JP2013120098A - Voltage detection apparatus and power detection apparatus - Google Patents

Voltage detection apparatus and power detection apparatus Download PDF

Info

Publication number
JP2013120098A
JP2013120098A JP2011267318A JP2011267318A JP2013120098A JP 2013120098 A JP2013120098 A JP 2013120098A JP 2011267318 A JP2011267318 A JP 2011267318A JP 2011267318 A JP2011267318 A JP 2011267318A JP 2013120098 A JP2013120098 A JP 2013120098A
Authority
JP
Japan
Prior art keywords
voltage detection
circuit
voltage
power
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011267318A
Other languages
Japanese (ja)
Other versions
JP5885138B2 (en
Inventor
Hideji Aoyama
秀次 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRT KK
IRT KK
Original Assignee
IRT KK
IRT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRT KK, IRT KK filed Critical IRT KK
Priority to JP2011267318A priority Critical patent/JP5885138B2/en
Publication of JP2013120098A publication Critical patent/JP2013120098A/en
Application granted granted Critical
Publication of JP5885138B2 publication Critical patent/JP5885138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a voltage detection apparatus capable of detecting voltage more accurately as compared with a conventional apparatus, and to provide a power detection apparatus capable of detecting electric power or electric energy more accurately as compared with a conventional apparatus.SOLUTION: In a power detection apparatus 10, a balanced amplifier 37 mainly composed of operational amplifiers OP3, OP4 is connected to the input side of a differential amplifier circuit 38, so that an input becomes high impedance and detection voltages detected by voltage detection electrodes 18, 18 can be entered without reducing the voltages. Further all circuits included in the power detection apparatus 10 are grounded to a common ground member 94, so that influence on voltage detection results, which is caused by a potential difference between grounds which may be generated when grounding the circuits to respective grounds, can be suppressed. Consequently the influence on voltage detection results, caused by surrounding environments of the voltage detection electrodes 18, 18, can be suppressed, voltages can be detected more accurately as compared with a conventional apparatus, and also electric power and electric energy can be accurately detected.

Description

本発明は、単相2線式又は単相3線式の電力線にて送電される電力の電圧を、電力線の導体に非接触な状態で検出可能な電圧検出装置及び、それら電力線にて送電される電力又は電力量を非接触で検出可能な電力検出装置に関する。   The present invention relates to a voltage detection device capable of detecting the voltage of power transmitted through a single-phase two-wire or single-phase three-wire power line in a non-contact state with the conductor of the power line, and the power transmitted through these power lines. It is related with the electric power detection apparatus which can detect the electric power or electric energy which is touchlessly.

従来、この種の電圧検出装置として、単相3線式の第1及び第2の電力線と中立線とに電圧検出電極を静電結合させて第1の電力線と中立線との間の電圧と、第2の電力線と中立線との間の電圧とを検出し、それら検出電圧の差分を電力線にて送電される電力の電圧として求める電圧検出装置が知られている(例えば、特許文献1参照)。   Conventionally, as a voltage detection device of this type, a voltage between the first power line and the neutral line is obtained by electrostatically coupling a voltage detection electrode to the first and second power lines of the single-phase three-wire system and the neutral line. A voltage detection device that detects a voltage between a second power line and a neutral line and obtains a difference between the detected voltages as a voltage of power transmitted through the power line is known (see, for example, Patent Document 1). ).

特開2010−181378号公報(図1、段落[0016],[0022])Japanese Patent Laying-Open No. 2010-181378 (FIG. 1, paragraphs [0016] and [0022])

しかしながら、上述した従来の電圧検出装置では、第1及び第2の電力線の各電圧の検出結果がそれぞれ、各電圧検出電極の周囲の環境による影響を受け、電圧の検出を正確に行うことができないという問題があった。また、その電圧検出装置にて検出した電圧を電力の検出にも使用していたので、電力の検出も正確に行うことができないという問題が生じていた。   However, in the above-described conventional voltage detection device, the detection results of the voltages on the first and second power lines are affected by the environment around the voltage detection electrodes, and the voltage cannot be accurately detected. There was a problem. Further, since the voltage detected by the voltage detection device is also used for power detection, there has been a problem that power cannot be detected accurately.

本発明は、上記事情に鑑みてなされたもので、従来より正確に電圧を検出可能な電圧検出装置及び従来より正確に電力又は電力量を検出可能な電力検出装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a voltage detection device capable of detecting a voltage more accurately than in the past and a power detection device capable of detecting power or a power amount more accurately than in the past.

上記目的を達成するためになされた請求項1の発明に係る電圧検出装置は、単相2線式又は単相3線式の電力線における180度電圧位相がずれた第1と第2の電力線の間の電圧を検出する電圧検出装置であって、第1及び第2の電力線に対して、それらの絶縁被覆を介して静電結合可能な第1及び第2の電圧検出電極と、第1及び第2の電圧検出電極を覆うシールド電極と、第1及び第2の電圧検出電極間の電位差を増幅する差動増幅回路及び、差動増幅回路の出力に基づいて第1と第2の電力線間の電圧を演算する電圧演算回路を含む電圧検出処理回路とを備え、電圧検出処理回路のうち第1及び第2の電圧検出電極に導通した回路部とシールド電極とを共通のグランドに接地したところに特徴を有する。   In order to achieve the above object, a voltage detection device according to the invention of claim 1 is the first and second power lines having a 180 ° voltage phase shift in a single-phase two-wire or single-phase three-wire power line. A voltage detection device for detecting a voltage between the first and second voltage detection electrodes that can be electrostatically coupled to the first and second power lines via their insulating coatings; A shield electrode that covers the second voltage detection electrode, a differential amplifier circuit that amplifies the potential difference between the first and second voltage detection electrodes, and between the first and second power lines based on the output of the differential amplifier circuit And a voltage detection processing circuit including a voltage calculation circuit for calculating the voltage of the circuit, wherein a circuit portion and a shield electrode that are connected to the first and second voltage detection electrodes in the voltage detection processing circuit are grounded to a common ground. It has the characteristics.

請求項2の発明は、請求項1に記載の電圧検出装置において、差動増幅回路の入力側に、第1と第2のオペアンプを有した平衡アンプを設け、その平衡アンプは、第1のオペアンプのプラス入力に第1の電圧検出電極を接続しかつ第1のオペアンプの出力に差動増幅回路の一方の入力を接続すると共に、第2のオペアンプのプラス入力に第2の電圧検出電極を接続しかつ第2のオペアンプの出力に差動増幅回路の他方の入力を接続し、さらに第1と第2のオペアンプのマイナス入力同士の間を抵抗を介して接続してなり、第1と第2のオペアンプのプラス入力同士の間を1対1に分圧する分圧回路を設け、分圧回路の分圧点が、シールド電極及び電圧検出処理回路が共通して接地されたグランドに対して高電位になるようにバイアスするバイアス回路を設けたところに特徴を有する。   According to a second aspect of the present invention, in the voltage detection device according to the first aspect, a balanced amplifier having first and second operational amplifiers is provided on the input side of the differential amplifier circuit. The first voltage detection electrode is connected to the positive input of the operational amplifier, and one input of the differential amplifier circuit is connected to the output of the first operational amplifier, and the second voltage detection electrode is connected to the positive input of the second operational amplifier. And the other input of the differential amplifier circuit is connected to the output of the second operational amplifier, and the negative inputs of the first and second operational amplifiers are connected to each other via a resistor. A voltage dividing circuit that divides the positive inputs of the two operational amplifiers in a one-to-one relationship is provided, and the voltage dividing point of the voltage dividing circuit is higher than the ground grounded in common with the shield electrode and the voltage detection processing circuit. Bi-bias biased to potential Characterized in place of providing a scan circuit.

請求項3の発明は、請求項1又は2に記載の電圧検出装置において、第1及び第2の電力線に印加されている電圧波に含まれる第1次波より高い周波数の高調波をイコライズするイコライザ回路を差動増幅回路の出力側に備えたところに特徴を有する。   According to a third aspect of the present invention, in the voltage detection device according to the first or second aspect, higher harmonics having a higher frequency than the first-order wave included in the voltage wave applied to the first and second power lines are equalized. It is characterized in that an equalizer circuit is provided on the output side of the differential amplifier circuit.

請求項4の発明は、請求項1乃至3の何れか1の請求項に記載の電圧検出装置において、電圧検出処理回路のうち差動増幅回路と電圧演算回路との間に、差動増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて差動増幅回路と電圧演算回路との間を非導通としたところに特徴を有する。   According to a fourth aspect of the present invention, in the voltage detection device according to any one of the first to third aspects, a differential amplifier circuit is provided between the differential amplifier circuit and the voltage arithmetic circuit in the voltage detection processing circuit. Is characterized in that a transmission circuit and a reception circuit for transmitting / receiving the output of the optical signal or radio signal as a radio signal are provided so that the differential amplifier circuit and the voltage calculation circuit are not electrically connected.

請求項5の発明は、請求項4に記載の電圧検出装置において、第1又は第2の電力線に電磁誘導結合して受電し、送信回路より差動増幅回路側に給電する電源回路を備えたところに特徴を有する。   According to a fifth aspect of the present invention, in the voltage detection device according to the fourth aspect, the power detection circuit includes a power supply circuit that receives power by electromagnetic induction coupling to the first or second power line and supplies power to the differential amplifier circuit side from the transmission circuit. However, it has characteristics.

請求項6の発明は、請求項5に記載の電圧検出装置において、リング状の可飽和コアを2分割してなる1対の分割コアの一方又は両方にコイルを巻回してなり、電力線を1対の分割コアの間に挟み込み可能な電磁誘導結合部を電源回路に備えたところに特徴を有する。   According to a sixth aspect of the present invention, in the voltage detecting device according to the fifth aspect, a coil is wound around one or both of a pair of split cores obtained by splitting a ring-shaped saturable core into two, and a power line is It is characterized in that the power supply circuit is provided with an electromagnetic induction coupling portion that can be sandwiched between the pair of split cores.

請求項7の発明は、請求項1乃至6の何れか1の請求項に記載の電圧検出装置において、シールド電極を、第1及び第2の各電圧検出電極毎に別個に設けて、それら各シールド電極を一面開放の1対の金属筐体で構成し、1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、一方の金属筐体に形成されたシールドケーブル挿通孔と、金属筐体同士の接合部分に形成されて、第1又は第2の電力線を挿通可能な電力線挿通孔を構成する電力線受容凹部とを備え、第1及び第2の各電圧検出電極を、金属筐体の内面に絶縁部材を介して固定しかつ電力線挿通孔に挿通された第1又は第2の電力線の側面に宛われるように配置し、各シールド電線挿通孔に挿通したシールドケーブルの芯線により、第1及び第2の電圧検出電極を差動増幅回路に接続すると共に、シールドケーブルのシールド線により第1及び第2のシールド電極を、電圧検出処理回路との共通のグランドに接地したところに特徴を有する。   According to a seventh aspect of the present invention, in the voltage detection device according to any one of the first to sixth aspects, a shield electrode is provided separately for each of the first and second voltage detection electrodes, The shield electrode is formed of a pair of metal casings that are open on one side, and is formed on one metal casing, and a united holding means that holds the edges of the opening of the pair of metal casings in a combined state. A shielded cable insertion hole, and a power line receiving recess that is formed in a joint portion between the metal casings and constitutes a power line insertion hole through which the first or second power line can be inserted. The voltage detection electrode is fixed to the inner surface of the metal housing via an insulating member and arranged so as to be directed to the side surface of the first or second power line inserted through the power line insertion hole, and is inserted into each shielded wire insertion hole. The first and second voltages by the shielded cable core wire With the output electrode is connected to a differential amplifier circuit, having the features of the first and second shield electrode by the shield wire of the shield cable, at grounded to a common ground with the voltage detection processing circuit.

請求項8の発明は、請求項1乃至6の何れか1の請求項に記載の電圧検出装置において、シールド電極を、第1及び第2の電圧検出電極に共通して1つ設けかつ、一面開放の1対の金属筐体で構成し、1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、一方の金属筐体に形成されたシールドケーブル挿通孔と、金属筐体同士の接合部分に形成されて、第1及び第2の電力線を分離した状態にして挿通可能な2対の電力線挿通孔とを備え、第1及び第2の各電圧検出電極を、1対の金属筐体の一方の金属筐体の内面に絶縁部材を介して固定しかつ、1対の電力線挿通孔に挿通された第1及び第2の電力線の側面に宛われるように配置し、シールド電線挿通孔に挿通した1対のシールドケーブルの芯線により第1及び第2の電圧検出電極を差動増幅回路に接続すると共に、1対のシールドケーブルのシールド線によりシールド電極を、電圧検出処理回路との共通のグランドに接地したところに特徴を有する。
The invention according to claim 8 is the voltage detection device according to any one of claims 1 to 6, wherein one shield electrode is provided in common for the first and second voltage detection electrodes, An union holding means configured to be composed of a pair of open metal casings and held in a combined state in which the edges of the opening of the pair of metal casings are joined together, and a shield cable insertion formed on one of the metal casings The first and second voltage detections each include a hole and two pairs of power line insertion holes that are formed in a joint portion between the metal casings and can be inserted in a state where the first and second power lines are separated. The electrode is fixed to the inner surface of one metal casing of the pair of metal casings via an insulating member so as to be directed to the side surfaces of the first and second power lines inserted through the pair of power line insertion holes. The first wire is connected by the core wire of the pair of shielded cables inserted in the shielded wire insertion hole. Beauty second voltage detection electrode as well as connected to a differential amplifier circuit, having the features a shield electrode by the shield wire of the pair of shielded cable to was grounded to common ground of the voltage detection processing circuit.

請求項9の発明は、請求項7又は8に記載の電圧検出装置において、第1及び第2の電圧検出電極をU字溝形状とし、そのU字の2辺が1対の金属筐体の対向方向で対向するように配置したところに特徴を有する。   The invention of claim 9 is the voltage detection device according to claim 7 or 8, wherein the first and second voltage detection electrodes are formed in a U-shaped groove, and the two sides of the U-shape are a pair of metal casings. It is characterized by being arranged so as to face each other in the facing direction.

請求項10の発明は、請求項1乃至6の何れか1の請求項に記載の電圧検出装置において、シールド電極を、第1及び第2の電圧検出電極に共通して1つ設けかつ、一面開放の1対の金属筐体で構成し、1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、各金属筐体の形成されたシールドケーブル挿通孔と、金属筐体同士の接合部分に形成されて、第1及び第2の電力線を纏めて挿通可能でかつ1対の金属筐体同士の対向方向に第1及び第2の電力線が並んだ状態に保持可能な1対の電力線挿通孔とを備え。第1及び第2の各電圧検出電極を、1対の金属筐体に分けられてそれぞれ絶縁部材を介して固定しかつ、1対の電力線挿通孔に挿通された第1及び第2の電力線を挟んで対向するように配置し、各金属筐体のシールド電線挿通孔に挿通したシールドケーブルの芯線により第1及び第2の電圧検出電極を差動増幅回路に接続すると共に、シールドケーブルのシールド線により各金属筐体を電圧検出処理回路との共通のグランドに接地したところに特徴を有する。   A tenth aspect of the present invention is the voltage detection apparatus according to any one of the first to sixth aspects, wherein one shield electrode is provided in common for the first and second voltage detection electrodes, An union holding means configured by an open pair of metal casings and held in an union state in which the edges of the open ends of the pair of metal casings are joined together, and a shield cable insertion hole in which each metal case is formed And a state in which the first and second power lines are lined up in the facing direction between the pair of metal casings, which is formed at a joint portion between the metal casings and can be inserted through the first and second power lines together. And a pair of power line insertion holes that can be held on the power line. Each of the first and second voltage detection electrodes is divided into a pair of metal casings and fixed via an insulating member, and the first and second power lines inserted through the pair of power line insertion holes The first and second voltage detection electrodes are connected to the differential amplifier circuit by the core wire of the shield cable that is disposed so as to be opposed to each other and is inserted into the shield wire insertion hole of each metal housing, and the shield wire of the shield cable This is characterized in that each metal casing is grounded to a common ground with the voltage detection processing circuit.

請求項11の発明は、請求項7乃至10の何れか1の請求項に記載の電圧検出装置において、1対の金属筐体に固定され、1対の金属筐体の合体状態で第1及び第2の電力線を挟持する絶縁性の1対のクッション部材を備えたところに特徴を有する。   According to an eleventh aspect of the present invention, in the voltage detection device according to any one of the seventh to tenth aspects, the first and the second metal casings are fixed to a pair of metal casings and the first and second metal casings are combined. It is characterized in that it has a pair of insulating cushion members that sandwich the second power line.

請求項12の発明に係る電力検出装置は、請求項1乃至11の何れか1の請求項に記載の電圧検出装置と、第1又は第2の電力線に対して、それらの絶縁被覆を介して電磁誘導結合可能な電流検出コイルと、電流検出コイルに流れる誘導電流に基づいて第1及び第2の電力線に流れる電流を演算する電流検出処理回路と、電流検出処理回路の演算結果と、電圧検出装置における電圧検出処理回路の演算結果とから第1及び第2の電力線にて送電された電力又は電力量を演算する電力検出処理回路とを備え、電流検出処理回路及び電力検出処理回路のうち第1及び第2の電圧検出電極と導通した回路部とシールド電極とを共通のグランドに接地したところに特徴を有する。   A power detection device according to a twelfth aspect of the present invention is directed to the voltage detection device according to any one of the first to eleventh aspects of the invention and the first or second power line via the insulation coating. A current detection coil capable of electromagnetic induction coupling, a current detection processing circuit for calculating a current flowing in the first and second power lines based on an induced current flowing in the current detection coil, a calculation result of the current detection processing circuit, and a voltage detection A power detection processing circuit for calculating the power or the amount of power transmitted through the first and second power lines from the calculation result of the voltage detection processing circuit in the device, and the first of the current detection processing circuit and the power detection processing circuit. The circuit portion and the shield electrode, which are electrically connected to the first and second voltage detection electrodes, are characterized by being grounded to a common ground.

請求項13の発明は、請求項12に記載の電力検出装置において、電流検出処理回路には、電流検出コイルに流れる誘導電流に応じた電圧信号を増幅する増幅回路と、その増幅回路の出力に基づいて第1及び第2の電力線に流れる電流を演算する電流演算回路とが備えられ、電流検出処理回路のうち増幅回路と電流演算回路との間に、増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて増幅回路と電流演算回路との間を非導通とすると共に、電圧検出処理回路のうち差動増幅回路と電圧演算回路との間に、差動増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて差動増幅回路と電圧演算回路との間を非導通としたところに特徴を有する。   According to a thirteenth aspect of the present invention, in the power detection device according to the twelfth aspect, the current detection processing circuit includes an amplifier circuit that amplifies a voltage signal corresponding to the induced current flowing through the current detection coil, and an output of the amplifier circuit. And a current calculation circuit for calculating a current flowing through the first and second power lines based on the output of the amplification circuit between the amplification circuit and the current calculation circuit in the current detection processing circuit. A transmission circuit and a reception circuit for transmitting and receiving are provided to make the amplifier circuit and the current arithmetic circuit non-conductive, and the differential amplification circuit and the voltage arithmetic circuit in the voltage detection processing circuit are differentially amplified. It is characterized in that a transmission circuit and a reception circuit that transmit and receive an optical signal or a radio signal as an output of the circuit are provided to make the differential amplifier circuit and the voltage calculation circuit non-conductive.

[請求項1及び12の発明]
請求項1の電圧検出装置では、電圧検出のために第1及び第2の電力線に静電結合される第1及び第2の電圧検出電極がシールド電極によって覆われているので電圧検出電極にノイズが付与され難くなる。また、本発明の電圧検出装置の電圧検出処理回路は、第1及び第2の電圧検出電極間の電位差を差動増幅するので、その際に第1及び第2の電圧検出電極の同相電圧のノイズが相殺される。さらに、本発明の電圧検出装置では、電圧検出処理回路のうち第1及び第2の電圧検出電極に導通した回路部とシールド電極とを共通のグランドに接地したので、それらを別々のグランドに接地した場合に生じ得るグランド同士の間の電位差による電圧の検出結果への影響も抑えることができる。これらにより、本発明の電圧検出装置では、電圧検出電極の周囲の環境による電圧の検出結果への影響を抑えて、従来より正確に電圧を検出することが可能になる。また、請求項12の電力検出装置は、本発明の電圧検出装置の検出結果を利用して電力又は電力量を検出するので、従来より正確に電力又は電力量を検出することができる。
[Inventions of Claims 1 and 12]
In the voltage detection device according to claim 1, since the first and second voltage detection electrodes electrostatically coupled to the first and second power lines for voltage detection are covered with the shield electrode, noise is generated in the voltage detection electrode. Is difficult to be granted. In addition, the voltage detection processing circuit of the voltage detection device of the present invention differentially amplifies the potential difference between the first and second voltage detection electrodes, so that the common-mode voltage of the first and second voltage detection electrodes at that time Noise is canceled out. Furthermore, in the voltage detection apparatus of the present invention, the circuit part and the shield electrode that are connected to the first and second voltage detection electrodes in the voltage detection processing circuit are grounded to a common ground, so that they are grounded to separate grounds. The influence on the detection result of the voltage due to the potential difference between the grounds that may occur can be suppressed. As a result, in the voltage detection device of the present invention, it is possible to detect the voltage more accurately than in the past by suppressing the influence on the voltage detection result by the environment around the voltage detection electrode. Moreover, since the electric power detection apparatus of Claim 12 detects electric power or electric energy using the detection result of the voltage detection apparatus of this invention, it can detect electric power or electric energy more correctly than before.

[請求項2の発明]
請求項2の構成では、差動増幅回路の入力側に第1と第2のオペアンプを有した平衡アンプを備え、それらオペアンプのプラス入力に第1及び第2の電圧検出電極を接続したことで電圧検出処理回路の入力がハイインピーダンスになる。これにより、静電結合により第1及び第2の電力線と間がハイインピーダンスになった第1及び第2の電圧検出電極による検出電圧を低下させずに電圧検出処理回路に取り込むことができる。また、この平衡アンプによっても第1及び第2の電圧検出電極の同相電圧のノイズが相殺される。
[Invention of claim 2]
According to the second aspect of the present invention, a balanced amplifier having first and second operational amplifiers is provided on the input side of the differential amplifier circuit, and the first and second voltage detection electrodes are connected to the positive inputs of the operational amplifiers. The input of the voltage detection processing circuit becomes high impedance. Thereby, the detection voltage by the 1st and 2nd voltage detection electrode which became high impedance between the 1st and 2nd electric power lines by electrostatic coupling can be taken in into a voltage detection processing circuit, without reducing. The balanced amplifier also cancels out the common-mode voltage noise of the first and second voltage detection electrodes.

[請求項3の発明]
上記した本発明の電圧検出装置では、電力線と第1及び第2の電圧検出電極との間の容量成分であるコンデンサと、差動増幅回路の入力側にバイアス電圧を印加するために一般に設けられる抵抗とによってCR型のハイパスフィルター回路が構成される。そして、そのハイパスフィルター回路によって、検出対象の電圧波に含まれる高調波が、それらの周波数が高いほど高いゲインで伝達されることになる。これに対し、請求項3の構成では、電圧波に含まれる1次波より高い周波数の高調波をイコライズするイコライザ回路を差動増幅回路の出力側に備えたので、差動増幅回路の入力側のハイパスフィルター回路によって生じた周波数毎のゲインの差による誤差成分を補正して電圧の検出精度を高くすることができる。
[Invention of claim 3]
The above-described voltage detection device of the present invention is generally provided to apply a bias voltage to the input side of the differential amplifier circuit and a capacitor that is a capacitance component between the power line and the first and second voltage detection electrodes. A CR type high-pass filter circuit is configured by the resistor. The high-pass filter circuit transmits higher harmonics contained in the voltage wave to be detected with higher gain as the frequency increases. On the other hand, in the configuration of the third aspect, the equalizer circuit for equalizing higher harmonics than the primary wave included in the voltage wave is provided on the output side of the differential amplifier circuit. By correcting the error component due to the gain difference for each frequency generated by the high-pass filter circuit, the voltage detection accuracy can be increased.

[請求項4、5及び6の発明]
請求項4の電圧検出装置では、電圧検出処理回路のうち差動増幅回路と電圧演算回路との間、及び、電圧演算回路と第1及び第2の電圧検出電極との間を非導通にしたので、第1及び第2の電圧検出電極から電圧演算回路を切り離したので、電圧演算回路の構成の自由度が高くなる。これにより、例えば、電圧演算回路として汎用パソコン等を利用することも可能になる。また、請求項5の構成によれば、電圧検出処理回路のうち差動増幅回路側の電源の確保が容易になる。さらに、請求項6の構成によれば、可飽和コアに巻回したコイルによって電源回路が第1又は第2の電力線の電流に対して電磁誘導結合されるので、第1又は第2の電力線に送電される電力が大きく変化しても電源回路は安定して第1又は第2の電力線から受電することができる。
[Inventions of Claims 4, 5 and 6]
In the voltage detection device according to claim 4, the differential amplification circuit and the voltage calculation circuit in the voltage detection processing circuit and the voltage calculation circuit and the first and second voltage detection electrodes are made non-conductive. Therefore, since the voltage calculation circuit is separated from the first and second voltage detection electrodes, the degree of freedom in the configuration of the voltage calculation circuit is increased. Thereby, for example, a general-purpose personal computer or the like can be used as the voltage calculation circuit. According to the configuration of claim 5, it is easy to secure the power supply on the differential amplifier circuit side in the voltage detection processing circuit. Further, according to the configuration of claim 6, since the power supply circuit is electromagnetically coupled to the current of the first or second power line by the coil wound around the saturable core, the power circuit is connected to the first or second power line. Even if the transmitted power changes greatly, the power supply circuit can stably receive power from the first or second power line.

[請求項7、8、9、10及び11の発明]
請求項7の構成では、第1及び第2の各電圧検出電極毎にシールド電極を別個に設けたので、電圧検出における第1及び第2の電圧検出電極同士の相互の影響を抑えることができる。請求項8の構成では、シールド電極を、第1及び第2の電圧検出電極に共通して1つ設けたので、コンパクトな構成にすることができる。また、金属筐体同士の接合部分に形成した2対の電力線挿通孔に第1及び第2の電力線が挿通されて分離した状態で保持されるので、それら分離した第1と第2の電力線に宛われる第1及び第2の電圧検出電極同士の相互の影響も抑えることができる。請求項9の構成によれば、一方の金属筐体に固定されたU字溝形状の第1及び第2の電圧検出電極に電線を引っ掛けておいて、金属筐体同士を合体させることができ、第1及び第2の電力線に対する電圧検出装置の取り付けが容易になる。また、請求項10の構成によれば、第1と第2の電力線が横並びになった状態で共通の絶縁被覆で一体固定されいる場合に、それら第1と第2の電力線を分離せずに、電圧検出装置をそれら電力線に取り付けることができる。なお、請求項11の構成によれば、1対の金属筐体に固定された1対のクッション部材で第1及び第2の電力線を挟持して固定するので、第1及び第2の電圧検出電極に対する第1及び第2の電力線の位置が安定し、電圧の検出精度が高くなる。
[Inventions of Claims 7, 8, 9, 10 and 11]
In the configuration of the seventh aspect, since the shield electrode is provided separately for each of the first and second voltage detection electrodes, the mutual influence between the first and second voltage detection electrodes in voltage detection can be suppressed. . In the configuration of the eighth aspect, since one shield electrode is provided in common for the first and second voltage detection electrodes, a compact configuration can be achieved. In addition, since the first and second power lines are inserted into and separated from the two pairs of power line insertion holes formed in the joint portion between the metal casings, the separated first and second power lines are It is also possible to suppress the mutual influence between the first and second voltage detection electrodes that are addressed. According to the configuration of the ninth aspect, the metal casings can be combined with each other by hooking the electric wires on the first and second voltage detection electrodes having the U-shaped grooves fixed to the one metal casing. The voltage detection device can be easily attached to the first and second power lines. Further, according to the configuration of claim 10, when the first and second power lines are integrally fixed with a common insulating coating in a state where the first and second power lines are arranged side by side, the first and second power lines are not separated. The voltage detection device can be attached to the power lines. According to the configuration of the eleventh aspect, since the first and second power lines are sandwiched and fixed by the pair of cushion members fixed to the pair of metal casings, the first and second voltage detections are performed. The positions of the first and second power lines with respect to the electrodes are stabilized, and the voltage detection accuracy is increased.

[請求項13の発明]
請求項13の電力検出装置では、増幅回路と電流演算回路との間、及び、差動増幅回路と電圧演算回路との間を非導通としたので、電圧演算回路及び電流演算回路が、第1及び第2の電圧検出電極から切り離されて、それら電圧演算回路及び電流演算回路の構成の自由度が高くなる。これにより、例えば、電圧演算回路及び電流演算回路として汎用パソコン等を利用することも可能になる。
[Invention of Claim 13]
In the power detection device according to the thirteenth aspect, since the amplifier circuit and the current arithmetic circuit and the differential amplifier circuit and the voltage arithmetic circuit are not electrically connected, the voltage arithmetic circuit and the current arithmetic circuit are the first ones. In addition, the voltage calculation circuit and the current calculation circuit are separated from the second voltage detection electrode, thereby increasing the degree of freedom of the configuration. Accordingly, for example, a general-purpose personal computer or the like can be used as the voltage calculation circuit and the current calculation circuit.

本発明の第1実施形態に係る電力検出装置の斜視図The perspective view of the electric power detection apparatus which concerns on 1st Embodiment of this invention. 電圧センサーの分解斜視図Exploded perspective view of voltage sensor 電力線に取り付けられた電圧センサーの斜視図Perspective view of the voltage sensor attached to the power line 電流検出増幅回路の回路図Circuit diagram of current detection amplifier circuit 電源回路の回路図Circuit diagram of power supply circuit (A)電力線の電流波形、(B)可飽和コア内の磁束波形、(C)電源回路にて整流・平滑処理後の電圧波形(A) Current waveform of power line, (B) Magnetic flux waveform in saturable core, (C) Voltage waveform after rectification and smoothing processing in power supply circuit (A)電流検出増幅回路の出力波形、(B)電力線の電流値と電流検出増幅回路の出力波形との関係を示したグラフ、(A) The output waveform of the current detection amplifier circuit, (B) a graph showing the relationship between the current value of the power line and the output waveform of the current detection amplifier circuit, 電圧検出増幅回路の回路図Circuit diagram of voltage detection amplifier circuit (A)電圧検出増幅回路の入力側に備えた回路部、(B)その回路部と実質的同一なハイパスフィルター回路の回路図(A) Circuit portion provided on the input side of the voltage detection amplifier circuit, (B) Circuit diagram of a high-pass filter circuit substantially identical to the circuit portion. ハイパスフィルター回路のゲインの周波数特性を示したグラフGraph showing frequency characteristics of gain of high-pass filter circuit (A)電力検出装置による検出電圧波形、(B)検出電流波形、(C)検出電力波形(A) Detected voltage waveform by power detector, (B) Detected current waveform, (C) Detected power waveform 第2実施形態の電圧センサーの分解斜視図The exploded perspective view of the voltage sensor of a 2nd embodiment. 第3実施形態の電圧センサーの断面図Sectional drawing of the voltage sensor of 3rd Embodiment 第4実施形態の電圧センサーの断面図Sectional drawing of the voltage sensor of 4th Embodiment 第5実施形態のクランパーの概念図Conceptual diagram of clamper of fifth embodiment

[第1実施形態]
以下、本発明の一実施形態を図1〜図11に基づいて説明する。図1には、本発明に係る電力検出装置10の全体が概念的に示されている。この電力検出装置10は、計測端末11とデータ処理端末12とからなる。計測端末11は、例えば、電柱等から住居に引き込まれた単相3線式又は単相2線式の商用電源の電力線L1,L2に取り付けられ、データ処理端末12は、例えば住居内でインターネット回線に接続される。そして、計測端末11にて、電力線L1,L2の間の電圧と電力線L1に流れる電流とを検出して、それら検出データを計測端末11から無線受信したデータ処理端末12が電力を演算し、インターネット回線を通して電力会社等に送信する。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 conceptually shows the entire power detection apparatus 10 according to the present invention. The power detection apparatus 10 includes a measurement terminal 11 and a data processing terminal 12. The measurement terminal 11 is attached to, for example, power lines L1 and L2 of a single-phase three-wire type or single-phase two-wire commercial power source drawn into a residence from a utility pole, etc. Connected to. Then, the measurement terminal 11 detects the voltage between the power lines L1 and L2 and the current flowing through the power line L1, and the data processing terminal 12 that wirelessly receives the detected data from the measurement terminal 11 calculates the power, and the Internet. Send to the power company through the line.

電力検出装置10の計測端末11には、電圧検出のための1対の電圧センサー13,13が備えられている。図2に示すように、電圧センサー13は、電圧検出電極18をシールド電極14で包囲した構造になっている。シールド電極14は、一面が開放した箱形の1対の金属筐体15,15からなる。各金属筐体15には、開放口15Aの開口縁における1対の対向辺から側方に1対の固定フランジ15F,15Fが張り出され、それら1対の固定フランジ15F,15Fに、螺子挿通孔15B,15Bが貫通形成された構造になっている。そして、図3に示すように、両金属筐体15の固定フランジ15F,15F同士を重ねた合体状態で、螺子挿通孔15B,15Bに挿通した螺子N1とナット(図示せず)とを螺合することで金属筐体15,15が合体状態に保持される。なお、これら螺子N1とナットが、本発明に係る「合体保持手段」に相当する。   The measurement terminal 11 of the power detection device 10 is provided with a pair of voltage sensors 13 and 13 for voltage detection. As shown in FIG. 2, the voltage sensor 13 has a structure in which the voltage detection electrode 18 is surrounded by the shield electrode 14. The shield electrode 14 is composed of a pair of box-shaped metal housings 15, 15 whose one surface is open. A pair of fixing flanges 15F, 15F project from the pair of opposing sides of the opening edge of the opening 15A to the side of each metal casing 15, and screws are inserted into the pair of fixing flanges 15F, 15F. The holes 15B and 15B are formed to penetrate therethrough. Then, as shown in FIG. 3, the screw N1 inserted through the screw insertion holes 15B and 15B and the nut (not shown) are screwed together in the combined state in which the fixing flanges 15F and 15F of the metal casings 15 are overlapped. As a result, the metal casings 15 and 15 are held in the combined state. These screws N1 and nuts correspond to “union holding means” according to the present invention.

図2に示すように、各金属筐体15の開口縁のうち固定フランジ15F,15Fが形成されていない1対の対向辺の中央には、半円形の電力線受容凹部15C,15Cが形成されている。そして、図3に示すように、金属筐体15,15の合体状態になると、1対の電力線受容凹部15C,15Cが向かい合って本発明に係る電力線挿通孔14Aになる。   As shown in FIG. 2, semicircular power line receiving recesses 15C and 15C are formed in the center of a pair of opposing sides where the fixing flanges 15F and 15F are not formed among the opening edges of each metal casing 15. Yes. As shown in FIG. 3, when the metal casings 15 and 15 are combined, the pair of power line receiving recesses 15C and 15C face each other to form the power line insertion hole 14A according to the present invention.

図2に示すように、各金属筐体15の内部には、電力線受容凹部15C,15Cを有した側壁に沿わせて1対のクッション部材16が備えられている。これらクッション部材16は、例えば、直方体形状をなした絶縁性のエラストマー(ゴム材)で構成され、金属筐体15の内部奥面に両面テープ又は接着剤にて固定されると共に、クッション部材16の一端面が金属筐体15の開口面と略面一になっている。なお、クッション部材16を構成するエラストマーとしては、誘電率及び導電率が共に低くかつそれら誘電率及び導電率が温度変化に伴って変化し難いエラストマーが使用されている。   As shown in FIG. 2, a pair of cushion members 16 are provided inside each metal casing 15 along the side wall having the power line receiving recesses 15 </ b> C and 15 </ b> C. These cushion members 16 are made of, for example, a rectangular parallelepiped insulating elastomer (rubber material), and are fixed to the inner back surface of the metal housing 15 with a double-sided tape or an adhesive. One end surface is substantially flush with the opening surface of the metal housing 15. In addition, as the elastomer constituting the cushion member 16, an elastomer having a low dielectric constant and a low conductivity, and those dielectric constant and a conductivity that hardly change with a temperature change is used.

一方の金属筐体15の内部奥面の中央には、電圧検出電極18が固定されている。この電圧検出電極18は、U字溝形状に湾曲した帯板状の板金で構成され、U字の一片が金属筐体15の内部奥面に平行に対向し、U字の半円状の湾曲部分の中心軸を電力線受容凹部15C,15Cの中心を結ぶ線上に配置された状態で、絶縁支持ブロック17(本発明に係る「絶縁部材」に相当する)を介して金属筐体15の内部奥面の中央に両面テープ又は接着剤にて固定されている。なお、絶縁支持ブロック17は、例えば、クッション部材16と同じエラストマーで構成されている。   A voltage detection electrode 18 is fixed at the center of the inner back surface of one metal casing 15. The voltage detection electrode 18 is formed of a strip-shaped sheet metal curved in a U-shaped groove shape, and a U-shaped piece faces the inner back surface of the metal housing 15 in parallel, and is curved in a U-shaped semicircular shape. With the central axis of the portion arranged on the line connecting the centers of the power line receiving recesses 15C and 15C, the inner depth of the metal casing 15 is interposed via the insulating support block 17 (corresponding to the “insulating member” according to the present invention). It is fixed to the center of the surface with double-sided tape or adhesive. The insulating support block 17 is made of, for example, the same elastomer as the cushion member 16.

また、一方の金属筐体15のうち絶縁支持ブロック17の側方位置には、シールド電線挿通孔15Dが貫通形成されている。そして、シールド電線挿通孔15Dにシールドケーブル19が挿通され、そのシールドケーブル19の芯線19Aが電圧検出電極18の外面に半田付け又はロウ付けされる一方、シールドケーブル19のシールド線19Bが金属筐体15の内面に半田付け又はロウ付けされている。   Further, a shielded wire insertion hole 15 </ b> D is formed through the side of the insulating support block 17 in one of the metal housings 15. The shield cable 19 is inserted into the shield wire insertion hole 15D, and the core wire 19A of the shield cable 19 is soldered or brazed to the outer surface of the voltage detection electrode 18, while the shield wire 19B of the shield cable 19 is connected to the metal casing. The inner surface of 15 is soldered or brazed.

上記の如く構成された電圧センサー13,13は、例えば、以下のようにして電力線L1,L2に取り付けられる。即ち、金属筐体15,15を分離した状態にして、一方の金属筐体15の電圧検出電極18内に電力線L1(又は、電力線L2)を収める。そして、電力線L1のうち電圧検出電極18の両側の2箇所を、電力線受容凹部15C,15Cとの対向位置に配置してクッション部材16,16を若干撓ませた状態することで、電力線L1に金属筐体15を仮り留めする。この状態で、図3に示すように、金属筐体15,15同士を合体状態にして螺子N1とナットとにより固定する。これにより、電力線L1が、電力線挿通孔14Aを通してシールド電極14を貫通しかつ、そのシールド電極14内で電力線L1の一部が電圧検出電極18の溝内に収容された状態に保持される。   The voltage sensors 13 and 13 configured as described above are attached to the power lines L1 and L2 as follows, for example. That is, the metal housings 15 and 15 are separated, and the power line L1 (or the power line L2) is housed in the voltage detection electrode 18 of one metal housing 15. Then, two portions of the power line L1 on both sides of the voltage detection electrode 18 are arranged at positions facing the power line receiving recesses 15C and 15C, and the cushion members 16 and 16 are slightly bent, so that the power line L1 is made of metal. The housing 15 is temporarily secured. In this state, as shown in FIG. 3, the metal casings 15 and 15 are combined with each other and fixed with screws N1 and nuts. Thus, the power line L1 passes through the shield electrode 14 through the power line insertion hole 14A, and a part of the power line L1 is held in the groove of the voltage detection electrode 18 in the shield electrode 14.

図1に示すように、計測端末11には、電流検出のための第1クランパー20と、受電用の第2クランパー23(本発明の「電磁誘導結合部」に相当する)とが備えられている。第1クランパー20は、図4に概念的に示されており、半円状の1対の分割コア21A,21Bの一方に電流検出コイル22を巻回してなる電流検出部20Hを、図示しないクランプ機構に組み込んだ構造になっている。そのコア21は、例えば、高透磁率磁性体(例えば、フェライト、珪素鋼板)で構成され、電流検出コイル22の巻数は、例えば、100〜200ターンになっている。また、クランプ機構は、分割コア21A,21Bの間を開閉可能であると共に、分割コア21A,21Aの間を閉じてリング状のコア21にした状態で保持することができる。そして、コア21の内側に電力線L1を挿通した状態にして電力線L1に取り付けられる。   As shown in FIG. 1, the measurement terminal 11 includes a first clamper 20 for current detection and a second clamper 23 for power reception (corresponding to the “electromagnetic induction coupling portion” of the present invention). Yes. The first clamper 20 is conceptually shown in FIG. 4, and includes a current detection unit 20H formed by winding a current detection coil 22 around one of a pair of semicircular split cores 21A and 21B. The structure is built into the mechanism. The core 21 is made of, for example, a high magnetic permeability magnetic material (for example, ferrite or silicon steel plate), and the number of turns of the current detection coil 22 is, for example, 100 to 200 turns. The clamp mechanism can be opened and closed between the split cores 21A and 21B, and can be held in a state where the split cores 21A and 21A are closed to form a ring-shaped core 21. Then, the power line L1 is inserted inside the core 21 and attached to the power line L1.

第2クランパー23は、図5に概念的に示されており、第1クランパー20の同様に、リング状のコア24(本発明の「飽和コア」に相当する)を構成する1対の半円状の分割コア24A,24Bの一方に受電コイル25を巻回してなる受電部本体23Hを図示しないクランプ機構に組み込んだ構造になっている。但し、第2クランパー23のコア24は、第1クランパー20のコア21と異なり、例えば、可飽和磁性体(例えば、アモルファス)で構成されている。また、受電コイル25の巻数は、例えば、800〜1000ターンになっている。そして、コア24の内側に電力線L1を挿通した状態にして電力線L1に取り付けられる。なお、計測端末11は、単相3線式の中立線N(図1、図8参照)には取り付けられない。   The second clamper 23 is conceptually shown in FIG. 5 and, like the first clamper 20, is a pair of semicircles that form a ring-shaped core 24 (corresponding to the “saturated core” of the present invention). The power receiving unit main body 23H formed by winding the power receiving coil 25 around one of the divided cores 24A and 24B is incorporated in a clamp mechanism (not shown). However, unlike the core 21 of the first clamper 20, the core 24 of the second clamper 23 is made of, for example, a saturable magnetic material (eg, amorphous). The number of turns of the power receiving coil 25 is, for example, 800 to 1000 turns. Then, the power line L1 is inserted inside the core 24 and attached to the power line L1. Note that the measurement terminal 11 is not attached to the single-phase three-wire neutral line N (see FIGS. 1 and 8).

図1に示すように、計測端末11には、電源回路30と電流検出増幅回路40と電圧検出増幅回路50とA/Dコンバーター95とマイクロコンピューター96(以下、単に「マイコン96」という)と送信回路97とが備えられている。   As shown in FIG. 1, a power supply circuit 30, a current detection amplification circuit 40, a voltage detection amplification circuit 50, an A / D converter 95, a microcomputer 96 (hereinafter simply referred to as “microcomputer 96”) and a transmission are transmitted to the measurement terminal 11. A circuit 97 is provided.

図5に示すように、電源回路30は、第2クランパー23の受電コイル25が接続された入力側から出力側に向かって順番に、ブリッジ整流回路31、平滑コンデンサC1、DC/DCコンバータ32、平滑コンデンサC2を備えた構成になっている。また、電源回路30は、計測端末11に備えたグランド部材94に接地され、そのグランド部材94との間の電位差がVccの直流電圧を出力している。そして、計測端末11の全ての回路が、電源回路30から受電しかつ共通のグランド部材94に接地されている。また、上記したシールド電極14,14も、シールドケーブル19のシールド線19Bを介してグランド部材94に接地されている。なお、グランド部材94は、例えば、計測端末11が有する導電性の図示しないケース等で構成されている。   As shown in FIG. 5, the power supply circuit 30 includes a bridge rectifier circuit 31, a smoothing capacitor C1, a DC / DC converter 32, in order from the input side to which the power receiving coil 25 of the second clamper 23 is connected toward the output side. The smoothing capacitor C2 is provided. The power supply circuit 30 is grounded to a ground member 94 provided in the measurement terminal 11 and outputs a DC voltage having a potential difference of Vcc with respect to the ground member 94. All circuits of the measurement terminal 11 receive power from the power supply circuit 30 and are grounded to the common ground member 94. The shield electrodes 14 and 14 are also grounded to the ground member 94 via the shield wire 19B of the shield cable 19. In addition, the ground member 94 is comprised by the case (not shown) etc. which the measurement terminal 11 has, for example.

電源回路30は、上記した可飽和磁性体のコア23を介して電力線L1に電磁誘導結合されるので、電力線L1に流れる電流の大小の影響を受け難く、電力線L1から安定して受電し、安定した給電を行うことができる。具体的には、図6(A)に示すように、例えば、電力線L1に流れる電流Iが0.1[A]である場合と、電流Iが100[A]である場合とを比較すると、図6(A)の破線で示すように電流Iが0.1[A]である場合には、コア24が磁気飽和せず、コア24内の磁束Hが、図6(B)の破線で示すように、電力線L1の電流波形と同周期の正弦波になる。   Since the power supply circuit 30 is electromagnetically coupled to the power line L1 via the saturable magnetic core 23, the power supply circuit 30 is hardly affected by the magnitude of the current flowing through the power line L1, and receives power stably from the power line L1. Power supply can be performed. Specifically, as shown in FIG. 6A, for example, when the current I flowing through the power line L1 is 0.1 [A] and the current I is 100 [A], When the current I is 0.1 [A] as shown by the broken line in FIG. 6A, the core 24 is not magnetically saturated, and the magnetic flux H in the core 24 is shown by the broken line in FIG. As shown, it is a sine wave with the same period as the current waveform of the power line L1.

一方、図6(A)の実線で示すように、電流Iが100[A]である場合は、電流Iが半周期より短い期間でコア24が早期に磁気飽和し、コア24内の磁束Hの変化は、図6(B)の実線で示すように、電流Iが0.1[A]である場合の正弦波に比べて、波高は高いがDUTYが小さいパルス波になって現れる。また、受電コイル25の両端末間の電圧Va(図5参照)も、電力線L1の電流Iが0.1[A]か100[A]かによって、図6(B)に示した磁束Hと同様に正弦波かパルス波になる。   On the other hand, as shown by the solid line in FIG. 6A, when the current I is 100 [A], the core 24 is magnetically saturated early in a period in which the current I is shorter than a half cycle, and the magnetic flux H in the core 24 As shown by the solid line in FIG. 6B, the change of 現 れ る appears as a pulse wave having a high wave height but a small DUTY compared to a sine wave when the current I is 0.1 [A]. Further, the voltage Va (see FIG. 5) between both terminals of the power receiving coil 25 is the same as the magnetic flux H shown in FIG. 6B depending on whether the current I of the power line L1 is 0.1 [A] or 100 [A]. Similarly, it becomes a sine wave or a pulse wave.

これにより、電流Iが、0.1[A]から100[A]への変化のように1000倍変化しても、受電コイル25の両端末間の電圧Va(図5参照)を整流・平滑処理した後の電圧Vb(図5,図6(C)参照)の変化は僅かになる。即ち、冒頭の説明のように、電源回路30は、電力線L1に流れる電流の大小の影響を受け難く、電力線L1から安定して受電し、安定した給電を行うことができる。   As a result, even if the current I changes 1000 times, such as a change from 0.1 [A] to 100 [A], the voltage Va (see FIG. 5) between both terminals of the power receiving coil 25 is rectified and smoothed. The change in the voltage Vb (see FIGS. 5 and 6C) after processing is slight. That is, as described at the beginning, the power supply circuit 30 is hardly affected by the magnitude of the current flowing through the power line L1, and can stably receive power from the power line L1 and perform stable power feeding.

図4に示すように、電流検出増幅回路40は、オペアンプOP1を主体とした差動増幅回路36になっている。そして、電流検出コイル22の両端末間に接続された抵抗R1の両端の電圧がオペアンプOP1に入力されるように接続されている。また、抵抗R1の一端部は、コンデンサC3を介してグランド部材94に接地され、抵抗R1の他端部には、抵抗R2を介してバイアス電圧(Vcc/2)が印加されている。これにより、電力線L1を流れる電流Iの検出結果が、図7(A)に示すように、バイアス電圧(Vcc/2)を中心に振幅した脈流電圧信号としてオペアンプOP1から出力される。そして、オペアンプOP1の出力が、電流検出増幅回路40の出力として、図1に示すようにA/Dコンバーター95を通してマイコン96に取り込まれている。   As shown in FIG. 4, the current detection amplifier circuit 40 is a differential amplifier circuit 36 mainly composed of an operational amplifier OP1. And it connects so that the voltage of the both ends of resistance R1 connected between the both ends of the current detection coil 22 may be input into operational amplifier OP1. One end of the resistor R1 is grounded to the ground member 94 via the capacitor C3, and a bias voltage (Vcc / 2) is applied to the other end of the resistor R1 via the resistor R2. As a result, the detection result of the current I flowing through the power line L1 is output from the operational amplifier OP1 as a pulsating voltage signal whose amplitude is centered on the bias voltage (Vcc / 2), as shown in FIG. 7A. The output of the operational amplifier OP1 is taken into the microcomputer 96 as the output of the current detection amplifier circuit 40 through the A / D converter 95 as shown in FIG.

また、電流検出増幅回路40には、差動増幅回路36のゲインを高、中、低の3段階に切り替えるためのゲイン切替回路34が備えられている。そのゲイン切替回路34には電子スイッチ35が備えられ、その電子スイッチ35はマイコン96によって制御される。具体的には、電流検出増幅回路40の出力する脈流電圧信号の波高が、予め定められた基準波高の90%以上になったときゲインを下げる一方、予め定められた基準波高の50%以下になったときには、ゲインを上げるように制御している。これにより、差動増幅回路36のゲインが、図7(B)に示すように電力線L1に流れる電流Iの大、中、小に応じた最適のゲインに自動切り替えられて高い精度で電流検出を行うことが可能になる。   Further, the current detection amplifier circuit 40 is provided with a gain switching circuit 34 for switching the gain of the differential amplifier circuit 36 to three stages of high, medium and low. The gain switching circuit 34 is provided with an electronic switch 35, and the electronic switch 35 is controlled by a microcomputer 96. Specifically, the gain is reduced when the wave height of the pulsating voltage signal output from the current detection amplifier circuit 40 is 90% or more of a predetermined reference wave height, while 50% or less of the predetermined reference wave height. When it becomes, it is controlled to increase the gain. As a result, the gain of the differential amplifier circuit 36 is automatically switched to an optimum gain according to the large, medium, and small currents I flowing through the power line L1 as shown in FIG. It becomes possible to do.

図8に示すように、電圧検出増幅回路50は、差動増幅回路38の入力側に平衡アンプ37を備える一方、差動増幅回路38の出力側にイコライザ回路39を備えている。差動増幅回路38は、オペアンプOP2に抵抗R7を有した負帰還回路を設けて、プラス入力に抵抗R8を介してバイアス電圧(Vcc/2)が印加した構成になっている。   As shown in FIG. 8, the voltage detection amplifier circuit 50 includes a balanced amplifier 37 on the input side of the differential amplifier circuit 38, and includes an equalizer circuit 39 on the output side of the differential amplifier circuit 38. The differential amplifier circuit 38 has a configuration in which a negative feedback circuit having a resistor R7 is provided in the operational amplifier OP2, and a bias voltage (Vcc / 2) is applied to the plus input via the resistor R8.

平衡アンプ37は、第1と第2のオペアンプOP3,OP4のそれぞれに抵抗R3を有した負帰還回路を設けると共に、マイナス入力同士の間を抵抗R4を介して接続してなり、第1のオペアンプOP3のプラス入力に一方の電圧検出電極18がシールドケーブル19の芯線19Aを介して接続される一方、第2のオペアンプOP4のプラス入力に他方の電圧検出電極18がシールドケーブル19の芯線19Aを介して接続されている。また、第1のオペアンプOP3の出力は、抵抗R6を介して差動増幅回路38のオペアンプOP2のプラス入力に接続される一方、第2のオペアンプOP4の出力は、別の抵抗R6を介して差動増幅回路38のオペアンプOP2のマイナス入力に接続されている。また、第1と第2のオペアンプOP3,OP4のプラス入力の間には、それらプラス入力同士の間を1対の抵抗R5,R5によって1対1に分圧する分圧回路41が設けられ、その分圧回路41の1対1の分圧点が、コンデンサC4を介してグランド部材94に接地されると共に、その分圧点にバイアス電圧(Vcc/2)が印加されている。   The balanced amplifier 37 is provided with a negative feedback circuit having a resistor R3 in each of the first and second operational amplifiers OP3 and OP4, and the negative inputs are connected to each other through the resistor R4. One voltage detection electrode 18 is connected to the plus input of OP3 via the core wire 19A of the shield cable 19, while the other voltage detection electrode 18 is connected to the plus input of the second operational amplifier OP4 via the core wire 19A of the shield cable 19. Connected. The output of the first operational amplifier OP3 is connected to the positive input of the operational amplifier OP2 of the differential amplifier circuit 38 via a resistor R6, while the output of the second operational amplifier OP4 is connected via a different resistor R6. This is connected to the negative input of the operational amplifier OP2 of the dynamic amplifier circuit 38. A voltage dividing circuit 41 is provided between the positive inputs of the first and second operational amplifiers OP3 and OP4 to divide the positive inputs into a one-to-one relationship by a pair of resistors R5 and R5. A one-to-one voltage dividing point of the voltage dividing circuit 41 is grounded to the ground member 94 via the capacitor C4, and a bias voltage (Vcc / 2) is applied to the voltage dividing point.

イコライザ回路39は、抵抗R9とコンデンサC5とを備えたRC型のローパスフィルターであって、電力線L1,L2の電圧に含まれる1次周波数成分(例えば、50Hz又は60[Hz])より高い高調波成分をイコライズする。詳細には、電力線L1とオペアンプOP3の入力との間の回路は、図9(A)に示すように、電圧検出電極18とシールド電極14との間の容量成分によるコンデンサC7と分圧回路41の抵抗R5とを、交流電源としての電力線L1とグランドとの間に並列接続すると共に、電圧検出電極18と電力線L1との間の容量成分によるコンデンサC6を、交流電源としての電力線L1とコンデンサC7及び抵抗R5との共通接続点との間に直列接続した回路になっている。電力線L2とオペアンプOP4の入力との間の回路も同様である。また、電力線L1,L2の電圧周波数は、商用電源であれば、例えば、1次周波数が60[Hz]であるので、コンデンサC7は非導通と考えることができる。即ち、電圧検出増幅回路50の入力側の回路は、図9(B)に示すように、コンデンサC6と抵抗R5とからなるCR型のハイパスフィルター回路93と捕らえることができる。   The equalizer circuit 39 is an RC-type low-pass filter including a resistor R9 and a capacitor C5, and has higher harmonics than the primary frequency component (for example, 50 Hz or 60 [Hz]) included in the voltage of the power lines L1 and L2. Equalize ingredients. Specifically, the circuit between the power line L1 and the input of the operational amplifier OP3 includes a capacitor C7 and a voltage dividing circuit 41 that are formed by a capacitive component between the voltage detection electrode 18 and the shield electrode 14, as shown in FIG. Are connected in parallel between a power line L1 as an AC power supply and a ground, and a capacitor C6 due to a capacitance component between the voltage detection electrode 18 and the power line L1 is connected to a power line L1 and a capacitor C7 as an AC power supply. And a circuit connected in series with a common connection point with the resistor R5. The same applies to the circuit between the power line L2 and the input of the operational amplifier OP4. In addition, if the voltage frequency of the power lines L1 and L2 is a commercial power supply, for example, the primary frequency is 60 [Hz], the capacitor C7 can be considered non-conductive. In other words, as shown in FIG. 9B, the circuit on the input side of the voltage detection amplifier circuit 50 can be regarded as a CR type high-pass filter circuit 93 including a capacitor C6 and a resistor R5.

ところで、商用電源の電圧を実測すると、その電圧波形は、図11(A)に示すように、例えば、正弦波より三角波に近い波形になっている場合があり、1次周波数以外にも、2次、3次、4次、・・・の高調波成分のうちの何れかの高調波成分のレベルが高くなる(例えば、実測結果では、5次以上の複数の高調波成分のレベルが高くなった)。   By the way, when the voltage of the commercial power source is actually measured, the voltage waveform thereof may be, for example, a waveform closer to a triangular wave than a sine wave, as shown in FIG. The level of any one of the second, third, fourth,... Harmonic components increases (for example, in the actual measurement results, the levels of a plurality of harmonic components of the fifth or higher order increase). )

しかしながら、上述の通り、電圧検出増幅回路50の入力側は、CR型のハイパスフィルター回路93になっているので、そのハイパスフィルター回路93のゲインの周波数特性により、1次周波数成分に比べて高調波成分を互いゲインで伝達してしまう。具体的には、電力検出装置10を試作したところ、電圧検出電極18と電力線L1との間の容量成分によるコンデンサC6は8.9[pF]であり、電圧検出電極18とシールド電極14との間の容量成分によるコンデンサC7は1.4[pF]であった。また、抵抗R5を、例えば、1[MΩ]としたので、上記したハイパスフィルター回路93のゲインの周波数特性は、図10に示すように、略+6[dB/oct]になった。このため、1次周波数が60[Hz]である場合には、2次高調波は略+6[dB]、3次高調波は略+9[dB]、4次高調波は略+12[dB]とゲインを上昇させて検出することになる。   However, as described above, the input side of the voltage detection amplifier circuit 50 is a CR-type high-pass filter circuit 93. Therefore, the harmonics of the high-pass filter circuit 93 are higher than the primary frequency component due to the frequency characteristics of the gain. The components are transmitted with each other gain. Specifically, when the power detection device 10 is prototyped, the capacitor C6 due to the capacitance component between the voltage detection electrode 18 and the power line L1 is 8.9 [pF], and the voltage detection electrode 18 and the shield electrode 14 are The capacitor C7 due to the capacitance component between them was 1.4 [pF]. Since the resistor R5 is set to 1 [MΩ], for example, the frequency characteristic of the gain of the high-pass filter circuit 93 is approximately +6 [dB / oct] as shown in FIG. Therefore, when the primary frequency is 60 [Hz], the second harmonic is approximately +6 [dB], the third harmonic is approximately +9 [dB], and the fourth harmonic is approximately +12 [dB]. Detection is performed by increasing the gain.

そこで、本実施形態では、本実施形態では、電圧検出増幅回路50の出力側に、RC型のローパスフィルターであるイコライザ回路39を備えた。電圧検出増幅回路50の入力側のCR型のハイパスフィルター回路93により周波数毎にゲインを上昇させて検出した分をイコライザ回路39でキャンセル(補正)することができ、検出精度の向上が図られる。なお、ハイパスフィルター回路93の周波数特性が上記したように、例えば、略+6[dB]であるならば、RC型のローパスフィルターであるイコライザ回路39の周波数特性は、略−6[dB/oct]であることが好ましい。   Therefore, in the present embodiment, the equalizer circuit 39 that is an RC type low-pass filter is provided on the output side of the voltage detection amplifier circuit 50 in the present embodiment. The amount detected by increasing the gain for each frequency by the CR-type high-pass filter circuit 93 on the input side of the voltage detection amplifier circuit 50 can be canceled (corrected) by the equalizer circuit 39, and the detection accuracy can be improved. As described above, if the frequency characteristic of the high-pass filter circuit 93 is, for example, approximately +6 [dB], the frequency characteristic of the equalizer circuit 39 that is an RC low-pass filter is approximately −6 [dB / oct]. It is preferable that

図1に示したマイコン96は、A/Dコンバーター95を通して電圧検出増幅回路50及び電流検出増幅回路40から電圧検出データ及び電流検出データを取得する。マイコン96は、CPUとROMとRAMとをパッケージしてなり、そのROMには、計測端末11から取得した電圧検出データを電力線L1,L2間の電圧値に換算する変換定数と、計測端末11から取得した電流検出データを、差動増幅回路36のゲインの値を利用して電力線L1を流れる電流値に換算する変換定数と、それら変換定数を使用して電力を計算するプログラム等とが記憶されている。そして、マイコン96が、電圧検出データ及び電流検出データと可変ゲインの値とから電力値を計算して、送信回路97を用いてデータ処理端末12に向けて無線出力する。なお、上記した換算定数は、例えば、キャリブレーション等を行って設定されている。   The microcomputer 96 shown in FIG. 1 acquires voltage detection data and current detection data from the voltage detection amplification circuit 50 and the current detection amplification circuit 40 through the A / D converter 95. The microcomputer 96 is formed by packaging a CPU, a ROM, and a RAM. In the ROM, a conversion constant for converting the voltage detection data acquired from the measurement terminal 11 into a voltage value between the power lines L1 and L2, and the measurement terminal 11 A conversion constant for converting the acquired current detection data into a current value flowing through the power line L1 using the gain value of the differential amplifier circuit 36, a program for calculating power using the conversion constant, and the like are stored. ing. Then, the microcomputer 96 calculates a power value from the voltage detection data and current detection data and the value of the variable gain, and wirelessly outputs it to the data processing terminal 12 using the transmission circuit 97. Note that the above-described conversion constant is set by performing calibration or the like, for example.

そのデータ処理端末12は、図1に示すように、受信回路98とパソコン99とからなり、計測端末11から無線送信された電力値を受信回路98を通してパソコン99に取り込む。なお、受信回路98及びパソコン99は、例えば、商用電源のコンセントにプラグを接続して受電している。   As shown in FIG. 1, the data processing terminal 12 includes a receiving circuit 98 and a personal computer 99, and takes in a power value wirelessly transmitted from the measuring terminal 11 into the personal computer 99 through the receiving circuit 98. The receiving circuit 98 and the personal computer 99 receive power by connecting a plug to a commercial power outlet, for example.

パソコン99は、例えば、計測端末11から取得した電力値を、例えば、時間積分して電力量を演算し、電力値、電力量及びそれらの計測時刻、時間等をセットして、例えば、前述したようにインターネットを経由して電力会社等に送信する。電力会社は、複数の住居に備えた複数の電力検出装置10から送信されてくる電力値及び電力量のデータに基づいて、例えば、節電警報を発信するか否かを決定したり、発電量を増やすか否かを決定する。   The personal computer 99 calculates, for example, the power value obtained from the measurement terminal 11 by, for example, time integration, sets the power value, the power amount, and their measurement time, time, etc. So that it is transmitted to the electric power company via the Internet. The power company determines, for example, whether or not to send a power saving alarm based on the power value and power amount data transmitted from the plurality of power detection devices 10 provided in the plurality of residences, and determines the power generation amount. Decide whether to increase.

本実施形態の電力検出装置10の構成に関する説明は以上である。この電力検出装置10では、パソコン99が「電圧演算回路」及び「電流演算回路」及び「電力演算処理回路」に相当し、本発明に係る差動増幅回路38を有した電圧検出増幅回路50と、パソコン99とから本発明に係る「電圧検出処理回路」が構成され、本発明の「増幅回路」としての差動増幅回路36を有した電流検出増幅回路40とから本発明に係る「電流検出処理回路」が構成されている。そして、電圧検出増幅回路50とパソコン99とから本発明に係る「電圧検出処理回路」が構成されると共に、その「電圧検出処理回路」と、本発明に係る「第1及び第2の電圧検出電極」に相当する1対の電圧検出電極18,18と、1対のシールド電極14,14とから、本発明に係る「電圧検出装置」が構成されている。即ち、電力検出装置10は、本発明に係る「電圧検出装置」を含んだ構成になっている。   This completes the description of the configuration of the power detection device 10 of the present embodiment. In the power detection device 10, the personal computer 99 corresponds to a “voltage calculation circuit”, a “current calculation circuit”, and a “power calculation processing circuit”, and includes a voltage detection amplification circuit 50 having a differential amplification circuit 38 according to the present invention, The “voltage detection processing circuit” according to the present invention is configured from the personal computer 99 and the current detection amplification circuit 40 having the differential amplification circuit 36 as the “amplification circuit” according to the present invention is connected to the “current detection according to the present invention”. Processing circuit "is configured. The voltage detection amplification circuit 50 and the personal computer 99 constitute the “voltage detection processing circuit” according to the present invention, and the “voltage detection processing circuit” and the “first and second voltage detections” according to the present invention. A “voltage detection device” according to the present invention is constituted by a pair of voltage detection electrodes 18 and 18 corresponding to “electrodes” and a pair of shield electrodes 14 and 14. In other words, the power detection device 10 includes a “voltage detection device” according to the present invention.

以下、本実施形態の電力検出装置10及びそれに含まれる「電圧検出装置」の作用効果について説明する。本実施形態の電力検出装置10では、電圧検出のために電力線L1,L2に静電結合される電圧検出電極18,18がシールド電極14,14によって覆われているので電圧検出電極18,18にノイズが付与され難い。また、差動増幅回路38により電圧検出電極18,18間の電位差を差動増幅するので、その際、電圧検出電極18,18の同相電圧のノイズが相殺される。さらに、その差動増幅回路38の入力側にオペアンプOP3,OP4を主体とした平衡アンプ37を設けたことで、「電圧検出処理回路」の入力がハイインピーダンスになり、これにより、静電結合により電力線L1,L2と間がハイインピーダンスになった電圧検出電極18,18による検出電圧を低下させずに「電圧検出処理回路」に取り込むことができる。しかも、電力検出装置10に備えた全ての回路が共通のグランド(グランド部材94)に接地されているので、電力検出装置10に備えた複数の回路を、複数の別々のグランドに接地した場合に生じ得るグランド同士の間の電位差による電圧の検出結果への影響も抑えることができる。これらにより、電力検出装置10では、電圧検出電極18,18の周囲の環境による電圧の検出結果への影響を抑えて、従来より正確に電圧を検出することが可能になり、その電圧の検出結果を利用して電力及び電力量を、従来より正確に検出することが可能になる。これらに加えて、電力検出装置10を構成する計測端末11とデータ処理端末12との間で無線送信を行う構成としたことで、データ処理端末12が電圧検出電極18,18から切り離され、データ処理端末12の構成の自由度が高くなり、汎用のパソコン99を利用することも可能になる。   Hereinafter, the operational effects of the power detection device 10 of the present embodiment and the “voltage detection device” included therein will be described. In the power detection device 10 of the present embodiment, the voltage detection electrodes 18 and 18 that are electrostatically coupled to the power lines L1 and L2 for voltage detection are covered with the shield electrodes 14 and 14, so Noise is hardly added. Further, since the potential difference between the voltage detection electrodes 18 and 18 is differentially amplified by the differential amplifier circuit 38, the noise of the common-mode voltage of the voltage detection electrodes 18 and 18 is canceled at that time. Further, by providing the balanced amplifier 37 mainly composed of the operational amplifiers OP3 and OP4 on the input side of the differential amplifier circuit 38, the input of the “voltage detection processing circuit” becomes high impedance, thereby causing electrostatic coupling. The voltage detected by the voltage detection electrodes 18 and 18 having high impedance between the power lines L1 and L2 can be taken into the “voltage detection processing circuit” without being lowered. Moreover, since all the circuits included in the power detection device 10 are grounded to a common ground (ground member 94), when a plurality of circuits included in the power detection device 10 are grounded to a plurality of separate grounds. The influence on the detection result of the voltage due to the potential difference between the grounds can be suppressed. As a result, the power detection apparatus 10 can suppress the influence on the voltage detection result due to the environment around the voltage detection electrodes 18 and 18 and can detect the voltage more accurately than in the past, and the voltage detection result. It becomes possible to detect electric power and electric energy more accurately than before. In addition to these, since the wireless transmission is performed between the measurement terminal 11 and the data processing terminal 12 constituting the power detection device 10, the data processing terminal 12 is disconnected from the voltage detection electrodes 18 and 18, and the data The degree of freedom of the configuration of the processing terminal 12 is increased, and a general-purpose personal computer 99 can be used.

[第2実施形態]
本実施形態は、図12に示されており、電圧センサー13の構成のみが第1実施形態と異なる。この電圧センサー13Wは、前記第1実施形態の電圧センサー13Wにおける電圧検出電極18に代えて、U字溝形の電圧検出電極18Wが、溝開口を金属筐体15,15同士の対向方向に向けた状態で絶縁支持ブロック17を介して一方の金属筐体15に固定された構成になっている。
[Second Embodiment]
This embodiment is shown in FIG. 12, and only the configuration of the voltage sensor 13 is different from that of the first embodiment. In this voltage sensor 13W, instead of the voltage detection electrode 18 in the voltage sensor 13W of the first embodiment, a U-shaped groove-shaped voltage detection electrode 18W has a groove opening directed in a direction in which the metal casings 15 and 15 face each other. In this state, it is fixed to one metal casing 15 via an insulating support block 17.

[第3実施形態]
本実施形態は、図13に示されており、電圧センサー13Vがシールド電極14Vを1対の電圧検出電極18V,18Vに共通して1つ備えた構造になっている点が、第1及び第2の実施形態と大きく異なる。具体的には、シールド電極14Vは、横長の1対の金属筐体15V,15Vで構成されている。また、図示しないが、1対の金属筐体15V,15Vは、図示しないフランジを互いに重ね合わせ可能に備えていて、それらフランジに貫通させた螺子とナットによって、1対の金属筐体15V,15Vが合体状態に保持されるようになっている。さらに、各金属筐体15Vの開口縁に、第1実施形態の電力線受容凹部15C(図2参照)と同形状の電力線受容凹部(図示せず)が、1対ずつ計4つ形成され、金属筐体15V,15Vの合体状態で、シールド電極14Vに計4つの電力線挿通孔(図示せず)が形成されるようになっている。
[Third Embodiment]
This embodiment is shown in FIG. 13, and the voltage sensor 13V has a structure in which one shield electrode 14V is provided in common with the pair of voltage detection electrodes 18V and 18V. This is significantly different from the second embodiment. Specifically, the shield electrode 14V is composed of a pair of horizontally long metal casings 15V and 15V. Although not shown, the pair of metal casings 15V and 15V are provided with flanges (not shown) so that they can be overlapped with each other, and a pair of metal casings 15V and 15V is formed by screws and nuts that pass through the flanges. Are held in a combined state. Further, a total of four power line receiving recesses (not shown) having the same shape as the power line receiving recesses 15C (see FIG. 2) of the first embodiment are formed on the opening edge of each metal casing 15V, one by one. A total of four power line insertion holes (not shown) are formed in the shield electrode 14V in the combined state of the casings 15V and 15V.

さらに、両金属筐体15V,15Vの内部は、前記した第1実施形態の絶縁支持ブロック17と同じ材質の絶縁支持部材17V,17Vで埋め尽くされている。そして、一方の金属筐体15Vのうち1対ずつの電力線受容凹部の同軸上に、U字溝形の1対の電圧検出電極18V,18Vが固定されている。また、他方の金属筐体15Vのうち1対ずつの電力線受容凹部の同軸上には、電圧検出電極18Vと同形状の1対の補助金具18U,18Uが固定されている。さらに、一方の金属筐体15Vを貫通したシールドケーブル19,19の芯線19A,19Aが電圧検出電極18V,18Vに接続され、シールドケーブル19,19のシールド線19B,19Bが接続されている。そして、一方の金属筐体15Vの電圧検出電極18V,18V内に、電力線L1,L2を配置した状態で金属筐体15V,15Vを合体させると、電力線L1,L2が電力線挿通孔を通してシールド電極14Vを貫通しかつ、互いに接合した電圧検出電極18Vと補助金具18Uの間をそれぞれ貫通した状態に保持される。   Further, the interiors of both metal casings 15V and 15V are filled with insulating support members 17V and 17V made of the same material as the insulating support block 17 of the first embodiment. A pair of U-shaped groove-shaped voltage detection electrodes 18V and 18V are fixed on the same axis of the pair of power line receiving recesses in one metal casing 15V. A pair of auxiliary metal fittings 18U and 18U having the same shape as the voltage detection electrode 18V are fixed on the same axis of the pair of power line receiving recesses of the other metal casing 15V. Furthermore, the core wires 19A and 19A of the shield cables 19 and 19 penetrating the one metal casing 15V are connected to the voltage detection electrodes 18V and 18V, and the shield wires 19B and 19B of the shield cables 19 and 19 are connected. When the metal casings 15V and 15V are combined with the voltage detection electrodes 18V and 18V of the one metal casing 15V in a state where the power lines L1 and L2 are arranged, the power lines L1 and L2 pass through the power line insertion holes and the shield electrode 14V. And the voltage detection electrode 18V and the auxiliary metal fitting 18U that are joined to each other are held in a state of penetrating each other.

このように本実施形態の電圧センサー13Vでは、シールド電極14Vを1対の電圧検出電極18V,18Vに共通して1つ設けたので、コンパクトな構成にすることができる。また、金属筐体15V,15V同士の接合部分に形成した2対の電力線挿通孔に電力線L1,L2が挿通されて分離した状態で保持されるので、それら電力線L1,L2に宛われる電圧検出電極18,18同士の相互の影響も抑えることができる。   Thus, in the voltage sensor 13V of the present embodiment, since one shield electrode 14V is provided in common for the pair of voltage detection electrodes 18V and 18V, a compact configuration can be achieved. In addition, since the power lines L1 and L2 are inserted into and separated from the two pairs of power line insertion holes formed at the joint portion between the metal casings 15V and 15V, the voltage detection electrodes assigned to the power lines L1 and L2 The mutual influence between 18 and 18 can also be suppressed.

[第4実施形態]
本実施形態は、図14に示されており、一体になった状態の電力線L1,L2に電圧センサー13Yを取り付けられる点が第1及び第2の実施形態と大きく異なる。具体的には、電圧センサー13Yのシールド電極14Yは、例えば、両端有底の楕円筒を2つに縦割りした構造の1対の金属筐体15Y,15Yで構成されている。また、図示しないが、1対の金属筐体15Y,15Yは、図示しないフランジを互いに重ね合わせ可能に備えていて、それらフランジに貫通させた螺子とナットによって、1対の金属筐体15Y,15Yが合体状態に保持されるようになっている。
[Fourth Embodiment]
This embodiment is shown in FIG. 14, and is greatly different from the first and second embodiments in that the voltage sensor 13Y can be attached to the power lines L1, L2 in an integrated state. Specifically, the shield electrode 14Y of the voltage sensor 13Y includes, for example, a pair of metal housings 15Y and 15Y having a structure in which an elliptic cylinder with both ends is vertically divided into two. Although not shown, the pair of metal casings 15Y and 15Y includes flanges (not shown) that can be overlapped with each other, and a pair of metal casings 15Y and 15Y is formed by screws and nuts that pass through the flanges. Are held in a combined state.

各金属筐体15Yの内面には、各金属筐体15Yに対応した溝形の絶縁支持部材17Yが固定され、その絶縁支持部材17Yの溝の底側にU字溝形の電圧検出電極18Yがそれぞれ固定されている。また、シールド電極14Yの軸方向(図14の紙面と直交する方向)の両端部の端部壁の中央に、図示しない長円形の電力線挿通孔がそれぞれ設けられるように、各金属筐体15Yの軸方向の両端部には、図示しない電力線受容凹部が形成されている。   A groove-shaped insulating support member 17Y corresponding to each metal housing 15Y is fixed to the inner surface of each metal housing 15Y, and a U-shaped groove-shaped voltage detection electrode 18Y is provided on the bottom side of the groove of the insulating support member 17Y. Each is fixed. Further, each of the metal casings 15Y is provided so that an oval power line insertion hole (not shown) is provided in the center of the end walls at both ends in the axial direction of the shield electrode 14Y (direction orthogonal to the paper surface of FIG. 14). Power line receiving recesses (not shown) are formed at both ends in the axial direction.

そして、一方の金属筐体15Yの電圧検出電極18Y内に、一体となった電力線L1,L2の一方を配置した状態で金属筐体15Y,15Yを合体させると、図14に示すように、シールド電極14Y内で電圧検出電極18Y,18Yが電力線L1,L2にそれぞれ側方から宛われた状態に保持される。即ち、本実施形態の構成によれば、1対の電力線L1,L2が一体固定されてる場合に、それら電力線L1,L2を分離せずに電力検出装置に取り付けることができる。   Then, when the metal casings 15Y and 15Y are combined in a state where one of the integrated power lines L1 and L2 is disposed in the voltage detection electrode 18Y of the one metal casing 15Y, as shown in FIG. Within the electrode 14Y, the voltage detection electrodes 18Y and 18Y are held in a state where they are respectively addressed to the power lines L1 and L2. That is, according to the configuration of the present embodiment, when a pair of power lines L1 and L2 are integrally fixed, the power lines L1 and L2 can be attached to the power detection device without being separated.

[第5実施形態]
本実施形態は、図15に示されており、電流検出用の第1クランパー20Vの構造が第1実施形態と異なる。即ち、本実施形態の第1クランパー20Vは、C字形の1対のコア21V,21VをそれらのC字の開口部分を対向させた状態で互いに接近及び離間可能に支持して備えている。そして、コア21V,21Vの間を広げて、1対の電力線L1,L2が一体固定された電力ケーブルを間に配置した状態でコア21V,21V同士を接近させ、各コア21VのC字の開口部分の内側に電力線L1,L2を配置した状態で電力ケーブルを保持することができるようになっている。また、両コア21V,21Vに検出コイル22V,22Vが巻回され、それら検出コイル22V,22Vの両端末同士を接続されてなる閉回路にコンデンサC8を設けて、そのコンデンサC8の両端末間の電圧が、電流検出増幅回路40に取り込まれるようになっている。本実施形態の構成によれば、1対の電力線L1,L2が一体固定されいる場合に、それら電力線L1,L2を分離せずに電流を検出用の第1クランパー20Vを取り付けることができる。なお、前記第1実施形態の受電用の第2クランパー23に、本実施形態の第1クランパー20Vの構造を適用してもよい。
[Fifth Embodiment]
This embodiment is shown in FIG. 15, and the structure of the first clamper 20V for current detection is different from that of the first embodiment. That is, the first clamper 20V of the present embodiment includes a pair of C-shaped cores 21V and 21V that are supported so as to be able to approach and separate from each other with their C-shaped opening portions facing each other. Then, between the cores 21V and 21V, the cores 21V and 21V are brought close to each other in a state where a power cable in which a pair of power lines L1 and L2 are integrally fixed is disposed between the cores 21V and 21V. The power cable can be held in a state where the power lines L1 and L2 are arranged inside the portion. Further, the detection coils 22V and 22V are wound around the cores 21V and 21V, and a capacitor C8 is provided in a closed circuit in which both ends of the detection coils 22V and 22V are connected to each other. The voltage is taken into the current detection amplifier circuit 40. According to the configuration of the present embodiment, when the pair of power lines L1 and L2 are integrally fixed, the first clamper 20V for detecting a current can be attached without separating the power lines L1 and L2. Note that the structure of the first clamper 20V of the present embodiment may be applied to the second clamper 23 for receiving power of the first embodiment.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記第1実施形態の電力検出装置10では、計測端末11のマイコン96で電力値を演算して、その電力値をデータ処理端末12に無線送信していたが、計測端末11側で電力値を計算せずに、データ処理端末12に電圧データ及び電流データ等を送信して、データ処理端末12側のパソコン99で電力値を演算する構成としてもよい。 (1) In the power detection device 10 of the first embodiment, the microcomputer 96 of the measurement terminal 11 calculates the power value and wirelessly transmits the power value to the data processing terminal 12. Instead of calculating the power value, voltage data and current data may be transmitted to the data processing terminal 12 and the personal computer 99 on the data processing terminal 12 side may calculate the power value.

(2)前記第1〜第4の実施形態の1対の金属筐体15,15(15V,15V、15Y,15Y)等は、螺子とナットによって合体状態に固定されていたが、1対の金属筐体の一側縁部同士をヒンジで連結すると共に、それら各金属筐体の他の一側縁部にそれぞれフックを設け、それら両フックに巻き付けたゴム等で金属筐体同士を合体状態に固定してもよい。また、金属筐体の他の一側縁部同士をバックル機構によって連結して合体状態に固定してもよい。 (2) The pair of metal housings 15 and 15 (15V, 15V, 15Y, and 15Y) of the first to fourth embodiments are fixed in a combined state by screws and nuts. One side edge of the metal casing is connected with a hinge, and a hook is provided on the other side edge of each of the metal casings, and the metal casings are combined with rubber wrapped around the both hooks. It may be fixed to. Moreover, you may connect the other one side edge part of a metal housing | casing by a buckle mechanism, and may fix it to a united state.

10 電力検出装置
11 計測端末
12 データ処理端末
13,13V,13W,13Y 電圧センサー
14,14V,14Y シールド電極
14A 電力線挿通孔
15,15V,15Y 金属筐体
15C 電力線受容凹部
15D シールド電線挿通孔
16 クッション部材
17 絶縁支持ブロック(絶縁部材)
17V,17Y 絶縁支持部材(絶縁部材)
18,18V,18W,18Y 電圧検出電極
19 シールドケーブル
19A 芯線
19B シールド線
24 コア(可飽和コア)
25 受電コイル
30 電源回路
36 差動増幅回路
37 平衡アンプ
39 イコライザ回路
40 電流検出増幅回路
50 電圧検出増幅回路
94 グランド部材
97 送信回路
98 受信回路
99 パソコン
C1〜C8 コンデンサ
L1,L2 電力線
N 中立線
OP1〜OP4 オペアンプ
R1〜R9 抵抗
DESCRIPTION OF SYMBOLS 10 Electric power detection apparatus 11 Measuring terminal 12 Data processing terminal 13,13V, 13W, 13Y Voltage sensor 14,14V, 14Y Shield electrode 14A Power line insertion hole 15,15V, 15Y Metal housing 15C Power line acceptance recessed part 15D Shield electric wire insertion hole 16 Cushion Member 17 Insulation support block (insulation member)
17V, 17Y Insulation support member (insulation member)
18, 18V, 18W, 18Y Voltage detection electrode 19 Shielded cable 19A Core wire 19B Shielded wire 24 Core (saturable core)
25 receiving coil 30 power supply circuit 36 differential amplifier circuit 37 balanced amplifier 39 equalizer circuit 40 current detection amplifier circuit 50 voltage detection amplifier circuit 94 ground member 97 transmission circuit 98 reception circuit 99 PC C1 to C8 capacitor L1, L2 power line N neutral line OP1 ~ OP4 Operational Amplifier R1 ~ R9 Resistor

Claims (13)

単相2線式又は単相3線式の電力線における180度電圧位相がずれた第1と第2の電力線の間の電圧を検出する電圧検出装置であって、
前記第1及び第2の電力線に対して、それらの絶縁被覆を介して静電結合可能な第1及び第2の電圧検出電極と、
前記第1及び第2の電圧検出電極を覆うシールド電極と、
前記第1及び第2の電圧検出電極間の電位差を増幅する差動増幅回路及び、前記差動増幅回路の出力に基づいて前記第1と第2の電力線間の電圧を演算する電圧演算回路を含むを電圧検出処理回路とを備え、
前記電圧検出処理回路のうち前記第1及び第2の電圧検出電極に導通した回路部と前記シールド電極とを共通のグランドに接地したことを特徴とする電圧検出装置。
A voltage detection device that detects a voltage between the first and second power lines that are 180 degrees out of phase in a single-phase two-wire or single-phase three-wire power line,
First and second voltage detection electrodes that can be electrostatically coupled to the first and second power lines via their insulating coatings;
A shield electrode covering the first and second voltage detection electrodes;
A differential amplifier circuit for amplifying a potential difference between the first and second voltage detection electrodes; and a voltage calculation circuit for calculating a voltage between the first and second power lines based on an output of the differential amplifier circuit. Including a voltage detection processing circuit,
A voltage detection apparatus comprising: a circuit portion connected to the first and second voltage detection electrodes in the voltage detection processing circuit; and the shield electrode grounded to a common ground.
前記差動増幅回路の入力側に、第1と第2のオペアンプを有した平衡アンプを設け、その平衡アンプは、前記第1のオペアンプのプラス入力に前記第1の電圧検出電極を接続しかつ前記第1のオペアンプの出力に前記差動増幅回路の一方の入力を接続すると共に、前記第2のオペアンプのプラス入力に前記第2の電圧検出電極を接続しかつ前記第2のオペアンプの出力に前記差動増幅回路の他方の入力を接続し、さらに前記第1と第2のオペアンプのマイナス入力同士の間を抵抗を介して接続してなり、
前記第1と第2のオペアンプのプラス入力同士の間を1対1に分圧する分圧回路を設け、前記分圧回路の分圧点が、前記シールド電極及び前記電圧検出処理回路が共通して接地されたグランドに対して高電位になるようにバイアスするバイアス回路を設けたことを特徴とする請求項1に記載の電圧検出装置。
A balanced amplifier having first and second operational amplifiers is provided on the input side of the differential amplifier circuit, and the balanced amplifier connects the first voltage detection electrode to the positive input of the first operational amplifier and One input of the differential amplifier circuit is connected to the output of the first operational amplifier, the second voltage detection electrode is connected to the positive input of the second operational amplifier, and the output of the second operational amplifier is connected. The other input of the differential amplifier circuit is connected, and the negative inputs of the first and second operational amplifiers are connected via a resistor,
A voltage dividing circuit that divides the positive inputs of the first and second operational amplifiers in a one-to-one relationship is provided, and the voltage dividing point of the voltage dividing circuit is common to the shield electrode and the voltage detection processing circuit. The voltage detection apparatus according to claim 1, further comprising a bias circuit that biases the grounded ground so as to have a high potential.
前記第1及び第2の電力線に印加されている電圧波に含まれる第1次波より高い周波数の高調波をイコライズするイコライザ回路を前記差動増幅回路の出力側に備えたことを特徴とする請求項1又は2に記載の電圧検出装置。   An equalizer circuit for equalizing harmonics having a higher frequency than the first order wave included in the voltage wave applied to the first and second power lines is provided on the output side of the differential amplifier circuit. The voltage detection apparatus according to claim 1 or 2. 前記電圧検出処理回路のうち前記差動増幅回路と前記電圧演算回路との間に、前記差動増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて前記差動増幅回路と前記電圧演算回路との間を非導通としたことを特徴とする請求項1乃至3の何れか1の請求項に記載の電圧検出装置。   A transmission circuit and a reception circuit for transmitting and receiving an optical signal or a radio signal as an output of the differential amplifier circuit are provided between the differential amplifier circuit and the voltage calculation circuit in the voltage detection processing circuit, and the differential 4. The voltage detection device according to claim 1, wherein a non-conduction is made between the amplifier circuit and the voltage calculation circuit. 5. 前記第1又は第2の電力線に電磁誘導結合して受電し、前記送信回路より前記差動増幅回路側に給電する電源回路を備えたことを特徴とする請求項4に記載の電圧検出装置。   5. The voltage detection device according to claim 4, further comprising: a power supply circuit that receives power by electromagnetic induction coupling to the first or second power line and supplies power from the transmission circuit to the differential amplifier circuit side. リング状の可飽和コアを2分割してなる1対の分割コアの一方又は両方にコイルを巻回してなり、前記電力線を前記1対の分割コアの間に挟み込み可能な電磁誘導結合部を前記電源回路に備えたことを特徴とする請求項5に記載の電圧検出装置。   A coil is wound around one or both of a pair of split cores obtained by splitting a ring-shaped saturable core into two parts, and an electromagnetic induction coupling portion capable of sandwiching the power line between the pair of split cores The voltage detection device according to claim 5, wherein the voltage detection device is provided in a power supply circuit. 前記シールド電極を、前記第1及び第2の各電圧検出電極毎に別個に設けて、それら各シールド電極を一面開放の1対の金属筐体で構成し、
前記1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、一方の前記金属筐体に形成されたシールドケーブル挿通孔と、前記金属筐体同士の接合部分に形成されて、前記第1又は第2の電力線を挿通可能な電力線挿通孔を構成する電力線受容凹部とを備え、
前記第1及び第2の各電圧検出電極を、前記金属筐体の内面に絶縁部材を介して固定しかつ前記電力線挿通孔に挿通された前記第1又は第2の電力線の側面に宛われるように配置し、
各前記シールド電線挿通孔に挿通したシールドケーブルの芯線により、前記第1及び第2の電圧検出電極を前記差動増幅回路に接続すると共に、前記シールドケーブルのシールド線により前記第1及び第2のシールド電極を、前記電圧検出処理回路との共通の前記グランドに接地したことを特徴とする請求項1乃至6の何れか1の請求項に記載の電圧検出装置。
The shield electrode is provided separately for each of the first and second voltage detection electrodes, and each shield electrode is constituted by a pair of metal casings that are open on one side,
The united holding means for holding the edge of the opening of the pair of metal casings in a united state, the shield cable insertion hole formed in one of the metal casings, and the bonding between the metal casings A power line receiving recess that is formed in a portion and constitutes a power line insertion hole through which the first or second power line can be inserted;
Each of the first and second voltage detection electrodes is fixed to an inner surface of the metal casing via an insulating member and is directed to a side surface of the first or second power line inserted through the power line insertion hole. Placed in
The first and second voltage detection electrodes are connected to the differential amplifier circuit by a core wire of a shield cable inserted through each of the shielded electric wire insertion holes, and the first and second voltage detection electrodes are connected by the shield wire of the shield cable. The voltage detection apparatus according to claim 1, wherein a shield electrode is grounded to the ground common to the voltage detection processing circuit.
前記シールド電極を、前記第1及び第2の電圧検出電極に共通して1つ設けかつ、一面開放の1対の金属筐体で構成し、
前記1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、一方の前記金属筐体に形成されたシールドケーブル挿通孔と、前記金属筐体同士の接合部分に形成されて、前記第1及び第2の電力線を分離した状態にして挿通可能な2対の電力線挿通孔とを備え、
前記第1及び第2の各電圧検出電極を、前記1対の金属筐体の一方の前記金属筐体の内面に絶縁部材を介して固定しかつ、前記1対の電力線挿通孔に挿通された前記第1及び第2の電力線の側面に宛われるように配置し、
前記シールド電線挿通孔に挿通した1対のシールドケーブルの芯線により前記第1及び第2の電圧検出電極を前記差動増幅回路に接続すると共に、前記1対のシールドケーブルのシールド線により前記シールド電極を、前記電圧検出処理回路との共通の前記グランドに接地したことを特徴とする請求項1乃至6の何れか1の請求項に記載の電圧検出装置。
The shield electrode is provided in common with the first and second voltage detection electrodes, and is composed of a pair of metal casings that are open on one side,
The united holding means for holding the edge of the opening of the pair of metal casings in a united state, the shield cable insertion hole formed in one of the metal casings, and the bonding between the metal casings A pair of power line insertion holes formed in a portion and capable of being inserted in a state in which the first and second power lines are separated,
Each of the first and second voltage detection electrodes is fixed to an inner surface of one of the pair of metal casings via an insulating member, and is inserted through the pair of power line insertion holes. Arranged to be addressed to the side surfaces of the first and second power lines,
The first and second voltage detection electrodes are connected to the differential amplifier circuit by a pair of shielded cable cores inserted into the shielded wire insertion hole, and the shield electrode is connected by the shielded wire of the pair of shielded cables. The voltage detection device according to claim 1, wherein the voltage detection device is grounded to the common ground with the voltage detection processing circuit.
前記第1及び第2の電圧検出電極をU字溝形状とし、そのU字の2辺が前記1対の金属筐体の対向方向で対向するように配置したことを特徴とする請求項7又は8に記載の電圧検出装置。   The first and second voltage detection electrodes are formed in a U-shaped groove shape, and the two sides of the U-shape are arranged so as to face each other in the facing direction of the pair of metal casings. 9. The voltage detection device according to 8. 前記シールド電極を、前記第1及び第2の電圧検出電極に共通して1つ設けかつ、一面開放の1対の金属筐体で構成し、
前記1対の金属筐体の開放口の縁部同士を接合した合体状態に保持する合体保持手段と、各前記金属筐体の形成されたシールドケーブル挿通孔と、前記金属筐体同士の接合部分に形成されて、前記第1及び第2の電力線を纏めて挿通可能でかつ前記1対の金属筐体同士の対向方向に前記第1及び第2の電力線が並んだ状態に保持可能な1対の電力線挿通孔とを備え。
前記第1及び第2の各電圧検出電極を、前記1対の金属筐体に分けられてそれぞれ絶縁部材を介して固定しかつ、前記1対の電力線挿通孔に挿通された前記第1及び第2の電力線を挟んで対向するように配置し、
各前記金属筐体の前記シールド電線挿通孔に挿通したシールドケーブルの芯線により前記第1及び第2の電圧検出電極を前記差動増幅回路に接続すると共に、前記シールドケーブルのシールド線により各前記金属筐体を前記電圧検出処理回路との共通の前記グランドに接地したことを特徴とする請求項1乃至6の何れか1の請求項に記載の電圧検出装置。
The shield electrode is provided in common with the first and second voltage detection electrodes, and is composed of a pair of metal casings that are open on one side,
Combined holding means for holding the edges of the opening of the pair of metal housings joined together, a shield cable insertion hole formed in each of the metal housings, and a joint portion between the metal housings A pair that can be inserted through the first and second power lines together and can be held in a state in which the first and second power lines are arranged in the opposing direction of the pair of metal housings. With power line insertion hole.
The first and second voltage detection electrodes are divided into the pair of metal housings and fixed through insulating members, respectively, and are inserted into the pair of power line insertion holes. Two power lines are placed facing each other,
The first and second voltage detection electrodes are connected to the differential amplifier circuit by a core wire of a shield cable inserted into the shield wire insertion hole of each metal casing, and each metal is connected by a shield wire of the shield cable. The voltage detection apparatus according to claim 1, wherein a casing is grounded to the ground common to the voltage detection processing circuit.
前記1対の金属筐体に固定され、前記1対の金属筐体の合体状態で前記第1及び第2の電力線を挟持する絶縁性の1対のクッション部材を備えたことを特徴とする請求項7乃至10の何れか1の請求項に記載の電圧検出装置。   A pair of insulating cushion members fixed to the pair of metal casings and sandwiching the first and second power lines in a combined state of the pair of metal casings are provided. Item 11. The voltage detection device according to any one of Items 7 to 10. 請求項1乃至11の何れか1の請求項に記載の電圧検出装置と、
前記第1又は第2の電力線に対して、それらの絶縁被覆を介して電磁誘導結合可能な電流検出コイルと、
前記電流検出コイルに流れる誘導電流に基づいて前記第1及び第2の電力線に流れる電流を演算する電流検出処理回路と、
前記電流検出処理回路の演算結果と、前記電圧検出装置における前記電圧検出処理回路の演算結果とから前記第1及び第2の電力線にて送電された電力又は電力量を演算する電力検出処理回路とを備え、
前記電流検出処理回路及び前記電力検出処理回路のうち前記第1及び第2の電圧検出電極と導通した回路部と前記シールド電極とを共通のグランドに接地したことを特徴とする電力検出装置。
A voltage detection device according to any one of claims 1 to 11,
A current detection coil that can be electromagnetically coupled to the first or second power line via their insulation coating;
A current detection processing circuit for calculating a current flowing in the first and second power lines based on an induced current flowing in the current detection coil;
A power detection processing circuit that calculates the power or the amount of power transmitted through the first and second power lines from the calculation result of the current detection processing circuit and the calculation result of the voltage detection processing circuit in the voltage detection device; With
A power detection apparatus comprising: a circuit portion that is electrically connected to the first and second voltage detection electrodes and the shield electrode of the current detection processing circuit and the power detection processing circuit and grounded to a common ground.
前記電流検出処理回路には、前記電流検出コイルに流れる誘導電流に応じた電圧信号を増幅する増幅回路と、その増幅回路の出力に基づいて前記第1及び第2の電力線に流れる電流を演算する電流演算回路とが備えられ、
前記電流検出処理回路のうち前記増幅回路と前記電流演算回路との間に、前記増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて前記増幅回路と前記電流演算回路との間を非導通とすると共に、
前記電圧検出処理回路のうち前記差動増幅回路と前記電圧演算回路との間に、前記差動増幅回路の出力を光信号又は無線信号にして送受信する送信回路及び受信回路を設けて前記差動増幅回路と前記電圧演算回路との間を非導通としたことを特徴とする請求項12に記載の電力検出装置。
The current detection processing circuit calculates an electric current flowing through the first and second power lines based on an amplification circuit that amplifies a voltage signal corresponding to the induced current flowing through the current detection coil, and an output of the amplification circuit. Current calculation circuit,
A transmission circuit and a reception circuit for transmitting and receiving an output of the amplification circuit as an optical signal or a radio signal are provided between the amplification circuit and the current calculation circuit in the current detection processing circuit, and the amplification circuit and the current calculation are provided. While not conducting between the circuit and
A transmission circuit and a reception circuit for transmitting and receiving an optical signal or a radio signal as an output of the differential amplifier circuit are provided between the differential amplifier circuit and the voltage calculation circuit in the voltage detection processing circuit, and the differential The power detection device according to claim 12, wherein a non-conduction is made between the amplifier circuit and the voltage calculation circuit.
JP2011267318A 2011-12-06 2011-12-06 Voltage detection device and power detection device Expired - Fee Related JP5885138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267318A JP5885138B2 (en) 2011-12-06 2011-12-06 Voltage detection device and power detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267318A JP5885138B2 (en) 2011-12-06 2011-12-06 Voltage detection device and power detection device

Publications (2)

Publication Number Publication Date
JP2013120098A true JP2013120098A (en) 2013-06-17
JP5885138B2 JP5885138B2 (en) 2016-03-15

Family

ID=48772794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267318A Expired - Fee Related JP5885138B2 (en) 2011-12-06 2011-12-06 Voltage detection device and power detection device

Country Status (1)

Country Link
JP (1) JP5885138B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021743A (en) * 2013-07-16 2015-02-02 日本電信電話株式会社 Current waveform measurement device
WO2015182188A1 (en) * 2014-05-27 2015-12-03 オムロン株式会社 Voltage measurement device and voltage measurement method
JP2016170144A (en) * 2015-03-16 2016-09-23 セイコーエプソン株式会社 Circuit arrangement, physical quantity detection equipment, electronic equipment, and moving entity
JP6351884B1 (en) * 2017-04-21 2018-07-04 大電株式会社 Power supply device and power supply method
WO2018193661A1 (en) * 2017-04-21 2018-10-25 大電株式会社 Power supply device and power supplying method
WO2020095555A1 (en) * 2018-11-08 2020-05-14 Tdk株式会社 Electromagnetic induction-type power generation device
JP2020195081A (en) * 2019-05-29 2020-12-03 日置電機株式会社 Signal generation device and signal reading system
WO2021182082A1 (en) * 2020-03-13 2021-09-16 日本電産リード株式会社 Clamp-type ac voltage probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473244A (en) * 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JP2002055126A (en) * 2000-08-09 2002-02-20 Osaka Gas Co Ltd Non-contact type voltage measuring method and device therefor
JP2009236711A (en) * 2008-03-27 2009-10-15 Hitachi Ltd Assembled battery total voltage detection circuit
JP2011053201A (en) * 2009-04-30 2011-03-17 Hioki Ee Corp Voltage detection device and line voltage detection device
JP2012177571A (en) * 2011-02-25 2012-09-13 Hitachi Electric Systems Ltd Ac power measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473244A (en) * 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JP2002055126A (en) * 2000-08-09 2002-02-20 Osaka Gas Co Ltd Non-contact type voltage measuring method and device therefor
JP2009236711A (en) * 2008-03-27 2009-10-15 Hitachi Ltd Assembled battery total voltage detection circuit
JP2011053201A (en) * 2009-04-30 2011-03-17 Hioki Ee Corp Voltage detection device and line voltage detection device
JP2012177571A (en) * 2011-02-25 2012-09-13 Hitachi Electric Systems Ltd Ac power measuring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021743A (en) * 2013-07-16 2015-02-02 日本電信電話株式会社 Current waveform measurement device
WO2015182188A1 (en) * 2014-05-27 2015-12-03 オムロン株式会社 Voltage measurement device and voltage measurement method
JP2015224933A (en) * 2014-05-27 2015-12-14 オムロン株式会社 Device and method for measuring voltage
JP2016170144A (en) * 2015-03-16 2016-09-23 セイコーエプソン株式会社 Circuit arrangement, physical quantity detection equipment, electronic equipment, and moving entity
JP6351884B1 (en) * 2017-04-21 2018-07-04 大電株式会社 Power supply device and power supply method
WO2018193661A1 (en) * 2017-04-21 2018-10-25 大電株式会社 Power supply device and power supplying method
WO2020095555A1 (en) * 2018-11-08 2020-05-14 Tdk株式会社 Electromagnetic induction-type power generation device
CN112955989A (en) * 2018-11-08 2021-06-11 Tdk株式会社 Electromagnetic induction type power generation device
JPWO2020095555A1 (en) * 2018-11-08 2021-09-24 Tdk株式会社 Electromagnetic induction type power generator
JP2020195081A (en) * 2019-05-29 2020-12-03 日置電機株式会社 Signal generation device and signal reading system
JP7258660B2 (en) 2019-05-29 2023-04-17 日置電機株式会社 Signal generator and signal reading system
WO2021182082A1 (en) * 2020-03-13 2021-09-16 日本電産リード株式会社 Clamp-type ac voltage probe

Also Published As

Publication number Publication date
JP5885138B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5885138B2 (en) Voltage detection device and power detection device
US8493053B2 (en) System and device for measuring voltage in a conductor
US9322854B2 (en) Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder
CN108462260B (en) Detector, power transmitter and receiver, and power supply system
CN108364768B (en) Flat surface transformer, power-switching circuit and adapter
KR960011531B1 (en) Current sensor
US10823769B2 (en) Method of determining power consumption of an electrical heating system
KR20020035847A (en) Current sensor
EP2998748B1 (en) Current measurement device and current calculation method
JP2018504605A (en) Electronic integrator for Rogowski coil sensor
US9651583B2 (en) Measurement module, electronic apparatus, power supply tap, power supply unit, and built-in measurement module
US9915689B2 (en) Measurement device and mounting unit
US20170059622A1 (en) Compensated rogowski coil
US9977058B2 (en) Device and method for measuring the power consumption, contactless device and method for measuring power supply status
CN102072694B (en) Eddy current distance sensor
JP5767673B2 (en) Current waveform measuring device
US20170131328A1 (en) Plug-Through Energy Monitor
CN104807537A (en) Noise sensor
JP2014119384A (en) Non-contact voltage measuring probe
JP6981711B2 (en) Non-contact type voltage detector
TWI546542B (en) Device and method for measuring the power consumption, device and method for contactless measuring power supply status
Cheng et al. Noninvasive current sensor for household appliances and compensation for installation variation
EP3153869A1 (en) Device and method for measuring the power consumption, contactless device and method for measuring power supply status
JPS5820892Y2 (en) capacitive level meter
CN217385643U (en) Power detection device, socket and power detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5885138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees