JP2013119096A - Metal product manufacturing apparatus, metal product manufacturing method, and rotary magnetic field generation system for stirring - Google Patents

Metal product manufacturing apparatus, metal product manufacturing method, and rotary magnetic field generation system for stirring Download PDF

Info

Publication number
JP2013119096A
JP2013119096A JP2011267293A JP2011267293A JP2013119096A JP 2013119096 A JP2013119096 A JP 2013119096A JP 2011267293 A JP2011267293 A JP 2011267293A JP 2011267293 A JP2011267293 A JP 2011267293A JP 2013119096 A JP2013119096 A JP 2013119096A
Authority
JP
Japan
Prior art keywords
magnetic field
molten metal
field generator
magnetic
product manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011267293A
Other languages
Japanese (ja)
Other versions
JP5897318B2 (en
Inventor
Kenzo Takahashi
橋 謙 三 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011267293A priority Critical patent/JP5897318B2/en
Publication of JP2013119096A publication Critical patent/JP2013119096A/en
Application granted granted Critical
Publication of JP5897318B2 publication Critical patent/JP5897318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a metal product manufacturing apparatus, which is inexpensive, is easy to maintenance, requires less running cost, and is easily installed; a metal product manufacturing method; and a rotary magnetic field generation system for stirring.SOLUTION: By rotating a magnetic field generation device having a plurality of magnetic poles around a first axis along a pulling-out direction of a mold 30 so as to make different poles alternately line up around the rotary magnetic field generation system 10 arranged in the vicinity of an outlet of the mold 30 having an internal space for cooling up molten metal, the molten metal in a semifinished product is rotated around a second axis being parallel with the first axis by moving output magnetic force lines that come out from respective magnetic poles or input magnetic force lines that enter respective magnetic poles while they penetrate the molten metal in the semifinished product.

Description

本発明は、金属製品製造装置及び金属製品製造方法並びに攪拌用の回転磁場発生装置に関する。   The present invention relates to a metal product manufacturing apparatus, a metal product manufacturing method, and a rotating magnetic field generator for stirring.

Al,Cu,Zn又はこれらのうちの少なくとも2つの合金、あるいはMg合金等の伝導体(導電体)の非鉄金属、あるいは、その他の金属の、ビレットあるいはスラブ等を生産するには品質向上を図るため、原料としての金属の溶湯を攪拌することが望ましい。而して、従来モールド鋳型の外部に電磁攪拌装置を設置して鋳型内の溶湯を攪拌するもの、あるいは鋳型の内部にメカニカルポンプを沈めた状態としてこれらにより炉内の溶湯を循環攪拌するもの等があった。しかしながら前記電磁式攪拌装置においてはメンテナンスに複雑さがあり、高価であり、ランニングコストが大きく、これらの理由であまり普及していない。また、前記メカニカルポンプには、構成部材としての回転羽根(カーボン製)の破損が激しく、ランニングコストが高い等の問題がある。   In order to produce billets, slabs, etc. of non-ferrous metals such as Al, Cu, Zn or at least two of these alloys, or conductors (conductors) such as Mg alloys, or other metals Therefore, it is desirable to stir the molten metal as a raw material. Thus, a conventional electromagnetic stirrer is installed outside the mold mold to stir the molten metal in the mold, or a mechanical pump is submerged inside the mold to circulate and stir the molten metal in the furnace. was there. However, the electromagnetic stirrer has a complicated maintenance, is expensive, has a high running cost, and is not very popular for these reasons. In addition, the mechanical pump has problems such as severe damage to rotating blades (made of carbon) as a constituent member and high running cost.

また、別の観点から言えば、ビレット生産の装置としては、超音波式のもの、電磁コイルを用いて高周波磁界を与えてビレット内溶湯に電磁振動を与えるもの等がある。しかしながら、これらには、ランニングコストが高いことや作業性が非常に悪いこと等に起因して、意図しただけの生産性が得られない等の問題点があった。スラブ生産の装置においては、スラブの大型性に起因して、有効な攪拌手段がないというのが実情であった。   From another point of view, the billet production apparatus includes an ultrasonic type apparatus and an electromagnetic coil that applies a high frequency magnetic field to apply electromagnetic vibration to the molten metal in the billet. However, these have problems such as a high running cost and a very poor workability, resulting in a failure to obtain the intended productivity. In the slab production apparatus, the actual situation is that there is no effective stirring means due to the large size of the slab.

上述のように従来方式はいずれも多くの問題点を抱えており結果として普及してこなかった。   As described above, all the conventional methods have many problems and have not spread as a result.

本発明は、これら従来方式の問題点を解決し、安価でメンテナンスがし易く、ランニングコストが少ない据え付け容易な金属製品製造装置及び金属製品製造方法並びに攪拌用の回転磁場発生装置を提供しようとするものである。   The present invention is intended to solve the problems of these conventional methods, and to provide a metal product manufacturing apparatus, a metal product manufacturing method, and a rotating magnetic field generator for agitation that are easy to install, inexpensive, easy to maintain, and low in running cost. Is.

本発明の金属製品製造装置は、
金属の溶湯を受けて冷却するモールドであって、前記溶湯を受ける入口と、前記入口に連通する冷却用の内部空間と、前記内部空間に連通する出口と、を有し、前記溶湯を前記内部空間において外周側から冷却して、外側から固体化されて内部に溶湯が残存し、内部の液相と外側の固相が界面をなす状態の半製品として前記出口からの引き出しを行わせる、モールドと、
前記出口の近傍に設けられた回転磁場発生装置であって、周囲に交互に異極が並ぶように複数の磁極を設けることにより任意数の磁極対を有する磁場発生装置を備え、前記磁場発生装置は前記引き出しの方向に沿った第1の軸線の回りに回転駆動可能に設けられ、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通した状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させる、回転磁場発生装置と、
を備えるものとして構成される。
The metal product manufacturing apparatus of the present invention comprises:
A mold for receiving and cooling a molten metal, comprising an inlet for receiving the molten metal, an internal space for cooling communicating with the inlet, and an outlet communicating with the internal space, A mold that is cooled from the outer peripheral side in the space, solidified from the outside and the molten metal remains inside, and is drawn out from the outlet as a semi-finished product in which the inner liquid phase and the outer solid phase form an interface. When,
A rotating magnetic field generator provided in the vicinity of the outlet, comprising: a magnetic field generator having an arbitrary number of magnetic pole pairs by providing a plurality of magnetic poles so that different polarities are alternately arranged around the outlet; Is provided so as to be rotatable around a first axis along the direction of the lead-out, and passes through the molten metal in the semi-finished product through the output magnetic field lines coming out of the magnetic poles or the input magnetic field lines entering the magnetic poles. A rotating magnetic field generator for rotating the molten metal in the semi-finished product around a second axis lined on the first axis;
It is comprised as provided with.

本発明の金属製品製造方法は、
金属の溶湯を冷却用の内部空間を有するモールドの前記内部空間に連通する入口へ供給し、
前記モールドの前記内部空間において、供給された前記溶湯をその外周側から冷却することにより、外側から固体化して内部に溶湯が残存して、内部の液相と外側の固相が界面をなす半製品の状態で、前記内部空間に連通する出口から引き出し、
前記出口の近傍に設けた回転磁場発生装置における周囲に交互に異極が並ぶように複数の磁極を有する磁場発生装置を、前記モールドからの引き出し方向に沿った第1の軸線の回りに回転させることにより、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通する状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させるようにした、ものとして構成される。
The metal product manufacturing method of the present invention comprises:
Supplying a molten metal to an inlet communicating with the internal space of the mold having an internal space for cooling;
In the internal space of the mold, the supplied molten metal is cooled from the outer peripheral side, so that the molten metal is solidified from the outside and the molten metal remains inside, and the inner liquid phase and the outer solid phase form an interface. In the product state, pull out from the outlet communicating with the internal space,
A magnetic field generator having a plurality of magnetic poles is rotated around a first axis along the direction of drawing from the mold so that different polarities are alternately arranged around the rotating magnetic field generator provided in the vicinity of the outlet. By moving the output magnetic field lines coming out of the magnetic poles or the input magnetic field lines entering the magnetic poles in a state of passing through the molten metal in the semi-finished product, the molten metal in the semi-finished product is moved to the first It is configured to rotate around a second axis lined up with the axis.

本発明の攪拌用の回転磁場発生装置は、
金属の溶湯を受ける入口と、前記入口に連通する冷却用の内部空間と、前記内部空間に連通する出口と、を有し、前記溶湯を前記内部空間において外周側から冷却して、外側から固体化されて内部に溶湯が残存し、内部の液相と外側の固相が界面をなす状態の半製品として前記出口からの引き出しを行わせる、モールドの、前記出口の近傍に設けられる攪拌用の回転磁場発生装置であって、
周囲に交互に異極が並ぶように複数の磁極を設けることにより任意数の磁極対を有する磁場発生装置を備え、前記磁場発生装置は前記引き出しの方向に沿った第1の軸線の回りに回転駆動可能に設けられ、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通した状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させるものとして構成され、
さらに、前記磁場発生装置の前記第1の軸線の回りの全周囲のうちの一部分を覆う磁気遮蔽手段を備え、前記磁場発生装置からの前記出力磁力線を前記磁気遮蔽手段で遮蔽するように構成された、
ものとして構成される。
The rotating magnetic field generator for stirring of the present invention is
An inlet that receives the molten metal, an internal space for cooling that communicates with the inlet, and an outlet that communicates with the internal space. The molten metal is cooled from the outer peripheral side in the internal space and is solid from the outside. For the stirring provided in the vicinity of the outlet of the mold, the molten metal remains inside, and the mold is drawn out from the outlet as a semi-finished product in which the inner liquid phase and the outer solid phase form an interface. A rotating magnetic field generator,
A magnetic field generator having an arbitrary number of magnetic pole pairs is provided by providing a plurality of magnetic poles so that different poles are alternately arranged around the periphery, and the magnetic field generator rotates around a first axis along the direction of the extraction An output magnetic force line that is provided so as to be driven, or an input magnetic force line that enters the magnetic pole is moved in a state of passing through the molten metal in the semi-finished product, and the molten metal in the semi-finished product is Configured to rotate around a second axis aligned with the first axis;
Furthermore, it comprises a magnetic shielding means that covers a part of the entire circumference around the first axis of the magnetic field generator, and is configured to shield the output magnetic field lines from the magnetic field generator with the magnetic shielding means. The
Configured as a thing.

本発明の一実施形態の磁場発生装置の正面説明図。BRIEF DESCRIPTION OF THE DRAWINGS Front explanatory drawing of the magnetic field generator of one Embodiment of this invention. 図1の装置の右側面説明図。FIG. 3 is an explanatory diagram on the right side of the apparatus of FIG. 1. 図1の装置における磁場発生装置の側面説明図。Side surface explanatory drawing of the magnetic field generator in the apparatus of FIG. 図3の異なる例を示す磁場発生装置の側面説明図。Side surface explanatory drawing of the magnetic field generator which shows the different example of FIG. (a)は図1の装置を組み込んだ1本のビレットを生産するビレット生産装置(金属製品製造装置)の全体構成図、(b)はモールドと製品の詳細を示す説明図、(c)は(a)の5(c)―5(c)に沿った断面説明図。(A) is an overall configuration diagram of a billet production apparatus (metal product production apparatus) that produces one billet incorporating the apparatus of FIG. 1, (b) is an explanatory view showing details of a mold and a product, (c) is Cross-sectional explanatory drawing along 5 (c) -5 (c) of (a). (a)はモールドの縦断面説明図、(b)は横断説明図。(A) is longitudinal section explanatory drawing of a mold, (b) is transverse explanatory drawing. 製品の異なる界面を示す説明図。Explanatory drawing which shows the different interface of a product. 製品の溶湯中のガスの温度による移動を説明する説明図。Explanatory drawing explaining the movement by the temperature of the gas in the molten metal of a product. 製品の溶湯中のガスの溶湯の回転による移動を説明する説明図。Explanatory drawing explaining the movement by rotation of the molten metal of the gas in the molten metal of a product. 図1の装置を組み込んだ2本のビレットを生産するビレット生産装置の全体構成図。The whole block diagram of the billet production apparatus which produces two billets incorporating the apparatus of FIG. 図1の装置を組み込んだ4本のビレットを生産するビレット生産装置の全体構成図。The whole block diagram of the billet production apparatus which produces four billets incorporating the apparatus of FIG. 図1の装置を組み込んだ1本のスラブを生産するスラブ生産装置の全体構成図。The whole block diagram of the slab production apparatus which produces one slab incorporating the apparatus of FIG. 図1の装置を1つ宛て組み込んだスラブを生産するビレット生産装置の異なる例の全体構成図。The whole block diagram of the different example of the billet production apparatus which produces the slab which incorporated one apparatus of FIG. 図1の装置を1つ宛て組み込んだ大型炉の全体構成図。The whole block diagram of the large-sized furnace which incorporated one apparatus of FIG. 図1の装置を2つ宛て組み込んだ大型炉の全体構成図。The whole block diagram of the large sized furnace which incorporated two apparatuses of FIG.

本発明の一実施形態の磁気遮蔽型金属溶湯攪拌装置を備える金属製品製造装置100に組み込まれる回転磁場発生装置10を図1(正面説明図)、図2(側面説明図)を参照して説明する。   A rotating magnetic field generator 10 incorporated in a metal product manufacturing apparatus 100 including a magnetic shielding metal melt stirring device according to an embodiment of the present invention will be described with reference to FIG. 1 (front explanatory view) and FIG. 2 (side explanatory view). To do.

図1において、この回転磁場発生装置10は、フレーム1の内部に、図中横向きの軸線を有する円柱状の磁場発生装置2を、両端の軸2a、2aにより軸(第1の軸線ax1)の回りに回転可能に取り付けている。この磁場発生装置2においては、図3からわかるように、軸線を挟んで直径方向に対向する2つの母線部分がそれぞれN極、S極に磁化されて1つの磁極対となっている。この磁極対の数は2以上でもよく、図4は2組の磁極対の例を示す。磁場発生装置2は電磁石によるものでもよい。   Referring to FIG. 1, a rotating magnetic field generator 10 includes a frame 1 having a cylindrical magnetic field generator 2 having a horizontal axis in the figure, and an axis (first axis ax1) formed by the two axes 2a and 2a. It is attached so that it can rotate around. In this magnetic field generator 2, as can be seen from FIG. 3, two busbar portions facing each other in the diametrical direction across the axis are magnetized to N and S poles to form one magnetic pole pair. The number of magnetic pole pairs may be two or more, and FIG. 4 shows an example of two magnetic pole pairs. The magnetic field generator 2 may be an electromagnet.

この磁場発生装置2の回転駆動は、フレーム1に取り付けたモータ3により、巻掛伝導機構5を介して、行われる。つまり、モータ3の回転が減速されて磁場発生装置2に伝えられる。この巻掛伝導機構5はカバー1Aで覆われている。ここでは、巻掛伝導機構5として、チェーンとスプロケットを用いたが、これに限るものではなく、その他の伝導機構であっても良い。また、前記巻掛伝導機構でなくても、その他の機構であっても、モータ3の回転を減速して磁場発生装置2に伝えられるものであればよい。例えば、モータ3と磁場発生装置2を図中横向きの同一線上に並べて、減速装置を介して接続する、カップリング接続でも良い。また、モータ3自体が減速機構を備えるものでもあっても良い。   The magnetic field generator 2 is rotationally driven by a motor 3 attached to the frame 1 via a winding conduction mechanism 5. That is, the rotation of the motor 3 is decelerated and transmitted to the magnetic field generator 2. This winding conduction mechanism 5 is covered with a cover 1A. Here, a chain and a sprocket are used as the winding conduction mechanism 5. However, the present invention is not limited to this, and other conduction mechanisms may be used. Moreover, even if it is not the said winding conduction mechanism, what is necessary is just to be able to decelerate rotation of the motor 3 and to be transmitted to the magnetic field generator 2, even if it is another mechanism. For example, a coupling connection in which the motor 3 and the magnetic field generator 2 are arranged on the same horizontal line in the drawing and connected via a speed reducer may be used. Further, the motor 3 itself may be provided with a speed reduction mechanism.

特に図2から分かるように、円柱状の磁場発生装置2の周囲のうち上方の約半分を磁気シールドするシールド板(磁気遮蔽手段)7がフレーム1内において磁場発生装置2の近傍に所定の手段で設けられている。このシールド板7は、横断面において、上半分が半円状のシールド部7aをなし、下半分が末広がりに広がった解放部7bとなっている。このシールド板7によって、磁場発生装置2の外周の空間のうち、図3において、シールド板7の上側空間US及び左右空間LS・RSは、磁気シールドされ、下側空間DSにだけ磁気的に解放され、この下側空間DSに磁力線MLにより磁場が形成されることになる。簡単には磁場発生装置2の周囲の180度だけシールドしている。前記シールド部7aは磁性材で構成され、前記解放部7bは非磁性材で構成される。シールド板7における下側空間DSの解放角度は図示のものに限るものではなく、任意の角度とすることができる。つまり、磁場発生装置2のN極から出る磁力線ML(出力磁力線)はシールド板7でシールドされ、またシールド板7によりS極に向かう磁力線(入力磁力線)はシールドされる。   In particular, as can be seen from FIG. 2, a shield plate (magnetic shielding means) 7 for magnetically shielding the upper half of the periphery of the columnar magnetic field generator 2 is provided in the frame 1 in the vicinity of the magnetic field generator 2. Is provided. In the cross section, the shield plate 7 has a semicircular shield part 7a in the upper half, and a release part 7b in which the lower half spreads outward. 3, the upper space US and the left and right spaces LS / RS of the shield plate 7 in FIG. 3 among the outer peripheral space of the magnetic field generator 2 are magnetically shielded and magnetically released only to the lower space DS. Thus, a magnetic field is formed in the lower space DS by the magnetic lines of force ML. In simple terms, the shield around the magnetic field generator 2 is 180 degrees. The shield part 7a is made of a magnetic material, and the release part 7b is made of a non-magnetic material. The release angle of the lower space DS in the shield plate 7 is not limited to the illustrated one, and may be an arbitrary angle. That is, the magnetic field lines ML (output magnetic field lines) emitted from the N pole of the magnetic field generator 2 are shielded by the shield plate 7, and the magnetic field lines (input magnetic field lines) directed to the S pole are shielded by the shield plate 7.

以上に説明した回転磁場発生装置10においては、シールド板7により、磁場発生装置2の下側空間DS以外は磁気シールドされることになる。つまり、モータ3により磁場発生装置2を回転させると、シールド板7によって上側空間USと左右空間LS・RSは磁気シールドされ、下側空間DSに向かう磁力線MLだけが下側空間DSにおいて回転する。   In the rotating magnetic field generator 10 described above, the shield plate 7 is magnetically shielded except for the lower space DS of the magnetic field generator 2. That is, when the magnetic field generator 2 is rotated by the motor 3, the upper space US and the left and right spaces LS / RS are magnetically shielded by the shield plate 7, and only the magnetic lines ML directed to the lower space DS rotate in the lower space DS.

図5(a)は、以上に説明した回転磁場発生装置10が組み込まれた磁気遮蔽型金属溶湯攪拌装置を備える金属製品製造装置100を示す。この図5(a)において、簡単には、供給樋20からの液相(液体)状態の溶湯Mがモールド30によって固相(固体)状態の製品(ビレット)Pとして取り出される。この図5(a)では製品(ビレット)Pを横向きに取り出しているが、縦向きに取り出すものとすることができる。   Fig.5 (a) shows the metal product manufacturing apparatus 100 provided with the magnetic shielding type molten metal stirring apparatus incorporating the rotating magnetic field generator 10 demonstrated above. In FIG. 5A, simply, the molten metal M in the liquid phase (liquid) state from the supply rod 20 is taken out as a product (billet) P in the solid phase (solid) state by the mold 30. In FIG. 5A, the product (billet) P is taken out horizontally, but it can be taken out vertically.

より詳しくは、溶湯Mを収納する供給樋20が接続樋22を介してモールド30に接続されている。このモールド30の詳細は図6(a)、(b)に示される。図6(a)はモールド30の紙面に沿った縦断面であり、(b)は紙面に垂直な縦断面である。つまり、モールド30は、中央に円柱状の内部空間30aを有し、且つ、放射状に位置する複数の水噴出口30b、30b、・・・を有する。よって、溶湯Mは入口30a1から内部空間30aに流入し、水噴出口30b、30b、・・・からの水で急速に冷却され、固まりながら図中左方向に引き出され、製品(ビレット)Pとなる。上記供給樋20と接続樋22が、溶湯供給アセンブリを構成する。   More specifically, the supply rod 20 that stores the molten metal M is connected to the mold 30 via the connection rod 22. Details of the mold 30 are shown in FIGS. 6 (a) and 6 (b). FIG. 6A is a longitudinal section along the paper surface of the mold 30, and FIG. 6B is a longitudinal section perpendicular to the paper surface. That is, the mold 30 has a cylindrical internal space 30a at the center and a plurality of water jets 30b, 30b,. Therefore, the molten metal M flows into the internal space 30a from the inlet 30a1, is rapidly cooled with water from the water jets 30b, 30b,... Become. The supply rod 20 and the connection rod 22 constitute a molten metal supply assembly.

而して、製品(ビレット)Pは、図5(b)から分かるように、外側が冷却により固まり固相(固体)の状態にあり、内部が液相(液体)の溶湯Mのままの状態にある。液相と固相の界面Iの態様は図5に示される。つまり、この界面Iは、図5(b)において、図中右側が開いたいわゆる放物線のような形を採る。溶湯Mの温度分布は、後述するように、入口30a1近傍が高温で、放物線の頂点近傍が低温となる。   Thus, as can be seen from FIG. 5 (b), the product (billet) P is solidified by cooling on the outside and is in the solid phase (solid state), while the molten metal M is in the liquid phase (liquid) inside. It is in. An embodiment of the interface I between the liquid phase and the solid phase is shown in FIG. That is, the interface I takes a so-called parabolic shape in which the right side in FIG. 5B is opened. As will be described later, the temperature distribution of the molten metal M is high in the vicinity of the inlet 30a1 and low in the vicinity of the top of the parabola.

より詳しくは、一般に、製品(ビレット)P内は図5(b)のように、液相と固相の2相状態を採る。それらの界面Iは放物線状になる。つまり、例えばアルミニウムの溶湯Mは、モールド30の水噴出口30b、30b、・・・からの水によって急冷され、固化する。固化は先ず表面部分(外周部分)から始まる。製品(ビレット)Pの中心部分まで冷却が行われるには時間がかかるので、中心部分は最後に固化する。よって、放物線状の界面Iを形成する。この場合、溶湯Mの温度は、放物線の頂点近傍が温度が低く、入口30a1近傍は温度が高くなっている。なお、ここでは、便宜的に、出口2A(1)2から製品(ビレット)Pが引き出されると説明したが、正しくは、固相と液相の混在した部分は半製品と呼ぶべきものであって、液相部分が完全に固化したものが製品である。   More specifically, in general, the product (billet) P takes a two-phase state of a liquid phase and a solid phase as shown in FIG. Their interfaces I are parabolic. That is, for example, the molten metal M is rapidly cooled and solidified by water from the water outlets 30b, 30b,. Solidification starts from the surface portion (outer peripheral portion). Since it takes time to cool the product (billet) P to the central portion, the central portion is solidified last. Thus, a parabolic interface I is formed. In this case, the temperature of the molten metal M is low near the apex of the parabola and high near the inlet 30a1. Here, for the sake of convenience, it has been described that the product (billet) P is pulled out from the outlet 2A (1) 2, but correctly, the portion where the solid phase and the liquid phase are mixed should be called a semi-finished product. The product with the liquid phase part completely solidified is the product.

なお、モールド30における溶湯Mの冷却能力を上げれば、前記界面Iの放物線の尖鋭度は小さくなり、逆に、下げれば尖鋭度は大きくなる。また、製品(ビレット)Pの引き抜き速度を遅くすれば尖鋭度は小さくなり、早くすれば尖鋭度は大きくなる。   In addition, if the cooling capacity of the molten metal M in the mold 30 is increased, the sharpness of the parabola at the interface I is reduced, and conversely, if the cooling capacity is lowered, the sharpness is increased. Moreover, if the drawing speed of the product (billet) P is slowed down, the sharpness decreases, and if it is accelerated, the sharpness increases.

図5(a)において、前記モールド30の出口側の上方、つまり、界面Iを挟んだ液相状態の溶湯Mの上方に前述の回転磁場発生装置10が設置されている。この回転磁場発生装置10と製品(ビレット)Pとの上下の位置関係は、図5(c)に示される。図5(c)は、(a)のc―c’線に沿った断面図である。図5(a)において、回転磁場発生装置10を、図中左右に移動可能に設けることもできる。これにより、図5(b)に示される液相状態にある溶湯Mの上方のより適した位置に、回転磁場発生装置10を移動させることができる。   In FIG. 5 (a), the rotating magnetic field generator 10 is installed above the outlet side of the mold 30, that is, above the molten metal M in a liquid phase with the interface I interposed therebetween. The vertical positional relationship between the rotating magnetic field generator 10 and the product (billet) P is shown in FIG. FIG. 5C is a cross-sectional view taken along the line c-c ′ in FIG. In Fig.5 (a), the rotating magnetic field generator 10 can also be provided so that a movement to the right and left is possible. Thereby, the rotating magnetic field generator 10 can be moved to a more suitable position above the molten metal M in the liquid phase state shown in FIG.

回転磁場発生装置10の磁場発生装置2からの磁力線MLは界面Iを貫通して内部の溶湯Mに達する。よって、磁場発生装置2が回転すると磁力線MLは溶湯M中を貫通した状態で移動することになる。これにより、液相状態にある溶湯Mには渦電流が生じ、溶湯Mは、電磁力により図5(a)中横向きの軸線(第2の軸線ax2)の回りに回転攪拌させられる。この攪拌により、製品(ビレット)Pの取り出し速度を上げることができると共に、溶湯M中の不純物が効率よく取り除かれて、製品(ビレット)Pを良質なものとすることができる。   Magnetic field lines ML from the magnetic field generator 2 of the rotating magnetic field generator 10 pass through the interface I and reach the molten metal M inside. Therefore, when the magnetic field generator 2 rotates, the magnetic lines of force ML move in a state of penetrating the molten metal M. Thereby, an eddy current is generated in the molten metal M in the liquid phase state, and the molten metal M is rotated and stirred around the horizontal axis (second axis ax2) in FIG. 5A by electromagnetic force. By this stirring, the take-out speed of the product (billet) P can be increased, impurities in the molten metal M can be efficiently removed, and the product (billet) P can be improved.

以下に、本発明の実施形態によって液相状態にある溶湯Mを攪拌する場合の作用と利点等について説明する。   Below, the effect | action, advantage, etc. in the case of stirring the molten metal M in a liquid phase state by embodiment of this invention are demonstrated.

溶湯Mの冷却速度(固化速度)の向上
溶湯Mを攪拌することにより、図7に示すように、溶湯Mの冷却固化速度を上げることができる。つまり、攪拌しない場合には、溶湯Mと製品(ビレット)Pの界面は、点線で示す界面I(1)となる。これは、攪拌しない場合には、溶湯Mの中心部分から外周部への熱の伝わり方が緩やかであるためである。しかるに、溶湯Mを攪拌すると、熱の伝わり方がスムースとなるため界面は、実線の界面I(2)となる。以上の界面I(1)と界面I(2)の比較から分かるように、製品(ビレット)Pの引き抜き速度を上げることが可能となる。
Improving the cooling rate (solidification rate) of the melt M By stirring the melt M, the cooling and solidification rate of the melt M can be increased as shown in FIG. That is, when stirring is not performed, the interface between the molten metal M and the product (billet) P becomes an interface I (1) indicated by a dotted line. This is because the heat transfer from the central portion of the molten metal M to the outer peripheral portion is gentle when stirring is not performed. However, when the molten metal M is stirred, the way of heat transfer becomes smooth, and the interface becomes the solid interface I (2). As can be seen from the comparison between the interface I (1) and the interface I (2), the drawing speed of the product (billet) P can be increased.

溶湯Mからの脱ガス効果
(a)溶湯Mの温度、比重によるガスの移動
溶湯中に巻き込まれたガスGは時間の経過と共に浮力で上昇し、大気中に抜けていく。これは、溶湯の下部(底部)と上部(表面)では圧力差があり、圧力の低い上方へガスが移動するためである。
Degassing effect from the molten metal (a) Gas movement due to the temperature and specific gravity of the molten metal The gas G entrained in the molten metal rises by buoyancy over time and escapes into the atmosphere. This is because there is a pressure difference between the lower part (bottom part) and the upper part (surface) of the molten metal, and the gas moves upward at a low pressure.

ガスの移動は溶湯Mの各部の温度差によっても上記と同様な挙動を採る。つまり、溶湯の温度が高いと溶湯の液としての比重が小さく、温度が低いと比重は大きなものとなる。例えば、アルミニウムの溶湯の700°Cのものは比重は2.4、固体(常温)では2.7、それらの間の温度においては比重はおおよそ温度に比例する。   The movement of the gas also takes the same behavior as described above depending on the temperature difference of each part of the molten metal M. That is, when the temperature of the molten metal is high, the specific gravity of the molten metal is small, and when the temperature is low, the specific gravity is large. For example, a molten aluminum having a temperature of 700 ° C. has a specific gravity of 2.4, a solid (normal temperature) of 2.7, and the temperature between them is roughly proportional to the temperature.

このような比重の差が、溶湯中に巻き込まれたガスの移動度に影響する。つまり、溶湯中の各部に温度差が生じると、それに応じて溶湯の比重に差が生じ、この比重差に応じて、ガスは、温度の高い(比重の小さい)方向へ移動する。   Such a difference in specific gravity affects the mobility of the gas entrained in the molten metal. That is, when a temperature difference occurs in each part in the molten metal, a difference occurs in the specific gravity of the molten metal, and the gas moves in a direction of higher temperature (smaller specific gravity) according to the specific gravity difference.

以上のことを本発明の実施形態に当てはめて考える。本発明の実施形態による溶湯Mの固化の状態は、先にも説明したように、図8のように表すことができる。つまり、固化過程のビレットの断面は図8のように表される。この図8において、溶湯M中での温度分布をみると、界面Iの放物線の頂点近傍の温度は低く、入口30a1に向かうに従って温度は高くなる。これに対応し、溶湯Mの比重は、逆に、放物線の近傍は大きく、入口30a1に向かうに従って小さくなる。このため、溶湯M中のガスは、図8中左から右へする。この移動速度をvとする。而して、製品(ビレット)Pの引き抜き速度をVとした時、v<Vとすると、製品(ビレット)P中にガスが残ってしまう。よって、本実施形態では、v>Vとして、製品(ビレット)P中にガスが残留しないようにしている。   The above is applied to the embodiment of the present invention. The state of solidification of the molten metal M according to the embodiment of the present invention can be expressed as shown in FIG. 8 as described above. That is, the cross section of the billet in the solidification process is represented as shown in FIG. In FIG. 8, when the temperature distribution in the molten metal M is seen, the temperature in the vicinity of the apex of the parabola of the interface I is low, and the temperature increases toward the inlet 30a1. Correspondingly, the specific gravity of the molten metal M is conversely large near the parabola and decreases toward the inlet 30a1. For this reason, the gas in the molten metal M is changed from the left to the right in FIG. Let this moving speed be v. Thus, when the drawing speed of the product (billet) P is V, if v <V, gas remains in the product (billet) P. Therefore, in this embodiment, v> V is set so that no gas remains in the product (billet) P.

(b)溶湯M中のガスの溶湯Mの攪拌による移動
本発明の実施形態による溶湯Mの回転攪拌は例えば図9に示される。つまり、磁場発生装置2の回転に伴ってモールド30内の溶湯Mが矢印の如く回転する。この回転に伴う遠心力によって、溶湯Mの外周部分の圧力が中心部分のそれよりも高くなる。これにより、溶湯M中のガスは中心部分に集まってくる。
(B) Movement of gas in molten metal M by stirring of molten metal M Rotational stirring of molten metal M according to an embodiment of the present invention is shown in FIG. 9, for example. That is, as the magnetic field generator 2 rotates, the molten metal M in the mold 30 rotates as indicated by an arrow. Due to the centrifugal force accompanying this rotation, the pressure at the outer peripheral portion of the molten metal M becomes higher than that at the central portion. Thereby, the gas in the molten metal M gathers in the center part.

(c)以上に述べた(a)により溶湯M中のガスは入口30a1の方向に移動し、(b)によりガスはビレットの中心方向に移動する。これらが有機的に結合して、溶湯Mちゅうからの脱ガスが効果的に行われる。 (C) The gas in the molten metal M moves in the direction of the inlet 30a1 by (a) described above, and the gas moves in the center direction of the billet by (b). These combine organically, and degassing from the molten metal M is effectively performed.

図10―図15は、本発明の異なる実施形態を示す。図10―図15は、前述の図5(c)に対応する。   10-15 illustrate different embodiments of the present invention. 10 to 15 correspond to FIG. 5C described above.

図10は、ビレットPを2本同時に生産するラインに、本発明の実施形態の回転磁場発生装置10を設置した例を示す。この例の場合は、2本のビレットP、Pの中間に回転磁場発生装置10を配置し、ビレット2本のそれぞれの溶湯Mを同時に攪拌する。   FIG. 10 shows an example in which the rotating magnetic field generator 10 according to the embodiment of the present invention is installed in a line that simultaneously produces two billets P. In the case of this example, the rotating magnetic field generator 10 is disposed between the two billets P and P, and the melts M of the two billets are simultaneously stirred.

図11は更に多くのビレットPを同時生産する場合の攪拌例を示す。基本的には、ビレットPの2本当たりに1台の回転磁場発生装置10を割り当てる。この場合、回転磁場発生装置10をコモンベース60上に配置し、コモンベース60を上下に可動な構造としている。これにより、メンテナンスやモールド30の交換作業等を迅速に行うこともできる。上下可動機構は種々考えられるが、どのような原理のものでもよく、よってここでは詳しい説明を割愛する。また、コモンベース60上の複数の回転磁場発生装置10の駆動部をチェーンなどで接続して、複数の回転磁場発生装置10を1個の駆動装置で同時に駆動するようにすることもできる。   FIG. 11 shows an example of agitation when more billets P are produced simultaneously. Basically, one rotating magnetic field generator 10 is assigned to two billets P. In this case, the rotating magnetic field generator 10 is disposed on the common base 60, and the common base 60 is configured to be movable up and down. Thereby, a maintenance, the replacement | exchange operation | work of the mold 30, etc. can also be performed rapidly. Although various types of vertical moving mechanisms are conceivable, any principle may be used, and therefore a detailed description is omitted here. In addition, a plurality of rotating magnetic field generators 10 on the common base 60 may be connected to each other by a chain or the like so that the plurality of rotating magnetic field generators 10 can be simultaneously driven by a single driving device.

図12―図13は、スラブ生産ラインに本回転磁場発生装置10を設置した場合の例を示す。スラブはその重量が大きいため、縦引き生産ラインとなる。図12および図13の例は、モールド30を出た直後の製品(スラブ)P2と回転磁場発生装置10の位置関係を概略的に示す。   12 to 13 show an example in which the rotating magnetic field generator 10 is installed in the slab production line. Because the slab is heavy, it becomes a vertical production line. 12 and 13 schematically show the positional relationship between the product (slab) P2 immediately after leaving the mold 30 and the rotating magnetic field generator 10.

図12では、製品(スラブ)P2の周囲4辺のうちのある一辺に回転磁場発生装置10を配置した場合を示す。ここでは、製品(スラブ)P2内の液体相部分(溶湯M)に移動磁界が作用し、渦電流により矢印のように回転攪拌する。回転方向は回転磁場発生装置10の回転方向(正転、逆転)により決めることができる。   FIG. 12 shows a case where the rotating magnetic field generator 10 is arranged on one side of the four sides around the product (slab) P2. Here, a moving magnetic field acts on the liquid phase portion (molten metal M) in the product (slab) P2, and is rotated and stirred as indicated by an arrow by an eddy current. The rotation direction can be determined by the rotation direction (forward rotation, reverse rotation) of the rotating magnetic field generator 10.

図13では、製品(スラブ)P2を挟んで(ここでは上下に挟んで)回転磁場発生装置10を2台設置した場合を示す。この場合は当然攪拌力は図12の場合の2倍となる。   FIG. 13 shows a case where two rotating magnetic field generators 10 are installed with a product (slab) P2 interposed therebetween (here, vertically). In this case, the stirring force is naturally twice that in the case of FIG.

図14および図15は、回転磁場発生装置10を大型溶解炉(または保持炉)41に設置した場合平面図を示す。回転磁場発生装置10を大型溶解炉(または保持炉)41の外周の4つの壁のうちの1つの壁に密着させて、内部溶湯を攪拌するようにしている。尚、回転磁場発生装置10を前記4つの壁の別の1つとしての炉底壁の下方に配置してもよい。   14 and 15 show plan views when the rotating magnetic field generator 10 is installed in a large melting furnace (or holding furnace) 41. FIG. The rotating magnetic field generator 10 is brought into close contact with one of the four walls on the outer periphery of the large melting furnace (or holding furnace) 41 to stir the internal molten metal. In addition, you may arrange | position the rotating magnetic field generator 10 below the furnace bottom wall as another one of the four walls.

本発明者の実験から、本発明の実施形態によれば、ビレット生産に回転磁場発生装置10を設置した場合は生産性(ビレット引き抜き速度)が大幅に改善できることが分かった。ばらつきはあるものの30%近く改善されることも理解された。   From the experiments of the present inventors, it has been found that according to the embodiment of the present invention, when the rotating magnetic field generator 10 is installed for billet production, the productivity (billet drawing speed) can be greatly improved. It was also understood that it was improved by nearly 30% with some variation.

また、界面Iの形状も、従来型生産方方法では頂点部分がシャープな放物線状となるが、本発明の実施形態によれば、台形状分布となることも確認できた。これは組織の均一性にも繋がるものと考えられる。よって、特に、多数本生産ラインでは生産性のみならず、品質の安定性したビレット生産が可能となる。   In addition, the shape of the interface I is also a parabolic shape with a sharp apex in the conventional production method, but according to the embodiment of the present invention, it was also confirmed that it has a trapezoidal distribution. This is thought to lead to tissue uniformity. Therefore, especially in the case of a large number of production lines, not only productivity but also billet production with stable quality becomes possible.

さらに、スラブ生産の場合でも効果はビレット生産の場合と同様と考えられる。しかし、一般的に、スラブはビレットと比べ比較にならないほど大型の製品である。したがって、今までスラブの生産性向上や改質に関しては、具体的試みが全く行われてこなかった。しかしながら、本発明の実施形態による回転磁場発生装置10を採用することによりその課題が達成できた。   Furthermore, even in the case of slab production, the effect is considered to be the same as in billet production. However, in general, a slab is a product that is too large to compare with a billet. Therefore, until now, no specific attempt has been made to improve or improve the productivity of slabs. However, the subject has been achieved by employing the rotating magnetic field generator 10 according to the embodiment of the present invention.

また、大型炉に回転磁場発生装置10を適用した場合は、大型炉内の溶湯の各部の温度差(表面と炉底間)が2℃以下とすることができ、極めて高い攪拌効果が得られた。また、溶湯の温度が均一になることで、バーナー熱の溶湯への熱移動がスムースになり、大幅な省エネ効果が得られた。また、このことにより、非鉄金属溶湯の酸化物発生量を抑制することができ、製品歩留まりを大幅に改善することができた。   Further, when the rotating magnetic field generator 10 is applied to a large furnace, the temperature difference (between the surface and the furnace bottom) of each part of the molten metal in the large furnace can be 2 ° C. or less, and an extremely high stirring effect can be obtained. It was. In addition, since the temperature of the molten metal became uniform, the heat transfer from the burner heat to the molten metal became smooth, and a significant energy saving effect was obtained. Moreover, the oxide generation amount of the nonferrous metal molten metal was suppressed by this, and the product yield was able to be improved significantly.

Claims (18)

金属の溶湯を受けて冷却するモールドであって、前記溶湯を受ける入口と、前記入口に連通する冷却用の内部空間と、前記内部空間に連通する出口と、を有し、前記溶湯を前記内部空間において外周側から冷却して、外側から固体化されて内部に溶湯が残存し、内部の液相と外側の固相が界面をなす状態の半製品として前記出口からの引き出しを行わせる、モールドと、
前記出口の近傍に設けられた回転磁場発生装置であって、周囲に交互に異極が並ぶように複数の磁極を設けることにより任意数の磁極対を有する磁場発生装置を備え、前記磁場発生装置は前記引き出しの方向に沿った第1の軸線の回りに回転駆動可能に設けられ、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通した状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させる、回転磁場発生装置と、
を備えることを特徴とする金属製品製造装置。
A mold for receiving and cooling a molten metal, comprising an inlet for receiving the molten metal, an internal space for cooling communicating with the inlet, and an outlet communicating with the internal space, A mold that is cooled from the outer peripheral side in the space, solidified from the outside and the molten metal remains inside, and is drawn out from the outlet as a semi-finished product in which the inner liquid phase and the outer solid phase form an interface. When,
A rotating magnetic field generator provided in the vicinity of the outlet, comprising: a magnetic field generator having an arbitrary number of magnetic pole pairs by providing a plurality of magnetic poles so that different polarities are alternately arranged around the outlet; Is provided so as to be rotatable around a first axis along the direction of the lead-out, and passes through the molten metal in the semi-finished product through the output magnetic field lines coming out of the magnetic poles or the input magnetic field lines entering the magnetic poles. A rotating magnetic field generator for rotating the molten metal in the semi-finished product around a second axis lined on the first axis;
A metal product manufacturing apparatus comprising:
前記回転磁場発生装置は、前記磁場発生装置の前記第1の軸線の回りの全周囲のうちの一部分を覆う磁気遮蔽手段を備え、前記磁場発生装置からの前記出力磁力線を前記磁気遮蔽手段で遮蔽するようにした、ことを特徴とする請求項1記載の金属製品製造装置。   The rotating magnetic field generator includes magnetic shielding means for covering a part of the entire circumference around the first axis of the magnetic field generator, and the output magnetic field lines from the magnetic field generator are shielded by the magnetic shielding means. The metal product manufacturing apparatus according to claim 1, wherein the apparatus is a metal product manufacturing apparatus. 前記磁極対は複数であることを特徴とする請求項1又は2記載の金属製品製造装置。   The metal product manufacturing apparatus according to claim 1, wherein the magnetic pole pair includes a plurality of magnetic pole pairs. 前記磁気遮蔽手段は、前記磁場発生装置の前記第1の軸線の回りの全周囲角のうちの半分の角度の範囲を遮蔽するものである、ことを特徴とする請求項1乃至3の1つに記載の金属製品製造装置。   4. The magnetic shielding device according to claim 1, wherein the magnetic shielding means shields a range of an angle that is half of a total peripheral angle around the first axis of the magnetic field generator. The metal product manufacturing apparatus described in 1. 前記磁場発生装置は、永久磁石又は電磁石で構成されていることを特徴とする請求項1乃至4の1つに記載の金属製品製造装置。   5. The metal product manufacturing apparatus according to claim 1, wherein the magnetic field generation device is constituted by a permanent magnet or an electromagnet. 前記磁場発生装置を回転駆動する駆動装置をさらに備え、前記駆動装置からの動力を巻掛伝導機構又はカップリングによる伝導機構で伝えることを特徴とする請求項1乃至5の1つに記載の金属製品製造装置。   6. The metal according to claim 1, further comprising a drive device that rotationally drives the magnetic field generation device, wherein power from the drive device is transmitted by a winding conduction mechanism or a conduction mechanism using a coupling. Product manufacturing equipment. 前記磁気遮蔽手段は強磁性の鉄板で構成したことを特徴とする請求項1乃至6の1つに記載の金属製品製造装置。   7. The metal product manufacturing apparatus according to claim 1, wherein the magnetic shielding means is made of a ferromagnetic iron plate. 製品としてビレット又はスラブを生産することを特徴とする請求項1乃至7の1つに記載の金属製品製造装置。   8. The metal product manufacturing apparatus according to claim 1, wherein billets or slabs are produced as products. 前記モールドの複数に対して前記回転磁場発生装置を1つ設けたことを特徴とする請求項1乃至8の1つに記載の金属製品製造装置。   9. The metal product manufacturing apparatus according to claim 1, wherein one rotating magnetic field generator is provided for a plurality of the molds. 前記モールドは、製品の縦引き又は横引きのものとして構成されていることを特徴とする請求項1乃至9の1つに記載の金属製品製造装置。   10. The metal product manufacturing apparatus according to claim 1, wherein the mold is configured as a product for longitudinal or horizontal product pulling. 金属の溶湯を前記モールドに供給する溶湯供給アセンブリをさらに備えることを特徴とする請求項1乃至10の1つに記載の金属製品製造装置。   The metal product manufacturing apparatus according to claim 1, further comprising a molten metal supply assembly configured to supply a molten metal to the mold. 金属の溶湯を受ける入口と、前記入口に連通する冷却用の内部空間と、前記内部空間に連通する出口と、を有し、前記溶湯を前記内部空間において外周側から冷却して、外側から固体化されて内部に溶湯が残存し、内部の液相と外側の固相が界面をなす状態の半製品として前記出口からの引き出しを行わせる、モールドの、前記出口の近傍に設けられる攪拌用の回転磁場発生装置であって、
周囲に交互に異極が並ぶように複数の磁極を設けることにより任意数の磁極対を有する磁場発生装置を備え、前記磁場発生装置は前記引き出しの方向に沿った第1の軸線の回りに回転駆動可能に設けられ、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通した状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させるものとして構成され、
さらに、前記磁場発生装置の前記第1の軸線の回りの全周囲のうちの一部分を覆う磁気遮蔽手段を備え、前記磁場発生装置からの前記出力磁力線を前記磁気遮蔽手段で遮蔽するように構成された、
ことを特徴とする攪拌用の回転磁場発生装置。
An inlet that receives the molten metal, an internal space for cooling that communicates with the inlet, and an outlet that communicates with the internal space. The molten metal is cooled from the outer peripheral side in the internal space and is solid from the outside. For the stirring provided in the vicinity of the outlet of the mold, the molten metal remains inside, and the mold is drawn out from the outlet as a semi-finished product in which the inner liquid phase and the outer solid phase form an interface. A rotating magnetic field generator,
A magnetic field generator having an arbitrary number of magnetic pole pairs is provided by providing a plurality of magnetic poles so that different poles are alternately arranged around the periphery, and the magnetic field generator rotates around a first axis along the direction of the extraction An output magnetic force line that is provided so as to be driven, or an input magnetic force line that enters the magnetic pole is moved in a state of passing through the molten metal in the semi-finished product, and the molten metal in the semi-finished product is Configured to rotate around a second axis aligned with the first axis;
Furthermore, it comprises a magnetic shielding means that covers a part of the entire circumference around the first axis of the magnetic field generator, and is configured to shield the output magnetic field lines from the magnetic field generator with the magnetic shielding means. The
A rotating magnetic field generator for stirring.
前記磁極対は複数であることを特徴とする請求項12記載の攪拌用の回転磁場発生装置。   The rotating magnetic field generator for stirring according to claim 12, wherein the magnetic pole pairs are plural. 前記磁気遮蔽手段は、前記磁場発生装置の前記第1の軸線の回りの全周囲角のうちの半分の角度の範囲を遮蔽するものである、ことを特徴とする請求項12又は13に記載の攪拌用の回転磁場発生装置。   The said magnetic shielding means shields the range of the half angle of the total perimeter angles around the said 1st axis of the said magnetic field generator, The Claim 12 or 13 characterized by the above-mentioned. A rotating magnetic field generator for stirring. 前記磁場発生装置は、永久磁石又は電磁石で構成されていることを特徴とする請求項12乃至14の1つに記載の攪拌用の回転磁場発生装置。   The rotating magnetic field generator for stirring according to any one of claims 12 to 14, wherein the magnetic field generator is composed of a permanent magnet or an electromagnet. 前記磁気遮蔽手段は強磁性の鉄板で構成したことを特徴とする請求項12乃至15の1つに記載の攪拌用の回転磁場発生装置。   16. The rotating magnetic field generator for stirring according to claim 12, wherein the magnetic shielding means is formed of a ferromagnetic iron plate. 金属の溶湯を冷却用の内部空間を有するモールドの前記内部空間に連通する入口へ供給し、
前記モールドの前記内部空間において、供給された前記溶湯をその外周側から冷却することにより、外側から固体化して内部に溶湯が残存して、内部の液相と外側の固相が界面をなす半製品の状態で、前記内部空間に連通する出口から引き出し、
前記出口の近傍に設けた回転磁場発生装置における周囲に交互に異極が並ぶように複数の磁極を有する磁場発生装置を、前記モールドからの引き出し方向に沿った第1の軸線の回りに回転させることにより、前記各磁極から出る出力磁力線を又は前記各磁極へ入る入力磁力線を、前記半製品中の前記溶湯中を貫通する状態で移動させて、前記半製品中の前記溶湯を前記第1の軸線に並ぶ第2の軸線の回りに回転させるようにした、
ことを特徴とする金属製品製造方法。
Supplying a molten metal to an inlet communicating with the internal space of the mold having an internal space for cooling;
In the internal space of the mold, the supplied molten metal is cooled from the outer peripheral side, so that the molten metal is solidified from the outside and the molten metal remains inside, and the inner liquid phase and the outer solid phase form an interface. In the product state, pull out from the outlet communicating with the internal space,
A magnetic field generator having a plurality of magnetic poles is rotated around a first axis along the direction of drawing from the mold so that different polarities are alternately arranged around the rotating magnetic field generator provided in the vicinity of the outlet. By moving the output magnetic field lines coming out of the magnetic poles or the input magnetic field lines entering the magnetic poles in a state of passing through the molten metal in the semi-finished product, the molten metal in the semi-finished product is moved to the first Rotate around the second axis lined up with the axis,
A metal product manufacturing method characterized by the above.
前記回転監視装置として、前記磁場発生装置の周囲のうち、前記半製品と反対側に磁気遮蔽手段を備えるものを用いて、前記磁場発生装置からの前記出力磁力線を前記磁気遮蔽手段で遮蔽するようにした、ことを特徴とする請求項17記載の金属製品製造方法。   As the rotation monitoring device, a device provided with magnetic shielding means on the opposite side of the semi-finished product around the magnetic field generation device is used to shield the output magnetic field lines from the magnetic field generation device with the magnetic shielding device. The metal product manufacturing method according to claim 17, wherein
JP2011267293A 2011-12-06 2011-12-06 Metal product manufacturing equipment Active JP5897318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267293A JP5897318B2 (en) 2011-12-06 2011-12-06 Metal product manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267293A JP5897318B2 (en) 2011-12-06 2011-12-06 Metal product manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2013119096A true JP2013119096A (en) 2013-06-17
JP5897318B2 JP5897318B2 (en) 2016-03-30

Family

ID=48772016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267293A Active JP5897318B2 (en) 2011-12-06 2011-12-06 Metal product manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5897318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159291A1 (en) * 2015-12-22 2017-06-22 Presezzi Extrusion S P A METHOD AND DEVICE FOR OBTAINING ALUMINUM BILLETS OR HOMOGENEOUS ALUMINUM ALLOYS AT THE EXIT OF A FOUNDRY MATRIX

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139448A (en) * 1981-02-20 1982-08-28 Sumitomo Light Metal Ind Ltd Continuous casting method for aluminum or aluminum alloy
JPS62242399A (en) * 1986-04-14 1987-10-22 三菱電機株式会社 Building magnetic shielding apparatus
JPS6416208A (en) * 1987-07-07 1989-01-19 Sumitomo Electric Industries Magnetic levitation vehicle
JP2011106689A (en) * 2009-11-12 2011-06-02 Kenzo Takahashi Melting furnace system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139448A (en) * 1981-02-20 1982-08-28 Sumitomo Light Metal Ind Ltd Continuous casting method for aluminum or aluminum alloy
JPS62242399A (en) * 1986-04-14 1987-10-22 三菱電機株式会社 Building magnetic shielding apparatus
JPS6416208A (en) * 1987-07-07 1989-01-19 Sumitomo Electric Industries Magnetic levitation vehicle
JP2011106689A (en) * 2009-11-12 2011-06-02 Kenzo Takahashi Melting furnace system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159291A1 (en) * 2015-12-22 2017-06-22 Presezzi Extrusion S P A METHOD AND DEVICE FOR OBTAINING ALUMINUM BILLETS OR HOMOGENEOUS ALUMINUM ALLOYS AT THE EXIT OF A FOUNDRY MATRIX

Also Published As

Publication number Publication date
JP5897318B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6625065B2 (en) Non-contact control of molten metal flow
CN107116191B (en) Combined type spiral electromagnetic stirrer
EP2650063B1 (en) Molding device for continuous casting having stirring device
CN108500228B (en) Flow field control method for slab continuous casting crystallizer
CN104107891B (en) The electromagnetic inductor of continuous casting crystallizer for plate billet electromagnetic mixing apparatus
CN108580819B (en) Vacuum induction melting cast sheet furnace, alloy cast sheet manufacturing method and alloy cast sheet
CN203550552U (en) Swirl chamber body for metal smelting furnace and metal smelting furnace employing swirl chamber body
CN113426970B (en) Vertical semi-continuous production device and production process of large round billets with phi of 1000 mm-2000 mm
CN103567425A (en) High-efficiency electromagnetic induction heating device for molten steel in tundish
JP4426471B2 (en) Rare earth metal-containing alloy casting equipment
CN112139472A (en) Device and method for rapidly preparing semi-solid metal slurry
CA2804644C (en) Molding device for continuous casting equipped with agitator
JP5897318B2 (en) Metal product manufacturing equipment
CN103317106B (en) Method and device for improving casting quality of large steel ingots
CN105268935B (en) A kind of two-flap type submersed nozzle electromagnetic eddy flow device and its support meanss
CN112317707A (en) Side spiral electromagnetic stirring device
CN110935853A (en) Continuous casting device for hypereutectic aluminum-silicon alloy and preparation method thereof
CN213437073U (en) Device for rapidly preparing semi-solid metal slurry
CN104384465B (en) Conticaster high-temperature superconductor magnetic stirring apparatus
CN211386827U (en) Continuous casting device for hypereutectic aluminum-silicon alloy
JP2003285142A (en) Method and device for electromagnetic stirring for continuous casting
EP0531851A1 (en) Method and apparatus for the magnetic stirring of molten metals in a twin roll caster
RU2743437C1 (en) Device for electromagnetic mixing of liquid core of ingot in crystallizer
CN107008884A (en) Cooling mold and method for cooling steel ingot
WO2023033637A1 (en) A device for non-contact induction of flow in electrically conductive liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250