光フィルタ4では、刺激光は透過しないことから発光した光のみが光測定系に導かれる。発光した光は、光電子増倍管5によって電気信号に変換され、増幅器6によって信号増幅された後、多チャンネル波高分析器7により強度を測定され、光強度のデータ12としてデータ収集制御用パソコン8で収集される。   Since the spectral filter 4 does not transmit the stimulation light, only the emitted light is guided to the light measurement system. The emitted light is converted into an electric signal by the photomultiplier tube 5, amplified by the amplifier 6, and then the intensity is measured by the multichannel wave height analyzer 7, and the data collection control personal computer 8 is obtained as the light intensity data 12. Collected in

前回刺激光の照射を終了した時刻と、今回刺激光の照射を開始した時刻の情報は、データ収集制御用パソコン8内に保存されており、その差を測定時間とする。また、予め測定により求めた光強度と線量との関係のデータベースも、データ収集制御用パソコン8内に保存されている。測定した光の強度、測定時間及び予め測定により求めた光強度と線量との関係のデータベースを用いて線量率を導出する。検出器毎に、上記の線量率の測定を繰返すことで、線量率分布の時刻変化を導出できる。高圧印加用及び前置増幅器用の電源ケーブルが不要で、複数の計測点を一本の光ケーブルで測定できることから、広範囲での測定に好適な放射線モニタを提供することができる。   Information on the time when the last irradiation of the stimulation light is completed and the time when the irradiation of the stimulation light is started this time is stored in the data collection control personal computer 8, and the difference between them is used as the measurement time. A database of the relationship between the light intensity and the dose obtained in advance by measurement is also stored in the data collection control personal computer 8. The dose rate is derived using a database of the relationship between the measured light intensity, the measurement time, and the relationship between the light intensity and the dose determined in advance. By repeating the measurement of the dose rate for each detector, the time change of the dose rate distribution can be derived. Since a power cable for high voltage application and a preamplifier is not required and a plurality of measurement points can be measured with a single optical cable, a radiation monitor suitable for measurement over a wide range can be provided.

[実施例2]
図2は、本発明の好適な一つの別の実施形態である実施例2の放射線モニタの構成を示す。実施例2では、基本的な構成は実施例1と同様であるが、光ファイバ1を用いて、刺激及び発光波長の異なる放射線モニタ用検出器2aを光学的に直列に接続した一端に、光反射体を設けた放射線モニタ用検出器2bを設置し、光学的に直列に接続した他の一端は、光カプラ19と接続することで、異なる構成となっている。
[Example 2]
FIG. 2 shows the configuration of the radiation monitor of Example 2, which is another preferred embodiment of the present invention. In the second embodiment, the basic configuration is the same as that of the first embodiment, but the optical fiber 1 is used to connect the radiation monitor detector 2a having different stimulation and emission wavelengths to one end optically connected in series. The radiation monitor detector 2b provided with the reflector is installed, and the other end optically connected in series is connected to the optical coupler 19 to have a different configuration.

光カプラ19によって分岐した一方を、光スイッチ3と接続する。光スイッチ3は、発光波長の異なる複数のレーザダイオード9とレーザダイオード9を駆動するレーザダイオードドライバ10に接続しており、データ収集制御用パソコン8の制御信号11によって、測定対象位置の放射線モニタ用検出器2a又は2bの刺激波長に対応する波長のレーザを放射線モニタ用検出器2a又は2bに照射するように制御する。   One side branched by the optical coupler 19 is connected to the optical switch 3. The optical switch 3 is connected to a plurality of laser diodes 9 having different emission wavelengths and a laser diode driver 10 for driving the laser diode 9, and is used for radiation monitoring at a measurement target position by a control signal 11 of a data collection control personal computer 8. Control is performed to irradiate the radiation monitor detector 2a or 2b with a laser having a wavelength corresponding to the stimulation wavelength of the detector 2a or 2b.

光カプラ19によって分岐したもう一方を通って、刺激光によって生成した発光と刺激光が光スイッチ3によって振り分けられたのち、分光フィルタ4に入射する。異なる波長の光を通す複数の分光フィルタ4を並列に設置しており、光スイッチ3に送ったデータ収集制御用パソコン8の制御信号11によって、測定対象位置の放射線モニタ用検出器2aの発光波長に対応する波長のみを選択的に透過する分光フィルタ4に刺激光と発光した光が導かれる。分光フィルタ4では、刺激光は透過しないことから発光した光のみが光測定系に導かれる。   The light emitted by the stimulation light and the stimulation light are distributed by the optical switch 3 through the other branched by the optical coupler 19 and then enter the spectral filter 4. A plurality of spectral filters 4 that pass light of different wavelengths are installed in parallel, and the emission wavelength of the radiation monitor detector 2a at the measurement target position is determined by the control signal 11 of the data collection control personal computer 8 sent to the optical switch 3. Stimulation light and emitted light are guided to the spectral filter 4 that selectively transmits only the wavelength corresponding to. Since the spectral filter 4 does not transmit the stimulation light, only the emitted light is guided to the light measurement system.

発光した光は、光電子増倍管5によって電気信号に変換され、増幅器6によって信号増幅された後、多チャンネル波高分析器7により強度を測定され、光強度のデータ12としてデータ収集制御用パソコン8で収集される。前回刺激光の照射を終了した時刻と、今回刺激光の照射を開始した時刻の情報は、データ収集制御用パソコン8内に保存されており、その差を測定時間とする。また、予め測定により求めた光強度と線量との関係のデータベースも、データ収集制御用パソコン8内に保存されている。   The emitted light is converted into an electric signal by the photomultiplier tube 5, amplified by the amplifier 6, and then the intensity is measured by the multichannel wave height analyzer 7, and the data collection control personal computer 8 is obtained as the light intensity data 12. Collected in Information on the time when the last irradiation of the stimulation light is completed and the time when the irradiation of the stimulation light is started this time is stored in the data collection control personal computer 8, and the difference between them is used as the measurement time. A database of the relationship between the light intensity and the dose obtained in advance by measurement is also stored in the data collection control personal computer 8.

測定した光の強度、測定時間及び予め測定により求めた光強度と線量との関係のデータベースを用いて線量率を導出する。検出器毎に、上記線量率の測定を繰返すことで、線量率分布の時刻変化を導出できる。高圧印加用及び前置増幅器用の電源ケーブルが不要で、複数の計測点を一本の光ケーブルで測定できることから、広範囲での測定に好適な放射線モニタを提供できる。   The dose rate is derived using a database of the relationship between the measured light intensity, the measurement time, and the relationship between the light intensity and the dose determined in advance. By repeating the measurement of the dose rate for each detector, the time change of the dose rate distribution can be derived. Since a power cable for high voltage application and a preamplifier is not required and a plurality of measurement points can be measured with a single optical cable, a radiation monitor suitable for measurement over a wide range can be provided.

[実施例3]
図3は、本発明の好適な一つの別の実施形態である実施例3の放射線モニタの構成を示す。実施例3では、基本的な構成は実施例1と同様であるが、光スイッチ3と分光フィルタ4の替りに分光器20を設置し、データ収集制御用パソコン8の制御信号11によって、測定対象位置の放射線モニタ用検出器2aの発光波長に対応する波長のみを選択的に測定する。
[Example 3]
FIG. 3 shows the configuration of the radiation monitor of Example 3, which is another preferred embodiment of the present invention. In the third embodiment, the basic configuration is the same as that of the first embodiment, but a spectroscope 20 is installed instead of the optical switch 3 and the spectral filter 4, and the measurement target is determined by the control signal 11 of the data collection control personal computer 8. Only the wavelength corresponding to the emission wavelength of the position radiation monitor detector 2a is selectively measured.

[実施例4]
図4は、本発明の好適な一つの別の実施形態である実施例4の放射線モニタの構成を示す。実施例4では、基本的な構成は実施例3と同様であるが、光ファイバ1を用いて、刺激及び発光波長の異なる放射線モニタ用検出器2aを光学的に直列に接続した一端に、光反射体を設けた放射線モニタ用検出器2bを設置し、光学的に直列に接続した他の一端は、光カプラ19と接続することで異なる構成となっている。
[Example 4]
FIG. 4 shows the configuration of the radiation monitor of Example 4, which is another preferred embodiment of the present invention. In the fourth embodiment, the basic configuration is the same as that of the third embodiment, but the optical fiber 1 is used to connect a radiation monitor detector 2a having different stimulation and emission wavelengths optically in series to one end. The radiation monitor detector 2b provided with the reflector is installed, and the other end optically connected in series has a different configuration by connecting to the optical coupler 19.

図5及び図6は、上記の実施例1から4に用いられる放射線モニタ用検出器の一例の構成を示す。図5に示す放射線モニタ用検出器2aは、放射線モニタ用検出器ハウジング13、光レンズ14、検出素子15、検出素子固定用具16で構成される。光ファイバ1より入射した刺激光は、検出器内部に設置した光レンズ14で検出器内部の断面積程度の大きさに拡げられる。検出素子15は、検出素子固定用具16によって検出器内部に固定されており、その断面積は光の断面積と比較して十分小さい面積になっている。検出素子15に照射された刺激光によって、検出素子15が発光する。発光した光と検出素子部分以外を通った刺激光を、光レンズ14で縮小して光ファイバ1に入射する。   5 and 6 show a configuration of an example of the radiation monitor detector used in the first to fourth embodiments. The radiation monitor detector 2 a shown in FIG. 5 includes a radiation monitor detector housing 13, an optical lens 14, a detection element 15, and a detection element fixing tool 16. Stimulation light incident from the optical fiber 1 is expanded to a size approximately equal to the cross-sectional area inside the detector by the optical lens 14 installed inside the detector. The detection element 15 is fixed inside the detector by a detection element fixing tool 16, and its cross-sectional area is sufficiently smaller than the cross-sectional area of light. The detection element 15 emits light by the stimulation light irradiated to the detection element 15. The emitted light and the stimulation light that has passed through the part other than the detection element portion are reduced by the optical lens 14 and incident on the optical fiber 1.

また、図6に示すように、放射線モニタ用検出器内部に光レンズ14を設置せず、光ファイバ1の接続位置を除いた場所に光反射体18を設置するようにしてもよい。   In addition, as shown in FIG. 6, the light reflector 18 may be installed in a place other than the connection position of the optical fiber 1 without installing the optical lens 14 inside the radiation monitor detector.

図7及び図8は、上記の実施例2、4に用いられる放射線モニタ用検出器2bの一例の構成を示す。図7に示された放射線モニタ用検出器2bは、放射線モニタ用検出器ハウジング13、光レンズ14、検出素子15、光反射体18で構成される。光ファイバ1より入射した刺激光は、検出器内部に設置した光レンズ14で検出器内部の断面積程度の大きさに拡げられる。検出素子15は、光反射体18の表面に固定されており、その断面積は光の断面積と比較して十分小さい面積になっている。   7 and 8 show an exemplary configuration of the radiation monitor detector 2b used in the second and fourth embodiments. The radiation monitor detector 2 b shown in FIG. 7 includes a radiation monitor detector housing 13, a light lens 14, a detection element 15, and a light reflector 18. Stimulation light incident from the optical fiber 1 is expanded to a size approximately equal to the cross-sectional area inside the detector by the optical lens 14 installed inside the detector. The detection element 15 is fixed to the surface of the light reflector 18, and its cross-sectional area is sufficiently smaller than the cross-sectional area of light.

検出素子15に照射された刺激光によって、検出素子15が発光する。発光した光と検出素子部分以外を通った刺激光は、光が入射した反対側に設置した光反射体により反射され、光レンズ14で縮小して光ファイバ1に入射する。   The detection element 15 emits light by the stimulation light irradiated to the detection element 15. The emitted light and the stimulation light that has passed through other than the detection element portion are reflected by a light reflector disposed on the opposite side of the incident light, and are reduced by the optical lens 14 and incident on the optical fiber 1.

図8に示すように、放射線モニタ用検出器内部に光レンズ14を設置せず、光ファイバ1の接続位置を除いた場所に光反射体18を設置するようにしてもよい。   As shown in FIG. 8, the light reflector 18 may be installed at a place other than the connection position of the optical fiber 1 without installing the optical lens 14 inside the radiation monitor detector.

[実施例5]
本発明に係る放射線量をモニタする方法について、その放射線線量率測定手順を、図9の計数率の時刻変化、図10及び図11の線量率測定手順、及び図12の波高値スペクトルに基づいて説明する。放射線モニタ用検出器2a及び2bに対して、それぞれ検出器の刺激波長に応じた波長の光を照射して初期化する。初期化した時刻から測定開始となり、各検出器に対してそれぞれの刺激波長に対応する波長の光を照射するまでの時間が測定時間となる。刺激波長の光を照射している間が読出し時間であり、各検出器は発光波長に対応する光を発光することから、その波長の光の強度を測定する。
[Example 5]
Regarding the method for monitoring radiation dose according to the present invention, the radiation dose rate measurement procedure is based on the time change of the count rate in FIG. 9, the dose rate measurement procedure in FIGS. 10 and 11, and the peak value spectrum in FIG. explain. The radiation monitor detectors 2a and 2b are each initialized by irradiating light having a wavelength corresponding to the stimulation wavelength of the detector. The measurement starts from the time of initialization, and the time until each detector is irradiated with light having a wavelength corresponding to each stimulation wavelength is the measurement time. The readout time is during irradiation with light of the stimulation wavelength, and each detector emits light corresponding to the emission wavelength, and thus the intensity of light of that wavelength is measured.

図12は、多チャンネル波高分析器7で測定したスペクトルの一例を示す。波高値の低いところでの計数には、ノイズが含まれている可能性があることから、一定の波高値を下限値として下限値以上を計数する。図9は、下限値以上の計数率の時間変化の一例を示す。刺激波長の光を照射し、検出器を初期化し、初期化を終了した時刻から、刺激波長の光を次に照射開始するまでの時間を測定時間とする。測定時間の後に、刺激波長の光を照射する時間が読出し時間となる。   FIG. 12 shows an example of a spectrum measured by the multichannel wave height analyzer 7. Since counting at a low peak value may include noise, a certain peak value is set as a lower limit value, and the lower limit value or more is counted. FIG. 9 shows an example of a temporal change in the count rate equal to or greater than the lower limit value. The light from the stimulation wavelength is irradiated, the detector is initialized, and the time from the end of the initialization to the next start of irradiation with the stimulation wavelength light is defined as the measurement time. After the measurement time, the time for irradiating light of the stimulation wavelength becomes the readout time.

読出し時間中に、測定された光の計数の積分値を光の強度の測定値とする。この計数と線量が一対一で対応できることから、既知の線量と計数との関係のデータベースを予め作成しておき、測定時間と計数値から、既知の線量と計数との関係のデータベースを用いて線量率を導出する。検出器を設定し、設定した検出器に応じた刺激波長の光を照射し、測定を開始し、また、刺激波長の光を照射し、照射中に発光波長の光を計測し、測定時間と計数値から既知の線量と計数との関係のデータベースを用いて線量率を導出することを繰り返すことで、各位置での線量率の時間変化を測定することができ、線量率分布の時間変化を測定することができる。   During the readout time, the integrated value of the measured light count is taken as the measured light intensity. Since this count and dose can be handled on a one-to-one basis, a database of the relationship between the known dose and the count is created in advance, and the dose is determined using the database of the relationship between the known dose and the count from the measurement time and the count value. Deriving rate. Set the detector, irradiate the light of the stimulation wavelength according to the set detector, start the measurement, irradiate the light of the stimulation wavelength, measure the light of the emission wavelength during the irradiation, By repeatedly deriving the dose rate from the count value using a database of the relationship between the known dose and the count, the time change of the dose rate at each position can be measured, and the time change of the dose rate distribution can be measured. Can be measured.

1…光ファイバ、2a…放射線モニタ用検出器、2b…放射線モニタ用検出器、3…光スイッチ、4…分光フィルタ、5…光電子増倍管、6…増幅器、7…多チャンネル波高分析器、8…データ収集制御用パソコン、9…レーザダイオード、10…レーザダイオード用ドライバ、11…制御信号、12…データ、13…放射線モニタ用検出器のハウジング、14…光レンズ、15…検出素子、16…検出素子固定用具、17…刺激光及び検出素子からの発光、18…光反射体、19…光カプラ、20…分光器、21…アバランシェフォトダイオード DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2a ... Radiation monitor detector, 2b ... Radiation monitor detector, 3 ... Optical switch, 4 ... Spectral filter, 5 ... Photomultiplier tube, 6 ... Amplifier, 7 ... Multichannel wave height analyzer, 8 ... PC for data collection control, 9 ... Laser diode, 10 ... Driver for laser diode, 11 ... Control signal, 12 ... Data, 13 ... Housing for detector for radiation monitor, 14 ... Optical lens, 15 ... Detector element, 16 ... Detection element fixing tool, 17 ... Stimulation light and light emission from detection element, 18 ... Light reflector, 19 ... Optical coupler, 20 ... Spectroscope, 21 ... Avalanche photodiode

Claims (8)

刺激又は発光波長が異なる放射線発光素子をそれぞれ有する複数の放射線モニタ用検出器が光学的に直列に接続された放射線モニタ用検出器の列と、
前記列の一端に光学的に接続された、複数の波長の光を入射できる光源と、
前記列の他の一端に光学的に接続された、波長毎の光の強度を測定する測定装置と、及び
刺激及び発光波長の波長毎の光の強度から前記複数の放射線モニタ用検出器の中の特定された検出器における放射線の線量率を求める演算装置と、
を有することを特徴とする放射線モニタ。
A row of radiation monitor detectors optically connected in series with a plurality of radiation monitor detectors each having radiation emitting elements of different stimulation or emission wavelengths;
A light source optically connected to one end of the row and capable of receiving light of a plurality of wavelengths;
A measuring device optically connected to the other end of the row for measuring the intensity of light for each wavelength; and the plurality of detectors for radiation monitoring from the intensity of light for each wavelength of the stimulus and emission wavelengths An arithmetic unit for determining a radiation dose rate in the specified detector of
A radiation monitor comprising:
刺激又は発光波長が異なる放射線発光素子をそれぞれ有する複数の放射線モニタ用検出器が光学的に直列に接続された放射線モニタ用検出器の列と、
前記列の一端に光学的に接続された光反射体と、
前記列の他の一端で光学的に分岐され、該分岐された一端に光学的に接続された複数の波長の光を入射できる光源と、該分岐された他端に光学的に接続された波長毎の光の強度を測定する測定装置と、
刺激及び発光波長の波長毎の光の強度から前記複数の放射線モニタ用検出器の中の特定された検出器における放射線の線量率を求める演算装置と、
を有することを特徴とする放射線モニタ。
A row of radiation monitor detectors optically connected in series with a plurality of radiation monitor detectors each having radiation emitting elements of different stimulation or emission wavelengths;
A light reflector optically connected to one end of the row;
A light source that is optically branched at the other end of the row and is capable of receiving light of a plurality of wavelengths that is optically connected to the branched one end, and a wavelength that is optically connected to the branched other end A measuring device for measuring the intensity of each light;
A calculation device for determining a radiation dose rate in a specified detector among the plurality of detectors for radiation monitoring from the intensity of light for each wavelength of stimulation and emission wavelengths;
A radiation monitor comprising:
請求項1又は2に記載の放射線モニタにおいて、
前記放射線モニタ用検出器が光レンズを備え、該光レンズは、前記光ファイバから入射される刺激光を拡大して前記放射線発光素子に照射し、あるいは前記放射線発光素子から発光された光を縮小して前記光ファイバに入射する、ことを特徴とする放射線モニタ。
The radiation monitor according to claim 1 or 2,
The radiation monitor detector includes an optical lens, and the optical lens expands the stimulation light incident from the optical fiber and irradiates the radiation light emitting element, or reduces the light emitted from the radiation light emitting element. The radiation monitor is incident on the optical fiber.
請求項1又は2に記載の放射線モニタにおいて、
前記放射線モニタ用検出器に、前記光ファイバがそれぞれ光学的に接続された各側に、光反射体を備えることを特徴とする放射線モニタ。
The radiation monitor according to claim 1 or 2,
A radiation monitor comprising a light reflector on each side where the optical fiber is optically connected to the radiation monitor detector.
請求項1又は2に記載の放射線モニタにおいて、
前記放射線モニタ用検出器の一つは、前記光ファイバから入射される刺激光を拡大する光レンズ、及び前記刺激光が入射する側の反対側に、光反射体を有することを特徴とする放射線モニタ。
The radiation monitor according to claim 1 or 2,
One of the radiation monitor detectors includes a light lens for enlarging stimulation light incident from the optical fiber, and a light reflector on a side opposite to the side on which the stimulation light is incident. monitor.
請求項1又は2に記載の放射線モニタにおいて、
前記放射線モニタ用検出器の一つは、前記光ファイバが光学的に接続された側、及び該側と反対側に、それぞれ光反射体を有することを特徴とする放射線モニタ。
The radiation monitor according to claim 1 or 2,
One of the radiation monitor detectors has a light reflector on the side where the optical fiber is optically connected and on the side opposite to the optical fiber, respectively.
刺激又は発光波長が異なる放射線発光素子をそれぞれ有する複数の放射線モニタ用検出器が光学的に直列に接続された放射線モニタ用検出器の列を用意するステップと、
前記複数の放射線モニタ用検出器の中から、モニタする放射線モニタ用検出器に応じた刺激光を入射するステップと、
前記刺激光の照射中に発光した発光波長の光の強度を測定するステップと、
前記刺激光の前回の照射終了時刻から今回の照射開始時刻までの時間を測定するステップと、
前記モニタする放射線モニタ用検出器について測定された前記光の強度と前記時間から、前記検出器における線量率を導出するステップと、
を含む、放射線量をモニタする方法。
Providing a row of radiation monitor detectors optically connected in series with a plurality of radiation monitor detectors each having radiation emitting elements of different stimulation or emission wavelengths;
Injecting stimulation light corresponding to the radiation monitor detector to be monitored from among the plurality of radiation monitor detectors;
Measuring the intensity of light having an emission wavelength emitted during irradiation of the stimulation light; and
Measuring the time from the previous irradiation end time of the stimulation light to the current irradiation start time;
Deriving a dose rate at the detector from the light intensity and time measured for the radiation monitoring detector to be monitored;
A method of monitoring radiation dose, comprising:
請求項7に記載された放射線量をモニタする方法において、
前記刺激光の照射中に発光した発光波長の光の強度を測定するステップが、
前記時間中に発光した発光波長の光の波高値及び該波高値における計数を測定し、一定の波高値以上の計数から前記光の強度を定量することを特徴とする放射線量をモニタする方法。
The method for monitoring a radiation dose according to claim 7,
Measuring the intensity of light of the emission wavelength emitted during irradiation of the stimulation light,
A method for monitoring a radiation dose, comprising: measuring a peak value of light having an emission wavelength emitted during the time and a count at the peak value, and quantifying the intensity of the light from a count exceeding a certain peak value.
JP2011271324A 2011-12-12 2011-12-12 Radiation monitor and method for monitoring radiation dose Active JP6012171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271324A JP6012171B2 (en) 2011-12-12 2011-12-12 Radiation monitor and method for monitoring radiation dose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271324A JP6012171B2 (en) 2011-12-12 2011-12-12 Radiation monitor and method for monitoring radiation dose

Publications (2)

Publication Number Publication Date
JP2013122425A true JP2013122425A (en) 2013-06-20
JP6012171B2 JP6012171B2 (en) 2016-10-25

Family

ID=48774455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271324A Active JP6012171B2 (en) 2011-12-12 2011-12-12 Radiation monitor and method for monitoring radiation dose

Country Status (1)

Country Link
JP (1) JP6012171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554618C1 (en) * 2013-12-05 2015-06-27 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Method for aerial radiation survey of terrain
CN105807305B (en) * 2016-05-17 2018-12-28 中国工程物理研究院电子工程研究所 A kind of double-wavelength pulse laser radiation dose rate effect analog system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117213B2 (en) 2018-10-12 2022-08-12 株式会社日立製作所 Radiation monitor and radiation measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249247A (en) * 1992-03-09 1993-09-28 Hamamatsu Photonics Kk Scintillation detector
JPH06258446A (en) * 1993-03-10 1994-09-16 Toshiba Corp Optical waveguide scintillator and scintillation detector
JPH07311269A (en) * 1994-03-23 1995-11-28 Toshiba Corp Radioactive ray measuring apparatus
JP2891198B2 (en) * 1996-09-11 1999-05-17 株式会社日立製作所 Radiation intensity distribution measuring device
WO2003014716A2 (en) * 2001-08-06 2003-02-20 Hrl Laboratories, Llc System, assembly and methods for sensing
JP2006300947A (en) * 2005-04-20 2006-11-02 Siemens Ag Detector module for x-ray or gamma ray
JP2006329784A (en) * 2005-05-25 2006-12-07 Mitsubishi Electric Corp Radiation monitor
JP2009133759A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radiation measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249247A (en) * 1992-03-09 1993-09-28 Hamamatsu Photonics Kk Scintillation detector
JPH06258446A (en) * 1993-03-10 1994-09-16 Toshiba Corp Optical waveguide scintillator and scintillation detector
JPH07311269A (en) * 1994-03-23 1995-11-28 Toshiba Corp Radioactive ray measuring apparatus
JP2891198B2 (en) * 1996-09-11 1999-05-17 株式会社日立製作所 Radiation intensity distribution measuring device
WO2003014716A2 (en) * 2001-08-06 2003-02-20 Hrl Laboratories, Llc System, assembly and methods for sensing
JP2006300947A (en) * 2005-04-20 2006-11-02 Siemens Ag Detector module for x-ray or gamma ray
JP2006329784A (en) * 2005-05-25 2006-12-07 Mitsubishi Electric Corp Radiation monitor
JP2009133759A (en) * 2007-11-30 2009-06-18 Toshiba Corp Radiation measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2554618C1 (en) * 2013-12-05 2015-06-27 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Method for aerial radiation survey of terrain
CN105807305B (en) * 2016-05-17 2018-12-28 中国工程物理研究院电子工程研究所 A kind of double-wavelength pulse laser radiation dose rate effect analog system

Also Published As

Publication number Publication date
JP6012171B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP5816542B2 (en) Dose rate measurement system and dose rate measurement method
Linares Rosales et al. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy
WO2014052516A1 (en) Photosensor testing apparatus, a radiation detection apparatus including a photosensor and a method of selecting the photosensor for the radiation detection apparatus
Anastasi et al. Electron beam test of key elements of the laser-based calibration system for the muon g-2 experiment
JP6012171B2 (en) Radiation monitor and method for monitoring radiation dose
CN101750155A (en) Pulse SNR single shot measurement method and system based on fiber array
Chichester et al. Comparison of BCF-10, BCF-12, and BCF-20 scintillating fibers for use in a 1-dimensional linear sensor
US11313720B2 (en) System and method to minimize nonrandom fixed pattern noise in spectrometers
US20180074215A1 (en) Detector and method of operation
JP5219299B2 (en) In vivo dosimetry device
JP6420637B2 (en) Radiation measuring apparatus and measuring method thereof
JP6338108B2 (en) Radiation perception device
EP3321714A1 (en) Radiation monitor
JP5792612B2 (en) Radiation intensity measuring device
JP3591275B2 (en) Radiation intensity measurement device
JP2891198B2 (en) Radiation intensity distribution measuring device
WO2018124874A1 (en) Real time radiation dosimetry system
JP4758943B2 (en) Radiation measurement equipment
JP2001141830A (en) Temperature-compensated type optical transmission form apparatus for measuring radiation and measurement system thereof
RU2367978C1 (en) Method for calibration of scintillation circuit
JP2001083254A (en) Optical fiber-type radiation detecting apparatus
RU2445587C1 (en) Method of calibrating pulsed pyrometer
Játékos et al. Characterization of MRI-compatible PET detector modules by optical excitation of the scintillator material
Liméry et al. A multi-channel Raman Lidar in photon counting mode using SiPM technology
CN117130038A (en) X-ray detection system and method for measuring local radiation power of plasma

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R151 Written notification of patent or utility model registration

Ref document number: 6012171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151