JP2013118044A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2013118044A
JP2013118044A JP2013056298A JP2013056298A JP2013118044A JP 2013118044 A JP2013118044 A JP 2013118044A JP 2013056298 A JP2013056298 A JP 2013056298A JP 2013056298 A JP2013056298 A JP 2013056298A JP 2013118044 A JP2013118044 A JP 2013118044A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
recording medium
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056298A
Other languages
Japanese (ja)
Other versions
JP5712241B2 (en
Inventor
Toshinori Ono
俊典 大野
Hiroshi Kanai
弘士 金井
Tatsuya Hinoue
竜也 檜上
Hiroyuki Suzuki
博之 鈴木
Hiroshi Inaba
宏 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
HGST Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HGST Netherlands BV filed Critical HGST Netherlands BV
Priority to JP2013056298A priority Critical patent/JP5712241B2/en
Publication of JP2013118044A publication Critical patent/JP2013118044A/en
Application granted granted Critical
Publication of JP5712241B2 publication Critical patent/JP5712241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a recording area separation type magnetic recording medium (DTM, BPM) which is optimal for reducing flying height of a magnetic head.SOLUTION: There is provided a magnetic recording medium in which a portion having a relatively high element ratio of a ferromagnetic material and a portion 13 having a low element ratio thereof periodically exist in an in-plane direction in magnetic recording layers 6 and 7, and an average height of the portion having the relatively high element ratio of the ferromagnetic material from a substrate surface is higher than that of the portion having the low element ratio thereof from the substrate surface. In manufacturing of the recording area separation type magnetic recording medium in which the element ratio of the ferromagnetic material is relatively reduced by ion implantation, etching an ion implantation portion in advance allows the height after the ion implantation to be relatively reduced compared to the height of a portion having no ions implanted thereto.

Description

本発明は、高記録密度に適したディスクリートトラック媒体やビットパターン媒体に代表されるパターン媒体、及びその製造方法に関する。   The present invention relates to a pattern medium typified by a discrete track medium and a bit pattern medium suitable for high recording density, and a manufacturing method thereof.

大型コンピュータ、ワークステーション、パーソナルコンピュータ等の記憶装置に用いられる磁気ディスク装置は年々その重要性が高まり、大容量小型化へと発展を遂げている。磁気ディスク装置の大容量小型化には高密度化が不可欠である。高密度化のための手法の一つに、磁気記録媒体の磁化反転単位を小さくする事による媒体ノイズの低減が挙げられる。そのため従来の磁気記録媒体では、磁気記録層を構成する強磁性結晶粒があらかじめ磁気記録層に含まれる非磁性材料で分離される構造が採用された。   Magnetic disk devices used for storage devices such as large computers, workstations, and personal computers are becoming increasingly important year by year, and have been developed to have a large capacity and a small size. High density is indispensable for reducing the capacity and size of magnetic disk devices. One technique for increasing the density is to reduce medium noise by reducing the magnetization reversal unit of the magnetic recording medium. For this reason, the conventional magnetic recording medium employs a structure in which the ferromagnetic crystal grains constituting the magnetic recording layer are separated in advance by a nonmagnetic material contained in the magnetic recording layer.

現在、より積極的にこの分離域を制御し磁気記録密度を向上する案として、記録トラック間に分離加工を施したディスクリートトラック媒体(DTM)、さらには、記録ビット間にも分離加工を施したビットパターンド媒体(BPM)が研究開発されており、いずれの場合も分離域形成加工技術が高密度化の重要なポイントとなっている。   Currently, as a proposal to more actively control this separation area and improve the magnetic recording density, a discrete track medium (DTM) in which separation processing is performed between recording tracks, and further, separation processing is performed between recording bits. Bit-patterned media (BPM) has been researched and developed, and in any case, the separation zone forming technique is an important point for increasing the density.

DTMの作製方法として、エッチングなどにより磁性膜を物理的に加工する磁性膜加工型が提案されている。磁性膜加工型DTMは、概ね次のようなプロセスで作製される。
(1)記録層の上に金属薄膜を設けレジスト塗布する。
(2)リソグラフィ技術によりレジストに微細パターンを与える。
(3)レジストパターン凹部の金属薄膜をドライプロセスによりエッチングし、記録層を露出させる。
(4)露出した記録層をドライプロセスによりエッチングし記録トラック分離部(グルーブ)を形成する。
(5)記録トラック(ランド)の残存レジスト及び金属薄膜を除去する。
(6)グルーブ部分を非磁性材料で埋め戻し平坦化する。
(7)保護層と潤滑層を付与する。
As a method for producing DTM, a magnetic film processing type in which a magnetic film is physically processed by etching or the like has been proposed. The magnetic film processed DTM is generally manufactured by the following process.
(1) A metal thin film is provided on the recording layer and a resist is applied.
(2) A fine pattern is given to the resist by lithography.
(3) The metal thin film in the resist pattern recess is etched by a dry process to expose the recording layer.
(4) The exposed recording layer is etched by a dry process to form a recording track separation portion (groove).
(5) The remaining resist and metal thin film on the recording track (land) are removed.
(6) The groove portion is backfilled with a nonmagnetic material and flattened.
(7) A protective layer and a lubricating layer are provided.

このように磁性膜加工型DTMはプロセスが非常に煩雑であるばかりか、埋め戻し平坦化した面の粗さが連続媒体のそれに比べて大きく、磁気ヘッド浮上性が安定しないという問題がある。   Thus, the magnetic film processing type DTM has not only a very complicated process, but also has a problem that the roughness of the backfilled and flattened surface is larger than that of the continuous medium, and the magnetic head flying property is not stable.

上記を解決するDTMの別の作製方法としてイオン注入によるグルーブ部の非磁性化の手法が提案されている。特開2007−226862号公報では、保護膜まで形成した磁気記録媒体の上部に微細パターンを設置し、市販のイオン注入器を用いてSi,In,B,P,C,Fのイオンを注入している。また特開2006−309841号公報では、ステンシルマスク越しにAg,B,Cr,Mo,Al,Nb等のイオンを注入する事でDTMが作製できるとしている。特開2007−220164号公報では、微細加工されたレジストの凹部にSiを成膜したのちArイオンの照射によりSiを記録層のグルーブ前駆領域に選択的に拡散させDTMを作製する方法が開示されている。これらの開示では磁性膜加工型DTM媒体に比べて製造方法が簡便に出来るだけではなく作製された媒体表面の平滑性により磁気ヘッドの浮上性が良いとされている。   As another DTM manufacturing method for solving the above-described problem, a method of demagnetizing the groove portion by ion implantation has been proposed. In Japanese Patent Laid-Open No. 2007-226862, a fine pattern is placed on the top of a magnetic recording medium formed up to a protective film, and ions of Si, In, B, P, C, and F are implanted using a commercially available ion implanter. ing. Japanese Patent Laid-Open No. 2006-309841 discloses that a DTM can be produced by implanting ions such as Ag, B, Cr, Mo, Al, and Nb through a stencil mask. Japanese Patent Laid-Open No. 2007-220164 discloses a method of forming a DTM by depositing Si in a concave portion of a finely processed resist and then selectively diffusing Si into the groove precursor region of the recording layer by irradiation with Ar ions. ing. In these disclosures, not only can the manufacturing method be simplified as compared to the magnetic film processed DTM medium, but also the floating property of the magnetic head is good due to the smoothness of the surface of the manufactured medium.

特開2007−226862号公報JP 2007-226862 A 特開2006−309841号公報JP 2006-309841 A 特開2007−220164号公報JP 2007-220164 A

ところがイオン注入によるDTM作製には注入部分の体積増加という問題点がある。すなわちイオン注入により強磁性材料の元素比率を相対的に下げられた部分は体積増加が起こり、非注入部分に比べて高さが増加してしまう。そのため磁気記録トラックに相当する非注入部分と磁気ヘッドとの距離を大きくしてしまう原因となる。その結果、スペーシングロスの増大により高記録密度化への阻害要因になってしまう。   However, the production of DTM by ion implantation has a problem of increasing the volume of the implanted portion. That is, the portion where the element ratio of the ferromagnetic material is relatively lowered by ion implantation is increased in volume, and the height is increased as compared with the non-implanted portion. For this reason, the distance between the non-injection portion corresponding to the magnetic recording track and the magnetic head is increased. As a result, an increase in spacing loss becomes an impediment to higher recording density.

例えばCo合金からなる記録層が20nmの厚みを有する場合、1cm2あたりに概ね1017atomsの原子が存在している。磁気特性の劣化を目的としてCrイオンを1016atoms注入すると、密度の変化がほとんどない場合には10%の体積増加が生じる。注入イオンは磁性層内で面内方向にも拡散し全体的な底上げがあるものの、注入部分は非注入部分に比べて高さが増加してしまい、磁気ヘッドからの距離は非注入部分(磁気記録トラック)が注入部分に比べて遠くなってしまう。磁気ヘッドによるリードライト時の媒体ノイズを小さくするためには注入部分と非注入部分の磁気特性のコントラストをより大きく取る方が有利であり、そのために注入量を増加すると一層体積増加が顕著になりスペーシングロスが増大すると言う問題があった。 For example, when a recording layer made of a Co alloy has a thickness of 20 nm, atoms of approximately 10 17 atoms exist per 1 cm 2 . When Cr ions are implanted at 10 16 atoms for the purpose of deteriorating magnetic properties, a volume increase of 10% occurs when there is almost no change in density. Implanted ions diffuse in the in-plane direction in the magnetic layer and have an overall rise. However, the height of the implanted portion is higher than that of the non-implanted portion, and the distance from the magnetic head is the non-implanted portion (magnetic The recording track) is farther than the injection part. In order to reduce the medium noise at the time of read / write by the magnetic head, it is advantageous to make the contrast of the magnetic characteristics of the injection part and the non-injection part larger. Therefore, if the injection amount is increased, the volume increase becomes more remarkable. There was a problem that the spacing loss increased.

本発明は、上記の如き問題点を解消する為になされたものであり、その第1の目的は、磁気ヘッドの低浮上化に最適な記録領域分離型磁気記録媒体(DTM、BPM)を提供する事である。   The present invention has been made to solve the above-described problems, and a first object of the present invention is to provide a recording area separation type magnetic recording medium (DTM, BPM) optimum for lowering the flying height of the magnetic head. Is to do.

また、第2の目的は、磁気ヘッドの低浮上化に最適な記録領域分離型磁気記録媒体(DTM、BPM)の製造方法を提供する事である。   A second object is to provide a method of manufacturing a recording area separation type magnetic recording medium (DTM, BPM) that is optimal for lowering the flying height of a magnetic head.

上記課題を解決するために、本発明では主として次のような構成を採用する。すなわち、基体上に直接あるいは少なくとも中間層を介して磁気記録層が形成してある磁気記録媒体において、磁気記録層は強磁性材料の元素比率が相対的に高い部分と低い部分が面内方向に周期的に存在しており、強磁性材料の元素比率が相対的に高い部分の基板面からの平均高さが強磁性材料の元素比率が低い部分の基板面からの平均高さよりも高い事を特徴とする。   In order to solve the above problems, the present invention mainly adopts the following configuration. That is, in a magnetic recording medium in which a magnetic recording layer is formed directly on the substrate or at least via an intermediate layer, the magnetic recording layer has a portion in which the element ratio of the ferromagnetic material is relatively high and a portion in which the low ratio is in the in-plane direction. The average height from the substrate surface of the portion where the element ratio of the ferromagnetic material is relatively high is higher than the average height from the substrate surface of the portion where the element ratio of the ferromagnetic material is low. Features.

さらに言うと、本発明によればイオン注入型の記録領域分離型の磁気記録媒体において、イオン注入部分の基板面からの平均高さを非注入部分の基板面からの平均高さよりも0.1nm以上3nm以下低くすることで、高記録密度化に適した記録領域分離型磁気記録媒体とする事ができる。イオン注入部分の基板面からの平均高さを非注入部分の基板面からの平均高さよりも低くする事で磁気ヘッドの浮上基準面hsはイオン注入部分と非注入部分の間で面積比率に応じた高さとなる。具体的には高い部分を(高さh1、面積比率S1)、低い部分を(高さh2、面積比率S2)とした場合、hsはh1×S1+h2×S2で与えられ、h1>hs>h2となる。従って非注入部分すなわち磁気記録トラックと磁気ヘッドの距離は連続媒体の浮上基準面として考えられるh1の場合よりも近づける事が出来る。0.1nm以上とする理由は、この値以上で実質的に磁気ヘッドが近づいたことを示す結果によるものであり、3nm以下とする理由はこの値より大きいと磁気ヘッドの浮上安定性に問題が生じる結果に依るものである。   Furthermore, according to the present invention, in the ion-implanted recording region separation type magnetic recording medium, the average height from the substrate surface of the ion-implanted portion is 0.1 nm higher than the average height from the substrate surface of the non-implanted portion. By reducing the thickness to 3 nm or less, a recording area separation type magnetic recording medium suitable for increasing the recording density can be obtained. By making the average height from the substrate surface of the ion-implanted portion lower than the average height from the substrate surface of the non-implanted portion, the flying reference surface hs of the magnetic head is in accordance with the area ratio between the ion-implanted portion and the non-implanted portion. It becomes high. Specifically, when the high portion is (height h1, area ratio S1) and the low portion is (height h2, area ratio S2), hs is given by h1 × S1 + h2 × S2, and h1> hs> h2. Become. Accordingly, the distance between the non-injection portion, that is, the magnetic recording track and the magnetic head, can be made closer than in the case of h1 which is considered as the flying reference plane of the continuous medium. The reason why the thickness is 0.1 nm or more is based on the result indicating that the magnetic head is substantially approached above this value. The reason why the thickness is 3 nm or less is a problem in the flying stability of the magnetic head if it is larger than this value. It depends on the results that occur.

前記構成を実現するために、磁気記録層上に直接又は一層以上の薄膜を介して設けた微細パターンを有するマスク層を用いて、イオン注入により強磁性材料の元素比率を相対的に低くする記録領域分離型の磁気記録媒体の作製時に、あらかじめイオン注入部分をエッチングしておくことで、イオン注入後の高さを非注入部分と比べて相対的に0.1nm以上3nm以下の範囲で低くする事ができる。   In order to realize the above configuration, a mask layer having a fine pattern provided directly or via one or more thin films on the magnetic recording layer is used, and the element ratio of the ferromagnetic material is relatively lowered by ion implantation. When the region-separated magnetic recording medium is manufactured, the ion-implanted portion is etched in advance, so that the height after ion implantation is relatively lower than the non-implanted portion in the range of 0.1 nm to 3 nm. I can do things.

磁気記録層の非磁性元素の含有率の高い部分と低い部分をおおむね同心円状に形成することにより、ディスクリートトラック媒体を作製することができる。また、磁気記録層の非磁性元素の含有率が低い部分がアイランド状に並んだドット形状にすることにより、ビットパターンド媒体を作製することができる。   A discrete track medium can be manufactured by forming the high-content portion and the low-content portion of the magnetic recording layer substantially concentrically. In addition, a bit patterned medium can be manufactured by forming a dot shape in which portions having a low content of nonmagnetic elements in the magnetic recording layer are arranged in an island shape.

イオン注入する元素としてはCr,Mo,W,V,Nb,Ta,Ti,Zr,Hf,Ru,B,C,Si,Ge,Ar,Kr,Rn,Xeからなる群から選ばれるいずれかの元素を用いるとよい。   The element to be ion-implanted is any one selected from the group consisting of Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Ru, B, C, Si, Ge, Ar, Kr, Rn, and Xe. Use elements.

本発明によれば、記録密度向上を目的とした記録領域分離型磁気記録媒体をイオン注入法により作製する際に、注入部分の体積増加により記録領域と磁気ヘッドの距離(スペーシングロス)が増大してしまい記録密度向上の阻害要因となることを取り除き、スペーシングロスをより小さくすることが可能となる。   According to the present invention, when a recording area separation type magnetic recording medium for the purpose of improving the recording density is manufactured by the ion implantation method, the distance between the recording area and the magnetic head (spacing loss) increases due to the increase in the volume of the implanted portion. Therefore, it becomes possible to reduce the spacing loss by removing the obstacle to the improvement of the recording density.

本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. 本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. 本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. 本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. 本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. DTM、Co系合金磁性層(記録層2)の非エッチング部を基準としたエッチング部分の高さとCo系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さの関係を示す図。DTM, the height of the etched portion based on the non-etched portion of the Co-based alloy magnetic layer (recording layer 2) and the height of the ion-implanted portion based on the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) The figure which shows a relationship. 本発明による磁気ディスクの製造工程を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process of a magnetic disk according to the present invention. DTM、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さとグライドノイズの関係を示す図。The figure which shows the relationship between the height of the ion implantation part on the basis of the non-implantation part of a DTM and Co type alloy magnetic layer (recording layer 2), and glide noise. DTM、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さと出力分解能Reの関係を示す図。The figure which shows the relationship between the height of the ion implantation part on the basis of the non-implantation part of a DTM and Co type alloy magnetic layer (recording layer 2), and output resolution Re. BPM、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さとグライドノイズの関係を示す図。The figure which shows the relationship between the height of an ion implantation part on the basis of the non-implantation part of a BPM and Co type alloy magnetic layer (recording layer 2), and glide noise. BPM、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さと出力分解能Reの関係を示す図。The figure which shows the relationship between the height of the ion implantation part on the basis of the non-implantation part of BPM and Co type alloy magnetic layer (recording layer 2), and output resolution Re.

以下、図面に従い本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例による記録領域分離型磁気記録媒体の作製過程を示す断面模式図である。この磁気記録媒体(磁気ディスク)は、非磁性基板(基板)1の両面に形成された、AlTi密着層2、軟磁性層3、NiWシード層4、Ru中間層5、Co系合金グラニュラー磁性層(記録層1)6、Co系合金磁性層(記録層2)7、Taマスク層前駆体8を有する。軟磁性層3は、FeCo系下部軟磁性層3aと、Ru反強磁性結合層3bと、FeCo系上部軟磁性層3cの積層膜である。   FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a recording area separation type magnetic recording medium according to an embodiment of the present invention. This magnetic recording medium (magnetic disk) includes an AlTi adhesion layer 2, a soft magnetic layer 3, a NiW seed layer 4, a Ru intermediate layer 5, and a Co-based alloy granular magnetic layer formed on both surfaces of a nonmagnetic substrate (substrate) 1. (Recording layer 1) 6, Co-based alloy magnetic layer (recording layer 2) 7, and Ta mask layer precursor 8. The soft magnetic layer 3 is a laminated film of an FeCo-based lower soft magnetic layer 3a, a Ru antiferromagnetic coupling layer 3b, and an FeCo-based upper soft magnetic layer 3c.

非磁性基板1上にTaマスク層前駆体8を形成するまでの工程は、以下に説明するような通常の製造方法に従って行った。   The steps until the Ta mask layer precursor 8 was formed on the nonmagnetic substrate 1 were performed according to a normal manufacturing method as described below.

まず、基板1として用いるソーダライムガラス基体(外径65mm、内径15mm、厚さ0.635mm)の洗浄を十分行なった。これを約1.3×10-5Pa(1.0×10-7Torr)以下まで排気された真空槽内に導入した。最初に密着層形成室に搬送し、Ar雰囲気約0.8Pa(6mTorr)の条件下で、DCマグネトロンスパッタリング法によりAl−50at%Ti密着層2を5nm形成した。続いて下部軟磁性層形成室に搬送し、Ar雰囲気約0.8Pa(6mTorr)の条件下でDCマグネトロンスパッタリング法によりFe−35at%Co−9at%Ta−4at%Zr合金下部軟磁性層3aを25nm成膜した。続いて反強磁性結合層形成室に搬送し、Ar雰囲気約0.8Pa(6mTorr)の条件下で、DCマグネトロンスパッタリング法によりRu層3bを0.5nm形成した。続いて上部軟磁性層形成室に搬送し、Ar雰囲気約0.8Pa(6mTorr)の条件下で、DCマグネトロンスパッタリング法によりFe−35at%Co−9at%Ta−4at%Zr合金上部軟磁性層3cを25nm成膜した。 First, a soda lime glass substrate (outer diameter 65 mm, inner diameter 15 mm, thickness 0.635 mm) used as the substrate 1 was sufficiently washed. This was introduced into a vacuum chamber evacuated to about 1.3 × 10 −5 Pa (1.0 × 10 −7 Torr) or less. First, it was transferred to an adhesion layer forming chamber, and an Al-50 at% Ti adhesion layer 2 was formed to 5 nm by DC magnetron sputtering under an Ar atmosphere of about 0.8 Pa (6 mTorr). Subsequently, the lower soft magnetic layer 3a is transferred to the lower soft magnetic layer forming chamber, and the Fe-35at% Co-9at% Ta-4at% Zr alloy lower soft magnetic layer 3a is formed by DC magnetron sputtering under an Ar atmosphere of about 0.8 Pa (6 mTorr). A 25 nm film was formed. Subsequently, it was transferred to the antiferromagnetic coupling layer forming chamber, and a Ru layer 3b of 0.5 nm was formed by DC magnetron sputtering under an Ar atmosphere of about 0.8 Pa (6 mTorr). Subsequently, it is transported to the upper soft magnetic layer forming chamber, and the upper soft magnetic layer 3c of Fe-35at% Co-9at% Ta-4at% Zr alloy is formed by DC magnetron sputtering under the condition of Ar atmosphere of about 0.8 Pa (6 mTorr). Was deposited to 25 nm.

続いて基板冷却室に搬送し、スパッタによる熱の影響で上昇した基板温度を55℃まで低下した後、シード層形成室に搬送し、Ar雰囲気約0.9Pa(7mTorr)の条件下で、DCマグネトロンスパッタリング法により、Ni−8at%Wシード層4を8nm形成した。続いて中間層形成室に搬送し、Ar雰囲気約2Pa(15mTorr)の条件下で、DCマグネトロンスパッタリング法によりRu中間層5を15nm形成した。さらに磁気記録層形成室1に搬送し、Ar雰囲気約0.9Pa(7mTorr)の条件下で、DCマグネトロンスパッタリング法により、90mol%(Co−15at%Cr−18at%Pt)8mol%SiO2合金からなるグラニュラー磁性層(記録層1)6を13nm形成した後、磁気記録層形成室2に搬送しAr雰囲気約0.8Pa(6mTorr)の条件下でDCマグネトロンスパッタリング法により、Co−13at%Cr−18at%Pt−7at%B磁性層(記録層2)7を6nm形成した。続いてCrマスク層前駆体形成室に搬送し、Ar雰囲気約0.9Pa(7mTorr)の条件下で、DCマグネトロンスパッタリング法により、Taマスク層前駆体8を30nm形成した。 Subsequently, the substrate temperature is increased to 55 ° C. after being transferred to the substrate cooling chamber and lowered to 55 ° C., and then transferred to the seed layer forming chamber, where DC is applied under the condition of Ar atmosphere of about 0.9 Pa (7 mTorr). The Ni-8 at% W seed layer 4 was formed to 8 nm by magnetron sputtering. Subsequently, it was transferred to an intermediate layer forming chamber, and a Ru intermediate layer 5 having a thickness of 15 nm was formed by DC magnetron sputtering under an Ar atmosphere of about 2 Pa (15 mTorr). Further, it is transported to the magnetic recording layer forming chamber 1 and from a 90 mol% (Co-15 at% Cr-18 at% Pt) 8 mol% SiO 2 alloy by DC magnetron sputtering under an Ar atmosphere of about 0.9 Pa (7 mTorr). After forming a granular magnetic layer (recording layer 1) 6 having a thickness of 13 nm, the granular magnetic layer (recording layer 1) 6 is transferred to the magnetic recording layer forming chamber 2 and is subjected to Co-13 at% Cr-- by DC magnetron sputtering under an Ar atmosphere of about 0.8 Pa (6 mTorr). An 18 at% Pt-7 at% B magnetic layer (recording layer 2) 7 was formed to a thickness of 6 nm. Subsequently, the film was transferred to a Cr mask layer precursor formation chamber, and a Ta mask layer precursor 8 was formed to 30 nm by DC magnetron sputtering under an Ar atmosphere of about 0.9 Pa (7 mTorr).

基板1としては、ソーダライムガラスの他に、化学強化したアルミノシリケート、Ni−P無電解めっきを施したAl−Mg合金基板、シリコン,硼珪酸ガラス等からなるセラミックス、又はガラスグレージングを施したセラミックス等からなる非磁性の剛体基板等を用いることができる。   As the substrate 1, in addition to soda lime glass, chemically strengthened aluminosilicate, Al—Mg alloy substrate subjected to Ni—P electroless plating, ceramics made of silicon, borosilicate glass, etc., or ceramics subjected to glass glazing It is possible to use a non-magnetic rigid substrate made of, for example.

密着層2は、ソーダライムガラスからのアルカリ金属の電気化学的溶出を防ぐため、またガラスと軟磁性層3との密着性を向上するために設けてあるもので、AlTiの他にNiTa,AlTa,CrTi,CoTi,NiTaZr,NiCrZr,CrTiAl,CrTiTa,CoTiNi又はCoTiAlでも良く、厚さは任意である。また、特に用いる必要がなければ省略することもできる。   The adhesion layer 2 is provided in order to prevent electrochemical elution of alkali metal from soda lime glass and to improve adhesion between the glass and the soft magnetic layer 3, and in addition to AlTi, NiTa, AlTa , CrTi, CoTi, NiTaZr, NiCrZr, CrTiAl, CrTiTa, CoTiNi or CoTiAl, and the thickness is arbitrary. Further, it can be omitted if it is not necessary to use it.

また密着層2と軟磁性層3の間に軟磁性磁区固定層を設けても構わない。この場合の代表的な構成として、密着層2の上にNi−18at%Feを6nm、Fe−50at%Mnを17nm、Co−10at%Feを3nm、この順に順次成膜して、その後、軟磁性層3を設けた。シード層4として、NiFe合金、NiTa合金、TaTi合金等を用いることも可能である。また、シード層4と軟磁性層3の間にCrTi合金を積層してもよい。基板冷却工程は上部軟磁性層3cの形成後ではなく、上部軟磁性層3cの形成前、記録層6の形成前に設けることもでき、さらにこれらを複数組み合わせても構わない。   A soft magnetic domain pinned layer may be provided between the adhesion layer 2 and the soft magnetic layer 3. As a typical configuration in this case, Ni-18 at% Fe of 6 nm, Fe-50 at% Mn of 17 nm, and Co-10 at% Fe of 3 nm are sequentially formed on the adhesion layer 2 in this order. A magnetic layer 3 was provided. As the seed layer 4, a NiFe alloy, NiTa alloy, TaTi alloy, or the like can also be used. Further, a CrTi alloy may be laminated between the seed layer 4 and the soft magnetic layer 3. The substrate cooling step can be performed before the formation of the upper soft magnetic layer 3c and before the formation of the recording layer 6, not after the formation of the upper soft magnetic layer 3c, and a plurality of these may be combined.

上記Taマスク層前駆体8まで形成された基板1を真空層から出し、レジストコーティング機に入れ、Taマスク層前駆体上にレジスト材としてメタクリル酸メチル樹脂(PMMA)層9を80nm設けた後、ナノインプリント技術により図2に示す所望の微細パターンを形成した。すなわち前記微細パターンの形成に用いたスタンパーは、レジスト凸部の幅が60nm、レジスト凹部の幅が40nm、残渣を5nmの形状に同心円状に型押しできる領域を含むものである。   The substrate 1 formed up to the Ta mask layer precursor 8 is taken out of the vacuum layer, put into a resist coating machine, and a methyl methacrylate resin (PMMA) layer 9 is provided as a resist material on the Ta mask layer precursor by 80 nm. A desired fine pattern shown in FIG. 2 was formed by the nanoimprint technique. That is, the stamper used for forming the fine pattern includes a region where the width of the resist convex portion is 60 nm, the width of the resist concave portion is 40 nm, and the residue can be embossed concentrically into a shape of 5 nm.

次に、上記微細パターンを有するPMMA層9まで設けた基板を、Taマスク層前駆体8までを形成したものとは別の真空装置に導入し、Taマスク層82の形成を行った。まず酸素による反応性酸素イオンエッチング(RIE−O2)室へ搬送し、レジスト残渣5nmを除去した。続いてArによるイオンビームエッチング(IBE)室に搬送し、レジスト除去部下のTaマスク前駆体層を30nm全て除去するとともにCo系合金磁性層(記録層2)7も数nmエッチングした。この時、エッチングする深さを変えて数種類のサンプルを各々複数枚作製し、後述する評価又はイオン注入工程に使用した。また比較の為にTaマスク前駆体層30nmのみをエッチングし、Co系合金磁性層(記録層2)7はエッチングしないサンプルも作製し同時に評価した。ここまでの工程を経た本発明による磁気記録媒体の断面模式図を、図3に示す。引き続き真空層から出すことなく反応性酸素イオンエッチング(RIE−O2)室へ搬送し、PMMA層9を全て除去する事で、図4に示すTaマスク層82が形成された。前述したArイオンビームエッチングによるレジスト除去部下のTaマスク前駆体層、Co系合金磁性層(記録層2)7エッチング時にPMMA層9が同時にすべて除去される場合は反応性酸素イオンエッチング(RIE−O2)を省略することも可能である。 Next, the substrate provided up to the PMMA layer 9 having the fine pattern was introduced into a vacuum apparatus different from the one formed up to the Ta mask layer precursor 8, and the Ta mask layer 82 was formed. First, it was transferred to a reactive oxygen ion etching (RIE-O 2 ) chamber using oxygen to remove the resist residue of 5 nm. Subsequently, the film was transferred to an ion beam etching (IBE) chamber using Ar to remove all 30 nm of the Ta mask precursor layer under the resist removal portion and to etch the Co-based alloy magnetic layer (recording layer 2) 7 several nm. At this time, several types of samples were produced by changing the etching depth, and used for the evaluation or ion implantation process described later. For comparison, a sample in which only the Ta mask precursor layer 30 nm was etched and the Co-based alloy magnetic layer (recording layer 2) 7 was not etched was prepared and evaluated at the same time. FIG. 3 shows a schematic cross-sectional view of the magnetic recording medium according to the present invention that has undergone the above steps. Subsequently, the Ta mask layer 82 shown in FIG. 4 was formed by removing the PMMA layer 9 by transferring it to the reactive oxygen ion etching (RIE-O 2 ) chamber without taking out from the vacuum layer. When all of the PMMA layer 9 is simultaneously removed during the etching of the Ta mask precursor layer under the resist removal portion and the Co-based alloy magnetic layer (recording layer 2) 7 by the Ar ion beam etching described above, reactive oxygen ion etching (RIE-O) 2 ) can be omitted.

Taマスク層まで形成された数種類のサンプルについて、各1枚はCo系合金磁性層(記録層2)7の非エッチング部を基準としたエッチング部分の高さを、アトミックフォースマイクロスコピー(AFM)を用いて評価した。   For several types of samples formed up to the Ta mask layer, each one has the height of the etched portion with respect to the non-etched portion of the Co-based alloy magnetic layer (recording layer 2) 7, and the atomic force microscopy (AFM). Evaluated.

上記Taマスク層82まで形成された基板は、上記のAFM評価を行うものを除いては引き続き真空層から出すことなくCrイオン注入室へ搬送した。Crイオン注入室は、Crのアーク放電機構と磁場フィルタによるイオン輸送機構を備えたプラズマビーム方式であり、基板には高電圧DCパルスバイアスを印加する事が出来る。本発明では、バイアス電圧−20kVで基板の両面全面に渡ってCrイオンを注入した。この時、注入時間を変化させる事で注入量を変えて数種類のサンプルを各々複数枚作製した。引き続き反応性CF4イオンエッチング室へ搬送し、Taマスク層をCF4イオンエッチングで全て除去し、図5に示すイオン注入部13を有する構成とした。なお、イオン注入時間と注入量の関係は、事前にCrフリーの基板上にクロムイオンを注入しラザフォード後方散乱分析により求めた結果を適用した。イオン注入時に注入部にはイオンが注入されるが、マスク部はイオンのエネルギーによりエッチングされる注入条件又はマスク層の組み合わせを用いる場合は上記のマスク層除去工程を省略する事もできる。 The substrate formed up to the Ta mask layer 82 was transported to the Cr ion implantation chamber without taking it out of the vacuum layer except for the one subjected to the AFM evaluation. The Cr ion implantation chamber is a plasma beam system having a Cr arc discharge mechanism and an ion transport mechanism using a magnetic field filter, and a high voltage DC pulse bias can be applied to the substrate. In the present invention, Cr ions are implanted across the entire surface of the substrate at a bias voltage of −20 kV. At this time, several types of samples were produced by changing the injection amount by changing the injection time. Subsequently, the Ta mask layer was transferred to the reactive CF 4 ion etching chamber and all of the Ta mask layer was removed by CF 4 ion etching, so that the ion implantation portion 13 shown in FIG. 5 was provided. The relationship between the ion implantation time and the implantation amount was obtained by injecting chromium ions on a Cr-free substrate in advance and obtaining the result by Rutherford backscattering analysis. Ions are implanted into the implanted portion at the time of ion implantation, but the mask layer removing step described above can be omitted when the mask portion uses implantation conditions or a combination of mask layers that are etched by ion energy.

イオン注入部13まで形成された数種類のサンプルについて、各1枚はCo系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さを、アトミックフォースマイクロスコピー(AFM)を用いて評価した。   For several types of samples formed up to the ion implantation part 13, each one has the height of the ion implantation part 13 with respect to the non-implanted part of the Co-based alloy magnetic layer (recording layer 2) 7, and the atomic force microscopy ( AFM).

イオン注入前のCo系合金磁性層(記録層2)7の非エッチング部を基準としたエッチング部分の高さ、イオン注入後のCo系合金磁性層(記録層2)7の非イオン注入部を基準としたイオン注入部13の高さとイオン注入量の関係を、表1及び図6に示す。表1及び図6において、AはCo系合金磁性層(記録層2)7の非エッチング部を基準としたエッチング部分の高さ(nm)、BはCo系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さ(nm)、Cはイオン注入量((×1015)atoms/cm2)である。 The height of the etched portion relative to the non-etched portion of the Co-based alloy magnetic layer (recording layer 2) 7 before ion implantation, and the non-ion-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 after ion implantation. Table 1 and FIG. 6 show the relationship between the height of the ion implantation portion 13 and the ion implantation amount as a reference. In Table 1 and FIG. 6, A is the height (nm) of the etched portion with respect to the non-etched portion of the Co-based alloy magnetic layer (recording layer 2) 7, and B is the Co-based alloy magnetic layer (recording layer 2) 7 The height (nm) of the ion-implanted portion 13 with reference to the non-implanted portion, and C is the ion implantation amount ((× 10 15 ) atoms / cm 2 ).

Figure 2013118044
Figure 2013118044

イオン注入部13まで形成された基板は、上記のAFM評価を行うものを除いては引き続き真空層から出すことなくDLC保護膜形成室へ搬送し、C22雰囲気約10Paの条件下でRF−CVD法によりDLC保護膜10を3nm形成した。 The substrate formed up to the ion implantation portion 13 is transferred to the DLC protective film formation chamber without being taken out of the vacuum layer except for the one subjected to the above AFM evaluation, and is subjected to RF under the condition of a C 2 H 2 atmosphere of about 10 Pa. A DLC protective film 10 having a thickness of 3 nm was formed by a CVD method.

上記の方法によって作製したサンプルを複数枚用いて、DLC保護膜10の上にフルオロカーボン系の潤滑膜11を設け、図7に示すディスクリートトラック型磁気記録媒体(DTM)の構成とした。この厚みは、フーリエトランスファー赤外分光分析装置(FT−IR)で定量し、全てのサンプルに対して1.0nmとなるようにした。これらフルオロカーボン系の潤滑膜11を設けた複数枚の磁気記録媒体を用い、以下に示す磁気ヘッドの浮上安定性に関わる評価と、スピンスタンドを用いてリードライト(RW)特性評価を行った。   A plurality of samples prepared by the above method were used, and a fluorocarbon-based lubricating film 11 was provided on the DLC protective film 10 to form a discrete track magnetic recording medium (DTM) shown in FIG. This thickness was quantified with a Fourier transfer infrared spectroscopic analyzer (FT-IR), and was 1.0 nm for all samples. A plurality of magnetic recording media provided with these fluorocarbon-based lubricating films 11 were used, and the following evaluations on the flying stability of the magnetic head and the read / write (RW) characteristics were evaluated using a spin stand.

磁気記録媒体の浮上安定性の評価として、圧電素子が搭載されているヘッド(グライドヘッド)によるグライドノイズ(GN)を測定した。グライドノイズとは、グライドヘッドが磁気記録媒体上を浮上している際に圧電素子から出力されるノイズのことである。グライドノイズが大きいのは、スライダが磁気記録媒体上を安定に浮上していないことを意味する。   As an evaluation of the flying stability of the magnetic recording medium, glide noise (GN) by a head (glide head) on which a piezoelectric element is mounted was measured. Glide noise is noise output from the piezoelectric element when the glide head is flying over the magnetic recording medium. A large glide noise means that the slider does not stably float on the magnetic recording medium.

グライドノイズの測定方法は次の通りである。回転運動している磁気記録媒体上でグライドヘッドを浮上させ、磁気記録媒体の半径位置16.5mmから41.5mmまで0.05mmずつ移動させた。各半径位置毎に、圧電素子のノイズを磁気記録媒体の一周分測定し、その平均値を求めた。さらに各半径位置毎の平均値を平均し、磁気記録媒体のグライドノイズと定義した。ここで、グライドヘッドの浮上量は6nmであった。通常、グライドヘッドは回転している磁気記録媒体との相対速度が変化すると、浮上量が変化する。そこで、浮上量の変化を避ける為に、グライドヘッドの移動毎に、磁気記録媒体の回転数を変化させ、半径位置が変化しても相対速度が一定になるように制御した。また、圧電素子の電圧は増幅器と周波数分別器を通して出力したが、増幅器の利得は60dB(デシベル)、周波数分別器の帯域は100kHzから2MHzとした。グライドノイズの値は、30mV以下であればヘッドの浮上性は安定していると判断できる。30mVよりも大きくなるとヘッドが不安定で磁気記録媒体としては適当ではないと判断できる。   The glide noise measurement method is as follows. The glide head was levitated on the rotating magnetic recording medium, and moved by 0.05 mm from a radial position of 16.5 mm to 41.5 mm of the magnetic recording medium. At each radial position, the noise of the piezoelectric element was measured for one round of the magnetic recording medium, and the average value was obtained. Furthermore, the average value for each radial position was averaged and defined as the glide noise of the magnetic recording medium. Here, the flying height of the glide head was 6 nm. Usually, when the relative speed of the glide head with the rotating magnetic recording medium changes, the flying height changes. Therefore, in order to avoid a change in the flying height, the rotational speed of the magnetic recording medium is changed every time the glide head is moved, and the relative speed is controlled to be constant even if the radial position changes. The voltage of the piezoelectric element was output through an amplifier and a frequency separator. The gain of the amplifier was 60 dB (decibel), and the frequency separator bandwidth was 100 kHz to 2 MHz. If the value of glide noise is 30 mV or less, it can be determined that the flying property of the head is stable. If it exceeds 30 mV, it can be determined that the head is unstable and is not suitable as a magnetic recording medium.

グライドノイズの評価の結果を、表2及び図8に示す。Co系合金磁性層(記録層2)7非注入部を基準としたイオン注入部13の高さが−3nm以上3nm以下の場合にグライドノイズは30mV以下となり段差が3nmよりも大きい場合はグライドノイズが30mVよりも大きくなる。すなわち、Co系合金磁性層(記録層2)7非注入部を基準としたイオン注入部13の高さは−3nm以上3nm以下の範囲でなければ磁気記録媒体に適した表面形状とはいえないことが分かった。   The results of the glide noise evaluation are shown in Table 2 and FIG. Co-based alloy magnetic layer (recording layer 2) 7 When the height of the ion implanted portion 13 with respect to the non-implanted portion is -3 nm or more and 3 nm or less, the glide noise is 30 mV or less, and when the step is larger than 3 nm, the glide noise Becomes larger than 30 mV. That is, if the height of the ion-implanted portion 13 with respect to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 is in the range of −3 nm to 3 nm, it cannot be said that the surface shape is suitable for a magnetic recording medium. I understood that.

Figure 2013118044
Figure 2013118044

次に、磁気記録媒体に適した表面形状といえるCo系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さが−3nm以上3nm以下のサンプルのRW特性を評価した。   Next, the RW characteristics of a sample in which the height of the ion-implanted portion 13 with respect to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 which can be said to be a surface shape suitable for a magnetic recording medium is −3 nm to 3 nm. Evaluated.

RW特性の評価方法は次の通りである。回転している磁気記録媒体上で磁気ヘッドを浮上させ、磁気記録媒体の半径位置21mmでskew角を0°として電磁変換特性を測定した。磁気記録媒体の周速は10m/s一定、磁気ヘッドは表面が一様な連続媒体上で機械的浮上量を4nmに設定した。37キロフラックスチェンジ/mm(940kFCI)における信号出力に対する8.93キロフラックスチェンジ/mm(227kFCI)の信号出力の割合を出力分解能Re(Re(%)=S(940kFCI)/S(227kFCI)×100)として評価した。Reが大きいほど高記録密度化に適した媒体と言える。   The evaluation method of the RW characteristic is as follows. The magnetic head was floated on the rotating magnetic recording medium, and the electromagnetic conversion characteristics were measured with a skew angle of 0 ° at a radial position of 21 mm of the magnetic recording medium. The peripheral speed of the magnetic recording medium was constant at 10 m / s, and the magnetic head was set to have a mechanical flying height of 4 nm on a continuous medium having a uniform surface. The ratio of the signal output of 8.93 kiloflux change / mm (227 kFCI) to the signal output at 37 kiloflux change / mm (940 kFCI) is the output resolution Re (Re (%) = S (940 kFCI) / S (227 kFCI) × 100 ). It can be said that the larger the Re, the more suitable the recording density.

出力分解能Reの評価結果を表3及び図9に示す。   The evaluation results of the output resolution Re are shown in Table 3 and FIG.

Figure 2013118044
Figure 2013118044

Co系合金磁性層(記録層2)7をエッチングせず、なおかつイオン注入も行わなかった所謂連続媒体サンプルのReは50%であった。それに対して、Co系合金磁性層(記録層2)7をエッチングし物理的トラック形状を形成したがイオン注入は行わなかったサンプルのReは、44〜50%と連続媒体に比べて同等かそれ以下であった。これは磁気記録トラックと磁気ヘッドの距離は縮まるものの、トラック分離部が強磁性のまま残る為にこの部分からの漏れ磁束が電磁変換特性に悪影響を及ぼした為である。Co系合金磁性層(記録層2)7をエッチングし、イオン注入量を1×10E+15〜1×10E+17(atoms/cm2)まで変化させた場合、Co系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さを−0.1nm以下とする事でReは50%以上となる。これはイオン注入により注入部分の磁性が劣化し電磁変換特性に悪影響を及ぼさなくなったことと、イオン注入部分の基板面からの平均高さが非注入部分の基板面からの平均高さよりも低くなった事で磁気ヘッドの浮上基準面が下がり、非注入部分すなわち磁気記録トラックと磁気ヘッドの距離を近づける事が出来た為である。 The Re of a so-called continuous medium sample in which the Co-based alloy magnetic layer (recording layer 2) 7 was not etched and no ion implantation was performed was 50%. On the other hand, the Re of the sample in which the Co-based alloy magnetic layer (recording layer 2) 7 was etched to form a physical track shape but no ion implantation was performed was 44 to 50%, which is equivalent to that of the continuous medium. It was the following. This is because, although the distance between the magnetic recording track and the magnetic head is reduced, the track separation portion remains ferromagnetic, and the leakage magnetic flux from this portion has an adverse effect on the electromagnetic conversion characteristics. When the Co-based alloy magnetic layer (recording layer 2) 7 is etched and the ion implantation amount is changed from 1 × 10E + 15 to 1 × 10E + 17 (atoms / cm 2 ), the Co-based alloy magnetic layer (recording layer 2) 7 Re becomes 50% or more when the height of the ion-implanted portion 13 with respect to the non-implanted portion is set to −0.1 nm or less. This is because ion implantation deteriorates the magnetism of the implanted portion and does not adversely affect the electromagnetic conversion characteristics, and the average height from the substrate surface of the ion implanted portion is lower than the average height from the substrate surface of the non-implanted portion. This is because the flying reference plane of the magnetic head is lowered, and the distance between the non-injection portion, that is, the magnetic recording track and the magnetic head can be reduced.

次に、前記Taマスク層前駆体上にレジスト材としてメタクリル酸メチル樹脂(PMMA)層9を80nm設けた後、ナノインプリント技術により微細パターンを形成する際にレジスト凸部のサイズがΦ17nmのドット、ドットピッチが25nm、レジスト残渣を5nmの形状に同心円状に型押しできるようにしたことを除いては上述した実施形態と同じ手法でビットパターンドメディア(BPM)を作製、評価した。この製法により、強磁性材料の元素比率が相対的に高い部分がアイランド状に存在するBPMが形成される。電磁変換特性の評価は簡易的にDTMで用いた手法を適用し、40キロフラックスチェンジ/mm(1016kFCI)における信号出力に対する10キロフラックスチェンジ/mm(254kFCI)の信号出力の割合を出力分解能Re(Re(%)=S(1016kFCI)/S(254kFCI)×100)として評価した。   Next, after providing 80 nm of a methyl methacrylate resin (PMMA) layer 9 as a resist material on the Ta mask layer precursor, when forming a fine pattern by nanoimprint technology, the size of the resist protrusion is Φ17 nm. A bit patterned media (BPM) was prepared and evaluated in the same manner as in the above-described embodiment except that the resist residue could be embossed concentrically into a 25 nm pitch and 5 nm resist residue. By this manufacturing method, a BPM in which a portion having a relatively high element ratio of the ferromagnetic material exists in an island shape is formed. For the evaluation of electromagnetic conversion characteristics, the method used in DTM is applied simply, and the ratio of the signal output of 10 kiloflux change / mm (254 kFCI) to the signal output at 40 kiloflux change / mm (1016 kFCI) is expressed as output resolution Re ( Re (%) = S (1016 kFCI) / S (254 kFCI) × 100).

BPMの評価結果を図10と表4、及び図11と表5に示す。図10と表4は、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さとグライドノイズの関係を示す。また図11と表5は、Co系合金磁性層(記録層2)の非注入部を基準としたイオン注入部の高さと出力分解能Re(%)の関係を示す。   The evaluation results of BPM are shown in FIG. 10 and Table 4, and FIG. 11 and Table 5. FIG. 10 and Table 4 show the relationship between the height of the ion-implanted portion and the glide noise based on the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2). FIG. 11 and Table 5 show the relationship between the height of the ion-implanted portion and the output resolution Re (%) with reference to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2).

Figure 2013118044
Figure 2013118044

Figure 2013118044
Figure 2013118044

Co系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さが−3nm以上3nm以下の場合にグライドノイズは30mV以下となり、段差が3nmよりも大きい場合はグライドノイズが30mVよりも大きくなる。すなわち、DTMと同様にCo系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さは−3nm以上3nm以下の範囲でなければ磁気記録媒体に適した表面形状とはいえない。   When the height of the ion-implanted portion 13 with respect to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 is -3 nm or more and 3 nm or less, the glide noise is 30 mV or less, and the step is larger than 3 nm. Glide noise becomes larger than 30 mV. That is, as in the case of DTM, the surface of the ion-implanted portion 13 with respect to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 is a surface suitable for a magnetic recording medium unless it is in the range of −3 nm to 3 nm. It is not a shape.

Co系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さが−3nm以上3nm以下のサンプルのRW特性では、連続媒体のRe48%に対してCo系合金磁性層(記録層2)7をエッチングし、イオン注入量を1×10E+15〜1×10E+17(atoms/cm2)まで変化させた場合、Co系合金磁性層(記録層2)7の非注入部を基準としたイオン注入部13の高さを−0.1nm以下とする事でReは48%以上となる。これはDTMの結果同様、イオン注入により注入部分の磁性が劣化し電磁変換特性に悪影響を及ぼさなくなったことと、イオン注入部分の基板面からの平均高さが非注入部分の基板面からの平均高さよりも低くなった事で磁気ヘッドの浮上基準面が相対的に近づき、非注入部分すなわち磁気記録トラックと磁気ヘッドの距離を近づける事が出来た為である。 In the RW characteristics of the sample in which the height of the ion-implanted portion 13 with respect to the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 is −3 nm or more and 3 nm or less, the Co-based alloy with respect to Re 48% of the continuous medium When the magnetic layer (recording layer 2) 7 is etched and the ion implantation amount is changed from 1 × 10E + 15 to 1 × 10E + 17 (atoms / cm 2 ), the non-implanted portion of the Co-based alloy magnetic layer (recording layer 2) 7 Re becomes 48% or more when the height of the ion implantation part 13 with respect to is set to −0.1 nm or less. As in the DTM results, the magnetism of the implanted portion deteriorates due to ion implantation and does not adversely affect the electromagnetic conversion characteristics, and the average height from the substrate surface of the ion implanted portion is the average from the substrate surface of the non-implanted portion. This is because the flying reference plane of the magnetic head is relatively close by being lower than the height, and the distance between the non-injection portion, that is, the magnetic recording track, and the magnetic head can be reduced.

以上の結果を纏めると、イオン注入型の記録領域分離型の磁気記録媒体においてイオン注入部分の基板面からの平均高さを非注入部分の基板面からの平均高さよりも0.1nm以上3nm以下低くすることで高記録密度化に適した記録領域分離型磁気記録媒体とする事が出来る。   In summary, in the ion-implanted recording region separation type magnetic recording medium, the average height from the substrate surface of the ion-implanted portion is 0.1 nm or more and 3 nm or less than the average height from the substrate surface of the non-implanted portion. By lowering the recording area, a recording area separation type magnetic recording medium suitable for increasing the recording density can be obtained.

上記のイオン注入型の記録領域分離型の磁気記録媒体は、磁気記録層上に直接又は一層以上の薄膜を介して微細パターンを有するマスク層を具備し、イオン注入により強磁性材料の元素比率を相対的に低くする記録領域分離型の磁気記録媒体の作製時に、あらかじめイオン注入部分をエッチングしておくことで、イオン注入後の高さを非注入部分と比べて相対的に0.1nm以上3nm以下の範囲で低くする事により得られる。   The ion-implanted recording region separation type magnetic recording medium includes a mask layer having a fine pattern directly or via one or more thin films on the magnetic recording layer, and the element ratio of the ferromagnetic material is increased by ion implantation. By etching the ion-implanted portion in advance at the time of manufacturing a relatively low recording area separation type magnetic recording medium, the height after ion implantation is relatively 0.1 nm or more and 3 nm as compared with the non-implanted portion. It is obtained by lowering in the following range.

イオン注入の方法としては前述のプラズマビーム法のみならず、イオンビーム法を用いても本発明に何ら影響するものではない。また、注入イオン種としてはCrのみならずMo,W,V,Nb,Ta,Ti,Zr,Hf,Ru,B,C,Si,Ge,Ar,Kr,Rn,Xeを用いても良い。Co系合金磁性層(記録層2)をイオン注入前にあらかじめエッチングする手段としては前述のArイオンビームエッチングに限らず、四フッ化メタン(CF4)などのC−F系ガスを用いた反応性イオンエッチング(RIE)であっても本発明に何ら影響を及ぼすものではない。 As an ion implantation method, not only the plasma beam method described above but also the ion beam method does not affect the present invention. Further, not only Cr but also Mo, W, V, Nb, Ta, Ti, Zr, Hf, Ru, B, C, Si, Ge, Ar, Kr, Rn, and Xe may be used as the implanted ion species. The means for etching the Co alloy magnetic layer (recording layer 2) in advance before ion implantation is not limited to the Ar ion beam etching described above, but a reaction using a C—F gas such as tetrafluoromethane (CF 4 ). Even reactive ion etching (RIE) has no effect on the present invention.

磁気記録分離領域をイオン注入法により作製する際に、非注入領域に微細マスクを施す方法の他にイオンビームの焦点を30nm程度以下に小さくし記録層内に選択的にイオン注入することも可能である。   When the magnetic recording isolation region is manufactured by the ion implantation method, in addition to the method of applying a fine mask to the non-implantation region, it is also possible to selectively implant ions into the recording layer by reducing the focal point of the ion beam to about 30 nm or less. It is.

また、イオン注入部のイオン注入後の高さを非注入部分と比べて相対的に0.1nm以上3nm以下の範囲で低くする方法としては、あらかじめイオン注入部分をエッチングする方法の他に、イオンエネルギーを制御しエッチングしながら注入することも可能である。   Further, as a method of lowering the height of the ion implanted portion after ion implantation in the range of not less than 0.1 nm and not more than 3 nm relative to the non-implanted portion, in addition to the method of etching the ion implanted portion in advance, It is also possible to perform implantation while controlling energy and etching.

1…非磁性基板
2…密着層
3…軟磁性層
3a…下部軟磁性層
3b…反強磁性結合層
3c…上部軟磁性層
4…シード層
5…中間層
6…Co系合金グラニュラー磁性層(記録層1)
7…Co系合金磁性層(記録層2)
8…Taマスク層前駆体
82…Taマスク層
9…メタクリル酸メチル樹脂(PMMA)層
DESCRIPTION OF SYMBOLS 1 ... Nonmagnetic substrate 2 ... Adhesion layer 3 ... Soft magnetic layer 3a ... Lower soft magnetic layer 3b ... Antiferromagnetic coupling layer 3c ... Upper soft magnetic layer 4 ... Seed layer 5 ... Intermediate layer 6 ... Co-based alloy granular magnetic layer ( Recording layer 1)
7: Co-based alloy magnetic layer (recording layer 2)
8 ... Ta mask layer precursor 82 ... Ta mask layer 9 ... Methyl methacrylate resin (PMMA) layer

Claims (3)

基体上に磁気記録層を形成した磁気記録媒体において、
前記磁気記録層は強磁性材料の元素比率が相対的に高い部分と低い部分が面内方向に周期的に存在しており、
前記強磁性材料の元素比率が相対的に高い部分の基板面からの平均高さが前記強磁性材料の元素比率が低い部分の基板面からの平均高さよりも0.1nm以上3nm以下高く、
前記強磁性材料の元素比率が相対的に低い部分には非磁性元素がイオン注入されており、
前記非磁性元素は、前記磁気記録層の1番上の層を通過して延びて、前記磁気記録層の前記1番上の層の下にある磁気記録層まで部分的に延びていることを特徴とする磁気記録媒体。
In a magnetic recording medium having a magnetic recording layer formed on a substrate,
In the magnetic recording layer, a relatively high portion and a low portion of the element ratio of the ferromagnetic material are periodically present in the in-plane direction,
The average height from the substrate surface of the portion where the element ratio of the ferromagnetic material is relatively high is higher by 0.1 nm or more and 3 nm or less than the average height from the substrate surface of the portion where the element ratio of the ferromagnetic material is low,
Nonmagnetic elements are ion-implanted in the portion where the element ratio of the ferromagnetic material is relatively low,
The nonmagnetic element extends through the uppermost layer of the magnetic recording layer and partially extends to the magnetic recording layer below the uppermost layer of the magnetic recording layer. A characteristic magnetic recording medium.
請求項1記載の磁気記録媒体において、前記強磁性材料の元素比率が相対的に高い部分と低い部分が円周方向に連続的且つ半径方向に周期性を有するディスクリートトラック型であることを特徴とする磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the ferromagnetic material has a relatively high element ratio and a low element part of a discrete track type having continuous in the circumferential direction and periodicity in the radial direction. Magnetic recording media. 請求項1記載の磁気記録媒体において、前記強磁性材料の元素比率が相対的に高い部分がアイランド状に存在するビットパターン型であることを特徴とする磁気記録媒体。   2. The magnetic recording medium according to claim 1, wherein the ferromagnetic material is of a bit pattern type in which a portion having a relatively high element ratio exists in an island shape.
JP2013056298A 2013-03-19 2013-03-19 Magnetic recording medium Expired - Fee Related JP5712241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056298A JP5712241B2 (en) 2013-03-19 2013-03-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056298A JP5712241B2 (en) 2013-03-19 2013-03-19 Magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008042021A Division JP5276337B2 (en) 2008-02-22 2008-02-22 Method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2013118044A true JP2013118044A (en) 2013-06-13
JP5712241B2 JP5712241B2 (en) 2015-05-07

Family

ID=48712484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056298A Expired - Fee Related JP5712241B2 (en) 2013-03-19 2013-03-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5712241B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359138A (en) * 2001-03-30 2002-12-13 Toshiba Corp Patterning method of magnetic substance, magnetic recording medium and magnetic random access memory
JP2005276275A (en) * 2004-03-23 2005-10-06 Tdk Corp Magnetic recording medium
JP2007095115A (en) * 2005-09-27 2007-04-12 Toshiba Corp Magnetic recording medium and device
JP2007273067A (en) * 2006-02-10 2007-10-18 Showa Denko Kk Magnetic recording medium, method for production thereof, and magnetic recording/reproducing device
JP2008010102A (en) * 2006-06-30 2008-01-17 Toshiba Corp Method and device for manufacturing magnetic recording medium
JP2009181673A (en) * 2008-01-31 2009-08-13 Toshiba Corp Method of manufacturing magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359138A (en) * 2001-03-30 2002-12-13 Toshiba Corp Patterning method of magnetic substance, magnetic recording medium and magnetic random access memory
JP2005276275A (en) * 2004-03-23 2005-10-06 Tdk Corp Magnetic recording medium
JP2007095115A (en) * 2005-09-27 2007-04-12 Toshiba Corp Magnetic recording medium and device
JP2007273067A (en) * 2006-02-10 2007-10-18 Showa Denko Kk Magnetic recording medium, method for production thereof, and magnetic recording/reproducing device
JP2008010102A (en) * 2006-06-30 2008-01-17 Toshiba Corp Method and device for manufacturing magnetic recording medium
JP2009181673A (en) * 2008-01-31 2009-08-13 Toshiba Corp Method of manufacturing magnetic recording medium

Also Published As

Publication number Publication date
JP5712241B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5276337B2 (en) Method for manufacturing magnetic recording medium
JP4597933B2 (en) Manufacturing method of magnetic recording medium and magnetic recording / reproducing apparatus
CN101512641B (en) Manufacturing method of magnetic recording medium and magnetic recording and reproducing device
JP2012069173A (en) Magnetic recording medium
JP2007273067A (en) Magnetic recording medium, method for production thereof, and magnetic recording/reproducing device
JP2007226862A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
US20060275692A1 (en) Method for forming concavo-convex pattern, method for manufacturing master disk, method for manufacturing stamper, and method for manufacturing magnetic recording medium
JP4164110B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP2007220164A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reproducing device
US8336193B2 (en) Process for making magnetic recording medium and magnetic recording-reproducing apparatus
US20100232056A1 (en) Method for manufacturing magnetic recording medium, and magnetic recording/reproducing device
CN100412953C (en) Magnetic recording apparatus
US20100149680A1 (en) Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording reproducing apparatus
JP2008077788A (en) Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
US20090290255A1 (en) Method of manufacturing magnetic recording media, magnetic recording media and magnetic read/write device
JP5712241B2 (en) Magnetic recording medium
JP2011138586A (en) Magnetic recording medium and method of manufacturing the same
US8213118B2 (en) Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
US9147423B2 (en) Method for improving a patterned perpendicular magnetic recording disk with annealing
JP2010108587A (en) Method for producing magnetic transfer master carrier, magnetic transfer master carrier and magnetic transfer method
JP5518449B2 (en) Magnetic recording medium and method for manufacturing the same
JP2006155863A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing apparatus
JP2010140541A (en) Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
US8120869B2 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP2004227639A (en) Perpendicular magnetic recording medium, perpendicular double layer patterned medium and manufacturing method of these media

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5712241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees