JP2013118127A - Photoelectrode using carbon nano-tube - Google Patents

Photoelectrode using carbon nano-tube Download PDF

Info

Publication number
JP2013118127A
JP2013118127A JP2011265658A JP2011265658A JP2013118127A JP 2013118127 A JP2013118127 A JP 2013118127A JP 2011265658 A JP2011265658 A JP 2011265658A JP 2011265658 A JP2011265658 A JP 2011265658A JP 2013118127 A JP2013118127 A JP 2013118127A
Authority
JP
Japan
Prior art keywords
dye
titanium oxide
solar cell
sensitized solar
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011265658A
Other languages
Japanese (ja)
Inventor
Kiyoshige Kojima
清茂 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2011265658A priority Critical patent/JP2013118127A/en
Publication of JP2013118127A publication Critical patent/JP2013118127A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell of which photoelectric conversion efficiency is improved, with manufacturing thereof being of low cost, and a semiconductor electrode or a titanium oxide film that can be applicable to the dye-sensitized solar cell.SOLUTION: In a carbon nano-tube structure, titanium oxide is carried or covered on a carbon nano-tube whose G/D ratio is 2-20 and length is 100 μm or longer. In a semiconductor electrode, a semiconductor layer is stacked which has a carbon nano-tube structure according to claim 1 on at least one conductive layer surface formed on a substrate in which a conductive layer is formed at least on one surface, with the titanium oxide on the electrode surface adsorbing dye. The dye-sensitized solar cell is characterized in that the semiconductor electrode is used for a photoelectrode.

Description

この発明は、酸化チタンが担持又は被覆された高表面積カーボンナノチューブ構造体、これを用いてなる半導体電極、およびこの半導体電極を利用した色素増感型太陽電池に関する。   The present invention relates to a high surface area carbon nanotube structure on which titanium oxide is supported or coated, a semiconductor electrode using the same, and a dye-sensitized solar cell using the semiconductor electrode.

太陽光などの光エネルギーを有効に利用する手段の1つとして、光エネルギーを電気エネルギーに直接変換する太陽電池が広く用いられている。この太陽電池は、シリコンの多結晶、または単結晶を用いたシリコン型太陽電池が良く知られており、すでに住宅用の電力供給用から電卓等の微弱電力用電源として利用されている。
しかしながら、こうしたシリコン型太陽電池の製造にあたって必須となるシリコンの単結晶や多結晶、あるいはアモルファスシリコンを製造するためには、シリコン高純度化でのプロセスや高温での溶融プロセスを必要とするために多大なエネルギーを消費する。このため、シリコン型太陽電池を製造するために費やしたエネルギー量の総和が、この太陽電池の発電可能期間に発電できる総発電エネルギー量よりも大きいという危惧が出ている。
こうした、シリコン型太陽電池の課題を解決する太陽電池として、近年、色素増感型太陽電池が注目されている。色素増感型太陽電池は、スイスのミカエル・グレツェルらがその基礎となる構造を開発したもので、光電変換効率が高く、かつ、シリコン型太陽電池のように単結晶シリコンなどの製造に多大なエネルギーを消費する材料が必要ではないため、太陽電池を作製するためのエネルギーも桁違いに少なく、且つ低コストで量産が可能なものであり、その普及が期待されるものである。
As one of means for effectively using light energy such as sunlight, solar cells that directly convert light energy into electric energy are widely used. As this solar cell, a silicon solar cell using a polycrystal of silicon or a single crystal is well known, and has already been used as a power source for weak power such as a calculator from a power supply for a house.
However, in order to produce silicon single crystals, polycrystals, or amorphous silicon, which are indispensable for the production of such silicon-type solar cells, a process for silicon purification and a melting process at high temperatures are required. Consumes a lot of energy. For this reason, there is a concern that the total amount of energy consumed to manufacture the silicon solar cell is larger than the total amount of power generation that can be generated during the power generation period of this solar cell.
In recent years, a dye-sensitized solar cell has attracted attention as a solar cell that solves the problem of the silicon solar cell. Dye-sensitized solar cells were developed by Michael Grezel and others of Switzerland. They have a high photoelectric conversion efficiency and are very large in the production of single-crystal silicon and the like like silicon-type solar cells. Since a material that consumes energy is not required, the energy for manufacturing the solar cell is extremely small, and mass production is possible at low cost, and its spread is expected.

従来の色素増感型太陽電池は、例えば以下の作製方法によって得られる。即ち、透明導電膜を形成したガラス基板に下地膜を形成し、この下地膜に、例えば酸化チタンからなる多孔質層を形成し、この多孔質層に色素を吸着させる。そして、色素の吸着後に逆電子移動防止のために、カルボン酸や有機金属塩等で処理を行い、色素増感型太陽電池の負極に用いる。一方、正極は、透明導電膜を形成したガラス基板にプラチナ(Pt)膜を形成する。このPt膜の形成は、例えば、Ptの蒸着や、Ptを含む塩を熱分解する方法、あるいは電解メッキ等で形成している。このようにして得られた正極と負極とを、例えばアイオノマー樹脂を用いて熱融着させ、最後に電解液を充填することによって色素増感型太陽電池が得られる。
上述したように、色素増感型太陽電池は、シリコン型太陽電池と比較して簡易な工程でローコストに製造が可能であるが、一方で、光電変換効率を上げることが重要な課題となっている。変換効率に与える影響の大きい要因としては、ガラス基板上に成膜する透明導電膜の導電性、電解液中の電解質の種類および濃度、正極や負極での電荷移動抵抗、負極膜の多孔質電極膜内での伝導性等が挙げられる。中でも、特に負極において、界面での電荷移動後に、高抵抗の金属酸化物からなる半導体を電子が移動して集電体へと移動していくために、この時の電流の低減や電圧降下が大きく、変換効率を下げる要因となっている。このため、電子が効率的に移動できる負極を開発することが、色素増感型太陽電池の変換効率を引上げるためには重要である。
A conventional dye-sensitized solar cell can be obtained, for example, by the following production method. That is, a base film is formed on a glass substrate on which a transparent conductive film is formed, and a porous layer made of, for example, titanium oxide is formed on the base film, and a dye is adsorbed on the porous layer. And after adsorption | suction of a pigment | dye, in order to prevent a reverse electron transfer, it processes with carboxylic acid, an organic metal salt, etc., and uses for the negative electrode of a dye-sensitized solar cell. On the other hand, the positive electrode forms a platinum (Pt) film on a glass substrate on which a transparent conductive film is formed. The Pt film is formed by, for example, vapor deposition of Pt, a method of thermally decomposing a salt containing Pt, or electrolytic plating. The dye-sensitized solar cell is obtained by thermally fusing the positive electrode and the negative electrode thus obtained using, for example, an ionomer resin and finally filling the electrolytic solution.
As described above, the dye-sensitized solar cell can be manufactured at a low cost by a simple process as compared with the silicon solar cell. On the other hand, increasing the photoelectric conversion efficiency is an important issue. Yes. Factors that have a large effect on the conversion efficiency include the conductivity of the transparent conductive film formed on the glass substrate, the type and concentration of the electrolyte in the electrolyte, the charge transfer resistance at the positive and negative electrodes, and the porous electrode of the negative electrode film Examples thereof include conductivity within the film. In particular, particularly in the negative electrode, after the charge transfer at the interface, the electrons move through the semiconductor made of a high-resistance metal oxide and move to the current collector. It is a major factor that reduces conversion efficiency. For this reason, it is important to develop a negative electrode in which electrons can move efficiently in order to increase the conversion efficiency of the dye-sensitized solar cell.

色素増感型太陽電池の光電極側電極を構成する、金属酸化物からなる半導体電極に求められる性質としては、例えば、
1.電解液の電解質イオンからの電荷移動ができる界面の面積を大きくすること
2.多孔質層内でのイオン拡散がしやすい構造であること
3.多孔質層の導電性を高めること
4.多孔質層と基板との間に形成される下地膜(例えば酸化チタン膜)の抵抗の改善
の四つが挙げられる。
このうち、電荷移動抵抗に関しては、電解液と接触する界面の面積を大きくするために、金属酸化物の粒子サイズを小さくして低温焼結することにより可能である。しかし、電解液中でのイオン拡散と金属酸化物の半導体電極の電子伝導性、及び多孔質層、下地膜と、基板表面の透明導電膜との界面における抵抗に関しては、十分に検討されていないのが現状であった。そこで、多孔質層でのイオン拡散や電子伝導性に関する理論的な観点でのアプローチから、実験的な視野に立って様々なモデルを立てて試験が行なわれている。例えば、円柱ないしチューブ状に酸化チタンを焼結して表面積を増加させ、且つ電解液の浸透性やイオン拡散を改善するような工夫もなされている(例えば、特許文献1〜3参照)。
As a property required for a semiconductor electrode made of a metal oxide that constitutes a photoelectrode side electrode of a dye-sensitized solar cell, for example,
1. 1. Increase the area of the interface where the charge can be transferred from the electrolyte ions of the electrolyte. 2. A structure that facilitates ion diffusion in the porous layer. 3. Increase the conductivity of the porous layer. There are four ways to improve the resistance of the underlying film (for example, titanium oxide film) formed between the porous layer and the substrate.
Among these, charge transfer resistance can be achieved by reducing the particle size of the metal oxide and performing low-temperature sintering in order to increase the area of the interface in contact with the electrolytic solution. However, ion diffusion in the electrolyte, electronic conductivity of the metal oxide semiconductor electrode, and resistance at the interface between the porous layer, the base film, and the transparent conductive film on the substrate surface have not been sufficiently studied. Was the current situation. In view of this, various models have been tested from an experimental point of view based on a theoretical approach to ion diffusion and electron conductivity in the porous layer. For example, the invention has been devised to increase the surface area by sintering titanium oxide in a columnar or tube shape and to improve the permeability and ion diffusion of the electrolyte (for example, see Patent Documents 1 to 3).

特開2005−339883号公報JP 2005-339883 A 特開2005−339884号公報JP-A-2005-339884 特開2005−339885号公報JP-A-2005-339885

本発明は、光電変換効率を向上させ、かつ安価に製造が可能な色素増感太陽電池およびこの色素増感太陽電池に適用可能な半導体電極や酸化チタン担持の高表面積カーボンナノチューブを提供することを目的とする。   The present invention provides a dye-sensitized solar cell that can improve photoelectric conversion efficiency and can be manufactured at low cost, and a high surface area carbon nanotube carrying a semiconductor electrode and titanium oxide that can be applied to the dye-sensitized solar cell. Objective.

かかる課題を解決するため、本発明者は鋭意検討した結果、G/D比が2以上20以下、長さが100μm以上のカーボンナノチューブに酸化チタンが担持又は被覆されてなるカーボンナノチューブ構造体を見いだした。そして、本発明によれば、少なくとも一面に導電層が形成された基板の、当該基板に形成された少なくとも1つの導電層表面に、このカーボンナノチューブ構造体からなる半導体層が積層された半導体電極の表面にある酸化チタンに色素を吸着させた半導体電極が提供される。この半導体電極を光電極に用いることで色素増感型太陽電池が提供される。   In order to solve this problem, the present inventor has intensively studied, and as a result, found a carbon nanotube structure in which titanium oxide is supported or coated on a carbon nanotube having a G / D ratio of 2 to 20 and a length of 100 μm or more. It was. According to the present invention, there is provided a semiconductor electrode in which a semiconductor layer made of a carbon nanotube structure is laminated on the surface of at least one conductive layer formed on a substrate having a conductive layer formed on at least one surface. A semiconductor electrode in which a dye is adsorbed on titanium oxide on the surface is provided. A dye-sensitized solar cell is provided by using this semiconductor electrode as a photoelectrode.

本発明によれば、G/D比が2以上20以下、長さが100μm以上のカーボンナノチューブに、酸化チタンが担持又は被覆されたカーボンナノチューブ構造体が導電基板上に積層された半導体電極からなる光電極となる。
このような半導体電極を色素増感型太陽電池に用いれば、透明電極基板との接触点が増えることで電荷の移動が促進され、低抵抗になるので、色素増感型太陽電池の光電変換効率を高めることができる。また、非常に表面積が大きいカーボンナノチューブを用いているため、色素から移動した電子を受け取る面積が増えるため、電極全体を考慮した場合の一定面積中の電流が増加し、色素増感型太陽電池の光電変換効率を高めることができる。
これらの効果により高い変換効率の高性能な色素増感型太陽電池を実現することが可能になる。
According to the present invention, a carbon nanotube structure having a G / D ratio of 2 or more and 20 or less and a length of 100 μm or more and a carbon nanotube structure in which titanium oxide is supported or coated is formed on a conductive substrate. It becomes a photoelectrode.
If such a semiconductor electrode is used in a dye-sensitized solar cell, the number of contact points with the transparent electrode substrate increases, which facilitates the movement of charges and lowers the resistance. Therefore, the photoelectric conversion efficiency of the dye-sensitized solar cell Can be increased. In addition, since carbon nanotubes with a very large surface area are used, the area for receiving electrons transferred from the dye increases, so that the current in a certain area when the entire electrode is considered increases, and the dye-sensitized solar cell Photoelectric conversion efficiency can be increased.
These effects make it possible to realize a high-performance dye-sensitized solar cell with high conversion efficiency.

以下、本発明のカーボンナノチューブ構造体、半導体電極、およびこれを用いた色素増感型太陽電池の一実施形態を説明する。なお、本発明はこのような実施形態に限定されるものではない。また、以下の説明は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, an embodiment of the carbon nanotube structure of the present invention, a semiconductor electrode, and a dye-sensitized solar cell using the same will be described. Note that the present invention is not limited to such an embodiment. In addition, in the following description, in order to make the features of the present invention easier to understand, for the sake of convenience, there are cases where the main part is shown in an enlarged manner, and the dimensional ratios of the respective components are the same as the actual ones. Is not limited.

[基板]
基板は、光を透過させる透明基板が用いられる。透明基板としては、ガラス基板、脂環式オレフィン(COP)、ポリカーボネイト(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、フッ素樹脂などの透明プラスチック基板を用いることができ、表面に反射防止層を積層した透明基板を用いてもよい。
基板は、ITO、FTOなどからなるシート抵抗が100Ω以下、好ましくは30Ω以下の厚さ100nm以上の透明導電膜を備えている。これにより、一面が導電性の透明な基板が形成される。そのほかに、ITO等を代替した導電粒子を用いたペースト状の透明導電膜も用いてもよい。
基板は、PET、PCフィルムにスクリーン印刷法、スプレー法、スパッタ法、MOCVD法等により、透明導電膜等を成膜し、シート抵抗として大きくとも100Ω/□以下にし、望ましくは30Ω/□以下にした透明導電膜15を作製する。これらの厚みとしては少なくとも0.1μm以上が良い。
[substrate]
As the substrate, a transparent substrate that transmits light is used. As the transparent substrate, a transparent plastic substrate such as a glass substrate, an alicyclic olefin (COP), a polycarbonate (PC), a polyethylene terephthalate (PET), a polyethylene (PE), a polyvinyl chloride (PVC), or a fluororesin may be used. A transparent substrate having an antireflection layer laminated on the surface may be used.
The substrate is provided with a transparent conductive film having a thickness of 100 nm or more, such as ITO or FTO, having a sheet resistance of 100Ω or less, preferably 30Ω or less. As a result, a transparent substrate having a conductive surface is formed. In addition, a paste-like transparent conductive film using conductive particles replacing ITO or the like may be used.
For the substrate, a transparent conductive film or the like is formed on a PET or PC film by screen printing, spraying, sputtering, MOCVD, etc., and the sheet resistance is at most 100Ω / □ or less, preferably 30Ω / □ or less. A transparent conductive film 15 is produced. These thicknesses are preferably at least 0.1 μm or more.

[酸化チタンが担持又は被覆されたカーボンナノチューブ]
透明導電膜上に半導体電極として形成されているのは、酸化チタンが担持又は被覆されたカーボンナノチューブ構造体である。本カーボンナノチューブ構造体に用いられているカーボンナノチューブは、G/D比が2以上20以下、長さが100μm以上であることを特徴とするカーボンナノチューブである。
本発明のカーボンナノチューブ構造体に用いられるカーボンナノチューブの比表面積は、通常500m/g以上であり、好ましくは600m/g以上1800m/g未満である。比表面積が小さすぎると色素からの電子移動効率が低下するため、電力の変換効率の向上性に乏しい。また、長さは、通常100μm以上、好ましくは200μm以上を用いることができる。長さが不足すると導電パスが乏しく、半導体層を通る電子が集電される透明電極へ流れる電力の変換効率が悪化する恐れがある。
アスペクト比が大きいことで知られる、スーパーグロース法で得られる単層カーボンナノチューブ(例えば国際公開WO2006/011655号や日本国特許4621896号公報に開示される方法に従って得られるカーボンナノチューブ)が好適に用いられる。
[Carbon nanotubes supported or coated with titanium oxide]
What is formed as a semiconductor electrode on the transparent conductive film is a carbon nanotube structure in which titanium oxide is supported or coated. The carbon nanotubes used in the present carbon nanotube structure are carbon nanotubes having a G / D ratio of 2 to 20 and a length of 100 μm or more.
The specific surface area of the carbon nanotube used in the carbon nanotube structure of the present invention is usually 500 m 2 / g or more, preferably 600 m 2 / g or more and less than 1800 m 2 / g. When the specific surface area is too small, the efficiency of electron transfer from the dye is lowered, so that the conversion efficiency of power is poor. The length is usually 100 μm or more, preferably 200 μm or more. If the length is insufficient, the conductive path is insufficient, and the conversion efficiency of power flowing to the transparent electrode where electrons passing through the semiconductor layer are collected may be deteriorated.
Single-walled carbon nanotubes obtained by the super-growth method, known for their high aspect ratio (for example, carbon nanotubes obtained according to the methods disclosed in International Publication No. WO2006 / 011655 and Japanese Patent No. 4621896) are preferably used. .

酸化チタンの結晶構造としては、とくに制限されるわけではないが、アナターゼ型酸化チタン、ルチル型酸化チタン及びブルッカイト型酸化チタンよりなる群から選ばれる少なくとも1種を含むものが好ましく、光に対する活性が高い点から、アナターゼ型酸化チタンを含むものがより好ましい。なお、粒子状酸化チタンの結晶構造は、例えば、X線回折法、ラマン分光分析等により測定することができる。
粒子状酸化チタンの平均粒子径は、より多くの色素を吸着し、光を吸収できる点から、1〜200nmが好ましく、1〜50nmがより好ましい。ただし、電池内部への光閉じ込め効果の観点から、光散乱の大きい酸化チタン粒子を併用してもよい。なお、平均粒子径は、例えば、電子顕微鏡(SEM)観察等により測定することができる。
具体的には、例えば、本カーボンナノチューブを、硝酸、硫酸、塩酸等の酸で処理した後、分散剤を含む溶媒中に分散させ、その後、公知のチタンアルコキシドを原料とするゾルゲル法又は四塩化チタン等を原料とする湿式法である。その後、酸化チタン同士の結合を強化するために300〜550℃で熱処理してもよい。
前記溶媒としては、特に制限されるものではないが、例えば、水、水とアルコールとの混合溶媒等、チタンフルオロ錯体が溶解する溶媒等が挙げられる。
また、本発明の、酸化チタンが担持又は被覆されたカーボンナノチューブは、カーボンナノチューブの表面に、公知のチタンアルコキシドを原料とするゾルゲル法又は四塩化チタン等を原料とする湿式法でも、棒状又は繊維状のカーボンの表面に、粒子状酸化チタンが連なってなる被覆層を形成させることができるが、その他の公知の方法でも可能である。
The crystal structure of titanium oxide is not particularly limited, but preferably includes at least one selected from the group consisting of anatase-type titanium oxide, rutile-type titanium oxide and brookite-type titanium oxide, and has an activity against light. From a high point, what contains anatase type titanium oxide is more preferable. The crystal structure of the particulate titanium oxide can be measured by, for example, X-ray diffraction method, Raman spectroscopic analysis or the like.
The average particle diameter of the particulate titanium oxide is preferably 1 to 200 nm, more preferably 1 to 50 nm from the viewpoint that more dye can be adsorbed and light can be absorbed. However, from the viewpoint of the light confinement effect inside the battery, titanium oxide particles having a large light scattering may be used in combination. In addition, an average particle diameter can be measured by electron microscope (SEM) observation etc., for example.
Specifically, for example, the carbon nanotube is treated with an acid such as nitric acid, sulfuric acid, hydrochloric acid, etc., and then dispersed in a solvent containing a dispersant, and then a sol-gel method or tetrachloride using a known titanium alkoxide as a raw material. This is a wet method using titanium or the like as a raw material. Thereafter, heat treatment may be performed at 300 to 550 ° C. in order to strengthen the bond between titanium oxides.
Although it does not restrict | limit especially as said solvent, For example, the solvent etc. which a titanium fluoro complex melt | dissolves, such as water, the mixed solvent of water and alcohol, etc. are mentioned.
Further, the carbon nanotubes supported or coated with titanium oxide according to the present invention may be formed into rods or fibers on the surface of the carbon nanotubes by a sol-gel method using a known titanium alkoxide as a raw material or a wet method using titanium tetrachloride as a raw material. A coating layer composed of continuous particulate titanium oxide can be formed on the surface of the carbon in the form of carbon, but other known methods are also possible.

半導体電極層の厚みは、漏れ電流を防止する点から、2〜500nmが好ましく、5〜200nmがより好ましい。なお、被覆層の厚みは、例えば、電子顕微鏡(SEM又はTEM)観察等により測定することができる。
この半導体電極の成膜方法としては、例えばスクリーン印刷やスプレー法等により酸化チタンが担持又は被覆されたカーボンナノチューブのペースト又はスラリーを透明導電膜上に塗布した後に乾燥する。また、色素を吸着させる前後に、逆電子移動用に例えばケトン系、カルボン酸系、エーテル系等や金属アルコキシド、金属錯体、金属塩等を用いて、本発明のカーボンナノチューブ表面に高い抵抗膜や吸着層を5nm以下で形成することにより、光電変換効率を改善してもよい。
以上の説明では、主に通常公知の構造をもつ半導体電極の構成およびその作製方法について説明したが、それ以外の公知の工程を用いてもよい。
The thickness of the semiconductor electrode layer is preferably 2 to 500 nm, more preferably 5 to 200 nm, from the viewpoint of preventing leakage current. In addition, the thickness of a coating layer can be measured by electron microscope (SEM or TEM) observation etc., for example.
As a method for forming the semiconductor electrode, for example, a carbon nanotube paste or slurry on which titanium oxide is supported or coated is applied on a transparent conductive film by screen printing or spraying, and then dried. In addition, before and after the dye is adsorbed, a high resistance film or the like is used on the surface of the carbon nanotube of the present invention by using, for example, ketone, carboxylic acid, ether, etc., metal alkoxide, metal complex, metal salt or the like for reverse electron transfer. The photoelectric conversion efficiency may be improved by forming the adsorption layer at 5 nm or less.
In the above description, the configuration of a semiconductor electrode having a generally known structure and the manufacturing method thereof have been mainly described. However, other known processes may be used.

なお、COP、PC、PE、PET、PVC、フッ素樹脂系フィルムを用いて色素増感型太陽電池を作製する場合に、透明導電膜の下地としてフィルム表面に緻密な膜を作りやすくすることや、酸素や水分に対するバリヤー性を高めるために、酸化アルミニウムや酸化珪素等を成膜することも耐久性の改善において効果がある。また、色素増感太陽電池に用いる場合には、対極の正極側も同様である。例えば、正極はPCフィルム上に酸素や水分に対するバリヤー膜を形成して、この上に透明導電膜を形成し、更にスパッタ法等によりPtを10nm以上に成膜したものを用いる。   In addition, when producing a dye-sensitized solar cell using COP, PC, PE, PET, PVC, a fluororesin-based film, it is easy to make a dense film on the film surface as a base of a transparent conductive film, In order to improve the barrier property against oxygen and moisture, it is also effective in improving durability to form a film of aluminum oxide or silicon oxide. Moreover, when using for a dye-sensitized solar cell, the positive electrode side of a counter electrode is also the same. For example, the positive electrode is formed by forming a barrier film against oxygen or moisture on a PC film, forming a transparent conductive film thereon, and further depositing Pt to 10 nm or more by sputtering or the like.

以上のような構成の本発明の酸化チタンが担持又は被覆されたカーボンナノチューブ構造体層を備えた半導体電極によれば、その構造体が緻密にパーコレーションをしながら複雑な構造体を形成した網目状の構造を成す。酸化チタン担持/被覆カーボンナノチューブ構造体を透明導電層状に対して針状に敷き詰めてもよい。また、酸化チタンが担持又は被覆されたカーボンナノチューブ構造体からなる半導体層を作製後に、酸化チタン粒子を追加してもよい。
これにより、透明電極膜と半導体層にある酸化チタンの間の電荷の移動が導電パスとなるカーボンナノチューブを介して行われるため、電荷移動の効率が向上し、低抵抗が得られる。その結果、電力の変換効率が大きく向上することが期待できる。
According to the semiconductor electrode having the carbon nanotube structure layer supported or coated with the titanium oxide according to the present invention having the above-described configuration, the structure has a mesh structure in which a complex structure is formed while densely percolating. The structure of The titanium oxide-supported / coated carbon nanotube structure may be spread like a needle on the transparent conductive layer. In addition, titanium oxide particles may be added after a semiconductor layer made of a carbon nanotube structure on which titanium oxide is supported or coated.
As a result, charge transfer between the transparent electrode film and the titanium oxide in the semiconductor layer is performed through the carbon nanotubes serving as a conductive path, so that the charge transfer efficiency is improved and low resistance is obtained. As a result, it can be expected that the power conversion efficiency is greatly improved.

この半導体電極の表面のカーボンナノチューブ構造体層の酸化チタンに、色素を吸着させて本発明の半導体電極となる。
吸着させる色素としては、例えばルテニウムビピリジン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポリフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素などが挙げられる。
色素の吸着方法としては、例えば、半導体電極を色素が溶解された溶液(色素吸着用溶液)に浸漬する方法が挙げられる。色素を溶解させる溶剤としては、色素を溶解するものであればよく、具体的には、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類が挙げられる。これらの溶剤は2種類以上を混合して用いることもできる。
溶液中の色素濃度は、使用する色素および溶剤の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましいが、高濃度であると多孔質層の表面に過剰に吸着した層が形成されるので、低濃度が好ましく3×10−4モル/リットル以上であればよい。
A dye is adsorbed to titanium oxide of the carbon nanotube structure layer on the surface of the semiconductor electrode to form the semiconductor electrode of the present invention.
Examples of the dye to be adsorbed include ruthenium bipyridine dyes, azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, Examples include porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, and naphthalocyanine dyes.
Examples of the dye adsorption method include a method of immersing the semiconductor electrode in a solution (dye adsorption solution) in which the dye is dissolved. The solvent for dissolving the dye may be any solvent that dissolves the dye. Specifically, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen compounds such as acetonitrile. , Halogenated aliphatic hydrocarbons such as chloroform, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. Two or more of these solvents can be used in combination.
The concentration of the dye in the solution can be appropriately adjusted depending on the type of the dye and the solvent to be used, but it is preferable that the concentration is as high as possible in order to improve the adsorption function. Since an excessively adsorbed layer is formed on the surface, a low concentration is preferable, and it may be 3 × 10 −4 mol / liter or more.

[色素増感型太陽電池]
本発明の色素増感型太陽電池は、上述したような半導体電極、即ち、酸化チタンが担持又は被覆されたカーボンナノチューブ構造体が緻密にパーコレーションをしながら複雑な構造体を形成した網目状の構造をもつ半導体電極を光電極として用いたもので、この酸化チタンに増感用の色素を吸着させて使用する。また、この光電極に対向して対極を配し、この光電極と対極との間に電解液を満たし、色素増感型太陽電池が形成される。
電解液を構成する酸化還元対としては、I−/I−系の電解質、Br−/Br−系の電解質などのレドックス電解質等が挙げられるが、酸化還元対を構成する酸化体がI−であり、かつ、前記酸化還元対を構成する還元体がI−であるI3−/I−系の電解質が好ましく、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、およびテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物と、Iとの組み合わせが挙げられる。このような電解液において、特にヨウ素系レドックス溶液からなる電解質が用いられる場合には、対極は白金又は導電性炭素材料からなること、及び触媒粒子が白金又は導電性炭素材料からなることが好ましい。
電解液を構成する溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3−メチル−2−オキサゾリジノンなどの複素環化合物;ジオキサン、ジエチルエーテルなどのエーテル化合物;エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのエーテル類;メタノール、エタノールなどのアルコール類;エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類;アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物;ジメチルスルフォキシド、スルフォランなど非プロトン極性物質;などが好ましく挙げられる。
電解液の濃度は、電解質や溶剤の種類などにより適宜設定すればよく、例えば、0.01〜1.5モル/リットル、好ましくは0.01〜0.7モル/リットルである。具体的な電解液の一例としては、リチウムアイオダイド0.06モル/リットル、ヨウ素0.06モル/リットル、ターシャルブチルピリジン0.3モル/リットルの濃度となるようにそれぞれをアセトニトリルに溶解させたものが挙げられる。
色素増感型太陽電池の形成方法としては、光電極を成す半導体電極と、白金を担持させた対極を対面させ、アイオノマー等の有機材料を用いてこれら光電極と対極とを熱融着させて封止固定し、更に外周部をガスバリヤー性のある材料で封止する方法などが挙げられる。
[Dye-sensitized solar cell]
The dye-sensitized solar cell of the present invention has a network structure in which a semiconductor electrode as described above, that is, a carbon nanotube structure on which titanium oxide is supported or coated has a complex structure while being densely percolated. Is used as a photoelectrode, and is used by adsorbing a dye for sensitization to this titanium oxide. In addition, a counter electrode is disposed opposite to the photoelectrode, and an electrolyte is filled between the photoelectrode and the counter electrode to form a dye-sensitized solar cell.
Examples of the redox couple constituting the electrolyte include redox electrolytes such as an I 3 − / I− based electrolyte and a Br 3 − / Br− based electrolyte. 3 - and, the preferably redox reductant constituting the pair is I- I3- / I- based electrolyte, LiI, NaI, KI, CsI, metal iodide such as CaI 2, and tetra Combinations of iodides such as iodine salts of quaternary ammonium compounds such as alkylammonium iodide, pyridinium iodide, imidazolium iodide, and I 2 can be mentioned. In such an electrolytic solution, in particular, when an electrolyte made of an iodine-based redox solution is used, the counter electrode is preferably made of platinum or a conductive carbon material, and the catalyst particles are preferably made of platinum or a conductive carbon material.
Examples of the solvent constituting the electrolytic solution include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone; ether compounds such as dioxane and diethyl ether; ethylene glycol dialkyl ether and propylene glycol. Ethers such as dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether; alcohols such as methanol and ethanol; ethylene Glycol, propylene glycol, polyethylene glycol , Polypropylene glycol, polyhydric alcohols such as glycerin; acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile; dimethyl sulfoxide, aprotic polar substances such as sulfolane; and the like preferably.
What is necessary is just to set the density | concentration of electrolyte solution suitably with the kind of electrolyte, a solvent, etc., for example, 0.01-1.5 mol / liter, Preferably it is 0.01-0.7 mol / liter. As an example of a specific electrolytic solution, lithium iodide is dissolved in acetonitrile so as to have concentrations of 0.06 mol / liter, iodine 0.06 mol / liter, and tertiary butylpyridine 0.3 mol / liter. Can be mentioned.
As a method of forming a dye-sensitized solar cell, a semiconductor electrode constituting a photoelectrode and a counter electrode supporting platinum are faced to each other, and the photoelectrode and the counter electrode are thermally fused using an organic material such as an ionomer. Examples include a method of sealing and fixing, and further sealing the outer peripheral portion with a gas barrier material.

以上のように、本発明の半導体電極を用いた色素増感型太陽電池によれば、透明電極膜との間に、酸化チタン担持/被覆カーボンナノチューブ構造体が緻密にパーコレーションをしながら複雑な構造体を形成した網目状の構造体を形成することで、その構造体と透明電極膜との間の電荷の移動が低抵抗になる(電荷の移動が促進される)ので、色素増感型太陽電池の光電変換効率を高めることができ、高い変換効率の高性能な色素増感型太陽電池を実現することが可能になる。   As described above, according to the dye-sensitized solar cell using the semiconductor electrode of the present invention, the titanium oxide-carrying / coated carbon nanotube structure is densely percolated between the transparent electrode film and a complicated structure. By forming a network-like structure that forms a body, the charge transfer between the structure and the transparent electrode film becomes low resistance (the charge transfer is promoted), so the dye-sensitized solar The photoelectric conversion efficiency of the battery can be increased, and a high-performance dye-sensitized solar cell with high conversion efficiency can be realized.

以下、本発明の半導体電極を光電極に用いた色素増感型太陽電池の実施例を列記する。
[実施例1]
使用した基板はソーダライムガラス板に透明導電膜を形成したガラス板(日本板硝子社製)を切断して厚み3mm、5cm角にしたガラス板を用いた。つぎに、日本国特許4621896号公報の実施例1に記載のスーパーグロース法で得られるカーボンナノチューブ(G/D比=3、比表面積=900m/g、長さ=500μm)表面にゾルゲル法により酸化チタン層を担持形成した。その際、水溶液に分散させたカーボンナノチューブ溶液内に酸化チタン原料を入れ、200℃で1時間攪拌させて担持体を形成した。
このカーボンナノチューブ構造体を水溶液に分散させ、ペースト状にした後、前記のガラス板表面に20ミクロンの厚みで塗布・乾燥させ、半導体膜を形成した。この後、ルテニウム錯体系の色素ルテニウム535(SOLARONIX社製、製品名:ルテニウム535)を濃度5×10−4モル/リットルにしたエタノール溶液に浸漬して8時間保持した。そして無水エタノールに浸漬して過剰の色素を取り除き、乾燥した。前述した透明電極膜を形成する際には、ガラス板の周端部から3mmの部分には酸化チタン担持カーボンナノチューブ構造体分散ペーストが付かないように印刷を行い、このガラス板の周端部には外側から内側に厚み60μmのスペーサー(三井デュポンポリケミカル社製:商品名:「ハイミラン」を幅3mmで付着させた。
対極となる正極として、導電性膜を形成したガラス基板にはスパッタリング法によりPtを200nm成膜し、ドリルにより直径1mm径の穴を二箇所、対角線方向に両端に形成した。この正極と負極のガラス基板間に50gf/cmの荷重を掛けた。この状態において120℃でハイミラン(三井・デュポン ポリケミカル社製)により熱融着させた。この作製した色素増感型太陽電池での多孔質層の空隙量は同様な条件で10cm角のサイズにして、厚みは触針式の膜厚計で測定し、20℃で水を含浸させて乾燥後の重量変化から膜の空隙率を測定した。このサンプルの空隙率は33パーセントであった。
作製したセルにLiIとIを溶かしたアセトニトリル電解液を注入口より入れて、セル全体に均一になるように注入した。このサンプルの多孔質層の構造をFE−SEMで観察し、引き続き光電変換特性を調べた。また、比較例として、上述した針状結晶の酸化チタン膜を形成せずに、それ以外の構成は同様な、従来の半導体電極を形成した。
電池特性評価試験は、ソーラーシミュレータ(山下電装社製、商品名;「YS−100H型」)を用い、Air Massフィルター(A.M.=1.5G)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。
Examples of dye-sensitized solar cells using the semiconductor electrode of the present invention as a photoelectrode will be listed below.
[Example 1]
As the substrate used, a glass plate (manufactured by Nippon Sheet Glass Co., Ltd.) formed by forming a transparent conductive film on a soda lime glass plate and having a thickness of 3 mm and a 5 cm square was used. Next, a carbon nanotube (G / D ratio = 3, specific surface area = 900 m 2 / g, length = 500 μm) obtained by the super-growth method described in Example 1 of Japanese Patent No. 4621896 is applied to the surface by a sol-gel method. A titanium oxide layer was supported and formed. At that time, a titanium oxide raw material was put into a carbon nanotube solution dispersed in an aqueous solution and stirred at 200 ° C. for 1 hour to form a carrier.
The carbon nanotube structure was dispersed in an aqueous solution to form a paste, and then applied to the surface of the glass plate with a thickness of 20 microns and dried to form a semiconductor film. Thereafter, a ruthenium complex dye ruthenium 535 (manufactured by SOLARONIX, product name: ruthenium 535) was immersed in an ethanol solution having a concentration of 5 × 10 −4 mol / liter and held for 8 hours. Then, it was immersed in absolute ethanol to remove excess dye and dried. When the transparent electrode film is formed, printing is performed so that the titanium oxide-supported carbon nanotube structure dispersion paste is not attached to a portion 3 mm from the peripheral edge of the glass plate. A spacer having a thickness of 60 μm (made by Mitsui DuPont Polychemical Co., Ltd .: trade name: “High Milan”) was attached in a width of 3 mm from the outside to the inside.
As a positive electrode serving as a counter electrode, a Pt film having a thickness of 200 nm was formed on a glass substrate on which a conductive film was formed by sputtering, and two holes with a diameter of 1 mm were formed at both ends in a diagonal direction by a drill. A load of 50 gf / cm 2 was applied between the positive and negative glass substrates. In this state, heat fusion was performed at 120 ° C. with high Milan (Mitsui DuPont Polychemical Co., Ltd.). In this produced dye-sensitized solar cell, the void amount of the porous layer was set to a size of 10 cm square under the same conditions, the thickness was measured with a stylus type film thickness meter, and impregnated with water at 20 ° C. The porosity of the membrane was measured from the change in weight after drying. The porosity of this sample was 33 percent.
Acetonitrile electrolyte solution to produce the cells were dissolved LiI and I 2 were placed from the inlet, and injected to be uniform throughout the cell. The structure of the porous layer of this sample was observed with FE-SEM, and then the photoelectric conversion characteristics were examined. In addition, as a comparative example, a conventional semiconductor electrode having the same configuration as the above was formed without forming the above-described acicular crystal titanium oxide film.
The battery characteristic evaluation test was conducted using a solar simulator (trade name: “YS-100H type” manufactured by Yamashita Denso Co., Ltd.), and a pseudo sun from a xenon lamp light source through an Air Mass filter (AM = 1.5G). The irradiation condition of light was 100 mW / cm 2 (so-called “1Sun” irradiation condition).

[比較例1]
半導体層の酸化チタンを平均粒径500nmの粒子状酸化チタンに変更して塗布形成する以外は、同じにして色素増感型太陽電池を作製し、同様の評価を行う。
[Comparative Example 1]
A dye-sensitized solar cell is prepared in the same manner except that the titanium oxide of the semiconductor layer is changed to particulate titanium oxide having an average particle diameter of 500 nm and coated, and the same evaluation is performed.

その結果、透明導電膜を形成したガラス基板に、G/D比が2以上20以下、長さが100μm以上のカーボンナノチューブに、酸化チタンが担持又は被覆されてなるカーボンナノチューブ構造体を半導体膜として形成したものを用いて作製した本発明例の色素増感型太陽電池は、従来例の色素増感型太陽電池と比較して光電変換効率が著しく改善することが分かった。   As a result, a carbon nanotube structure in which titanium oxide is supported or coated on a carbon nanotube having a G / D ratio of 2 to 20 and a length of 100 μm or more on a glass substrate on which a transparent conductive film is formed is used as a semiconductor film. It was found that the dye-sensitized solar cell of the example of the present invention produced using the formed one has significantly improved photoelectric conversion efficiency as compared with the dye-sensitized solar cell of the conventional example.

Claims (3)

G/D比が2以上20以下、長さが100μm以上のカーボンナノチューブに、酸化チタンが担持又は被覆されてなるカーボンナノチューブ構造体。   A carbon nanotube structure in which titanium oxide is supported or coated on a carbon nanotube having a G / D ratio of 2 to 20 and a length of 100 μm or more. 少なくとも一面に導電層が形成された基板の、当該基板に形成された少なくとも1つの導電層表面に請求項1記載のカーボンナノチューブ構造体からなる半導体層が積層された半導体電極であって、当該電極表面の酸化チタンに色素を吸着させたものである半導体電極。   A semiconductor electrode comprising a substrate having a conductive layer formed on at least one surface, wherein a semiconductor layer comprising the carbon nanotube structure according to claim 1 is laminated on a surface of at least one conductive layer formed on the substrate, A semiconductor electrode in which a dye is adsorbed on titanium oxide on the surface. 請求項2記載の半導体電極を光電極に用いたことを特徴とする色素増感型太陽電池。   A dye-sensitized solar cell, wherein the semiconductor electrode according to claim 2 is used as a photoelectrode.
JP2011265658A 2011-12-05 2011-12-05 Photoelectrode using carbon nano-tube Pending JP2013118127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265658A JP2013118127A (en) 2011-12-05 2011-12-05 Photoelectrode using carbon nano-tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265658A JP2013118127A (en) 2011-12-05 2011-12-05 Photoelectrode using carbon nano-tube

Publications (1)

Publication Number Publication Date
JP2013118127A true JP2013118127A (en) 2013-06-13

Family

ID=48712551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265658A Pending JP2013118127A (en) 2011-12-05 2011-12-05 Photoelectrode using carbon nano-tube

Country Status (1)

Country Link
JP (1) JP2013118127A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037714A1 (en) * 2013-09-12 2015-03-19 積水化学工業株式会社 Composite-film production method, composite film, photoelectrode, and dye-sensitized solar cell
JP2015128101A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Electrode substrate for solar cell
WO2015115048A1 (en) * 2014-01-31 2015-08-06 日本ゼオン株式会社 Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell
JP2016539910A (en) * 2013-09-30 2016-12-22 モレキュラー レバー デザイン,エルエルシー High carbon nanotube content fluid
CN109698356A (en) * 2018-12-27 2019-04-30 中科廊坊过程工程研究院 A kind of positive electrode modifying agent and its preparation method and application
US10930442B2 (en) 2014-09-02 2021-02-23 University Of Tokyo Light-transmitting electrode having carbon nanotube film, solar cell, method for producing light-transmitting electrode having carbon nanotube film, and method for manufacturing solar cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037714A1 (en) * 2013-09-12 2015-03-19 積水化学工業株式会社 Composite-film production method, composite film, photoelectrode, and dye-sensitized solar cell
CN105189817A (en) * 2013-09-12 2015-12-23 积水化学工业株式会社 Composite-film production method, composite film, photoelectrode, and dye-sensitized solar cell
TWI628806B (en) * 2013-09-12 2018-07-01 日商積水化學工業股份有限公司 Method for producing composite film, composite film, photoelectrode and dye-sensitized solar cell
JP2016539910A (en) * 2013-09-30 2016-12-22 モレキュラー レバー デザイン,エルエルシー High carbon nanotube content fluid
JP2015128101A (en) * 2013-12-27 2015-07-09 日本ゼオン株式会社 Electrode substrate for solar cell
WO2015115048A1 (en) * 2014-01-31 2015-08-06 日本ゼオン株式会社 Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell
CN105900182A (en) * 2014-01-31 2016-08-24 日本瑞翁株式会社 Transparent conductive film, photoelectrode for dye-sensitized solar cells, touch panel and dye-sensitized solar cell
JPWO2015115048A1 (en) * 2014-01-31 2017-03-23 日本ゼオン株式会社 Transparent conductive film, dye-sensitized solar cell photoelectrode and touch panel, and dye-sensitized solar cell
US10930442B2 (en) 2014-09-02 2021-02-23 University Of Tokyo Light-transmitting electrode having carbon nanotube film, solar cell, method for producing light-transmitting electrode having carbon nanotube film, and method for manufacturing solar cell
US11854751B2 (en) 2014-09-02 2023-12-26 The University Of Tokyo Light-transmitting electrode having carbon nanotube film, solar cell, method for producing light-transmitting electrode having carbon nanotube film, and method for manufacturing solar cell
CN109698356A (en) * 2018-12-27 2019-04-30 中科廊坊过程工程研究院 A kind of positive electrode modifying agent and its preparation method and application
CN109698356B (en) * 2018-12-27 2022-04-29 中科廊坊过程工程研究院 Positive electrode material modifier and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Sarkar et al. CoNi2S4-reduced graphene oxide nanohybrid: An excellent counter electrode for Pt-free DSSC
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
Lim et al. Reduced graphene oxide–titania nanocomposite‐modified photoanode for efficient dye‐sensitized solar cells
JP3717506B2 (en) Dye-sensitized solar cell module
US20110083737A1 (en) Titanium oxide-covered carbon fiber and porous titanium oxide-covered carbon material composition
US9409790B2 (en) Titanium oxide structure and porous titanium oxide composition
US9466434B2 (en) Dye-sensitized solar cell
JP4448478B2 (en) Dye-sensitized solar cell module
JP2013118127A (en) Photoelectrode using carbon nano-tube
Shi et al. Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo 2 S 4 mesoporous nanosheet counter electrodes directly converted from NiCo 2 O 4 photocathodes
Xia et al. Bifacial quasi-solid-state dye-sensitized solar cell with metal selenide M0. 85Se (M= Co, Ni) as counter electrode
US20110277832A1 (en) Method for production of titanium dioxide composite and photoelectric conversion device incorporated with the same
JP2012059599A (en) Carbon based electrode and electrochemical device
JP5122121B2 (en) Semiconductor electrode and dye-sensitized solar cell
Kang et al. Cu@ C dispersed TiO2 for dye-sensitized solar cell photoanodes
Chang et al. Photoelectric performance optimization of dye-sensitized solar cells based on ZnO-TiO 2 composite nanofibers
Zhang et al. Preparation of CoNi@ CN composites based on metal-organic framework materials as high efficiency counter electrode materials for dye-sensitized solar cells
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5274691B1 (en) Dye-sensitized solar cell
Thapa et al. Evaluation of counter electrodes composed by carbon nanofibers and nanoparticles in dye-sensitized solar cells
Sun et al. High performance dye-sensitized solar cells based on electrospun MoS2-carbon nanofiber composite counter electrode
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
JP5979936B2 (en) Platinum-supported titanium oxide support
Nien et al. Photovoltaic Performance of Dye-Sensitized Solar Cells Under Low Illumination by Modification of a Photoanode With ZnFe 2 O 4/TiO 2 Nanofibers
Qiao Carbon nanostructures as low cost counter electrode for dye-sensitized solar cells