JP2013117595A - Spectroscopy control method for solid image sensor - Google Patents

Spectroscopy control method for solid image sensor Download PDF

Info

Publication number
JP2013117595A
JP2013117595A JP2011264393A JP2011264393A JP2013117595A JP 2013117595 A JP2013117595 A JP 2013117595A JP 2011264393 A JP2011264393 A JP 2011264393A JP 2011264393 A JP2011264393 A JP 2011264393A JP 2013117595 A JP2013117595 A JP 2013117595A
Authority
JP
Japan
Prior art keywords
film
spectral characteristics
image sensor
heat treatment
color filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264393A
Other languages
Japanese (ja)
Other versions
JP5978608B2 (en
Inventor
Wataru Nozaki
渉 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011264393A priority Critical patent/JP5978608B2/en
Publication of JP2013117595A publication Critical patent/JP2013117595A/en
Application granted granted Critical
Publication of JP5978608B2 publication Critical patent/JP5978608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spectroscopy control method for on-chip color filter where a development period of the on-chip color filter with respect various spectroscopy demand for each use is shortened, a cost increase is prevented, and a change in coater specification is small.SOLUTION: The spectroscopy control method for a solid image sensor is characterized in that, in the solid image sensor in which a flat film and a micro-lens are provided on a light receiving element and a color film, the flat film or/and micro-lens are subjected to heat treatment or/and light irradiation, thereby controlling the spectroscopy of the solid image sensor.

Description

本発明は、受光素子を2次元に配列したイメージセンサを用い、カラー画像データを取り込むために受光素子上にオンチップカラーフィルタが設けられた固体撮像素子の分光特性制御方法に関する。   The present invention relates to a method for controlling spectral characteristics of a solid-state imaging device in which an on-chip color filter is provided on a light receiving element in order to capture color image data using an image sensor in which light receiving elements are two-dimensionally arranged.

画像入力素子であるCCD又はCMOSイメージセンサをカラー化するために必要なものが、オンチップカラーフィルタであり、デジタルカメラやカメラ付き携帯電話の市場拡大に伴い需要が増えている。   An on-chip color filter is necessary for colorizing a CCD or CMOS image sensor that is an image input element, and the demand is increasing as the market for digital cameras and camera-equipped mobile phones expands.

シリコンウェハ上に形成された受光素子のそれぞれに光の3原色である赤・緑・青(RGB)、又は補色のシアン・マゼンダ・イエロー・グリーン(CMYG)のカラーフィルタを直接形成し、さらに、カラーフィルタ上にはイメージセンサの集光力をさらに高め、感度向上を実現するため、マイクロレンズが形成される。   Each of the light receiving elements formed on the silicon wafer is directly formed with color filters of three primary colors of red, green, and blue (RGB), or complementary colors of cyan, magenta, yellow, and green (CMYG). A microlens is formed on the color filter in order to further enhance the light collecting power of the image sensor and improve sensitivity.

画像品質の高品質化に伴う、高解像度化への要求や、携帯電話、デジタルカメラ、マイクロディスプレイといった使用用途がカスタム化することにより、オンチップカラーフィルタに対して、多種多様な分光特性が求められている。   A wide variety of spectral characteristics are required for on-chip color filters due to the demands for higher resolution accompanying the improvement in image quality and customization of applications such as mobile phones, digital cameras, and microdisplays. It has been.

そうしたオンチップカラーフィルタの要求に対する分光特性制御方法として、顔料を検討し、所望の分光特性を得る方法が提案されている。しかしながら、それぞれの要求特性に合わせて顔料を開発することは、コスト面だけではなく、開発期間が長く、しかも塗布するための、塗液の種類が増え、塗布するコーターの仕様も変更する必要があるため、オンチップカラーフィルタのメーカーにとって大きな負担となっている(特許文献1)。   As a spectral characteristic control method for such on-chip color filter requirements, a method has been proposed in which pigments are studied and desired spectral characteristics are obtained. However, developing pigments according to the required characteristics requires not only cost, but also a long development period, and the types of coating liquids to be applied increase, and the specifications of the coater to be applied need to be changed. For this reason, it is a great burden for manufacturers of on-chip color filters (Patent Document 1).

特開2006−98684号公報JP 2006-98684 A

本発明は、上記オンチップカラーフィルタに対する、用途毎の多種多様な分光特性要求に対応できる、開発期間が短くて済み、コストアップにならず、手間となるコーターの仕様変更の少い、固体撮像素子の分光特性制御方法を提供することにある。   The present invention is capable of meeting various spectral characteristics requirements for each on-chip color filter, requires a short development period, does not increase costs, and requires little effort to change the coater specifications. The object is to provide a method for controlling the spectral characteristics of an element.

上記の課題を解決するための手段として、請求項1に記載の発明は、受光素子及び着色膜上に、平坦化膜、マイクロレンズが設けられた固体撮像素子において、平坦化膜、マイクロレンズ、あるいは平坦化膜とマイクロレンズに、熱処理、光照射、あるいは熱処理と光照射を行うことにより、固体撮像素子の分光特性を制御することを特徴とする固体撮像素子の分光特性制御方法である。   As a means for solving the above problems, the invention described in claim 1 is directed to a solid-state imaging device in which a planarizing film and a microlens are provided on a light receiving element and a colored film. Alternatively, the spectral characteristic control method of the solid-state imaging device is characterized by controlling the spectral characteristics of the solid-state imaging device by performing heat treatment, light irradiation, or heat treatment and light irradiation on the planarizing film and the microlens.

また、請求項2に記載の発明は、前記光照射にi線(波長:365nm)を用いることを特徴とする請求項1に記載の固体撮像素子の分光特性制御方法である。   The invention according to claim 2 is the spectral characteristic control method for a solid-state imaging device according to claim 1, wherein i-rays (wavelength: 365 nm) are used for the light irradiation.

また、請求項3に記載の発明は、前記平坦化膜が熱硬化性のアクリル樹脂からなることを特徴とする請求項1または請求項2に記載の固体撮像素子の分光特性制御方法である。   The invention according to claim 3 is the spectral characteristic control method for a solid-state imaging device according to claim 1 or 2, wherein the planarizing film is made of a thermosetting acrylic resin.

オンチップカラーフィルタの用途はさまざまで、主には携帯電話用、デジタルカメラ用、マイクロディスプレイ用などに用いられる。開発各社により分光特性に対する要求は異なり、それぞれ毎の顔料開発が求められる。しかしながらこれらの開発には膨大な費用・開発期間がかかるため、収益を悪化させかねない。本発明を用いることで、顔料開発期間・費用の削減を可能とする。また、得意先が求める要求に対して、オーダーメイドに近い分光特性の提供が可能となる。   The on-chip color filter has various uses, and is mainly used for mobile phones, digital cameras, micro displays, and the like. Each development company has different requirements for spectral characteristics, and each company needs to develop pigments. However, these developments require enormous costs and development periods, which can deteriorate earnings. By using the present invention, it is possible to reduce the pigment development period and cost. In addition, it is possible to provide spectral characteristics close to made-to-order in response to requests required by customers.

本発明におけるオンチップカラーフィルタにおける緑色フィルタ部試験体の分光特性の制御を示した分光特性曲線である。It is the spectral characteristic curve which showed control of the spectral characteristic of the green filter part test body in the on-chip color filter in this invention. 本発明に係るマイクロレンズMicrolens according to the present invention 本発明の固体撮像素子を示した断面概念図である。1 is a conceptual cross-sectional view showing a solid-state imaging device of the present invention.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層したときの分光特性と、受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、熱処理(120℃、9min)行ったときの分光特性と、受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、熱処理(120℃、9min)とBleaching(30,000J/m)を行ったときの分光特性、並びに未処理の平坦化膜、平坦化膜に熱処理、平坦化膜に熱処理と光照射を行ったときの分光特性の変化を、ガラス基板上で評価し、その結果を示している。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Fig. 1 shows the spectral characteristics when a green colored coating film is coated on a light-receiving element and further a PL2 coating film is laminated, and a green colored coating film is coated on the light-receiving element, and further a PL2 coating film is laminated, and heat treatment ( Spectral characteristics when performed at 120 ° C. for 9 min, and a green colored coating film is coated on the light-receiving element, and further a PL2 coating film is laminated, heat treatment (120 ° C., 9 min) and bleaching (30,000 J / m 2 ) Spectral characteristics when performing, as well as untreated planarization film, heat treatment on the planarization film, and changes in spectral characteristics when the planarization film is subjected to heat treatment and light irradiation are evaluated on the glass substrate. Is shown.

具体的には、PL2(MFR511H(JSR製))塗膜の分光特性11、熱処理(120℃、9min)行ったPL2塗膜の分光特性12、熱処理と(120℃、9min)Bleaching(30,000J/m)を行ったPL2塗膜の分光特性13、受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層したときの分光特性21、受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、熱処理(120℃、9min)行ったときの分光特性22、受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、熱処理(120℃、9min)とBleaching(30,000J/m)を行ったときの分光特性23である。 Specifically, spectral characteristics 11 of PL2 (MFR511H (manufactured by JSR)) coating film, spectral characteristics 12 of PL2 coating film subjected to heat treatment (120 ° C., 9 min), heat treatment and (120 ° C., 9 min) Bleaching (30,000 J / M 2 ) Spectral characteristics 13 of the PL2 coating film, coated with a green colored coating film on the light receiving element, and spectral characteristics 21 when the PL2 coating film is laminated, coated with a green colored coating film on the light receiving element Further, a PL2 coating film is laminated, spectral characteristics 22 when heat treatment (120 ° C., 9 min) is performed, a green colored coating film is coated on the light receiving element, a PL2 coating film is further laminated, and heat treatment (120 ° C., 9 min) and bleaching (30,000 J / m 2 ).

図2は固体撮像素子のカラーフィルタ上に、固体撮像素子の集光力を高め、感度向上を実現するために設けられるマイクロレンズの形状を示しており、オンチップカラーフィルタのそれぞれにマイクロレンズが形成されている。   FIG. 2 shows the shape of a microlens provided on the color filter of the solid-state image sensor to increase the light-collecting power of the solid-state image sensor and realize sensitivity improvement. Is formed.

図3は、本発明に係る固体撮像素子を示した断面概念図である。シリコンウェハ7上に形成された受光素子8は電極6と遮光膜5が形成されている。光1はマイクロレンズ2により集光され平坦化膜3、カラーフィルタを通して、受光素子8に届く。   FIG. 3 is a conceptual cross-sectional view showing a solid-state imaging device according to the present invention. The light receiving element 8 formed on the silicon wafer 7 has an electrode 6 and a light shielding film 5 formed thereon. The light 1 is collected by the microlens 2 and reaches the light receiving element 8 through the flattening film 3 and the color filter.

本発明に係るカラーフィルタは、赤色、緑色)、青色の光の3原色、及び補助色により構成されており、赤色着色組成物、緑色着色組成物、青色着色組成物等の着色組成物を、複数の着色画素が順番に繰り返し配列された形状にパターニングして形成される。   The color filter according to the present invention is composed of three primary colors of red and green) and blue light, and an auxiliary color, and a coloring composition such as a red coloring composition, a green coloring composition, and a blue coloring composition, A plurality of colored pixels are formed by patterning into a repeatedly arranged shape.

カラーフィルタ用着色組成物は、樹脂、その前駆体又はそれらの混合物からなる各色の着色剤を、樹脂質バインダーに混錬して作製され、樹脂としては、可視光領域の400〜700nmの全波長領域において透過率が好ましくは80%以上、より好ましくは95%以上の樹脂が用いられ、着色組成物を紫外線照射により硬化させる場合には光重合開始剤
等が添加される。
The color filter coloring composition is prepared by kneading a colorant of each color composed of a resin, a precursor thereof or a mixture thereof into a resinous binder, and the resin has a total wavelength of 400 to 700 nm in the visible light region. In the region, a resin having a transmittance of preferably 80% or more, more preferably 95% or more is used. When the colored composition is cured by ultraviolet irradiation, a photopolymerization initiator or the like is added.

着色剤には、顔料、染料を用いることができ、顔料としては、例えば、赤、緑、青の各色で使用できる顔料として次のものが挙げられる。顔料の種類は、カラーインデックス(C.I.)No.で示す。赤色顔料として、97、122、123、149、168、177、180、192、208、209、215などが、緑色顔料として7、36などが、青色顔料として、15、15:1、15:3、15:6、22、60、64などが挙げられる。   As the colorant, a pigment or a dye can be used. Examples of the pigment include the following pigments that can be used in red, green, and blue colors. The type of pigment is a color index (CI) No. It shows with. 97, 122, 123, 149, 168, 177, 180, 192, 208, 209, 215, etc. as red pigments, 7, 36, etc. as green pigments, 15, 15: 1, 15: 3 as blue pigments. 15: 6, 22, 60, 64, and the like.

赤色、緑色、青色以外にも、分光特性を制御するために、例えば、白顔料として、18、21、27、28などが、黄顔料として、13、17、83、109、110、128などが、紫顔料として、19、23などが、橙顔料として、38、43などが挙げられる。顔料は、単体以外に、顔料を予め分散剤、有機溶剤に分散させた顔料分散体であっても良い
また、シアン;マゼンタ;イエローの3色を含む着色層パターンの場合、シアンインキには前記青色顔料、マゼンタインキには前記赤色顔料、イエローインキには前記黄色顔料をそれぞれ用いることができる。
In addition to red, green, and blue, in order to control spectral characteristics, for example, white pigments such as 18, 21, 27, and 28, and yellow pigments such as 13, 17, 83, 109, 110, and 128 can be used. Examples of purple pigments include 19, 23, and examples of orange pigments include 38, 43, and the like. In addition to the simple substance, the pigment may be a pigment dispersion in which the pigment is previously dispersed in a dispersant or an organic solvent. In addition, in the case of a colored layer pattern including three colors of cyan; magenta; yellow, The red pigment can be used for the blue pigment and the magenta ink, and the yellow pigment can be used for the yellow ink.

以下、本発明の固体撮像素子の分光特性制御方法のための、試験体による実験について説明する。ガラス基板上に、グリーン着色組成物G-T146(東洋インキSCH製)をコートし、露光・現像を行い、パターニングし、グリーン着色膜を得た。通常のカラーフィルター4においては、同じ操作をブルー着色膜、レッド着色膜についても行い、着色画素が順番に繰り返し配列されたカラーフィルタを作製する。   Hereinafter, an experiment using a specimen for the spectral characteristic control method of the solid-state imaging device of the present invention will be described. A green colored composition G-T146 (manufactured by Toyo Ink SCH) was coated on a glass substrate, exposed and developed, and patterned to obtain a green colored film. In the normal color filter 4, the same operation is performed for the blue colored film and the red colored film to produce a color filter in which colored pixels are repeatedly arranged in order.

続いて、カラーフィルタ4上にその凹凸を緩和、若しくはマイクロレンズ2下の距離をコントロールするための平坦化膜3として、熱硬化性のアクリル樹脂であるPL2(MFR511H(JSR製))をコートし、90℃、90秒間加熱硬化させカラーフィルタ4の緑色フィルタ部試験体を得た。   Subsequently, PL2 (MFR511H (manufactured by JSR)), which is a thermosetting acrylic resin, is coated on the color filter 4 as a planarizing film 3 for relaxing the unevenness or controlling the distance below the microlens 2. The green filter part test body of the color filter 4 was obtained by heating and curing at 90 ° C. for 90 seconds.

作製したカラーフィルタ4の緑色フィルタ部試験体、作製した試験体に120℃、9分の熱処理を加えたもの、作製した試験体にi線stepper iZ+(CANON製)により、365nmの紫外線を30,000J/m、照射し、Bleachingを行い、120℃、9分の熱処理を加えたもの3種類のオンチップカラーフィルタ4の緑色フィルタ部試験体を得た。 The green filter portion test body of the manufactured color filter 4, the manufactured test body subjected to heat treatment at 120 ° C. for 9 minutes, and the manufactured test body was irradiated with ultraviolet rays of 365 nm by i-line stepper iZ + (manufactured by CANON). Irradiated at 1,000 J / m 2 , subjected to bleaching, and subjected to heat treatment at 120 ° C. for 9 minutes, three types of on-chip color filter 4 green filter part test bodies were obtained.

未処理の平坦化膜3あるPL2(MFR511H(JSR製)、平坦化膜3に熱処理、平坦化膜3に熱処理と光照射を行った3種類分光特性、並びに、平坦化膜あるPL2(MFR511H(JSR製)をコートしたカラーフィルタ4の、緑色フィルタ部試験体3種類の分光特性を図1に示す。平坦化膜3に関しては、熱処理及び熱処理と光照射を行うことにより、400から500nmの青領域の透過率が上昇して行くことが分かった。   PL2 (MFR511H (manufactured by JSR), which is an unprocessed planarizing film 3, heat treatment on the planarizing film 3, three kinds of spectral characteristics obtained by performing thermal treatment and light irradiation on the planarizing film 3, and PL2 (MFR511H ( The spectral characteristics of three types of green filter test specimens of the color filter 4 coated with JSR) are shown in Fig. 1. The planarizing film 3 is subjected to heat treatment, heat treatment and light irradiation, so that the blue color of 400 to 500 nm is obtained. It was found that the transmittance of the area increased.

また、平坦化膜であるPL2(MFR511H(JSR製)をコートした、カラーフィルタ4の緑色フィルタ部試験体3種類の分光特性を見ると、同様に透過率の上昇があり、波長が短い部分の半値となる波長が短波長側にずれて行くことが分かった。   In addition, looking at the spectral characteristics of the three types of green filter part test bodies of the color filter 4 coated with PL2 (MFR511H (manufactured by JSR), which is a flattening film, there is an increase in transmittance as well, and there is a short wavelength portion. It turned out that the wavelength which becomes a half value shifts to the short wavelength side.

ここでいう半値とは、図1の分光曲線において、透過率が50%と、なる波長であり、光の3原色である赤・緑・青(RGB)のフィルタの場合、短波長側と長波長側の2箇所に半値の波長を測定することにより、特性の管理を行っている。   The half value here is a wavelength at which the transmittance is 50% in the spectral curve of FIG. 1, and in the case of a filter of red, green, and blue (RGB), which are the three primary colors of light, the short wavelength side and the long wavelength side. The characteristics are managed by measuring half-wavelength wavelengths at two locations on the wavelength side.

平坦化膜であるPL2(MFR511H(JSR製)をコートした緑色フィルタ部試験
体3種類の分光特性の、透過率のピーク値とピーク値の透過率の値が半分となる波長を表1に示す。
Table 1 shows the transmittance peak value and the wavelength at which the transmittance value of the peak value is half of the spectral characteristics of three types of green filter part test bodies coated with PL2 (MFR511H (manufactured by JSR)) which is a planarizing film. .

Figure 2013117595
平坦化膜であるPL2(MFR511H(JSR製))をコートし、90℃、90秒間加熱硬化させ状態では、透過率のpeak値は77%であり、半値(短波長側)は492nmであった。さらに、120℃、9分の熱処理を行うと、透過率のpeak値は83%と上昇すると共に、半値(短波長側)は486nmと短波長側にシフトしが、この時の長波長側の半値は588nmから589nmとほぼシフトしない。
Figure 2013117595
In a state where PL2 (MFR511H (manufactured by JSR)) which is a flattening film is coated and heated and cured at 90 ° C. for 90 seconds, the peak value of transmittance is 77%, and the half value (short wavelength side) is 492 nm. . Furthermore, when heat treatment is performed at 120 ° C. for 9 minutes, the peak value of the transmittance increases to 83%, and the half value (short wavelength side) shifts to the short wavelength side at 486 nm. The half value hardly shifts from 588 nm to 589 nm.

また、平坦化膜3であるPL2(MFR511H(JSR製))をコートし、90℃、90秒間加熱硬化させ後、i線stepperであるCANON製のiZ+を用い、i線(波長:365nm)の光を30,000J/m照射してBleachingを行った。透過率のpeak値は87%と、透過率はさらに上昇、半値(短波長側)は483nmと、これも短波長側にシフトしたが、この時の長波長側の半値は590nmと、こちらもほぼシフトしない。 Further, PL2 (MFR511H (manufactured by JSR)) which is the flattening film 3 is coated, heated and cured at 90 ° C. for 90 seconds, and then i-line (wavelength: 365 nm) using iZ + made by CANON which is an i-line stepper. Was irradiated with 30,000 J / m 2 of light for bleaching. The peak value of the transmittance is 87%, the transmittance is further increased, and the half value (short wavelength side) is 483 nm, which is also shifted to the short wavelength side. At this time, the half value on the long wavelength side is 590 nm. Almost no shift.

すなわち、受光素子及び着色膜上に、平坦化膜3、マイクロレンズ2が設けられた固体撮像素子に、熱処理、光照射あるいは熱処理と光照射することにより、透過率や半値(短波長側)を変えられることが分かり、この手法を用いれば、半値の長波長側をほぼ一定として、短波長側の半値をコントロールすることが可能であることが分かった。   That is, the solid-state imaging device provided with the planarizing film 3 and the microlens 2 on the light receiving element and the colored film is subjected to heat treatment, light irradiation, or heat treatment and light irradiation, whereby transmittance and half value (short wavelength side) are obtained. It can be seen that, by using this method, it is possible to control the half value on the short wavelength side while making the half wavelength long wavelength side substantially constant.

従来は、それぞれの用途、品種に対する要求特性に合わせ、着色組成物を開発し、露光現像で指定の分光特性を得ていたため、コーターデバイスの制約や、着色組成物、開発費用、期間がかかるなどの問題があったが、本発明により、着色組成物の開発を行うことなく、コーターデバイスの制約もなく、容易に要求特性を得ることができる。   In the past, coloring compositions were developed in accordance with the required characteristics for each application and variety, and the specified spectral characteristics were obtained by exposure and development. Therefore, restrictions on coater devices, coloring compositions, development costs, and time required. However, according to the present invention, the required characteristics can be easily obtained without developing a coloring composition and without any restrictions of the coater device.

1・・・光
2・・・マイクロレンズ
3・・・平坦化膜
4・・・カラーフィルタ
5・・・遮光膜
6・・・電極
7・・・シリコンウェハ
8・・・受光素子
11・・・PL2塗膜の分光特性
12・・・熱処理(120℃、9min)行ったPL2塗膜の分光特性
13・・・さらにBleaching(30,000J/m)を行った
PL2塗膜の分光特性
21・・・受光素子上にグリーン着色塗膜をコートし、さらに
PL2塗膜を積層したときの分光特性
22・・・受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、
熱処理(120℃、9min)行ったときの分光特性
23・・・受光素子上にグリーン着色塗膜をコートし、さらにPL2塗膜を積層し、
熱処理(120℃、9min)とBleaching
(30,000J/m)を行ったときの分光特性
DESCRIPTION OF SYMBOLS 1 ... Light 2 ... Micro lens 3 ... Flattening film | membrane 4 ... Color filter 5 ... Light shielding film 6 ... Electrode 7 ... Silicon wafer 8 ... Light receiving element 11 ... -Spectral characteristics 12 of PL2 coating film ... Spectral characteristics 13 of PL2 coating film subjected to heat treatment (120 ° C., 9 min) ... Further, Bleaching (30,000 J / m 2 ) was performed.
Spectral characteristics of PL2 coating film 21 ... Coating with green colored coating film on the light receiving element.
Spectral characteristics when PL2 coating is laminated 22 ... Coating green colored coating on the light receiving element, and further laminating PL2 coating,
Spectral characteristics when heat-treated (120 ° C., 9 min) 23... Coated with a green colored coating film on the light receiving element, and further laminated with a PL2 coating film,
Heat treatment (120 ° C, 9 min) and bleaching
Spectral characteristics when performing (30,000 J / m 2 )

Claims (3)

受光素子及び着色膜上に、平坦化膜、マイクロレンズが設けられた固体撮像素子において、平坦化膜、マイクロレンズ、あるいは平坦化膜とマイクロレンズに、熱処理、光照射、あるいは熱処理と光照射を行うことにより、固体撮像素子の分光特性を制御することを特徴とする固体撮像素子の分光特性制御方法。   In a solid-state imaging device in which a planarization film and a microlens are provided on the light receiving element and the colored film, the planarization film, the microlens, or the planarization film and the microlens are subjected to heat treatment, light irradiation, or heat treatment and light irradiation. A method for controlling spectral characteristics of a solid-state imaging device, comprising: controlling spectral characteristics of the solid-state imaging device. 前記光照射にi線(波長:365nm)を用いることを特徴とする請求項1に記載の固体撮像素子の分光特性制御方法。   2. The method for controlling spectral characteristics of a solid-state imaging device according to claim 1, wherein i-rays (wavelength: 365 nm) are used for the light irradiation. 前記平坦化膜が熱硬化性のアクリル樹脂からなることを特徴とする請求項1または請求項2に記載の固体撮像素子の分光特性制御方法。   The method for controlling spectral characteristics of a solid-state imaging device according to claim 1 or 2, wherein the planarizing film is made of a thermosetting acrylic resin.
JP2011264393A 2011-12-02 2011-12-02 Method for controlling spectral characteristics of solid-state imaging device Active JP5978608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264393A JP5978608B2 (en) 2011-12-02 2011-12-02 Method for controlling spectral characteristics of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264393A JP5978608B2 (en) 2011-12-02 2011-12-02 Method for controlling spectral characteristics of solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2013117595A true JP2013117595A (en) 2013-06-13
JP5978608B2 JP5978608B2 (en) 2016-08-24

Family

ID=48712202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264393A Active JP5978608B2 (en) 2011-12-02 2011-12-02 Method for controlling spectral characteristics of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5978608B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033074A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Solid state imaging device and its manufacturing method
JP2007316153A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Method of manufacturing microlens for color imaging element and microlens array for color imaging element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033074A (en) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd Solid state imaging device and its manufacturing method
JP2007316153A (en) * 2006-05-23 2007-12-06 Toppan Printing Co Ltd Method of manufacturing microlens for color imaging element and microlens array for color imaging element

Also Published As

Publication number Publication date
JP5978608B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5745252B2 (en) Image sensor and manufacturing method thereof
CN106461830B (en) Infrared sensor, near-infrared absorbing composition, photosensitive polymer combination, compound and its application
WO2013121742A1 (en) Image pickup element
CN109642972A (en) Composition, film, near infrared ray cut-off filter, pattern forming method, laminated body, solid-state imager, image display device, camera model and infrared sensor
CN106660308A (en) Laminate, infrared absorption filter, band pass filter, method for manufacturing laminate, kit for forming band pass filter, and image display device
WO2006134740A1 (en) Imaging element
US20120242873A1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP2010272654A (en) Solid-state image pickup device and manufacturing method thereof
JP2005340299A (en) Solid-state image pickup device, its manufacturing method and camera
US8395699B2 (en) Solid-state imaging device, camera, electronic apparatus, and method for manufacturing solid-state imaging device
JP4725108B2 (en) Color solid-state image sensor
JP4810812B2 (en) Color solid-state image sensor
WO2022168743A1 (en) Resin composition, film, optical filter, solid-state imaging element and image display device
JP5056709B2 (en) Manufacturing method of solid-state imaging device
JP5978608B2 (en) Method for controlling spectral characteristics of solid-state imaging device
US20150070532A1 (en) Solid state imaging device and method for manufacturing the same
JP2006186203A (en) Solid-state image pick-up device, manufacturing method therefor, and camera
JP5027081B2 (en) Color imaging device and method for manufacturing color imaging device
CN110267992A (en) Solidification compound, cured film, near infrared cut-off filters, solid-state imager, image display device and infrared sensor
KR102668437B1 (en) Dispersions, compositions, cured films, color filters, solid-state imaging devices and image display devices
Taguchi et al. Technology of color filter materials for image sensor
WO2020145218A1 (en) Structure, solid-state imaging element, and image display device
JP6413700B2 (en) Solid-state imaging device
JP2016219703A (en) Solid-state imaging element and method for manufacturing solid-state imaging element
JP2009152315A (en) Image sensor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250