JP2013116217A - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
JP2013116217A
JP2013116217A JP2011264970A JP2011264970A JP2013116217A JP 2013116217 A JP2013116217 A JP 2013116217A JP 2011264970 A JP2011264970 A JP 2011264970A JP 2011264970 A JP2011264970 A JP 2011264970A JP 2013116217 A JP2013116217 A JP 2013116217A
Authority
JP
Japan
Prior art keywords
oxygen
nitrogen adsorption
flow path
check valve
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264970A
Other languages
Japanese (ja)
Other versions
JP5977022B2 (en
Inventor
Katsuhisa Mori
克久 森
Atsushi Wakita
敦史 脇田
Yasunori Hida
恭典 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011264970A priority Critical patent/JP5977022B2/en
Publication of JP2013116217A publication Critical patent/JP2013116217A/en
Application granted granted Critical
Publication of JP5977022B2 publication Critical patent/JP5977022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen concentrator capable of preventing the backflow of dew condensation water to the inside of the concentrator and suitably maintaining the safety of the oxygen concentrator without using power.SOLUTION: In the oxygen concentrator 1, in a gas passage 13 between nitrogen adsorption containers 7a and 7b and an oxygen supply port 35, a check valve 53 for permitting only the inflow of atmosphere from the atmosphere side to the side of the gas passage 13 is arranged. Thus, in the case where the nitrogen adsorption containers 7a and 7b are turned to a negative pressure when the operation of the oxygen concentrator 1 is stopped, since the check valve 53 is opened and the atmosphere is introduced into the gas passage 13, the negative pressure is dissolved. That is, when a sucking action to the side of the nitrogen adsorption containers 7a and 7b is caused by the negative pressure, since the check valve 53 is opened and air flows in from the atmosphere side to the side of the gas passage 13, the backflow of the dew condensation water accumulated in a tube 39 to the inside of the concentrator is prevented.

Description

本発明は、酸素より窒素を優先的に吸着する吸着剤を用い、圧力変動吸着方式により高濃度の酸素を患者等に供給する酸素濃縮装置に関する。   The present invention relates to an oxygen concentrator that uses an adsorbent that preferentially adsorbs nitrogen over oxygen and supplies a high concentration of oxygen to a patient or the like by a pressure fluctuation adsorption system.

従来より、酸素濃縮ガスを患者に供給することができる装置として、医療用酸素濃縮装置が、在宅酸素療法などに使用されている。
この種の酸素濃縮装置として、図6に例示する様に、酸素より窒素を優先的に吸着する吸着剤を2個或いは複数の窒素吸着容器(吸着筒P1)に充填した吸着型酸素濃縮装置が知られており、中でも、空気供給手段としてコンプレッサ(P2)を用いた圧力変動吸着型の酸素濃縮装置(P3)が、在宅酸素療法の装置として用いられている。
Conventionally, medical oxygen concentrators have been used for home oxygen therapy as devices that can supply oxygen-enriched gas to patients.
As an oxygen concentrator of this type, as illustrated in FIG. 6, an adsorption type oxygen concentrator in which two or plural nitrogen adsorption containers (adsorption cylinders P1) are filled with an adsorbent that preferentially adsorbs nitrogen over oxygen. Among them, a pressure fluctuation adsorption type oxygen concentrator (P3) using a compressor (P2) as an air supply means is used as a home oxygen therapy device.

この圧力変動吸着型の酸素濃縮装置においては、一般には、窒素吸着容器に空気を供給して容器内を加圧状態にすることにより、空気中の窒素を吸着剤に吸着させて酸素濃縮ガスを取り出す吸着工程と、窒素吸着容器を大気開放して減圧し、吸着窒素を脱着させて吸着剤を再生する再生工程とを、交互または順次くり返し、連続的に酸素濃縮ガスを生成している。   In this pressure fluctuation adsorption type oxygen concentrator, in general, air is supplied to a nitrogen adsorption container and the inside of the container is brought into a pressurized state, thereby adsorbing nitrogen in the air to the adsorbent and The oxygen adsorption gas is continuously generated by repeating the adsorption process to be taken out and the regeneration process of desorbing the adsorbed nitrogen to regenerate the adsorbent by opening the nitrogen adsorption container to the atmosphere and reducing the pressure.

更に、より高濃度の酸素を効率よく得るために、窒素吸着容器を大気開放して減圧し吸着窒素を脱着させるとともに、製品ガスの一部を用いて窒素吸着容器をパージし吸着剤を再生したり、空気供給手段を逆に用いて、窒素吸着容器内が負圧になるまで排気を行い、吸着窒素を脱着させて吸着剤を再生する方法が行われてきた。   Furthermore, in order to efficiently obtain a higher concentration of oxygen, the nitrogen adsorption container is opened to the atmosphere and depressurized to desorb the adsorbed nitrogen, and a part of the product gas is used to purge the nitrogen adsorption container to regenerate the adsorbent. On the other hand, a method has been used in which the air supply means is used in reverse to exhaust air until the inside of the nitrogen adsorption container reaches a negative pressure and desorb the adsorbed nitrogen to regenerate the adsorbent.

この種の圧力変動吸着型の酸素濃縮装置では、合成ゼオライトと呼ばれる吸着剤が用いられるが、酸素よりも窒素を優先的に吸着すると同時に水分も吸着されるため、得られた酸素濃縮ガスは乾燥状態になる。   In this type of pressure fluctuation adsorption type oxygen concentrator, an adsorbent called synthetic zeolite is used, but nitrogen is preferentially adsorbed over oxygen and at the same time moisture is adsorbed. It becomes a state.

そのため、このままでは患者の鼻腔が乾き不快感を与えることになるため、一般的には酸素濃縮装置に加湿器(P4)を装備しており、この加湿器に通すことで加湿された酸素濃縮ガスを、酸素供給口(P5)からカニューラ(P6)を介して患者に供給している。   Therefore, since the patient's nasal cavity is dry and uncomfortable, the oxygen concentrator is generally equipped with a humidifier (P4), and the oxygen-enriched gas humidified by passing through the humidifier. Is supplied to the patient from the oxygen supply port (P5) through the cannula (P6).

しかしながら、この加湿された酸素濃縮ガスが、酸素供給口に接続されたカニューラのチューブもしくはカニューラに接続された延長チューブ(P7)を通過する段階で、酸素濃縮装置とチューブの間に温度差を生じるような環境に設置されると(例えば患者の居る部屋と酸素濃縮装置が設置された部屋が異なり、酸素濃縮装置から患者の居る部屋に延長チューブを引いている場合がある)、図7に示す様に、チューブ内に結露が生じる場合がある。   However, when the humidified oxygen-enriched gas passes through the cannula tube connected to the oxygen supply port or the extension tube (P7) connected to the cannula, a temperature difference is generated between the oxygen concentrator and the tube. 7 (for example, the room in which the patient is present differs from the room in which the oxygen concentrator is installed, and an extension tube is pulled from the oxygen concentrator to the room in which the patient is present). Similarly, condensation may occur in the tube.

その結果、酸素濃縮装置の稼働中は、その結露水が患者の方へ送り込まれてしまうため、チューブの途中に結露水を捕集するためのウォータートラップなる備品を設置して対処したり、加湿器で加湿される酸素濃縮ガスの湿度を制御するような対策を施した装置が開発されている(例えば下記特許文献1〜4参照)。   As a result, when the oxygen concentrator is in operation, the condensed water is sent to the patient. Therefore, a water trap fixture is installed in the middle of the tube to collect the condensed water. Devices have been developed that take measures to control the humidity of the oxygen-enriched gas humidified by a vessel (see, for example, Patent Documents 1 to 4 below).

特開平06−233821号Japanese Patent Application Laid-Open No. 06-233821 特開平11−137692号JP-A-11-137692 特開2000−135287号JP 2000-135287 A 特開2006−087684号JP 2006-087684 A

ところが、前述した酸素濃縮装置が稼働している最中の問題点とは別に、酸素濃縮装置の停止時においては、チューブ内に結露水が残留していると、次のような不具合が生じる場合がある。   However, in addition to the problems during the operation of the oxygen concentrator described above, when the oxygen concentrator is stopped, if the condensed water remains in the tube, the following problems may occur. There is.

酸素濃縮装置の稼働中は、コンプレッサにより圧縮された空気が窒素吸着容器内に送り込まれるため、窒素吸着容器内部の温度が上昇するが、酸素濃縮装置を停止したときには、窒素吸着容器内部の温度は低下する。また、窒素吸着容器内の合成ゼオライトは、低温ほど窒素の吸着量が増加する特性を持っているため、窒素吸着容器内部の温度が下がるとともに内部が負圧になる。   During operation of the oxygen concentrator, the air compressed by the compressor is sent into the nitrogen adsorption container, so the temperature inside the nitrogen adsorption container rises, but when the oxygen concentrator is stopped, the temperature inside the nitrogen adsorption container is descend. In addition, the synthetic zeolite in the nitrogen adsorption vessel has a characteristic that the amount of nitrogen adsorbed increases as the temperature decreases, so the temperature inside the nitrogen adsorption vessel decreases and the inside becomes negative pressure.

そのため、結露した水滴がチューブ内において凝集して閉塞状態となった場合には、負圧になった窒素吸着容器からの吸引により、チューブ内の結露水が装置内部へと逆流する。その結果、逆流によって装置内(詳しくは、酸素供給口と加湿器との間)に滞留した水は、雑菌の温床となることがある。また、酸素供給口と加湿器との間に流量計等の機器が配置されている場合には、逆流した結露水によって機器の故障を引き起こす原因となる。   Therefore, when condensed water droplets aggregate in the tube and become a closed state, the condensed water in the tube flows back into the apparatus by suction from the nitrogen adsorption container that has become negative pressure. As a result, the water accumulated in the apparatus (specifically, between the oxygen supply port and the humidifier) due to the backflow may become a hotbed of various bacteria. In addition, when a device such as a flow meter is disposed between the oxygen supply port and the humidifier, the device may be damaged due to the dew condensation water flowing backward.

この結露水の逆流を防止する手段として、酸素濃縮装置の酸素供給口付近に遮断弁を設置する方法が考えられるが、酸素濃縮装置の稼働中は遮断弁を常時開とするために、通電する電力が必要となる。   As a means for preventing the reverse flow of the condensed water, a method of installing a shut-off valve near the oxygen supply port of the oxygen concentrator is conceivable. Electric power is required.

また、この遮断弁を配置する場合には、加湿器で加湿された酸素濃縮ガスが遮断弁を通過するため、遮断弁内部が加湿用の水に含まれるスケール成分(炭酸カルシウムやシリカなど)の影響で金属部品が腐食したり、スケール成分が析出することで弁がつまり、弁の動作不良を引き起こす可能性がある。   In addition, when this shut-off valve is arranged, the oxygen-enriched gas humidified by the humidifier passes through the shut-off valve, so the inside of the shut-off valve contains scale components (calcium carbonate, silica, etc.) contained in the humidifying water. As a result, the metal parts corrode due to the influence, or the scale components are deposited, which may cause the valve to malfunction.

本発明は、上記問題点を解決するためになされたものであり、その目的は、電力を使用することなく、結露水の装置内部への逆流を防止し、酸素濃縮装置の安全性を好適に維持することができる酸素濃縮装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent the backflow of condensed water into the apparatus without using electric power, and to improve the safety of the oxygen concentrator. The object is to provide an oxygen concentrator that can be maintained.

(1)本発明は、第1態様として、酸素より窒素を優先的に吸着する吸着剤を充填した窒素吸着容器と、前記窒素吸着容器に空気を供給する空気供給手段と、前記窒素吸着容器の加圧減圧を制御する加減圧切換手段と、前記窒素吸着容器にて生成された酸素濃縮ガスを装置外に供給する酸素供給口と、前記窒素吸着容器から前記酸素供給口に到る酸素濃縮ガスのガス流路に配置されて、該酸素濃縮ガスを加湿する加湿器と、を備えた圧力変動吸着型の酸素濃縮装置において、前記窒素吸着容器から前記酸素供給口に到る酸素濃縮ガスのガス流路に、大気側から前記ガス流路側への大気の流入が可能な逆止弁を配置したことを特徴とする。   (1) The present invention provides, as a first aspect, a nitrogen adsorption container filled with an adsorbent that preferentially adsorbs nitrogen over oxygen, air supply means for supplying air to the nitrogen adsorption container, and the nitrogen adsorption container. Pressurization / decompression switching means for controlling pressurization and depressurization, an oxygen supply port for supplying oxygen-enriched gas generated in the nitrogen adsorption vessel to the outside of the apparatus, and an oxygen-enriched gas from the nitrogen adsorption vessel to the oxygen supply port In the pressure fluctuation adsorption type oxygen concentrator provided with a humidifier that humidifies the oxygen-enriched gas, the oxygen-enriched gas from the nitrogen adsorption vessel to the oxygen supply port A check valve capable of inflowing air from the atmosphere side to the gas flow path side is disposed in the flow path.

本第1態様では、窒素吸着容器から酸素供給口に到る酸素濃縮ガスのガス流路に、大気側からガス流路側への大気の流入が可能な逆止弁(即ち大気の流入は許可し酸素濃縮ガスの流出は禁止する逆止弁)を備えている。   In the first aspect, a check valve (that is, the inflow of the atmosphere is permitted) that allows the inflow of air from the atmosphere side to the gas flow path side into the gas flow path of the oxygen-enriched gas from the nitrogen adsorption container to the oxygen supply port. It is equipped with a check valve that prohibits the flow of oxygen-enriched gas.

従って、酸素濃縮装置の運転停止時に、窒素吸着容器内部が負圧となった場合でも、逆止弁を通してガス流路内に大気が導入されるため、ガス流路内は大気圧となり、よって、結露水の装置内部への逆流を防止できる。   Therefore, even when the inside of the nitrogen adsorption container becomes a negative pressure when the operation of the oxygen concentrator is stopped, because the atmosphere is introduced into the gas flow path through the check valve, the gas flow path becomes the atmospheric pressure. It is possible to prevent backflow of condensed water into the device.

詳しくは、酸素濃縮装置の運転停止時に、酸素供給口に接続されたチューブ内に発生した結露水によってチューブが閉塞された場合に、窒素吸着容器内部(従ってガス流路内)が負圧となっても、チューブ内に発生した結露水を装置内部(詳しくは、酸素供給口と加湿器との間)に吸引するだけの吸引力は発生しないので、結露水が装置内部へ逆流することを防ぐことができる。   Specifically, when the tube is closed by condensed water generated in the tube connected to the oxygen supply port when the operation of the oxygen concentrator is stopped, the inside of the nitrogen adsorption container (and hence the gas flow path) becomes negative pressure. However, since the suction force that sucks the condensed water generated in the tube into the device (specifically, between the oxygen supply port and the humidifier) is not generated, the condensed water is prevented from flowing back into the device. be able to.

その結果、逆流した結露水によって、装置内部のガス流路が雑菌の温床となることがなく、また、酸素供給口と加湿器との間に流量計等の機器が配置されている場合には、その機器の故障を防止できる。   As a result, the gas flow path inside the device does not become a hotbed of various bacteria due to the backflowed dew condensation water, and when a device such as a flow meter is arranged between the oxygen supply port and the humidifier , It can prevent the failure of the equipment.

更に、本第1態様では、上述した様に逆止弁を配置する構成によって、加湿器の下流側に遮断弁を設ける必要がないので、当然ながら、その遮断弁の不具合による問題はない。また、電磁弁ではなく通常の差圧を利用して作動する逆止弁を用いるので、装置の消費電力を節約できるという利点がある。   Further, in the first aspect, since the check valve is arranged as described above, it is not necessary to provide a shut-off valve on the downstream side of the humidifier, so that there is no problem due to the trouble of the shut-off valve. In addition, since a check valve that operates using a normal differential pressure is used instead of a solenoid valve, there is an advantage that power consumption of the apparatus can be saved.

ここで、前記「逆止弁」とは、逆止弁によって区分される両側のガス流路の圧力差により機械的に作動する開閉弁であり、一方向のガスの流れのみを許可しその逆方向のガスの流れを禁止するように(ここでは大気側からガス流路側への大気の流入のみ許可するように)構成されている。   Here, the “check valve” is an on-off valve that is mechanically operated by the pressure difference between the gas flow paths on both sides divided by the check valve, and permits only one-way gas flow and vice versa. The gas flow in the direction is prohibited (here, only the inflow of the atmosphere from the atmosphere side to the gas flow path side is permitted).

また、前記「窒素吸着容器から酸素供給口に到る酸素濃縮ガスのガス流路」としては、前記ガス流路に接続されて流路内が同圧となるようなガス流路(分岐したガス流路等)を含む。   The “gas flow path of the oxygen-enriched gas from the nitrogen adsorption container to the oxygen supply port” is a gas flow path (branched gas) connected to the gas flow path and having the same pressure in the flow path. Channel).

(2)本発明は、第2態様として、前記ガス流路のうち、前記窒素吸着容器から流量設定器までの間に、前記逆止弁を配置したことを特徴とする。
本第2態様では、窒素吸着容器から流量設定器までの間に、逆止弁を配置したので、装置の稼働中における酸素濃縮ガスのリークを防止できる。
(2) As a second aspect of the present invention, the check valve is disposed between the nitrogen adsorption container and the flow rate setting device in the gas flow path.
In the second aspect, since the check valve is arranged between the nitrogen adsorption container and the flow rate setting device, it is possible to prevent leakage of oxygen-enriched gas during operation of the apparatus.

ガス流路に大気と連通する逆止弁を配置したので、稼働中には逆止弁からのガス漏れのリスクが発生する。逆止弁では、リシール圧(弁体が閉じ始めて、弁体のリーク量がある規定の量まで減少した時の圧力)が存在するが、稼働中はリシール圧以上の圧力がガス流路内にかかっていないと弁体が完全に閉じることができず、ガス漏れが発生する。従って、ガス流路の中でも圧力が高い側の窒素吸着容器から流量設定器までの間に逆止弁を配置することで、酸素濃縮ガスのリークを防止できる。   Since a check valve communicating with the atmosphere is arranged in the gas flow path, there is a risk of gas leakage from the check valve during operation. In the check valve, reseal pressure (pressure when the valve body begins to close and the leak amount of the valve body decreases to a specified amount) exists, but pressure higher than the reseal pressure during operation is in the gas flow path. If it is not applied, the valve body cannot be completely closed, and gas leakage occurs. Therefore, the leakage of oxygen-enriched gas can be prevented by disposing a check valve between the nitrogen adsorption container on the higher pressure side in the gas flow path and the flow rate setting device.

(3)本発明では、第3態様として、前記逆止弁の大気側に、10μm以上の異物を捕集する外側フィルタを設けたことを特徴とする。
本第3態様では、逆止弁の大気側に、10μm以上の異物を捕集する外側フィルタを設けたので、大気側から塵埃等の異物が逆止弁内部に侵入することを防止できる。これにより、逆止弁に異物が噛み込むこと等による逆止弁の動作不良を防止できる。
(3) The present invention is characterized in that as a third aspect, an outer filter for collecting foreign matters of 10 μm or more is provided on the atmosphere side of the check valve.
In the third aspect, since the outer filter that collects foreign matters of 10 μm or more is provided on the atmosphere side of the check valve, it is possible to prevent foreign matters such as dust from entering the check valve from the atmosphere side. Thereby, the malfunction of the check valve due to foreign matter biting into the check valve can be prevented.

(4)本発明では、第4態様として、更に、前記逆止弁の前記ガス流路側に、10μm以上の異物を捕集する内側フィルタを設けたことを特徴とする。
ガス流路には、通常、製品タンクや減圧レギュレータ等が取り付けられているので、その接続部分等から何らかの異物(シール材や金属の切粉等)が生じる可能性がある。この異物が逆止弁に侵入すると逆止弁の動作不良を生じる恐れがある。
(4) In the present invention, as a fourth aspect, an inner filter that collects foreign matters of 10 μm or more is further provided on the gas flow path side of the check valve.
Since a product tank, a decompression regulator, and the like are usually attached to the gas flow path, some foreign matter (such as a sealing material or metal chips) may be generated from the connection portion. If this foreign matter enters the check valve, the check valve may malfunction.

それに対して、本第4態様では、逆止弁のガス流路側に、10μm以上の異物を捕集する内側フィルタを設けたので、ガス流路側から逆止弁側に異物が流入することを防止できる。よって、逆止弁の動作不良を防止できる。   On the other hand, in the fourth aspect, since an inner filter for collecting foreign matters of 10 μm or more is provided on the gas flow path side of the check valve, foreign matters are prevented from flowing from the gas flow path side to the check valve side. it can. Therefore, malfunction of the check valve can be prevented.

なお、上述した10μm以上の異物を捕集する外側フィルタ及び内側フィルタとは、10μmのろ過精度(絶対ろ過精度)を有するフィルタを示している。   In addition, the outer filter and inner filter which collect the foreign material of 10 micrometers or more mentioned above have shown the filter which has a filtration precision (absolute filtration precision) of 10 micrometers.

実施例1の酸素濃縮装置の概略構成を示す説明図である。1 is an explanatory diagram showing a schematic configuration of an oxygen concentrator in Example 1. FIG. (a)は実施例1の酸素濃縮装置に用いられる加湿器を示す説明図、(b)は他の加湿器を示す説明図、(c)は更に他の加湿装置を示す説明図である。(A) is explanatory drawing which shows the humidifier used for the oxygen concentrator of Example 1, (b) is explanatory drawing which shows another humidifier, (c) is explanatory drawing which shows another humidifier. 異物を捕集する外側フィルタを備えた実施例2の酸素濃縮装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the oxygen concentration apparatus of Example 2 provided with the outer side filter which collects a foreign material. 逆止弁が配置された分岐ガス流路に外側フィルタ及び内側フィルタを備えた他の例を示す説明図である。It is explanatory drawing which shows the other example which provided the outer side filter and the inner side filter in the branch gas flow path where the check valve is arrange | positioned. 実験結果を示し、(a)は従来の酸素濃縮装置のガス流路の圧力の変化を示すグラフ、(b)は実施例1の酸素濃縮装置のガス流路の圧力の変化を示すグラフである。An experimental result is shown, (a) is a graph which shows the change of the pressure of the gas flow path of the conventional oxygen concentration apparatus, (b) is a graph which shows the change of the pressure of the gas flow path of the oxygen concentration apparatus of Example 1. . 従来の酸素濃縮装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the conventional oxygen concentration apparatus. 従来の酸素濃縮装置に接続されたチューブに発生する結露水の状態を示す説明図である。It is explanatory drawing which shows the state of the dew condensation water which generate | occur | produces in the tube connected to the conventional oxygen concentration apparatus.

以下に、本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例では、空気中から窒素吸着剤(以下吸着剤と記す)を用いて窒素を吸着して除去することにより酸素を濃縮し、この高濃度の酸素を含む酸素濃縮ガスを患者に対して供給する圧力変動吸着型の医療用酸素濃縮装置(以下酸素濃縮装置と記す)を例に挙げる。   In this embodiment, oxygen is concentrated by adsorbing and removing nitrogen from the air using a nitrogen adsorbent (hereinafter referred to as an adsorbent), and this oxygen-enriched gas containing high-concentration oxygen is supplied to the patient. An example is a pressure fluctuation adsorption type medical oxygen concentrator to be supplied (hereinafter referred to as an oxygen concentrator).

a)まず、本実施例の酸素濃縮装置の構成について説明する。
図1に示す様に、本実施例の酸素濃縮装置1においては、その空気の導入路3に、上流側より、原料空気を圧縮するコンプレッサ5と、空気中の窒素を優先的に吸着して酸素を分離するゼオライト系の吸着剤(例えばLi系ゼオライト)を充填した一対の窒素吸着容器(吸着筒)7a、7bとが設けられ、コンプレッサ5と窒素吸着容器7a、7bとの間には、窒素吸着容器7a、7b内の圧力の加減圧を繰り返すことで窒素の吸着と離脱とを切り換える電磁開閉弁である切換弁9a、9b、9c、9dが設けられている。なお、窒素吸着容器7a、7bには、切換弁9c、9dを介して窒素を排気する排気路11が設けられている。
a) First, the configuration of the oxygen concentrator of this embodiment will be described.
As shown in FIG. 1, in the oxygen concentrator 1 of the present embodiment, the air introduction path 3 preferentially adsorbs the compressor 5 for compressing the raw material air and the nitrogen in the air from the upstream side. A pair of nitrogen adsorption containers (adsorption cylinders) 7a, 7b filled with a zeolite-based adsorbent (for example, Li-based zeolite) that separates oxygen is provided, and between the compressor 5 and the nitrogen adsorption containers 7a, 7b, Switching valves 9a, 9b, 9c, and 9d that are electromagnetic on-off valves that switch between adsorption and desorption of nitrogen by repeatedly increasing and decreasing the pressure in the nitrogen adsorption containers 7a and 7b are provided. The nitrogen adsorption containers 7a and 7b are provided with an exhaust passage 11 for exhausting nitrogen through switching valves 9c and 9d.

更に、一対の窒素吸着容器7a、7bより下流側のガス流路13には、両窒素吸着容器7a、7b間を連通する連通路15と、連通路15に設けられて両窒素吸着容器7a、7bにパージガスを供給する電磁弁であるパージ弁17と、パージ弁17の両側に設けられたオリフィス19a、19bと、酸素濃縮ガスの逆流を防止する一対の逆止弁21a、21bと、酸素濃縮ガスを溜める製品タンク(サージタンク)23と、酸素濃縮ガスの圧力を調節する圧力調節器(減圧レギュレータ)25と、酸素濃縮ガスの流量をマニュアルで設定する流量設定器27と、バクテリアフィルタ29と、酸素濃縮ガスを加湿する加湿器31と、酸素濃縮ガスの流量を計測する流量計33と、酸素濃縮ガスを装置外に供給する酸素供給口35とを備えている。また、この酸素供給口35には、カニューラ37のチューブ39が接続されている。   Furthermore, in the gas flow path 13 on the downstream side of the pair of nitrogen adsorption containers 7a and 7b, a communication path 15 communicating between the nitrogen adsorption containers 7a and 7b, and the nitrogen adsorption containers 7a, A purge valve 17 which is an electromagnetic valve for supplying a purge gas to 7b, orifices 19a and 19b provided on both sides of the purge valve 17, a pair of check valves 21a and 21b for preventing the backflow of oxygen-enriched gas, and oxygen concentration A product tank (surge tank) 23 for storing gas, a pressure regulator (decompression regulator) 25 for adjusting the pressure of the oxygen-enriched gas, a flow rate setting unit 27 for manually setting the flow rate of the oxygen-enriched gas, and a bacteria filter 29 A humidifier 31 for humidifying the oxygen-enriched gas, a flow meter 33 for measuring the flow rate of the oxygen-enriched gas, and an oxygen supply port 35 for supplying the oxygen-enriched gas to the outside of the apparatus.A tube 39 of a cannula 37 is connected to the oxygen supply port 35.

このうち、流量計33は、加湿器31と酸素供給口35との間のガス流路13に配置されており、この流量計33としては、例えば熱式流量センサや超音波式流量センサを用いることができる。   Among these, the flow meter 33 is disposed in the gas flow path 13 between the humidifier 31 and the oxygen supply port 35. As the flow meter 33, for example, a thermal flow sensor or an ultrasonic flow sensor is used. be able to.

また、加湿器31は、吸着剤である合成ゼオライトを通過した酸素濃縮ガスは、乾燥しているため、加湿器31内の水蒸気によって、酸素濃縮ガスにうるおいを与えるものである。   Further, the humidifier 31 gives moisture to the oxygen-enriched gas by the water vapor in the humidifier 31 because the oxygen-enriched gas that has passed through the synthetic zeolite that is the adsorbent is dry.

この加湿器31は、図2(a)に示す様に、水を入れた容器41とその容器41を密閉する蓋体43とを備えたものであり、蓋体43には、酸素濃縮ガスを上流側より容器41内に供給する上流側配管47と、加湿した酸素濃縮ガスを下流側に供給する下流側配管49とが接続されている。なお、この加湿器31では、上流側配管47の開口端47aと下流側配管49の開口端49aとは、水面に接触しないように構成されている。   As shown in FIG. 2A, the humidifier 31 includes a container 41 containing water and a lid 43 that seals the container 41. The lid 43 contains oxygen-enriched gas. An upstream pipe 47 for supplying the inside of the container 41 from the upstream side and a downstream pipe 49 for supplying the humidified oxygen-enriched gas to the downstream side are connected. In addition, in this humidifier 31, the opening end 47a of the upstream piping 47 and the opening end 49a of the downstream piping 49 are comprised so that a water surface may not be contacted.

図1に戻り、特に、本実施例では、後に詳述する様に、逆止弁21a、21bと製品タンク23との間のガス流路13から分岐する分岐ガス流路51が設けられており、この分岐ガス流路51には、大気側からガス流路13側への大気の流入のみを許可する周知の逆止弁53が配置されている。   Returning to FIG. 1, in particular, in this embodiment, as will be described in detail later, a branch gas passage 51 is provided that branches from the gas passage 13 between the check valves 21 a and 21 b and the product tank 23. The branch gas flow path 51 is provided with a known check valve 53 that permits only the inflow of air from the atmosphere side to the gas flow path 13 side.

b)次に、上述した構成を備えた本実施例の酸素濃縮装置1の基本的な動作について、簡単に説明する。
図1に示す様に、本実施例の酸素濃縮装置1では、基本的に、窒素吸着容器7a、7bにおける加圧・減圧を交互に繰り返すことにより、酸素の濃縮及び吸着剤の再生を行う。
b) Next, the basic operation of the oxygen concentrator 1 of the present embodiment having the above-described configuration will be briefly described.
As shown in FIG. 1, in the oxygen concentrator 1 of this embodiment, oxygen concentration and adsorbent regeneration are basically performed by alternately repeating pressurization and pressure reduction in the nitrogen adsorption containers 7a and 7b.

例えば切換弁9a、9dを開、切換弁9b、9cを閉とした状態で、コンプレッサ5により一方の窒素吸着容器7aに圧縮空気を送りこみ、吸着剤に窒素を吸着させて酸素を濃縮する。そして、所定時間が経過したら、切換弁9b、9cを開、切換弁9a、9dを閉に切り換えて、圧縮空気を他方の窒素吸着容器7bに供給するとともに、一方の窒素吸着容器7aを大気側に接続して、吸着した窒素が減圧とともに排気路11より排出されるようにする。   For example, in a state where the switching valves 9a and 9d are opened and the switching valves 9b and 9c are closed, compressed air is sent to one nitrogen adsorption container 7a by the compressor 5, and nitrogen is adsorbed by the adsorbent to concentrate oxygen. When the predetermined time has elapsed, the switching valves 9b and 9c are opened, the switching valves 9a and 9d are switched to the closed state, compressed air is supplied to the other nitrogen adsorption container 7b, and one nitrogen adsorption container 7a is connected to the atmosphere side. The adsorbed nitrogen is discharged from the exhaust passage 11 together with the reduced pressure.

また、加圧と減圧とを切り換える場合には、僅かの期間だけパージ弁17を開いて、加圧されていた一方の窒素吸着容器7aから減圧されていた他方の窒素吸着容器7bに対して、通常の流れとは逆方向に酸素濃縮ガスを供給する。この酸素濃縮ガスにより、他方の窒素吸着容器7b内の吸着剤に吸着された窒素及び水分が洗い流され、切換弁9d及び排気路11を介して外界に排出される。   Further, when switching between pressurization and decompression, the purge valve 17 is opened for a short period of time, with respect to the other nitrogen adsorption vessel 7b that has been decompressed from the one nitrogen adsorption vessel 7a that has been pressurized. The oxygen-enriched gas is supplied in the direction opposite to the normal flow. With this oxygen-enriched gas, nitrogen and moisture adsorbed by the adsorbent in the other nitrogen adsorption vessel 7b are washed away and discharged to the outside through the switching valve 9d and the exhaust path 11.

この様にして、両窒素吸着容器7a、7bにより、加圧時には酸素だけを抽出し、その酸素濃縮ガスを、外部(従って患者)に供給する。これを、両窒素吸着容器7a、7bに対して交互に繰り返すことにより、高い酸素濃度の酸素濃縮ガスを連続的に得ることができる。   In this manner, only the oxygen is extracted at the time of pressurization by the nitrogen adsorption containers 7a and 7b, and the oxygen-enriched gas is supplied to the outside (and hence the patient). By repeating this alternately for both nitrogen adsorption vessels 7a and 7b, an oxygen-enriched gas having a high oxygen concentration can be obtained continuously.

c)次に、本実施例の要部である逆止弁53について説明する。
上述した様に、本実施例では、逆止弁21a、21bと製品タンク23との間のガス流路13には、そのガス流路13から分岐するように分岐ガス流路51が設けられており、この分岐ガス流路51には、大気側からガス流路13側への大気の流入のみを許可する逆止弁53が配置されている。
c) Next, the check valve 53 which is a main part of the present embodiment will be described.
As described above, in this embodiment, the gas flow path 13 between the check valves 21 a and 21 b and the product tank 23 is provided with the branch gas flow path 51 so as to branch from the gas flow path 13. The branch gas flow path 51 is provided with a check valve 53 that permits only the inflow of air from the atmosphere side to the gas flow path 13 side.

この逆止弁53は、流路の差圧によって機械的に作動する弁であり、(大気圧よりガス流路13内の圧力が低い場合に)大気側からガス流路13側へと空気が流入する方向に弁が開き、(ガス流路13内の圧力が大気圧より高い場合に)ガス流路13側から大気側へガスが流出する方向には弁が閉じるように働くものである。   This check valve 53 is a valve that is mechanically actuated by the differential pressure of the flow path, and when air flows from the atmosphere side to the gas flow path 13 side (when the pressure in the gas flow path 13 is lower than the atmospheric pressure). The valve opens in the inflow direction and works so that the valve closes in the direction in which the gas flows out from the gas flow path 13 side to the atmosphere side (when the pressure in the gas flow path 13 is higher than the atmospheric pressure).

従って、酸素濃縮装置1の運転を停止した際に、窒素吸着容器7a、7bの一方が負圧になることによりガス流路13内が負圧になった場合には、逆止弁53が開弁して大気がガス流路13内に導入されるので、その負圧が解消される。   Therefore, when the operation of the oxygen concentrator 1 is stopped, if one of the nitrogen adsorption containers 7a and 7b becomes negative pressure and the inside of the gas flow path 13 becomes negative pressure, the check valve 53 is opened. Since the atmospheric air is introduced into the gas flow path 13, the negative pressure is eliminated.

詳しくは、酸素濃縮装置1の運転を停止した際に、酸素供給口35に接続されたカニューラ37のチューブ(もしくはカニューラ37が接続された延長チューブ)39に結露が発生し、前記図7に示す様に、結露した水滴がチューブ39の断面を覆ってしまうほど凝集した場合(即ちチューブ39を閉塞した場合)に、窒素吸着容器7a、7b内部(従ってガス流路13内)が負圧となって、窒素吸着容器7a、7b内への吸引作用が起こるようなときには、逆止弁53が開弁し、大気側からガス流路13側に空気が流入することで、窒素吸着容器7a、7b内が負圧になるのを防ぐことができる。なお、図1ではガスが吸引される方向を点線の矢印で示してある。   Specifically, when the operation of the oxygen concentrator 1 is stopped, dew condensation occurs in the tube of the cannula 37 connected to the oxygen supply port 35 (or the extension tube to which the cannula 37 is connected) 39, as shown in FIG. Similarly, when the condensed water droplets aggregate so as to cover the cross section of the tube 39 (that is, when the tube 39 is closed), the inside of the nitrogen adsorption containers 7a and 7b (therefore, inside the gas flow path 13) becomes a negative pressure. When the suction action into the nitrogen adsorption containers 7a and 7b occurs, the check valve 53 is opened and air flows into the gas flow path 13 from the atmosphere side, so that the nitrogen adsorption containers 7a and 7b are opened. The inside can be prevented from becoming negative pressure. In FIG. 1, the direction in which gas is sucked is indicated by dotted arrows.

これにより、酸素供給口35と接続されたチューブ39に溜まった結露水が装置内部(詳しくは、酸素供給口35から加湿器31との間のガス流路13)へ吸引されるのを防ぐことができる。その結果、逆流した結露水によって、装置内部のガス流路13が雑菌の温床となることを防止でき、また、酸素供給口35と加湿器31との間に配置された流量計33の故障を防止できる。   This prevents the condensed water accumulated in the tube 39 connected to the oxygen supply port 35 from being sucked into the apparatus (specifically, the gas flow path 13 between the oxygen supply port 35 and the humidifier 31). Can do. As a result, it is possible to prevent the gas flow path 13 inside the apparatus from becoming a hotbed of germs due to the backflow of dew condensation water, and to prevent a failure of the flow meter 33 disposed between the oxygen supply port 35 and the humidifier 31. Can be prevented.

なお、ガス流路13には、分岐ガス流路51より上流側に逆止弁21a、21bが設けられているが、逆止弁21a、21bの特性上、若干のガスのリークがあるので(特に窒素吸着装置7a、7b側が負圧の場合)、酸素濃縮装置1が停止した場合には、ガス流路13内が負圧になって、上述の様に結露水が装置内部に吸引され易くなる。そのため、本実施例の様に逆止弁53を配置する構成が有効である。   The gas flow path 13 is provided with check valves 21a and 21b upstream from the branch gas flow path 51. However, due to the characteristics of the check valves 21a and 21b, there is a slight gas leak ( When the oxygen concentrating device 1 is stopped, particularly when the nitrogen adsorbing devices 7a and 7b are at a negative pressure), when the oxygen concentrating device 1 is stopped, the inside of the gas flow path 13 becomes a negative pressure and the condensed water is easily sucked into the device as described above. Become. Therefore, a configuration in which the check valve 53 is arranged as in this embodiment is effective.

特に、酸素濃縮ガスの流量が少なく設定されている場合(例えば最大流量の10%以下)には、酸素濃縮ガスの湿度が高くなって、チューブ39内で結露が発生し易くなるので、本実施例の逆止弁53によって、結露水の逆流を防止する構成は極めて有効である。   In particular, when the flow rate of the oxygen-enriched gas is set to be small (for example, 10% or less of the maximum flow rate), the humidity of the oxygen-enriched gas becomes high and condensation easily occurs in the tube 39. A configuration that prevents the backflow of condensed water by the check valve 53 of the example is extremely effective.

また、本実施例では、窒素吸着容器7a、7bから流量設定器27までの間に、逆止弁53を配置したので、酸素濃縮装置1の稼働中における酸素濃縮ガスのリークを防止できる。   Further, in the present embodiment, since the check valve 53 is disposed between the nitrogen adsorption containers 7a and 7b and the flow rate setting device 27, it is possible to prevent the oxygen concentrated gas from leaking during the operation of the oxygen concentrator 1.

ガス流路13に接続された分岐ガス流路51に大気と連通する逆止弁53を配置したので、稼働中には逆止弁53からのガス漏れのリスクが発生する。逆止弁53では、リシール圧(弁体が閉じ始めて、弁体のリーク量がある規定の量まで減少した時の圧力)が存在するが、稼働中はリシール圧以上の圧力がガス流路13内にかかっていないと弁体が完全に閉じることができず、ガス漏れが発生する。従って、ガス流路13の中でも圧力が高い側の窒素吸着容器7a、7bから流量設定器27までの間に逆止弁53を配置することで、酸素濃縮ガスのリークを防止できる。   Since the check valve 53 communicating with the atmosphere is arranged in the branch gas flow path 51 connected to the gas flow path 13, there is a risk of gas leakage from the check valve 53 during operation. In the check valve 53, reseal pressure (pressure when the valve body starts to close and the leak amount of the valve body is reduced to a certain amount) exists, but the pressure higher than the reseal pressure during operation is the gas flow path 13. If it is not inside, the valve body cannot be completely closed, and gas leakage occurs. Therefore, by disposing the check valve 53 between the nitrogen adsorption containers 7a and 7b on the higher pressure side in the gas flow path 13 and the flow rate setting device 27, leakage of the oxygen-enriched gas can be prevented.

更に、本実施例では、上述した様に逆止弁53を配置する構成によって、加湿器31の下流側に遮断弁を設ける必要がないので、当然ながら、遮断弁の不具合は発生しない。また、電磁弁ではなく差圧によって機械的に作動する逆止弁53を用いるで、装置の消費電力を節約できるという利点がある。   Furthermore, in the present embodiment, since the check valve 53 is arranged as described above, it is not necessary to provide a shut-off valve on the downstream side of the humidifier 31, so that the trouble of the shut-off valve does not occur. Moreover, there is an advantage that the power consumption of the apparatus can be saved by using the check valve 53 that is mechanically operated by the differential pressure instead of the electromagnetic valve.

(他の変形例)
なお、他の変形例として、図2(b)に示す構造の加湿器61を用いてもよい。この加湿器61は、上流側配管63の開口端63aが、水中に配置してあり、上流側配管63の水面より高い位置に、水の吸引防止用の開口65が形成してある。
(Other variations)
As another modification, a humidifier 61 having a structure shown in FIG. 2B may be used. In the humidifier 61, the opening end 63a of the upstream pipe 63 is disposed in water, and an opening 65 for preventing water suction is formed at a position higher than the water surface of the upstream pipe 63.

更に、他の変形例として、図2(c)に示す構造の加湿装置71を用いてもよい。この加湿装置71は、実施例1と同様な加湿器73を備えるとともに、加湿器73の上流側配管75に、(空気中の水分を用いて加湿を行う)周知の中空糸加湿器77を配置したものである。   Furthermore, as another modified example, a humidifier 71 having a structure shown in FIG. 2C may be used. The humidifier 71 includes a humidifier 73 similar to that of the first embodiment, and a well-known hollow fiber humidifier 77 (which humidifies using moisture in the air) is disposed in the upstream pipe 75 of the humidifier 73. It is a thing.

このような加湿装置71を用いる場合には、酸素濃縮ガスの湿度が高くなり、チューブ39内で結露が発生し易くなるので、上述した本実施例の逆止弁53を配置して、水分の逆流を防止する構成は極めて有効である。   When such a humidifier 71 is used, the humidity of the oxygen-enriched gas becomes high, and condensation easily occurs in the tube 39. Therefore, the check valve 53 of the present embodiment described above is arranged to remove moisture. A configuration that prevents backflow is extremely effective.

次に、実施例2について説明するが、前記実施例1と同様な内容の説明は省略する。
図3に示す様に、本実施例の酸素濃縮装置81は、前記実施例1と同様に、コンプレッサ83、各切換弁85a〜85d、窒素吸着容器87a、87b、逆止弁89a、89b、ガス流路91、製品タンク93、圧力調整器95、流量設定器97、バクテリアフィルタ99、加湿器101、流量計103、酸素供給口105等を備えるとともに、酸素供給口105には、カニューラ107のチューブ(もしくはカニューラ107が接続された延長チューブ)109が接続されている。
Next, the second embodiment will be described, but the description of the same contents as the first embodiment will be omitted.
As shown in FIG. 3, the oxygen concentrator 81 of the present embodiment is similar to the first embodiment in that the compressor 83, the switching valves 85a to 85d, the nitrogen adsorption vessels 87a and 87b, the check valves 89a and 89b, the gas A flow path 91, a product tank 93, a pressure regulator 95, a flow rate setting device 97, a bacteria filter 99, a humidifier 101, a flow meter 103, an oxygen supply port 105, and the like are provided. 109 (or an extension tube to which the cannula 107 is connected) 109 is connected.

本実施例においても、ガス流路91から分岐する分岐ガス流路111に、前記実施例1と同様に逆止弁113が接続されているとともに、特に、逆止弁113の大気側に、外側フィルタ115が配置されている。   Also in the present embodiment, the check valve 113 is connected to the branch gas flow path 111 branched from the gas flow path 91 as in the first embodiment. A filter 115 is arranged.

この外側フィルタ115は、多孔質の(ポーラスな)エアフィルタであり、10μm以上の塵埃等の異物が通過できないような性能(ろ過精度)を有している。
従って、本実施例では、前記実施例1と同様な効果を奏するとともに、逆止弁113の大気側の分岐ガス流路111に外側フィルタ115を備えているので、大気側から塵埃等の異物が逆止弁113の内部に侵入することを防止できる。これにより、逆止弁113に異物が噛み込むこと等による逆止弁113の動作不良(開閉不良など)を防止できる。
This outer filter 115 is a porous (porous) air filter and has a performance (filtration accuracy) that foreign matter such as dust of 10 μm or more cannot pass through.
Therefore, in this embodiment, the same effect as in the first embodiment is obtained, and the outer side filter 115 is provided in the branch gas passage 111 on the atmosphere side of the check valve 113. Intrusion into the check valve 113 can be prevented. As a result, it is possible to prevent malfunction of the check valve 113 (open / close failure, etc.) due to foreign matter biting into the check valve 113 or the like.

(他の変形例)
なお、他の変形例として、図4に示す様に、ガス流路121の分岐ガス流路123に、前記実施例1と同様な逆止弁125を設け、更に、逆止弁125の大気側に前記実施例2と同様な外側フィルタ127を配置するとともに、逆止弁125のガス流路121側に外側フィルタ127と同様な性能を有する内側フィルタ129を配置してもよい。
(Other variations)
As another modification, as shown in FIG. 4, a check valve 125 similar to that of the first embodiment is provided in the branch gas flow path 123 of the gas flow path 121, and the check valve 125 is further connected to the atmosphere side. In addition, an outer filter 127 similar to that of the second embodiment may be disposed, and an inner filter 129 having the same performance as the outer filter 127 may be disposed on the gas flow path 121 side of the check valve 125.

この場合には、ガス流路121側に異物が発生した場合でも、その異物が逆止弁125に侵入することを防止でき、よって、逆止弁125の動作不良を防止できる。
<実験例>
次に、酸素濃縮装置の停止時に、装置内のガス流路に負圧が発生することを確認した実験例について説明する。
In this case, even when a foreign substance is generated on the gas flow path 121 side, the foreign substance can be prevented from entering the check valve 125, and thus the malfunction of the check valve 125 can be prevented.
<Experimental example>
Next, an experimental example in which it is confirmed that a negative pressure is generated in the gas flow path in the apparatus when the oxygen concentrator is stopped will be described.

実験には、前記図6に示す従来の酸素濃縮装置と(本発明例として)前記実施例1の酸素濃縮装置を用いた。なお、酸素濃縮装置としては、5L器(最大供給流量5L/分)を用い、加湿する構成としては、図2(c)に示す加湿装置を用いた。   In the experiment, the conventional oxygen concentrator shown in FIG. 6 and the oxygen concentrator of Example 1 (as an example of the present invention) were used. As the oxygen concentrator, a 5 L vessel (maximum supply flow rate 5 L / min) was used, and as the configuration for humidification, the humidifier shown in FIG. 2C was used.

そして、設定流量を0.5L/分として、各酸素濃縮装置を、室温35℃、湿度90%RHの部屋に配置して一晩(12時間)稼働した。その後、各酸素濃縮装置の運転を停止して、室温5℃の部屋(湿度は成り行き)に移動し、酸素濃縮装置の停止後における、加湿器と酸素供給口との間のガス流路内の圧力の変化を測定した。その結果を図5に示す。   Each oxygen concentrator was placed in a room at a room temperature of 35 ° C. and a humidity of 90% RH at a set flow rate of 0.5 L / min and operated overnight (12 hours). After that, the operation of each oxygen concentrator is stopped and the room is moved to a room temperature of 5 ° C. (humidity is expected). After the oxygen concentrator is stopped, the oxygen concentrator in the gas flow path between the humidifier and the oxygen supply port The change in pressure was measured. The result is shown in FIG.

図5(a)から明らかなように、従来の酸素濃縮装置の場合には、酸素濃縮装置の停止後からガス流路内の圧力が大きく低下していることが分かる。
それに対して、本発明例の場合には、図5(b)に示す様に、酸素濃縮装置の停止後も、ガス流路内の圧力が殆ど低下していないことが分かる。
As is clear from FIG. 5A, in the case of the conventional oxygen concentrator, it can be seen that the pressure in the gas flow channel has greatly decreased after the oxygen concentrator is stopped.
On the other hand, in the case of the present invention example, as shown in FIG. 5 (b), it can be seen that the pressure in the gas flow channel hardly decreases even after the oxygen concentrator is stopped.

よって、本発明例の場合には、チューブ内の結露水を吸引する恐れがなく、装置の安全性上極めて好ましいことは明らかである。
[特許請求の範囲と実施例との関係]
本発明における空気供給手段は、実施例1等のコンプレッサに該当し、加減圧切換手段は、実施例1等の切換弁に該当する。
Therefore, in the case of the example of the present invention, it is clear that there is no fear of sucking the condensed water in the tube, which is extremely preferable in terms of the safety of the apparatus.
[Relationship between Claims and Examples]
The air supply means in the present invention corresponds to the compressor of the first embodiment, and the pressure increase / decrease switching means corresponds to the switching valve of the first embodiment.

以上、本発明の実施例について説明したが、本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施することが可能である。   As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example, In the range which does not deviate from the summary of this invention, it is possible to implement in various aspects.

(1)例えば、窒素吸着容器の数は、2個にかぎらず、1個又は3個以上の窒素吸着容器であってもよい。
(2)また、逆止弁を設ける位置は、窒素吸着容器と流量設定器の間に限らず、流量設定器の下流側(流量設定器と酸素供給口の間:例えば加湿器と酸素供給口の間)でもよい。
(1) For example, the number of nitrogen adsorption containers is not limited to two, and may be one or three or more nitrogen adsorption containers.
(2) The position where the check valve is provided is not limited to the position between the nitrogen adsorption container and the flow rate setting device, but the downstream side of the flow rate setting device (between the flow rate setting device and the oxygen supply port: for example, the humidifier and the oxygen supply port. Between).

更に、逆止弁を設ける位置は、分岐ガス流路に限らず、ガス流路(例えばそのチューブ状の配管)に直接に配置してよく、或いは、例えば製品タンクなどに逆止弁を接続してもよい。   Furthermore, the position where the check valve is provided is not limited to the branch gas flow path, and may be disposed directly in the gas flow path (for example, the tubular pipe), or the check valve is connected to a product tank, for example. May be.

すなわち、(窒素吸着容器から酸素供給口の間の)ガス流路側に大気を導入できれば、その配置に特に制限はない。
(3)外側フィルタや内側フィルタの性能としては、5〜10μmの範囲内の所定値以上の異物を捕集する性能(ろ過精度)を有するフィルタを採用できる。
That is, if the atmosphere can be introduced to the gas flow path side (between the nitrogen adsorption container and the oxygen supply port), the arrangement is not particularly limited.
(3) As a performance of the outer filter or the inner filter, a filter having a performance (filtration accuracy) of collecting foreign matters having a predetermined value or more within a range of 5 to 10 μm can be adopted.

1、81…酸素濃縮装置
5、83…コンプレッサ
7a、7b、87a、87b…窒素吸着容器
9a、9b、9c、9d、85a、85b、85c、85d…切換弁
13、91、121…ガス流路
27、97…流量設定器
31、61、73、101…加湿器
33、103…流量計
35、105…酸素供給口
37、107…カニューラ
39、109…チューブ
51、111、123…分岐ガス流路
53、113、125…(大気を導入する)逆止弁
115、127…外側フィルタ
129…内側フィルタ
DESCRIPTION OF SYMBOLS 1, 81 ... Oxygen concentrator 5, 83 ... Compressor 7a, 7b, 87a, 87b ... Nitrogen adsorption container 9a, 9b, 9c, 9d, 85a, 85b, 85c, 85d ... Switching valve 13, 91, 121 ... Gas flow path 27, 97 ... Flow rate setting device 31, 61, 73, 101 ... Humidifier 33, 103 ... Flow meter 35, 105 ... Oxygen supply port 37, 107 ... Cannula 39, 109 ... Tube 51, 111, 123 ... Branch gas flow path 53, 113, 125 ... (introducing air) check valves 115, 127 ... outer filter 129 ... inner filter

Claims (4)

酸素より窒素を優先的に吸着する吸着剤を充填した窒素吸着容器と、
前記窒素吸着容器に空気を供給する空気供給手段と、
前記窒素吸着容器の加圧減圧を制御する加減圧切換手段と、
前記窒素吸着容器にて生成された酸素濃縮ガスを装置外に供給する酸素供給口と、
前記窒素吸着容器から前記酸素供給口に到る酸素濃縮ガスのガス流路に配置されて、該酸素濃縮ガスを加湿する加湿器と、
を備えた圧力変動吸着型の酸素濃縮装置において、
前記窒素吸着容器から前記酸素供給口に到る酸素濃縮ガスのガス流路に、大気側から前記ガス流路側への大気の流入が可能な逆止弁を配置したことを特徴とする酸素濃縮装置。
A nitrogen adsorption container filled with an adsorbent that preferentially adsorbs nitrogen over oxygen;
Air supply means for supplying air to the nitrogen adsorption container;
Pressurization and depressurization switching means for controlling pressurization and depressurization of the nitrogen adsorption container;
An oxygen supply port for supplying oxygen-enriched gas generated in the nitrogen adsorption container to the outside of the apparatus;
A humidifier disposed in a gas flow path of the oxygen-enriched gas from the nitrogen adsorption container to the oxygen supply port, and humidifies the oxygen-enriched gas;
In the pressure fluctuation adsorption type oxygen concentrator equipped with
An oxygen concentrator comprising a check valve capable of inflowing air from the atmosphere side to the gas flow path side in a gas flow path of the oxygen concentrated gas from the nitrogen adsorption container to the oxygen supply port .
前記ガス流路のうち、前記窒素吸着容器から流量設定器までの間に、前記逆止弁を配置したことを特徴とする請求項1に記載の酸素濃縮装置。   2. The oxygen concentrator according to claim 1, wherein the check valve is arranged between the nitrogen adsorption container and a flow rate setting unit in the gas flow path. 前記逆止弁の大気側に、10μm以上の異物を捕集する外側フィルタを設けたことを特徴とする請求項1又は2に記載の酸素濃縮装置。   The oxygen concentrator according to claim 1 or 2, wherein an outer filter that collects foreign matters of 10 µm or more is provided on the atmosphere side of the check valve. 更に、前記逆止弁の前記ガス流路側に、10μm以上の異物を捕集する内側フィルタを設けたことを特徴とする請求項3に記載の酸素濃縮装置。   The oxygen concentrator according to claim 3, further comprising an inner filter that collects foreign matters of 10 μm or more on the gas flow path side of the check valve.
JP2011264970A 2011-12-02 2011-12-02 Oxygen concentrator Active JP5977022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264970A JP5977022B2 (en) 2011-12-02 2011-12-02 Oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264970A JP5977022B2 (en) 2011-12-02 2011-12-02 Oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2013116217A true JP2013116217A (en) 2013-06-13
JP5977022B2 JP5977022B2 (en) 2016-08-24

Family

ID=48711205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264970A Active JP5977022B2 (en) 2011-12-02 2011-12-02 Oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5977022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931296A (en) * 2015-06-16 2015-09-23 国网天津市电力公司 Device used for preventing inverse suction during particle concentration sampling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089831A (en) * 2007-10-05 2009-04-30 Ngk Spark Plug Co Ltd Oxygen concentrator
JP2009119069A (en) * 2007-11-15 2009-06-04 Ngk Spark Plug Co Ltd Oxygen concentrator
JP2010227517A (en) * 2009-03-27 2010-10-14 Metoran:Kk Oxygen concentrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089831A (en) * 2007-10-05 2009-04-30 Ngk Spark Plug Co Ltd Oxygen concentrator
JP2009119069A (en) * 2007-11-15 2009-06-04 Ngk Spark Plug Co Ltd Oxygen concentrator
JP2010227517A (en) * 2009-03-27 2010-10-14 Metoran:Kk Oxygen concentrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931296A (en) * 2015-06-16 2015-09-23 国网天津市电力公司 Device used for preventing inverse suction during particle concentration sampling
CN104931296B (en) * 2015-06-16 2017-12-12 国网天津市电力公司 For preventing particle concentration from the device of suck-back phenomenon occurring in sampling

Also Published As

Publication number Publication date
JP5977022B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5080568B2 (en) Oxygen concentrator
KR101325472B1 (en) Oxygen concentrator
US9199847B2 (en) Method and arrangement for generating oxygen
JP4601620B2 (en) Method and apparatus for providing a source of humidified oxygen suitable for breathing
KR102417781B1 (en) Oxygen concentration device
JP5281468B2 (en) Oxygen concentrator
JP2671436B2 (en) Method for producing medical oxygen-enriched air
JP6604950B2 (en) Oxygen separator with rapid diagnosis
JP2007044116A (en) Pressure-fluctuation adsorption type oxygen concentrator
JP5977022B2 (en) Oxygen concentrator
JP5563435B2 (en) Oxygen concentrator
JP5390641B2 (en) Humidifier and oxygen concentrator using the same
JP5226282B2 (en) Oxygen concentrator
WO2011087113A1 (en) Oxygen enrichment device and humidifier
JP2015043787A (en) Oxygen concentrator
JP5922784B2 (en) Oxygen concentrator
JP4594581B2 (en) Humidifier
JP2001000553A (en) Oxygen thickening device for oxygen therapy
JP3790380B2 (en) Medical oxygen concentrator
JP5065714B2 (en) Oxygen concentrator
JP2006061636A (en) Oxygen concentrator
JP2007068572A (en) Tool for oxygen enricher and oxygen enricher
JP2000135287A (en) Oxygen concentrating device for oxygen therapy
JP2007282652A (en) Oxygen thickener and its oxygen concentration method
JP5955555B2 (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5977022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250