JP2013117415A - Coating degradation detection method - Google Patents

Coating degradation detection method Download PDF

Info

Publication number
JP2013117415A
JP2013117415A JP2011264422A JP2011264422A JP2013117415A JP 2013117415 A JP2013117415 A JP 2013117415A JP 2011264422 A JP2011264422 A JP 2011264422A JP 2011264422 A JP2011264422 A JP 2011264422A JP 2013117415 A JP2013117415 A JP 2013117415A
Authority
JP
Japan
Prior art keywords
temperature
coating film
endothermic peak
deterioration
differential scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264422A
Other languages
Japanese (ja)
Other versions
JP5632356B2 (en
Inventor
Yukitoshi Takeshita
幸俊 竹下
Takuya Kamisho
拓哉 上庄
Takashi Sawada
孝 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011264422A priority Critical patent/JP5632356B2/en
Publication of JP2013117415A publication Critical patent/JP2013117415A/en
Application granted granted Critical
Publication of JP5632356B2 publication Critical patent/JP5632356B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable earlier detection of degradation of coating such as heavy-duty coating, etc.SOLUTION: A coating degradation detection method includes a step S101 of setting temperature (heating temperature) when an endothermic peak appears through a well-known differential scanning thermal analysis, as an initial value. Describing in more detail, the differential scanning thermal analysis is used to measure a temperature change of heat flow at an initial coating time of a measuring object. The heat flow is equivalent to a difference in temperature between a measuring object material and a reference material in the differential scanning thermal analysis. In the measured temperature change of heat flow, the endothermic peak appears. During this time, the endothermic peak is detected in a range of temperature lower than a glass-transition temperature of coating film (material constituting the coating film), and the temperature when the endothermic peak appears is set as the initial value.

Description

本発明は、重防食塗膜などの塗膜の劣化を検出する塗膜劣化検出方法に関するものである。   The present invention relates to a coating film deterioration detection method for detecting deterioration of a coating film such as a heavy anticorrosion coating film.

近年、地球環境問題を解決するために、構造物などの長寿命化や美観のために用いられる塗料にも、厳しい環境性能が求められるようになってきている。このような背景から、従来より鉄塔や橋梁添架設備には、多層にしてより厚く形成した重防食塗料が用いられている。これら重防食塗料は、溶剤系や弱溶剤系、水系を問わず、鉄素地に対する密着性が良く、防食・防錆性に優れている。   In recent years, in order to solve global environmental problems, strict environmental performance has been demanded for paints used for extending the life of structures and the like and for aesthetics. Against this background, heavy-duty anticorrosive paints that have been multilayered and formed thicker have been used for steel towers and bridge installations. These heavy anticorrosion paints, regardless of whether they are solvent-based, weak solvent-based, or water-based, have good adhesion to iron bases and are excellent in corrosion resistance and rust prevention.

このような重防食塗料においては、理想的には永久的に使用できればよいが、実際には各々塗膜の寿命が存在する。塗膜の寿命は、塗膜が劣化することにより決定される。しかしながら、塗膜の劣化がいつ起こるかを事前に知る方法がなかった。適切な塗り替え時期に達したか否かを、客観的かつ定量的に評価・判定する方法が確立されていない。   In such a heavy anticorrosion coating, it is sufficient that it can be used permanently, but in reality, there is a lifetime of each coating film. The life of the coating film is determined by the deterioration of the coating film. However, there was no way to know in advance when the coating film would deteriorate. A method for objectively and quantitatively evaluating and judging whether or not an appropriate repainting time has been reached has not been established.

このため、現実には、目視により割れ、剥がれ、膨れ、白化現象などを検出することで、重防食塗膜の劣化が判定されている。また、「JIS.K5600−5−6:1999.塗料一般試験方法―第5部:塗膜の機械的性質―.第6節:付着性(クロスカット法)」や「JISK5600−5−7付着性(プルオフ法)」(非特許文献1参照)で規定されている方法により付着力などの機械的特性を測定することで、重防食塗膜の劣化を判定している。   For this reason, in reality, deterioration of the heavy anticorrosive coating film is determined by visually detecting cracks, peeling, swelling, whitening, and the like. Also, “JIS.K5600-5-6: 1999. General test methods for paints—Part 5: Mechanical properties of coating film—Section 6: Adhesion (cross-cut method)” and “JISK5600-5-7 adhesion” The deterioration of the heavy anticorrosive coating film is determined by measuring the mechanical properties such as adhesion force by the method defined in “Performance (pull-off method)” (see Non-Patent Document 1).

JIS規格 JIS K 5600-5-7, 1999.JIS standard JIS K 5600-5-7, 1999.

しかしながら、上述した重防食塗膜の劣化判定では、既に劣化が起こった以降に劣化を検知する方法であり、劣化が大きく進行した状態で初めて劣化が判定されている。このように、劣化が大きく進行した状態では、修復や修理のコスト増に繋がり、また、下地や構造物自体にダメージが蓄積され、完全な再生が困難であり、新たに鋼材を交換することになるなどといった根本的な課題を有していた。   However, the deterioration determination of the heavy anticorrosion coating film described above is a method of detecting deterioration after the deterioration has already occurred, and the deterioration is determined for the first time in a state where the deterioration has greatly progressed. In this way, in a state where the deterioration has greatly progressed, it leads to an increase in the cost of repair and repair, and damage is accumulated on the base and the structure itself, making it difficult to completely regenerate, and replacing the steel material newly It had fundamental problems such as becoming.

本発明は、以上のような問題点を解消するためになされたものであり、重防食塗膜などの塗膜の劣化を、より早い段階で検知できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to detect deterioration of a coating film such as a heavy anticorrosion coating film at an earlier stage.

本発明に係る塗膜劣化検出方法は、示差走査熱量分析により測定対象の塗膜の初期における熱流量の温度変化の中で、塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を初期値とする第1ステップと、初期値を得るための示差走査熱量分析を行った後の示差走査熱量分析により測定対象の塗膜の熱流量の温度変化の中で、塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を判定値とする第2ステップと、初期値と判定値との比較により塗膜の劣化状態を判定する第3ステップとを備える。   The coating film deterioration detection method according to the present invention is a temperature at which an endothermic peak appears in a temperature range lower than the glass transition temperature of the coating film in the initial temperature change of the coating film to be measured by differential scanning calorimetry. The glass transition of the coating film in the first step with the initial value and the temperature change of the heat flow rate of the coating film to be measured by differential scanning calorimetry after performing differential scanning calorimetry to obtain the initial value A second step in which a temperature at which an endothermic peak appears in a temperature range lower than the temperature is set as a determination value; and a third step in which a deterioration state of the coating film is determined by comparing the initial value with the determination value.

上記塗膜劣化検出方法において、第3ステップでは、初期値に対する判定値の変化量が、設定されている基準値を超えた状態を塗膜の劣化と判断すればよい。   In the coating film deterioration detection method, in the third step, a state in which the change amount of the determination value with respect to the initial value exceeds the set reference value may be determined as coating film deterioration.

以上説明したことにより、本発明によれば、重防食塗膜などの塗膜の劣化を、より早い段階で検知できるようになるという優れた効果が得られる。   As described above, according to the present invention, it is possible to obtain an excellent effect that the deterioration of a coating film such as a heavy anticorrosion coating film can be detected at an earlier stage.

図1は、本発明の実施の形態における塗膜劣化検出方法を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining a coating film deterioration detection method according to an embodiment of the present invention. 図2は、示差走査熱量分析の結果に出現する吸熱ピークを示す特性図である。FIG. 2 is a characteristic diagram showing endothermic peaks that appear in the results of differential scanning calorimetry. 図3は、エンタルピー緩和の仕組みを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a mechanism of enthalpy relaxation. 図4は、示差走査熱量分析の結果に出現する吸熱ピークの出現温度が劣化に対応して変化する状態を示す特性図である。FIG. 4 is a characteristic diagram illustrating a state in which the appearance temperature of the endothermic peak appearing in the differential scanning calorimetry analysis changes corresponding to the deterioration.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における塗膜劣化検出方法を説明するためのフローチャートである。この塗膜劣化検出方法は、まず、ステップS101で、よく知られている示差走査熱量分析により吸熱ピークの出現する温度(加熱温度)を初期値とする。より詳しく説明すると、示差走査熱量分析により測定対象の塗膜の初期における熱流量(Heat Flow)の温度変化を測定する。熱流量は、示差走査熱量分析における測定対象物質と基準物質との温度差に相当する。この測定した熱流量の温度変化の中には吸熱ピークが出現する。この中で、塗膜(塗膜を構成する材料)のガラス転移温度より低い温度範囲で吸熱ピークを検出し、この吸熱ピークが出現する温度を初期値とする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a coating film deterioration detection method according to an embodiment of the present invention. In this coating film deterioration detection method, first, in step S101, a temperature at which an endothermic peak appears (heating temperature) is set as an initial value by well-known differential scanning calorimetry. More specifically, the temperature change of the heat flow at the initial stage of the coating film to be measured is measured by differential scanning calorimetry. The heat flow rate corresponds to the temperature difference between the measurement target substance and the reference substance in the differential scanning calorimetry. An endothermic peak appears in the temperature change of the measured heat flow rate. Among these, an endothermic peak is detected in a temperature range lower than the glass transition temperature of the coating film (material constituting the coating film), and the temperature at which this endothermic peak appears is taken as the initial value.

次に、ステップS102で、上記初期値を得るための示差走査熱量分析を行った後の上記同様の示差走査熱量分析により測定対象の塗膜の熱流量の温度変化を測定し、測定した熱流量の温度変化の中で塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を判定値とする。   Next, in step S102, the temperature change of the heat flow rate of the coating film to be measured is measured by the same differential scanning calorimetry analysis after the differential scanning calorimetry analysis for obtaining the initial value, and the measured heat flow rate is measured. The temperature at which an endothermic peak appears in the temperature range lower than the glass transition temperature of the coating film is defined as the judgment value.

上述した示差走査熱量分析では、例えば、対象とする塗膜の一部を剥離し、剥離した一部の塗膜より10mgの試験片を切り出し、切り出した試験片を示差走査熱量分析の対象とすればよい。示差走査熱量分析では、市販されている示差走査熱量計を用い、2℃/分で0℃〜100℃の昇温を行い、測定対象の塗膜(試験片)のガラス状態からゴム状態に至る広い温度領域で、試験片からの発熱量,吸熱量の変化を測定し、この測定結果より吸熱ピークの出現位置を検出すればよい。示差走査熱量計は、例えば、ティー・エイ・インスツルメント(TA Instruments)社製DSC2910型を用いることができる。   In the differential scanning calorimetry described above, for example, a part of the target coating film is peeled off, a 10 mg test piece is cut out from the part of the peeled coating film, and the cut out test piece is set as a target for the differential scanning calorimetry analysis. That's fine. In differential scanning calorimetry, a commercially available differential scanning calorimeter is used, and the temperature is raised from 0 ° C. to 100 ° C. at 2 ° C./min. From the glass state of the coating film (test piece) to be measured to the rubber state. It is only necessary to measure changes in the heat generation amount and endothermic amount from the test piece in a wide temperature range and detect the endothermic peak appearance position from the measurement result. As the differential scanning calorimeter, for example, DSC2910 model manufactured by TA Instruments can be used.

以上のように、劣化を判定する段階において判定値を検出したら、ステップS103で、検出した判定値と初期値とを比較することで、塗膜の劣化状態を判定する。上述した吸熱ピークの出現温度は、塗膜の劣化とともに高い温度となる。このため、吸熱ピークの出現温度の上昇により、塗膜(樹脂)の劣化が判定(判断)できる。例えば、塗膜の劣化の進行と吸熱ピークの出現温度の変化との関連を、実験などにより予め把握しておき、劣化と判断する状態の吸熱ピークの出現温度の初期値に対する変化幅を規定しておけばよい。判定値が初期値に対して規定の変化幅を超えて変化していれば、劣化しているものと判定できる。   As described above, when the determination value is detected at the stage of determining deterioration, the deterioration state of the coating film is determined by comparing the detected determination value with the initial value in step S103. The appearance temperature of the endothermic peak described above becomes a high temperature with the deterioration of the coating film. For this reason, it is possible to determine (determine) the deterioration of the coating film (resin) by increasing the temperature at which the endothermic peak appears. For example, the relationship between the progress of coating deterioration and the change in the temperature at which the endothermic peak appears is obtained in advance through experiments, etc., and the range of change relative to the initial value of the temperature at which the endothermic peak appears in a state that is judged to be degraded is specified. Just keep it. If the determination value changes beyond the specified change range with respect to the initial value, it can be determined that the deterioration has occurred.

次に、示差走査熱量分析における、ガラス転移温度より低い温度範囲で出現する吸熱ピークについて、より詳細に説明する。一例として、下塗りおよび中塗りが水系のエポキシ樹脂から構成され、上塗りが水系のウレタン樹脂から構成された重防食塗膜において、示差走査熱量分析で検出される上記吸熱ピークについて説明する。下塗りの膜厚は50μm、中塗りの膜厚は50μm、上塗りの膜厚は50μmである。この重防食塗膜の一部を剥離し、剥離した一部の塗膜より約10mgの試験片を切り出す。切り出した試験片には、上塗り,中塗り,および下塗りの全ての部分が含まれているようにする。   Next, an endothermic peak appearing in a temperature range lower than the glass transition temperature in the differential scanning calorimetry will be described in more detail. As an example, the endothermic peak detected by differential scanning calorimetry in a heavy-duty anticorrosive coating in which the undercoat and the intermediate coat are composed of a water-based epoxy resin and the topcoat is composed of a water-based urethane resin will be described. The undercoat film thickness is 50 μm, the intermediate coat film thickness is 50 μm, and the overcoat film thickness is 50 μm. A part of this heavy anticorrosion coating film is peeled off, and about 10 mg of a test piece is cut out from the part of the peeled coating film. Make sure that the cut out test specimen contains all of the top coat, intermediate coat, and undercoat.

この試験片を、示差走査熱量計に装着して示差走査熱量分析を行う。測定条件は、加熱の温度範囲を0℃〜100℃とし、また、昇温速度を2℃/分とする。また、加熱雰囲気には、30ml/分で窒素を流入させる。この測定により、図2に示すように、試料となる塗膜のガラス転移温度より低い温度範囲において、ある温度付近に、エンタルピー緩和を示す吸熱ピークが出現する。   This test piece is attached to a differential scanning calorimeter and differential scanning calorimetry is performed. The measurement conditions are such that the heating temperature range is 0 ° C. to 100 ° C., and the rate of temperature rise is 2 ° C./min. Further, nitrogen is introduced into the heating atmosphere at 30 ml / min. By this measurement, as shown in FIG. 2, an endothermic peak exhibiting enthalpy relaxation appears in the vicinity of a certain temperature in a temperature range lower than the glass transition temperature of the coating film serving as a sample.

発明者らの鋭意の研究・検討の結果、上記吸熱ピークの出現温度の変化が、測定対象の塗膜の劣化に相関していることを初めて見いだした。塗膜の劣化は、熱力学的に言えば、室温(20〜25℃)程度のガラス状態にある温度で長い間保持される、もしくは、外気の厳しい環境に曝されると、自発的に塗膜自身の熱容量が小さくなり、かつ、自由体積(比体積)も小さくなることに対応することを発明者らは見いだした。   As a result of the inventors' diligent research and examination, it has been found for the first time that the change in the temperature at which the endothermic peak appears correlates with the deterioration of the coating film to be measured. In terms of thermodynamics, the deterioration of the coating film is spontaneously applied when it is kept for a long time at a temperature in a glass state of about room temperature (20 to 25 ° C.), or when exposed to a harsh environment. The inventors have found that the heat capacity of the film itself is reduced and that the free volume (specific volume) is also reduced.

上述したことは、ガラス状態の構造緩和が起こり、ガラス状態の分子構造に変化が起こっていることに対応する。この構造緩和が起こった塗膜を加熱すれば、ガラス状態やガラス転移温度(Tg)にてガラス状態からゴム状態へガラス転移するまでの間に、緩和減少してしまった熱容量を補うために、劣化していない塗膜よりも余分な熱エネルギーを必要とする。この余分に必要とする熱エネルギーが、示差走査熱量分析において、吸熱ピークとなって出現する。従って、吸熱ピークの出現する状態は、上述した構造緩和の度合いに対応し、吸熱ピークの出現する温度の上昇は、長い間保持された時間や環境に曝されたことによる塗膜劣化の度合いの目安になる。   What has been described above corresponds to the fact that structural relaxation of the glass state occurs and the molecular structure of the glass state changes. If the coating film in which this structural relaxation occurs is heated, in order to make up for the heat capacity that has been reduced by relaxation during the glass transition from the glass state to the rubber state at the glass state or glass transition temperature (Tg), Requires more heat energy than a non-degraded coating. This extra thermal energy appears as an endothermic peak in differential scanning calorimetry. Therefore, the state in which the endothermic peak appears corresponds to the degree of structural relaxation described above, and the increase in the temperature at which the endothermic peak appears is the degree of deterioration of the coating film due to exposure to a long time or environment. It becomes a standard.

上述した構造緩和は、図3に示すように、エポキシ樹脂中の、−O−C−C−C−O−の六つの結合の両端に存在する第1結合部301と第6結合部302とを回転軸として自由に回転することに起因として生起する緩和現象である。この回転は、上記結合部以外の他の結合部になんら影響を与えない。したがって、ガラス状態の中にあっても、温度の熱エネルギーによってこの緩和が起こる。なお、ガラス状態からゴム状態へ変化する大きな緩和現象が、ガラス転移としてよく知られている。ガラス転移による構造緩和は、図2において、50℃付近の熱流量が減少している領域で起こっている。   As shown in FIG. 3, the structural relaxation described above includes the first coupling portion 301 and the sixth coupling portion 302 existing at both ends of the six bonds of —O—C—C—C—O— in the epoxy resin. Is a relaxation phenomenon that occurs as a result of free rotation about the rotation axis. This rotation does not affect any other coupling part other than the coupling part. Therefore, even in the glass state, this relaxation occurs due to the thermal energy of the temperature. A large relaxation phenomenon that changes from a glass state to a rubber state is well known as a glass transition. The structural relaxation due to glass transition occurs in the region where the heat flow near 50 ° C. is reduced in FIG.

ここで、塗膜の経過年数が増加すると、塗膜を構成している高分子は次第に熱力学的に安定平衡状態に到達しようとするため、高分子の分子鎖は互いに近づきあい、結果として、自由体積は減少することになる。自由体積が減少すると、前述した分子鎖軸周りの回転運動が生起しづらくなる。このため、構造緩和、すなわちエンタルピー緩和を引き起こす温度は、より高い熱エネルギーを求めて高温側へシフトすることになる。言い換えると、上記エンタルピー緩和は、塗膜の経過年数の増加により、生起する温度が、高温側へ上昇することになる。   Here, when the elapsed time of the coating film increases, the polymer constituting the coating film gradually reaches a thermodynamically stable equilibrium state, so that the molecular chains of the polymers approach each other, and as a result, Free volume will decrease. When the free volume decreases, the aforementioned rotational movement around the molecular chain axis becomes difficult to occur. For this reason, the temperature causing structural relaxation, that is, enthalpy relaxation, is shifted to a higher temperature side in search of higher thermal energy. In other words, the temperature at which the enthalpy relaxation occurs due to an increase in the age of the coating film increases to the high temperature side.

例えば、初期の塗膜のエンタルピー緩和のピークを示す温度(以降、エンタルピー緩和温度と称する)が25℃であった場合、経過年数の増加とともに、30℃、35℃、40℃と高温側へシフトする。最終的に、経年により上昇するエンタルピー緩和温度は、ある一定の温度に漸近しようとする。   For example, when the temperature showing the peak of enthalpy relaxation of the initial coating film (hereinafter referred to as enthalpy relaxation temperature) is 25 ° C., it shifts to 30 ° C., 35 ° C., 40 ° C. and the higher temperature side as the elapsed time increases. To do. Eventually, the enthalpy relaxation temperature that rises over time tends to approach a certain temperature.

このようなエンタルピー緩和温度の高温側へのシフトという現象は、分子鎖を取り巻く環境の変化を表している。経過年数の増加とともに分子鎖同士が凝集し、熱力学的な安定平衡状態に近づこうとする。このように凝集する前の弾性や粘性などを有する塗膜(樹脂)の初期における分子鎖同士の状態は、疑似的平衡状態であり、時間の経過とともに最も安定な平衡状態に近づこうとする。   Such a phenomenon of shifting the enthalpy relaxation temperature to the high temperature side represents a change in the environment surrounding the molecular chain. As the number of years increases, molecular chains aggregate and try to approach a thermodynamic stable equilibrium state. Thus, the state of the molecular chains in the initial stage of the coating film (resin) having elasticity or viscosity before aggregation is a pseudo-equilibrium state, and tends to approach the most stable equilibrium state over time.

この凝集に伴って、高分子である塗膜は、初期に有していた弾力性や粘性が消滅し、脆化を呈する。この脆化を原因として、各種の劣化症状が出現する。脆化による劣化現象の1つとして割れがある。脆化により延性に欠けるようになり、割れが発生する。また、内部応力が初期状態より大きくなる。内部応力が大きくなると、塗膜に対して余分な負荷がかかり、素地との密着力の低下を招く。密着力の低下は剥がれを生起する。これらのように、割れや剥がれが発生すると、塗膜が形成されている鋼材においては、外界の水分や蒸気、温度、浮遊状粒子の影響を受けやすくなり、錆や腐食が容易に発生することになる。   Along with this aggregation, the elasticity and viscosity of the coating film, which is a polymer, disappears and exhibits embrittlement. Various deterioration symptoms appear due to this embrittlement. One of deterioration phenomena due to embrittlement is cracking. Due to embrittlement, ductility is lost and cracks occur. Also, the internal stress becomes larger than the initial state. When the internal stress increases, an extra load is applied to the coating film, resulting in a decrease in adhesion with the substrate. Decrease in adhesion causes peeling. As described above, when cracking or peeling occurs, the steel material on which the coating film is formed is easily affected by external moisture, steam, temperature, and suspended particles, and rust and corrosion easily occur. become.

以上に説明したように、エンタルピー緩和温度(吸熱ピーク)と塗膜の劣化の状態とには相関があるので、エンタルピー緩和温度の変化(高温側へシフトする現象)を捉えることで、事前に劣化のタイミングを推測することができる。例えば、漸近する温度を50℃とした場合、エンタルピー緩和温度が50℃に迫ってきた点をもって、塗り替えを行うなどの具体的な対策を採ることが可能となる。これに対し、エンタルピー緩和温度が、30℃となっている場合のように、漸近温度までの温度差が十分に大きい場合、塗り替えの必要性はないものと判定できる。また、塗膜の劣化の進行とエンタルピー緩和温度の上昇との関連を、実験などにより予め把握しておけば、測定されるエンタルピー緩和温度が50℃となる時間、時期を予想することが可能である。   As explained above, there is a correlation between the enthalpy relaxation temperature (endothermic peak) and the state of deterioration of the coating film, so it is possible to detect deterioration in advance by capturing changes in the enthalpy relaxation temperature (a phenomenon that shifts to the high temperature side). Can be estimated. For example, when the asymptotic temperature is 50 ° C., it is possible to take specific measures such as repainting when the enthalpy relaxation temperature approaches 50 ° C. On the other hand, when the temperature difference up to the asymptotic temperature is sufficiently large as in the case where the enthalpy relaxation temperature is 30 ° C., it can be determined that there is no need for repainting. In addition, if the relationship between the progress of coating deterioration and the increase in enthalpy relaxation temperature is known in advance through experiments, it is possible to predict when and when the measured enthalpy relaxation temperature will be 50 ° C. is there.

以下実施例を用いてより詳細に説明する。   This will be described in more detail below using examples.

[実施例1]
以下では、下塗りおよび中塗りが水系のエポキシ樹脂から構成され、上塗りが水系のウレタン樹脂から構成された重防食塗膜を対象とする。下塗りの膜厚は50μm、中塗りの膜厚は50μm、上塗りの膜厚は50μmである。この重防食塗膜に対し、人工的な加速劣化環境によりヒートサイクルを加える。例えば、恒温恒湿槽を用い、相対湿度90%において−30℃から70℃のヒートサイクル(1サイクル12時間)を100サイクルまで繰り返す。
[Example 1]
In the following, a heavy anticorrosive coating film in which the undercoat and the intermediate coat are composed of a water-based epoxy resin and the topcoat is composed of a water-based urethane resin is targeted. The undercoat film thickness is 50 μm, the intermediate coat film thickness is 50 μm, and the overcoat film thickness is 50 μm. A heat cycle is applied to this heavy anticorrosive coating film under an artificial accelerated deterioration environment. For example, using a constant temperature and humidity chamber, a heat cycle (1 cycle 12 hours) from -30 ° C. to 70 ° C. is repeated up to 100 cycles at a relative humidity of 90%.

上述したように人工的に劣化させた重防食塗膜の一部を剥離し、剥離した一部の塗膜より10mgの試験片を切り出す。切り出した試験片には、上塗り,中塗り,および下塗りの全ての部分が含まれているようにする。なお、人工的な劣化処理をしていない初期状態の重防食塗膜より切り出した第1試験片と、25サイクルとした重防食塗膜より切り出した第2試験片と、50サイクルとした重防食塗膜より切り出した第3試験片と、75サイクルとした重防食塗膜より切り出した第4試験片と、100サイクルとした重防食塗膜より切り出した第5試験片とを作製した。   As described above, a part of the heavy anticorrosion coating film artificially deteriorated is peeled off, and 10 mg of a test piece is cut out from the part of the peeled coating film. Make sure that the cut out test specimen contains all of the top coat, intermediate coat, and undercoat. In addition, the 1st test piece cut out from the heavy-duty anticorrosion coating film of the initial state which is not artificially degrading, the 2nd test piece cut out from the heavy-duty anticorrosion coating film made into 25 cycles, and the heavy-duty corrosion prevention made into 50 cycles A third test piece cut out from the coating film, a fourth test piece cut out from the heavy anticorrosion coating film having 75 cycles, and a fifth test piece cut out from the heavy anticorrosion coating film having 100 cycles were prepared.

測定では、これら試験片を、示差走査熱量計に装着して示差走査熱量分析を行う。測定条件は、加熱の温度範囲を0℃〜100℃とし、また、昇温速度を2℃/分とする。また、加熱雰囲気には、30ml/分で窒素を流入させる。測定回数は1回とする。このように示差走査熱量分析で熱流量の温度変化を測定し、上記重防食塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を得る、   In the measurement, these test pieces are mounted on a differential scanning calorimeter to perform differential scanning calorimetry. The measurement conditions are such that the heating temperature range is 0 ° C. to 100 ° C., and the rate of temperature rise is 2 ° C./min. Further, nitrogen is introduced into the heating atmosphere at 30 ml / min. The number of measurements is one. Thus, the temperature change of the heat flow rate is measured by differential scanning calorimetry, and the temperature at which the endothermic peak appears in a temperature range lower than the glass transition temperature of the heavy anticorrosive coating film is obtained.

各試験片の測定の結果、図4に示すように、エンタルピー緩和温度である吸熱ピークは、経過とともに高温側へシフトしている。エンタルピー緩和ピーク温度は、ヒートサイクル0の第1試験片で約25℃、ヒートサイクル25回の第2試験片で約32℃、ヒートサイクル30回の第3試験片で約42℃、ヒートサイクル70回の第4試験片で約48℃、ヒートサイクル100回の第5試験片で約49℃であった。   As a result of the measurement of each test piece, as shown in FIG. 4, the endothermic peak that is the enthalpy relaxation temperature is shifted to the high temperature side as time passes. The enthalpy relaxation peak temperature is about 25 ° C. for the first test piece with heat cycle 0, about 32 ° C. for the second test piece with 25 heat cycles, about 42 ° C. with the third test piece with 30 heat cycles, and heat cycle 70 It was about 48 degreeC in the 4th test piece of time, and was about 49 degreeC in the 5th test piece of 100 heat cycles.

このような吸熱ピークの出現温度の高温側へのシフトは、塗膜(分子鎖)を取り巻く環境の変化を表しており、時間の経過とともに分子鎖同士が凝集し、熱力学的な安定平衡状態に近づこうとする。   This shift of the appearance temperature of the endothermic peak to the high temperature side represents a change in the environment surrounding the coating film (molecular chain), and the molecular chains aggregate over time, resulting in a thermodynamically stable equilibrium state. Try to get closer to.

ここで、塗膜の劣化状況と吸熱ピークが出現する温度との関係を示す実測データを表1に示す。表1は下・中塗りエポキシ系塗膜、上塗りウレタン系塗膜である塗膜について、ヒートサイクル数、付着力、および吸熱ピークが出現する温度を示している。   Here, Table 1 shows actual measurement data showing the relationship between the deterioration state of the coating film and the temperature at which the endothermic peak appears. Table 1 shows the number of heat cycles, the adhesive force, and the temperature at which the endothermic peak appears for coatings that are undercoat / intermediate epoxy coatings and topcoating urethane coatings.

Figure 2013117415
Figure 2013117415

表1に示すように、ヒートサイクル数ゼロでは、付着力は4.3MPaと十分であり、このとき吸熱ピークの出現温度は25℃である。次に、ヒートサイクル数25では、付着力は2,1MPaと低下し、吸熱ピーク温度は32℃と高温側へシフトした。さらにヒートサイクル数を増加させると、回数が50,70,100で、吸熱ピーク温度は42℃,48℃,49℃へとやはり高温側へシフトする。この場合、塗膜の劣化を表す指標である付着力は、1.5MPa,0.8MPa,0.7MPaであり、さらに低下していく。   As shown in Table 1, when the number of heat cycles is zero, the adhesive force is sufficient at 4.3 MPa, and at this time, the temperature at which the endothermic peak appears is 25 ° C. Next, at a heat cycle number of 25, the adhesive force decreased to 2,1 MPa, and the endothermic peak temperature shifted to 32 ° C. and the high temperature side. When the number of heat cycles is further increased, the number of times is 50, 70, and 100, and the endothermic peak temperatures are shifted to 42 ° C, 48 ° C, and 49 ° C to the higher temperature side. In this case, the adhesive force, which is an index representing the deterioration of the coating film, is 1.5 MPa, 0.8 MPa, and 0.7 MPa, and further decreases.

以上の表1の結果から、吸熱ピークが出現する温度の漸近する温度が50℃付近であることがつきとめられる。この温度に近づく一歩前の状態、すなわち吸熱ピークの出現温度が40℃付近になる状態が、ヒートサイクル50回であることがわかる。この一歩前の状態をもって、塗膜内部の構造として分子鎖同士が凝集し、この時点まで有していた弾力性や粘性が消滅し、脆化が進行していることを知ることができる。   From the results of Table 1 above, it can be found that the temperature at which the endothermic peak appears is close to 50 ° C. It can be seen that the state one step before approaching this temperature, that is, the state where the appearance temperature of the endothermic peak is around 40 ° C. is 50 heat cycles. It is possible to know that the molecular chain aggregates as the internal structure of the coating film one step before this, the elasticity and viscosity possessed up to this point disappear, and the embrittlement proceeds.

以上に説明したように、吸熱ピークの出現温度が上昇し、例えば漸近温度の50℃の一歩手前の40℃に近づく様子を捉えることで、事前に塗膜劣化の状態を推測することができ、この時をもって、例えば塗り替えなどの具体的な修復動作を取ることができる。また、例えば年に1度などのように定期的に測定をすることで、基準値を超えて吸熱ピークの出現温度が上昇する状態となる時間、時期を外挿することができる。   As described above, the appearance temperature of the endothermic peak rises, for example, by capturing the approach to 40 ° C. one step before the asymptotic temperature 50 ° C., the state of coating film deterioration can be estimated in advance, At this time, a specific restoration operation such as repainting can be performed. In addition, by periodically measuring, for example, once a year, it is possible to extrapolate the time and time when the endothermic peak appearance temperature rises beyond the reference value.

以上に説明したように、本発明によれば、鉄塔や橋梁添架設備などの屋外の鉄製および亜鉛めっき鋼管設備の防食や防錆を目的に処理されている重防食塗料による塗膜について、従来では劣化の判断・判定が困難な塗膜に対し、この塗膜の劣化に特有の塗膜分子構造変化を検出し、塗膜の劣化を早い段階で知ることができる。   As described above, according to the present invention, a coating film made of heavy anticorrosion paint that has been treated for the purpose of anticorrosion and rust prevention of outdoor iron and galvanized steel pipe facilities such as steel towers and bridge installation facilities has been conventionally used. It is possible to detect the deterioration of the coating film at an early stage by detecting a change in the coating film molecular structure peculiar to the deterioration of the coating film for the coating film whose deterioration is difficult to judge and judge.

重防食塗膜においては、劣化の進行が大きい状態では、修復や修理がコスト高になり、また、下地や構造物自体にダメージを蓄積して完全な再生が困難になる場合が発生し、新たに鋼材を交換する事態となっていた。これに対し、本発明によれば、上述したように塗膜の劣化を早い段階で知ることが可能であり、コストの無駄等を防ぎ、設備の劣化状況に適合した有効な保守管理が可能となる。   In the case of heavy anticorrosion coatings, repairs and repairs are costly when the deterioration is large, and it may become difficult to completely regenerate by accumulating damage to the substrate and the structure itself. It was a situation to change the steel material. On the other hand, according to the present invention, as described above, it is possible to know the deterioration of the coating film at an early stage, and it is possible to prevent wasteful costs and the like, and to perform effective maintenance management adapted to the deterioration state of the equipment. Become.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious.

Claims (2)

示差走査熱量分析により測定対象の塗膜の初期における熱流量の温度変化の中で、前記塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を初期値とする第1ステップと、
前記初期値を得るための示差走査熱量分析を行った後の示差走査熱量分析により測定対象の塗膜の熱流量の温度変化の中で、前記塗膜のガラス転移温度より低い温度範囲で吸熱ピークの出現する温度を判定値とする第2ステップと、
前記初期値と前記判定値との比較により前記塗膜の劣化状態を判定する第3ステップと
を備えることを特徴とする塗膜劣化検出方法。
A first step in which the temperature at which an endothermic peak appears in a temperature range lower than the glass transition temperature of the coating film in the initial temperature change of the coating film to be measured by differential scanning calorimetry is an initial value;
In the temperature change of the heat flow rate of the coating film to be measured by differential scanning calorimetry after performing differential scanning calorimetry to obtain the initial value, an endothermic peak in a temperature range lower than the glass transition temperature of the coating film A second step in which the temperature at which the
A coating film deterioration detection method comprising: a third step of determining a deterioration state of the coating film by comparing the initial value and the determination value.
請求項1記載の塗膜劣化検出方法において、
前記第3ステップでは、前記初期値に対する前記判定値の変化量が、設定されている基準値を超えた状態を前記塗膜の劣化と判断することを特徴とする塗膜劣化検出方法。
In the coating-film degradation detection method of Claim 1,
In the third step, the coating film deterioration detection method is characterized in that a state in which a change amount of the determination value with respect to the initial value exceeds a set reference value is determined as deterioration of the coating film.
JP2011264422A 2011-12-02 2011-12-02 Method for detecting film deterioration Expired - Fee Related JP5632356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264422A JP5632356B2 (en) 2011-12-02 2011-12-02 Method for detecting film deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264422A JP5632356B2 (en) 2011-12-02 2011-12-02 Method for detecting film deterioration

Publications (2)

Publication Number Publication Date
JP2013117415A true JP2013117415A (en) 2013-06-13
JP5632356B2 JP5632356B2 (en) 2014-11-26

Family

ID=48712079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264422A Expired - Fee Related JP5632356B2 (en) 2011-12-02 2011-12-02 Method for detecting film deterioration

Country Status (1)

Country Link
JP (1) JP5632356B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674967A (en) * 2013-12-06 2014-03-26 国网河南省电力公司商丘供电公司 Detection system for aging of RTV coating
KR20160019818A (en) * 2014-08-12 2016-02-22 대우조선해양 주식회사 Apparatus for predicting burnt damage rang of painting rear surface welding and method for predicting burnt damage rang using the same
CN105628865A (en) * 2014-11-07 2016-06-01 立邦涂料(中国)有限公司 Method for detecting hidden coating pit in composite coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337557A (en) * 1989-07-03 1991-02-18 Yaskawa Electric Mfg Co Ltd Temperature-history estimating method
JP2003344262A (en) * 2002-05-28 2003-12-03 Mitsubishi Electric Corp Method for diagnosing degree of deterioration of high polymer material
JP2005156309A (en) * 2003-11-25 2005-06-16 Nippon Paint Co Ltd Method for evaluating weatherability of coating film and method, and apparatus for testing accelerated deterioration of the coating film
JP2006090765A (en) * 2004-09-22 2006-04-06 Fuji Electric Systems Co Ltd Method and device for examining deterioration of polymer material
JP2007093265A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Method of estimating thermal history of resin/rubber product in automobile engine room

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337557A (en) * 1989-07-03 1991-02-18 Yaskawa Electric Mfg Co Ltd Temperature-history estimating method
JP2003344262A (en) * 2002-05-28 2003-12-03 Mitsubishi Electric Corp Method for diagnosing degree of deterioration of high polymer material
JP2005156309A (en) * 2003-11-25 2005-06-16 Nippon Paint Co Ltd Method for evaluating weatherability of coating film and method, and apparatus for testing accelerated deterioration of the coating film
JP2006090765A (en) * 2004-09-22 2006-04-06 Fuji Electric Systems Co Ltd Method and device for examining deterioration of polymer material
JP2007093265A (en) * 2005-09-27 2007-04-12 Toyoda Gosei Co Ltd Method of estimating thermal history of resin/rubber product in automobile engine room

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674967A (en) * 2013-12-06 2014-03-26 国网河南省电力公司商丘供电公司 Detection system for aging of RTV coating
KR20160019818A (en) * 2014-08-12 2016-02-22 대우조선해양 주식회사 Apparatus for predicting burnt damage rang of painting rear surface welding and method for predicting burnt damage rang using the same
KR101667250B1 (en) * 2014-08-12 2016-10-28 대우조선해양 주식회사 Apparatus for welding and method for welding
CN105628865A (en) * 2014-11-07 2016-06-01 立邦涂料(中国)有限公司 Method for detecting hidden coating pit in composite coating

Also Published As

Publication number Publication date
JP5632356B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
Croll Surface roughness profile and its effect on coating adhesion and corrosion protection: A review
CN105067457B (en) A kind of corrosion cracking scalability characterizes the method with life estimate
JP5632356B2 (en) Method for detecting film deterioration
Sanchez-Amaya et al. Monitoring the degradation of a high solids epoxy coating by means of EIS and EN
CN106289613B (en) A kind of assay method of symmetrical coating residual stress
JP5413292B2 (en) Corrosion accelerated test method for heavy anti-corrosion coated steel
CN105548467A (en) Tower paint surface corrosion safe state evaluation method
JP5718787B2 (en) Method for detecting film deterioration
Joliff et al. Influence of the thickness of pipeline coating on internal stresses during the manufacturing process by finite element analysis
JP2020134321A (en) Estimation method
JP5563538B2 (en) Method for detecting film deterioration
JP2007039970A (en) Predicting method for rusting level of non-painted atmospheric corrosion-resistant steel bridge
JP6117611B2 (en) Coating film deterioration evaluation method
JP2011227005A (en) Method for testing corrosion acceleration of heavy corrosion protection coated steel material
JP2019007851A (en) Method for predicting corrosion of weather-resistant steel and method for predicting corrosion of steel structure
Momber et al. Corrosion protection performance of organic offshore coating systems at− 60 C temperature shock
JP2013064679A (en) Method for detecting deterioration of coating film
JP5833590B2 (en) Method for evaluating deterioration of coating film
Li et al. Evaluation and mechanisms of internal stress development in high-build epoxy protective coatings during thermal cycling
JP6063810B2 (en) Method for estimating the degree of cure of epoxy resin-containing materials
Wade A review of the robustness of epoxy passive fire protection (PFP) to offshore environments
Korobov et al. Performance testing methods for offshore coatings: Cyclic, EIS and stress
JP2017090058A (en) Detection method and detection device
Votava et al. Degradation processes in anticorrosive coatings for machinery designed for fertiliser application.
JP2017090059A (en) Detection method and detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141009

R150 Certificate of patent or registration of utility model

Ref document number: 5632356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees