JP2013114095A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2013114095A
JP2013114095A JP2011261148A JP2011261148A JP2013114095A JP 2013114095 A JP2013114095 A JP 2013114095A JP 2011261148 A JP2011261148 A JP 2011261148A JP 2011261148 A JP2011261148 A JP 2011261148A JP 2013114095 A JP2013114095 A JP 2013114095A
Authority
JP
Japan
Prior art keywords
optical
scanning direction
sub
scanning
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011261148A
Other languages
Japanese (ja)
Other versions
JP2013114095A5 (en
JP5930679B2 (en
Inventor
Shuichi Kurokawa
周一 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011261148A priority Critical patent/JP5930679B2/en
Publication of JP2013114095A publication Critical patent/JP2013114095A/en
Publication of JP2013114095A5 publication Critical patent/JP2013114095A5/ja
Application granted granted Critical
Publication of JP5930679B2 publication Critical patent/JP5930679B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical scanner of which the variation in pitch interval due to assembly errors and manufacturing errors of optical components can be suppressed.SOLUTION: The optical scanner includes: a light source provided with a plurality of light emitting points spaced at least in a main scanning direction; deflecting means which deflects a plurality of luminous fluxes from the light source; and an imaging optical system which images the plurality of luminous fluxes deflected by the deflecting means, on a scanned surface. With respect to the imaging optical system, a shape within a main scanning cross section of an optical plane where an absolute value of power in a sub-scanning direction is largest in an entire effective scanning area satisfies |Δθ|≤0.1/D wherein: D (mm) is an amount of spacing within the main scanning cross section on the optical plane where the absolute value of power in the sub-scanning direction is largest, between principal rays A and B of luminous fluxes from two light emitting points farthest from each other in the main scanning direction out of the plurality of light emitting points and satisfies D≥0.35; and Δθ(rad) is an angle formed between a normal in an emission position of a center line L between the principal rays A and B on the optical plane where the absolute value of power in the sub-scanning direction is largest and the center line L within the main scanning cross section.

Description

本発明は光走査装置に関し、特に複数の光束を偏向走査することで潜像を形成し、トナー等により可視化した像を転写部材に転写、定着させることで画像情報の記録を行うレーザビームプリンタやデジタル複写機等の画像形成装置に好適な光走査装置に関するものである。   The present invention relates to an optical scanning device, and more particularly to a laser beam printer that forms a latent image by deflecting and scanning a plurality of light beams, and records image information by transferring and fixing an image visualized with toner or the like to a transfer member. The present invention relates to an optical scanning device suitable for an image forming apparatus such as a digital copying machine.

複数の光束を偏向走査することで潜像を形成する光走査装置は、電子写真プロセスを有するレーザビームプリンタやデジタル複写機等に広く利用されている。図14は、従来の光走査装置の主走査(被走査面上をレーザビームが走査する方向)断面図を示している。複数の発光点を有する光源手段10からは画像情報に応じて変調され明滅する複数の光束が射出され、コリメータレンズ20を通過した後、シリンドリカルレンズ30に入射する。シリンドリカルレンズ30は、主走査方向と光軸の双方に直行する副走査方向にのみパワーを有しており、シリンドリカルレンズ30を通過した各光束は開口絞り40により光束幅を制限され、偏向手段であるポリゴンミラー50の反射面51の近傍に主走査方向に長い線像として結像される。ポリゴンミラー50により反射偏向された各光束は、結像光学系60により感光ドラム面等の被走査面70上に光スポットとして結像され、ポリゴンミラー50が回転することにより被走査面70上を光スポットが走査することで潜像を形成する。   Optical scanning devices that form a latent image by deflecting and scanning a plurality of light beams are widely used in laser beam printers and digital copying machines having an electrophotographic process. FIG. 14 is a cross-sectional view of a main scanning (direction in which a laser beam scans a surface to be scanned) of a conventional optical scanning device. The light source means 10 having a plurality of light emitting points emits a plurality of light fluxes that are modulated and blinked according to image information, pass through the collimator lens 20, and then enter the cylindrical lens 30. The cylindrical lens 30 has power only in the main scanning direction and the sub-scanning direction orthogonal to the optical axis, and the light beam width that passes through the cylindrical lens 30 is limited by the aperture stop 40 and is deflected by the deflecting unit. A line image that is long in the main scanning direction is formed in the vicinity of the reflecting surface 51 of a certain polygon mirror 50. Each light beam reflected and deflected by the polygon mirror 50 is imaged as a light spot on the scanning surface 70 such as the photosensitive drum surface by the imaging optical system 60, and the polygon mirror 50 rotates to cause the surface of the scanning surface 70 to rotate. A latent image is formed by scanning the light spot.

しかしながら、光源手段10や結像光学系60等の光学部品に製造時や組立時に傾きやシフトといった製造誤差・組立誤差が生じると、複数の光束が被走査面70上で光スポットとして結像される位置に設計値からのズレが発生する。特に副走査方向のズレ量については、主走査方向の走査位置によりズレ量が異なると共に各々の光束毎にそのズレ量が異なるために、主走査方向の走査位置に応じて各光束が被走査面70上に描く走査線の副走査方向の間隔(以下、ピッチ間隔と称す)にムラが生じる。   However, when a manufacturing error or an assembly error such as tilt or shift occurs in an optical component such as the light source means 10 or the imaging optical system 60 during manufacturing or assembly, a plurality of light beams are imaged as light spots on the scanned surface 70. Deviation from the design value occurs at the position. In particular, the amount of deviation in the sub-scanning direction differs depending on the scanning position in the main scanning direction, and the amount of deviation differs for each light beam. Unevenness occurs in the interval in the sub-scanning direction of the scanning lines drawn on 70 (hereinafter referred to as pitch interval).

この問題を解決する為に、例えば特許文献1では結像光学系のfθ係数、隣り合う発光点の主走査方向の間隔に応じて、コリメータレンズの焦点距離を長くし、主走査方向の光束幅を制限する主走査絞りを偏向手段であるポリゴンミラーに近づけることで隣接した2光束の主走査方向の間隔を狭めて結像光学系を構成する結像レンズ面での入射角差を低減することで、組立誤差・製造誤差によるピッチ間隔の変動量を抑える方法が開示されている。   In order to solve this problem, for example, in Patent Document 1, the focal length of the collimator lens is increased in accordance with the fθ coefficient of the imaging optical system and the interval between adjacent light emitting points in the main scanning direction, and the light flux width in the main scanning direction. By reducing the main scanning stop that restricts the distance from the polygon mirror that is the deflecting means, the interval between the two adjacent light beams in the main scanning direction is narrowed to reduce the incident angle difference on the imaging lens surface constituting the imaging optical system. Thus, a method for suppressing the variation in pitch interval due to assembly errors and manufacturing errors is disclosed.

特開2001−147388号公報JP 2001-147388 A

しかしながら、特許文献1に開示された従来技術では、コリメータレンズの焦点距離、及び主走査絞りの位置に制限があり、入射光学系の設計自由度が落ちてしまう。
そこで、本発明の目的は、コリメータレンズの焦点距離や主走査絞りの位置に制限を設けることなく、光学部品の製造誤差・組立誤差によるピッチ間隔の変動を低減した光走査装置を提供することである。
However, in the prior art disclosed in Patent Document 1, the focal length of the collimator lens and the position of the main scanning stop are limited, and the design freedom of the incident optical system is reduced.
Accordingly, an object of the present invention is to provide an optical scanning device that reduces variations in pitch interval due to manufacturing errors and assembly errors of optical components without limiting the focal length of the collimator lens and the position of the main scanning aperture. is there.

上記目的を達成するために、本発明は、少なくとも主走査方向に離間した複数の発光点を備えた光源手段と、前記光源手段からの複数の光束を偏向させる偏向手段と、前記偏向手段により偏向された複数の光束を被走査面上に結像させる結像光学系と、を有し、前記結像光学系は、前記複数の発光点のうち最も主走査方向に離間している2つの発光点から射出される光束の主光線を各々A、Bとし、前記主光線A、Bの中央を通る線である中央線をLとした時、有効走査域全域において、副走査方向のパワーの絶対値が最も大きい光学面上での前記主光線AとBの主走査断面内における離間量D(mm)は、

Figure 2013114095
を満足し、主走査断面内において、前記副走査方向のパワーの絶対値が最も大きい光学面の前記中央線Lの射出位置における法線と前記中央線Lとの成す角をΔθ(rad)とした時、前記副走査方向のパワーの絶対値が最も大きい光学面の主走査断面内の形状は、
Figure 2013114095
を満足することを特徴とする。 In order to achieve the above object, the present invention provides light source means having a plurality of light emitting points spaced at least in the main scanning direction, deflecting means for deflecting a plurality of light beams from the light source means, and deflecting by the deflecting means. An imaging optical system that forms an image on the surface to be scanned, and the imaging optical system emits two of the plurality of light emitting points that are most separated in the main scanning direction. When the principal rays of the light beam emitted from the point are A and B, respectively, and the center line that passes through the center of the principal rays A and B is L, the absolute power in the sub-scanning direction is obtained over the entire effective scanning area. The distance D (mm) of the principal rays A and B in the main scanning section on the optical surface having the largest value is
Figure 2013114095
And the angle formed between the normal line at the emission position of the central line L of the optical surface having the largest absolute value of the power in the sub-scanning direction and the central line L in the main scanning section is Δθ (rad) The shape in the main scanning section of the optical surface where the absolute value of the power in the sub-scanning direction is the largest is
Figure 2013114095
It is characterized by satisfying.

本発明によれば、コリメータレンズの焦点距離や主走査絞りの位置に制限を設けることなく、光学部品の組立誤差、製造誤差によるピッチ間隔の変動を抑制した光走査装置を提供することができる。   According to the present invention, it is possible to provide an optical scanning device that suppresses variations in pitch interval due to assembly errors and manufacturing errors of optical components without limiting the focal length of the collimator lens and the position of the main scanning aperture.

本発明の第1の実施例の光走査装置の主走査断面図FIG. 3 is a main scanning sectional view of the optical scanning device according to the first embodiment of the present invention. 第1の実施例の2光束の主光線の光路の主走査断面図Main scanning sectional view of optical path of chief ray of two light beams of first embodiment 第1の実施例の2光束の主光線の光路とその中央を通る中央線の主走査断面拡大図The main scanning cross-sectional enlarged view of the center line passing through the optical path of the principal ray of the two luminous fluxes and the center of the first embodiment 第1の実施例の最も主走査方向に離間した2光束の離間量を示すグラフThe graph which shows the separation amount of 2 light beams most spaced apart in the main scanning direction of 1st Example 第1の実施例の中央線Lと面法線の成す角のグラフGraph of the angle formed by the center line L and the surface normal in the first embodiment 第1の実施例のサグ量dXと離間量Dの比を示すグラフGraph showing the ratio of the sag amount dX and the separation amount D of the first embodiment 第1の実施例の製造・組立誤差によるピッチ間隔の変動量を示すグラフThe graph which shows the variation | change_quantity of the pitch space | interval by the manufacture and assembly error of 1st Example 本発明の第2の実施例の光走査装置の主走査断面図FIG. 6 is a main scanning sectional view of an optical scanning device according to a second embodiment of the present invention. 第2の実施例の最も主走査方向に離間した2光束の離間量を示すグラフThe graph which shows the separation amount of two light beams most spaced apart in the main scanning direction of 2nd Example. 第2の実施例の中央線Lと面法線の成す角のグラフGraph of angle formed by center line L and surface normal of second embodiment 第2の実施例のサグ量dXと離間量Dの比を示すグラフGraph showing the ratio of the sag amount dX and the separation amount D in the second embodiment 第2の実施例の製造・組立誤差によるピッチ間隔の変動量を示すグラフThe graph which shows the variation | change_quantity of the pitch space | interval by the manufacture and assembly error of 2nd Example 第2の実施例の副走査倍率の一様性を示すグラフThe graph which shows the uniformity of the subscanning magnification of 2nd Example 従来の光走査装置の主走査断面図Main scanning sectional view of a conventional optical scanning device

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施例の光走査装置の主走査断面図である。複数の発光点を有する光源手段である半導体レーザアレイ10の各々の発光点から射出された複数の光束は、張り合わせレンズからなるコリメータレンズ20により各々が略平行な光束に変換される。コリメータレンズ2から射出された各光束は、副走査方向にのみパワーを有するシリンドリカルレンズ30に入射し、副走査方向にのみ屈折されて主走査断面内では略平行光束のまま、副走査断面内においては収束光として射出される。その後、各光束は開口絞り40により光束幅を制限された後、偏向手段であるポリゴンミラー50の反射面51の近傍に主走査方向に長い線像として結像される。ポリゴンミラー50により偏向反射された各光束は結像光学系60により被走査面である感光ドラム面70上(被走査面上)に光スポットとして結像される。ポリゴンミラー50が図中矢印方向に回転することにより感光ドラム面70上を光スポットが走査し、静電潜像を形成する。   FIG. 1 is a main scanning sectional view of an optical scanning device according to a first embodiment of the present invention. A plurality of light beams emitted from each light emission point of the semiconductor laser array 10 which is a light source means having a plurality of light emission points are converted into substantially parallel light beams by a collimator lens 20 formed of a bonding lens. Each light beam emitted from the collimator lens 2 enters a cylindrical lens 30 having power only in the sub-scanning direction, is refracted only in the sub-scanning direction, remains substantially parallel in the main scanning cross section, and remains in the sub scanning cross section. Is emitted as convergent light. After that, each light beam is limited in its width by the aperture stop 40, and then formed as a long line image in the main scanning direction in the vicinity of the reflecting surface 51 of the polygon mirror 50 which is a deflecting means. Each light beam deflected and reflected by the polygon mirror 50 is imaged as a light spot by the imaging optical system 60 on the photosensitive drum surface 70 (scanned surface) which is a scanned surface. As the polygon mirror 50 rotates in the direction of the arrow in the figure, the light spot scans on the photosensitive drum surface 70 to form an electrostatic latent image.

本発明の光走査装置は、複数の発光点のうち最も主走査方向に離間している2つの発光点から射出される光束の主光線をA、Bとし、主光線AとBの中央を通る線である中央線をLとした時、有効走査域全域において、副走査方向のパワーの絶対値が最も大きい光学面上での主光線AとBの主走査断面内における離間量D(mm)が、

Figure 2013114095
を満足し、かつ、主走査断面内において、副走査方向のパワーの絶対値が最も大きい光学面の中央線Lの射出位置における法線と中央線Lとの成す角をΔθ(rad)とした時、副走査方向のパワーの絶対値が最も大きい光学面の主走査断面内の形状が、
Figure 2013114095
を満足するように構成している。 In the optical scanning device of the present invention, the principal rays of the light beam emitted from the two light emitting points that are the most separated in the main scanning direction among the plurality of light emitting points are A and B, and pass through the center of the principal rays A and B. When the center line, which is a line, is L, the distance D (mm) of the principal rays A and B in the main scanning section on the optical surface having the largest absolute value of power in the sub-scanning direction in the entire effective scanning area But,
Figure 2013114095
And the angle formed by the normal and the center line L at the emission position of the center line L of the optical surface having the largest absolute value of power in the sub-scanning direction in the main scanning section is Δθ (rad) The shape in the main scanning section of the optical surface where the absolute value of the power in the sub-scanning direction is the largest,
Figure 2013114095
It is configured to satisfy.

このように結像光学系60の光学面を構成することで、製造誤差・組立誤差によるピッチ間隔の変動量に対する結像レンズ62の敏感度を低減することが出来る。表1に、第1の実施例の光走査装置における走査光学系の諸数値を示す。ここで半導体レーザアレイ10は100(μm)間隔で並んだ4つの発光点を有しており、感光ドラム面70上で副走査方向に関して解像度に応じた画素密度となるように光軸周りに3.886(deg)だけ回転されている。この時、最も主走査方向に離間した2つの発光点は、主走査方向に299.310(μm)、副走査方向に20.331(μm)離間している。結像光学系60を構成する結像レンズ61、及び62の各光学面61a〜62bは主走査断面内の形状(母線形状)が表1に示された係数を用いて、

Figure 2013114095
により与えられる。ここで光軸と光学面との交点を原点とし、光軸方向をX軸、主走査断面内においてX軸と直行する方向をY軸としている。 By configuring the optical surface of the imaging optical system 60 in this way, it is possible to reduce the sensitivity of the imaging lens 62 to the amount of variation in pitch interval due to manufacturing errors and assembly errors. Table 1 shows various numerical values of the scanning optical system in the optical scanning device of the first embodiment. Here, the semiconductor laser array 10 has four light emitting points arranged at intervals of 100 (μm), and 3.886 around the optical axis so as to have a pixel density corresponding to the resolution in the sub-scanning direction on the photosensitive drum surface 70. It is rotated by (deg). At this time, the two light emitting points farthest apart in the main scanning direction are separated by 299.310 (μm) in the main scanning direction and 20.331 (μm) in the sub scanning direction. Each of the optical surfaces 61a to 62b of the imaging lenses 61 and 62 constituting the imaging optical system 60 has a shape (bus shape) in the main scanning section using the coefficients shown in Table 1.
Figure 2013114095
Given by. Here, the intersection of the optical axis and the optical surface is the origin, the optical axis direction is the X axis, and the direction perpendicular to the X axis in the main scanning section is the Y axis.

副走査断面内の形状(子線形状)は円弧で、Y軸に沿ってその曲率半径が変化しており、その曲率半径の変化は次式で与えられる。

Figure 2013114095
The shape (sub-wire shape) in the sub-scanning section is an arc, and its radius of curvature changes along the Y axis. The change in the radius of curvature is given by the following equation.
Figure 2013114095

Figure 2013114095
Figure 2013114095

副走査断面内の曲率半径の変化の仕方はレーザ側(図1における上側)と反レーザ側(図1における下側)で異なっており、レーザ側の係数には添え字uを附し、反レーザ側の係数には添え字lを附している。結像レンズ62の光学面62bに副走査方向のパワーが集中しており、副走査方向のパワーの絶対値を光学面62bが大きくすることで製造誤差・組立誤差によるピッチ間隔の変動量に対する他の光学面61a、61b、62aの敏感度を低減させることが出来る。より好ましくは、結像光学系の結像光学素子のうち副走査方向のパワーの絶対値が最も大きい光学面の副走査方向のパワーφs、結像光学系のすべての光学面のパワーを合成した副走査方向のパワーφtは、

Figure 2013114095
を満足するのが良い。本実施例においては、
Figure 2013114095
である。 The method of changing the radius of curvature in the sub-scanning cross section differs between the laser side (upper side in FIG. 1) and the counter-laser side (lower side in FIG. 1). A subscript l is attached to the laser side coefficient. The power in the sub-scanning direction is concentrated on the optical surface 62b of the imaging lens 62. By increasing the absolute value of the power in the sub-scanning direction on the optical surface 62b, the variation in pitch interval due to manufacturing errors and assembly errors is increased. The sensitivity of the optical surfaces 61a, 61b, and 62a can be reduced. More preferably, among the imaging optical elements of the imaging optical system, the power φs of the optical surface having the largest absolute value of the power in the sub-scanning direction is combined with the power φs in the sub-scanning direction and the powers of all the optical surfaces of the imaging optical system. The power φt in the sub-scanning direction is
Figure 2013114095
Good to be satisfied. In this example,
Figure 2013114095
It is.

図2は、半導体レーザアレイ10の4つの発光点のうち最も主走査方向に離間した2つの発光点からの各光束の任意の走査位置での主光線AとBの主走査断面内における光路図である。2つの発光点は主走査方向に離間しているため、コリメータレンズ2から射出される主光線AとBは各々光軸に対してある角度を有している。シリンドリカルレンズ30を通過後、主光線AとBは開口絞り40の中央で交差して、ポリゴンミラー50の反射面51にある間隔をもって到達する。ポリゴンミラー50により反射偏向された主光線AとBは、結像光学系60を介して感光ドラム面70に到達する。この際、感光ドラム面70上の同一走査位置に到達するよう書き出しタイミングを微小時間ずらし、主光線AとBに対するポリゴンミラー50の回転角を微小角異ならせている。主光線AとBはポリゴンミラー50の反射面51上で主走査方向に離間しているため、結像光学系60を構成する結像レンズ61、62の各光学面61a〜62b上においても主走査方向に離間している。   FIG. 2 is an optical path diagram in the main scanning section of the principal rays A and B at arbitrary scanning positions of the light beams from the two light emitting points farthest in the main scanning direction among the four light emitting points of the semiconductor laser array 10. It is. Since the two light emitting points are separated from each other in the main scanning direction, the principal rays A and B emitted from the collimator lens 2 each have an angle with respect to the optical axis. After passing through the cylindrical lens 30, the chief rays A and B intersect at the center of the aperture stop 40 and reach the reflecting surface 51 of the polygon mirror 50 with a certain distance. The principal rays A and B reflected and deflected by the polygon mirror 50 reach the photosensitive drum surface 70 via the imaging optical system 60. At this time, the writing timing is slightly shifted so as to reach the same scanning position on the photosensitive drum surface 70, and the rotation angles of the polygon mirror 50 with respect to the principal rays A and B are slightly different. Since the principal rays A and B are separated from each other in the main scanning direction on the reflection surface 51 of the polygon mirror 50, the principal rays A and B are also principally on the optical surfaces 61a to 62b of the imaging lenses 61 and 62 constituting the imaging optical system 60. They are separated in the scanning direction.

図3は、任意の走査位置における結像レンズ62に入射してから感光ドラム面70に至るまでの主光線AとBの光路及び、主光線AとBの中央を通る線である中央線Lの主走査断面拡大図である。主光線AとBは、結像光学系60の副走査方向のパワーの絶対値が最も大きい光学面である光学面62b上において主走査方向に離間している。その離間量D(mm)は走査位置ごとに異なっており、有効走査域全域において[数3]を満たしている。この時、主走査断面内において、走査位置ごとに中央線Lと、結像光学系60の副走査方向のパワーの絶対値が最も大きい光学面である光学面62bの交点における光学面62bの法線Nと、中央線Lとの成す角Δθ(rad)が、有効走査域全域において[数4]を満たすように光学面62bの母線形状を構成している。このように結像光学系60を構成することで、製造誤差・組立誤差によるピッチ間隔の変動量に対する結像レンズ62の敏感度を低減することが出来る。   FIG. 3 shows the optical paths of principal rays A and B from the incidence on the imaging lens 62 at an arbitrary scanning position to the photosensitive drum surface 70, and a center line L that is a line passing through the center of the principal rays A and B. FIG. The chief rays A and B are separated from each other in the main scanning direction on the optical surface 62b that is the optical surface having the largest absolute value of the power in the sub scanning direction of the imaging optical system 60. The distance D (mm) differs for each scanning position, and [Equation 3] is satisfied over the entire effective scanning area. At this time, the method of the optical surface 62b at the intersection of the center line L for each scanning position and the optical surface 62b that is the optical surface having the largest absolute value of the power in the sub-scanning direction of the imaging optical system 60 in the main scanning section. The bus line shape of the optical surface 62b is configured so that the angle Δθ (rad) formed by the line N and the center line L satisfies [Equation 4] in the entire effective scanning area. By configuring the imaging optical system 60 in this manner, the sensitivity of the imaging lens 62 with respect to the pitch interval variation due to manufacturing errors and assembly errors can be reduced.

好ましくは、主光線AとBのうち光軸に近い側を通過する主光線(図3では主光線B)と他方の主光線(図3では主光線A)の光軸方向に沿った面のサグ量(通過位置の差)dXと、離間量Dとの比dX/Dが軸上から周辺部へ向かって減少するように、副走査方向のパワーの絶対値が最も大きい光学面である光学面62bの母線形状を構成することが望ましい。光学面62bへの入射光線の角度が周辺部ほど大きくなるため、出射光線の角度も周辺部ほど大きくなる。従ってΔθを小さくするためには、光学面62bの母線形状を軸上から周辺部へ向かってポリゴンミラー50へ近づく形状とし、面法線の角度を大きくする必要がある。このためdX/Dを軸上から周辺部に向かって減少するように光学面62bの母線形状を構成するのが良い。但し、dXは被走査面に向かう方向を正とする。さらに好ましくは、本実施例のように軸上(走査位置0mm)以外の少なくとも1つの点でΔθが0となっていることが望ましい。   Preferably, of the principal rays A and B, the surface along the optical axis direction of the principal ray (primary ray B in FIG. 3) passing through the side closer to the optical axis and the other principal ray (principal ray A in FIG. 3). An optical surface that has the largest absolute value of power in the sub-scanning direction so that the ratio dX / D between the sag amount (passage position difference) dX and the separation amount D decreases from the on-axis toward the periphery. It is desirable to configure the bus bar shape of the surface 62b. Since the angle of the incident light beam on the optical surface 62b increases toward the periphery, the angle of the output light beam increases toward the periphery. Therefore, in order to reduce Δθ, it is necessary to make the generatrix shape of the optical surface 62b approach the polygon mirror 50 from the axial direction toward the periphery, and to increase the angle of the surface normal. For this reason, it is preferable to configure the generatrix shape of the optical surface 62b so that dX / D decreases from the axial direction toward the peripheral portion. However, dX is positive in the direction toward the surface to be scanned. More preferably, Δθ is 0 at least at one point other than on the axis (scanning position 0 mm) as in this embodiment.

図4に、従来の光走査装置と実施例1の光装置の最も主走査方向に離間した2つの発光点から射出された光束の主光線AとBの光学面62b上における走査位置ごとの主走査方向の離間量Dを示す。最小値は0.373(mm)であり式(1)を満足している。   FIG. 4 shows the principals at the scanning positions of the principal rays A and B of the light beams emitted from the two light emitting points farthest in the main scanning direction of the conventional optical scanning device and the optical device of the first embodiment on the optical surface 62b. A separation amount D in the scanning direction is shown. The minimum value is 0.373 (mm), which satisfies the formula (1).

図5は、従来の光走査装置と実施例1の光装置の主走査断面内において主光線AとBの中央を通る中央線Lと光学面62bの交点における光学面62bの法線と、中央線Lとの成す角Δθ(rad)の走査位置ごとでのグラフである。Δθの値は、従来例よりも小さく抑えられており有効走査域全域で式(2)を満たしている。また、図4から分かるように離間量Dは軸外へいくほど大きくなっているため、軸上以外にΔθが0となる点があるように構成することで軸外でのピッチ間隔の変動量をより抑えることが可能である。   FIG. 5 shows the normal line of the optical surface 62b at the intersection of the center line L passing through the center of the principal rays A and B and the optical surface 62b in the main scanning section of the conventional optical scanning device and the optical device of the first embodiment. 6 is a graph at each scanning position of an angle Δθ (rad) formed with a line L. The value of Δθ is suppressed to be smaller than that in the conventional example, and the expression (2) is satisfied in the entire effective scanning area. Further, as can be seen from FIG. 4, since the separation amount D increases as it goes off-axis, the amount of change in pitch interval off-axis can be configured by having a point where Δθ is 0 other than on-axis. Can be further suppressed.

図6は、実施例1の光走査装置の主光線A、B間の面のサグ量dXと離間量Dとの比を示すグラフである。dX/Dが周辺部に向かって減少していることが分かる。従って、光学面62bの各主走査位置における面法線の角度は、周辺部に向かって大きくなっている。   FIG. 6 is a graph showing the ratio between the sag amount dX and the separation amount D of the surface between the principal rays A and B of the optical scanning device of the first embodiment. It can be seen that dX / D decreases toward the periphery. Therefore, the angle of the surface normal at each main scanning position of the optical surface 62b increases toward the periphery.

図7は、従来の光走査装置と実施例1の光走査装置の、結像レンズ61が−0.1(mm)、結像レンズ62が+0.1(mm)それぞれ副走査方向にシフトした時のピッチ間隔の設計値からの変動量を走査位置ごとに描いたグラフである。図4から分かるように離間量Dは従来例と実施例1とでほぼ同等であるが、図5から分かるように従来例ではΔθが大きく有効走査域全域では式(2)を満たしていないためピッチ間隔の変動量が大きくなってしまっている。しかし、実施例1では副走査方向のパワーを光学面62bに集中させることでピッチ間隔の変動量に対する光学面61a、61bおよび62aによる敏感度を低減し、主走査断面内において光学面62bの法線と中央線Lの成す角Δθを有効走査域全域で式(2)を満たすように抑えてピッチ間隔の変動量に対する光学面62bによる敏感度を低減したことで、製造誤差・組立誤差によるピッチ間隔の変動量を低減出来ていることが分かる。   FIG. 7 shows the conventional optical scanning device and the optical scanning device of Example 1 when the imaging lens 61 is shifted by −0.1 (mm) and the imaging lens 62 is shifted by +0.1 (mm) in the sub-scanning direction. It is the graph which drawn the variation | change_quantity from the design value of pitch space | interval for every scanning position. As can be seen from FIG. 4, the separation amount D is almost the same between the conventional example and the first embodiment. However, as can be seen from FIG. 5, the conventional example has a large Δθ and does not satisfy the expression (2) in the entire effective scanning area. The fluctuation amount of the pitch interval has become large. However, in the first embodiment, the sensitivity of the optical surfaces 61a, 61b, and 62a with respect to the variation amount of the pitch interval is reduced by concentrating the power in the sub-scanning direction on the optical surface 62b, and the method of the optical surface 62b in the main scanning section is reduced. The angle Δθ formed by the line and the center line L is suppressed so as to satisfy the expression (2) over the entire effective scanning area, and the sensitivity due to the optical surface 62b with respect to the variation amount of the pitch interval is reduced. It can be seen that the amount of variation in the interval can be reduced.

図8は、本発明の第2の実施例の光走査装置の主走査断面図である。実施例1と異なる点は、結像レンズ61の主走査方向のパワーを小さくし、結像レンズ62の主走査方向のパワーを大きくすることで、レンズ面62bの曲率を実施例1のように大きくせずにピッチ間隔の変動量を低減させている。   FIG. 8 is a main scanning sectional view of the optical scanning device according to the second embodiment of the present invention. The difference from the first embodiment is that the power of the imaging lens 61 in the main scanning direction is reduced and the power of the imaging lens 62 in the main scanning direction is increased, so that the curvature of the lens surface 62b is as in the first embodiment. The amount of variation in pitch interval is reduced without increasing the pitch.

表2は、第2の実施例の光走査装置における走査光学系の諸数値を示す表である。半導体レーザアレイ10は、100(μm)間隔で並んだ4つの発光点を有しており、光軸周りに4.124(deg)回転され、最も主走査方向に離間した2つの発光点は主走査方向に299.223(μm)、副走査方向に21.575(μm)離間している。   Table 2 is a table showing various numerical values of the scanning optical system in the optical scanning device of the second embodiment. The semiconductor laser array 10 has four light emitting points arranged at intervals of 100 (μm), and is rotated 4.124 (deg) around the optical axis, and the two light emitting points that are the most separated in the main scanning direction are the main scanning direction. Are spaced apart by 299.223 (μm) and 21.575 (μm) in the sub-scanning direction.

Figure 2013114095
Figure 2013114095

図9に、従来の光走査装置と実施例1の光装置の最も主走査方向に離間した2つの発光点から射出された光束の主光線AとBの光学面62b上における走査位置ごとの主走査方向の離間量Dを示す。最小値は0.425(mm)であり式(1)を満足しており、従来例の離間量Dよりも大きくなっている。   FIG. 9 shows principals at the scanning positions of the principal rays A and B of the light beams emitted from the two light emitting points farthest in the main scanning direction of the conventional optical scanning device and the optical device of the first embodiment on the optical surface 62b. A separation amount D in the scanning direction is shown. The minimum value is 0.425 (mm), which satisfies Expression (1), and is larger than the separation amount D of the conventional example.

図10は、従来の光走査装置と実施例2の光装置の主走査断面内において、主光線AとBの中央を通る中央線Lと光学面62bの交点における光学面62bの法線と、中央線Lとの成す角Δθ(rad)を主走査位置に対してプロットしたグラフである。Δθの値は従来例よりも小さくなっており有効走査域全域で式(2)を満たしている。また、軸上以外にΔθが0となる点を有する。   FIG. 10 shows the normal line of the optical surface 62b at the intersection of the center line L passing through the center of the principal rays A and B and the optical surface 62b in the main scanning section of the conventional optical scanning device and the optical device of Example 2. 5 is a graph in which an angle Δθ (rad) formed with a center line L is plotted with respect to a main scanning position. The value of Δθ is smaller than that of the conventional example, and the expression (2) is satisfied over the entire effective scanning area. Further, there is a point where Δθ becomes 0 other than on the axis.

図11は、実施例2の光装置の主光線A、B間の面のサグ量dXと離間量Dとの比を示すグラフである。dX/Dが周辺部に向かって減少していることが分かる。従って、光学面62bの各主走査位置における面法線の角度は、周辺部に向かって大きくなっている。   FIG. 11 is a graph showing the ratio between the sag amount dX and the separation amount D of the surface between the principal rays A and B of the optical device according to the second embodiment. It can be seen that dX / D decreases toward the periphery. Therefore, the angle of the surface normal at each main scanning position of the optical surface 62b increases toward the periphery.

図12は、従来の光走査装置と実施例2の光装置の、結像レンズ61が−0.1(mm)、結像レンズ62が+0.1(mm)それぞれ副走査方向にシフトした時のピッチ間隔の設計値からの変動量を走査位置ごとに描いたグラフである。副走査方向のパワーを光学面62bに集中させ、主走査断面内において光学面62bの法線と中央線Lの成す角Δθを式(2)を満たすように抑えたことでピッチ間隔の変動量を低減出来ていることが分かる。光学面62bの副走査方向のパワーφsと結像レンズ61および62の4つの光学面の副走査方向のパワーを合成した副走査方向のパワーφtは、式(5)を満たしており、

Figure 2013114095
である。 FIG. 12 shows the pitch when the imaging lens 61 is shifted by −0.1 (mm) and the imaging lens 62 is shifted by +0.1 (mm) in the sub-scanning direction of the conventional optical scanning device and the optical device of the second embodiment. It is the graph which drawn the variation | change_quantity from the design value of a space | interval for every scanning position. The power in the sub-scanning direction is concentrated on the optical surface 62b, and the angle Δθ formed by the normal line of the optical surface 62b and the center line L in the main scanning section is suppressed so as to satisfy the expression (2). It can be seen that the reduction is achieved. The power φt in the sub-scanning direction obtained by combining the power φs in the sub-scanning direction of the optical surface 62b and the power in the sub-scanning direction of the four optical surfaces of the imaging lenses 61 and 62 satisfies the equation (5).
Figure 2013114095
It is.

軸上における副走査方向の結像倍率βs、有効走査域における軸上以外の任意の走査位置での副走査方向の結像倍率βaは、

Figure 2013114095
を満足することが好ましい。図13は、第2の実施例の光走査装置における、(βa-βs)/βsの値を主走査位置に対してプロットしたグラフであり、式(6)を満足させるようにしている。(βa-βs)/βsは、有効走査域における副走査方向の結像倍率の一様性を表したものであり、式(6)を満足させることで製造誤差・組立誤差がない状態での走査位置ごとのピッチ間隔のムラを抑えることができる。製造誤差・組立誤差がない状態でのピッチ間隔のムラを小さく抑え、製造誤差・組立誤差によるピッチ間隔の変動量を低減させることで全体としてピッチ間隔のムラを小さく抑えている。 The imaging magnification βs in the sub-scanning direction on the axis, and the imaging magnification βa in the sub-scanning direction at an arbitrary scanning position other than on the axis in the effective scanning area,
Figure 2013114095
Is preferably satisfied. FIG. 13 is a graph in which the value of (βa−βs) / βs is plotted with respect to the main scanning position in the optical scanning device of the second embodiment so as to satisfy Expression (6). (βa−βs) / βs represents the uniformity of the imaging magnification in the sub-scanning direction in the effective scanning region, and satisfying equation (6) in a state where there is no manufacturing error / assembly error. Unevenness in the pitch interval for each scanning position can be suppressed. The pitch interval non-uniformity in a state where there is no manufacturing error / assembly error is suppressed, and the pitch interval non-uniformity due to the manufacturing error / assembly error is reduced to reduce the pitch interval non-uniformity as a whole.

以上、本発明の好ましい実施の形態について説明した。光源手段として100(μm)間隔で並んだ4つの発光点を有する半導体レーザアレイを用いたが、これに限定するものではなく発光点の配列は1次元に配列されていても2次元に配列されていてもよく、発光点同士の間隔や発光点の数も変更可能である。その際には、全ての発光点のうち最も主走査方向に離間した2つの発光点について、上述した各条件を満足させれば良い。   The preferred embodiments of the present invention have been described above. As the light source means, a semiconductor laser array having four light emitting points arranged at intervals of 100 (μm) is used. However, the present invention is not limited to this, and the light emitting points are arranged in two dimensions even if they are arranged in one dimension. The interval between the light emitting points and the number of the light emitting points can also be changed. In that case, it is only necessary to satisfy the above-mentioned conditions for the two light emitting points that are the most distant from each other in the main scanning direction.

また、上記の実施例においては、最も被走査面側の結像レンズの光学面は、副走査方向のパワーの絶対値が最も大きい光学面であって主走査断面内の形状が非球面形状である場合を例示したように、副走査方向のパワーの絶対値が最も大きい光学面を有する結像光学素子の少なくとも1つの面は、主走査断面内の形状が非球面形状であってもよい。しかし、本発明はこれに限定されることはなく、副走査方向のパワーの絶対値が最も大きい光学面を有する結像光学素子の主走査断面内の形状は非球面に限らず式(2)を満足すれば球面でも良い。   In the above embodiment, the optical surface of the imaging lens closest to the surface to be scanned is an optical surface having the largest absolute value of power in the sub-scanning direction, and the shape in the main scanning section is aspherical. As illustrated in a case, at least one surface of the imaging optical element having an optical surface having the largest absolute value of power in the sub-scanning direction may have an aspheric shape in the main scanning section. However, the present invention is not limited to this, and the shape in the main scanning section of the imaging optical element having an optical surface having the largest absolute value of power in the sub-scanning direction is not limited to an aspherical surface. A spherical surface may be used if the above is satisfied.

結像光学系は2つの結像レンズにより構成したが、たとえば1つの結像レンズでも良い。その場合は、その1つの結像レンズの入射面と出射面の一方について副走査方向のパワーを大きくし、上述した各条件を満足させれば良い。あるいは3つ以上の結像レンズでも良く、その場合は最も副走査方向のパワーの絶対値が大きい光学面について各条件を満足させれば良い。   The imaging optical system is composed of two imaging lenses, but may be, for example, a single imaging lens. In that case, it is only necessary to increase the power in the sub-scanning direction on one of the entrance surface and the exit surface of the one imaging lens to satisfy the above-described conditions. Alternatively, three or more imaging lenses may be used, and in this case, each condition may be satisfied for an optical surface having the largest absolute value of power in the sub-scanning direction.

10 半導体レーザアレイ
20 コリメータレンズ
30 シリンドリカルレンズ
40 開口絞り
50 ポリゴンミラー
51 ポリゴンミラーの反射面
60 結像光学系
61 1つめの結像レンズ(61a:入射面、61b:射出面)
62 2つめの結像レンズ(62a:入射面、62b:射出面)
70 感光ドラム面
DESCRIPTION OF SYMBOLS 10 Semiconductor laser array 20 Collimating lens 30 Cylindrical lens 40 Aperture stop 50 Polygon mirror 51 Reflecting surface 60 of polygon mirror Imaging optical system 61 The first imaging lens (61a: entrance surface, 61b: exit surface)
62 Second imaging lens (62a: entrance surface, 62b: exit surface)
70 Photosensitive drum surface

Claims (6)

少なくとも主走査方向に離間した複数の発光点を備えた光源手段と、
前記光源手段からの複数の光束を偏向させる偏向手段と、
前記偏向手段により偏向された複数の光束を被走査面上に結像させる結像光学系と、
を有し、
前記結像光学系は、
前記複数の発光点のうち最も主走査方向に離間している2つの発光点から射出される光束の主光線をA、Bとし、前記主光線AとBの中央を通る線である中央線をLとした時、
有効走査域全域において、副走査方向のパワーの絶対値が最も大きい光学面上での前記主光線AとBの主走査断面内における離間量D(mm)は、
Figure 2013114095
を満足し、
主走査断面内において、前記副走査方向のパワーの絶対値が最も大きい光学面の前記中央線Lの射出位置における法線と前記中央線Lとの成す角をΔθ(rad)とした時、
前記副走査方向のパワーの絶対値が最も大きい光学面の主走査断面内の形状は、
Figure 2013114095
を満足する、
ことを特徴とする光走査装置。
Light source means comprising at least a plurality of light emitting points spaced apart in the main scanning direction;
Deflecting means for deflecting a plurality of light beams from the light source means;
An imaging optical system for imaging a plurality of light beams deflected by the deflecting means on a scanned surface;
Have
The imaging optical system is
Of the plurality of light emitting points, chief rays of light beams emitted from the two light emitting points farthest in the main scanning direction are denoted as A and B, and a center line that is a line passing through the center of the chief rays A and B is defined as a central line. When L
The separation amount D (mm) of the principal rays A and B in the main scanning section on the optical surface where the absolute value of the power in the sub-scanning direction is the largest in the entire effective scanning area is:
Figure 2013114095
Satisfied,
In the main scanning section, when the angle formed by the normal line at the emission position of the central line L of the optical surface having the largest absolute value of the power in the sub-scanning direction and the central line L is Δθ (rad),
The shape in the main scanning section of the optical surface having the largest absolute value of the power in the sub-scanning direction is
Figure 2013114095
Satisfy,
An optical scanning device.
前記副走査方向のパワーの絶対値が最も大きい光学面は、主走査断面内において前記離間量Dだけ離れた前記主光線AとBの通過位置における光軸方向に沿った面のサグ量を、該主光線AとBのうち光軸に近い側を通過する主光線に対する他方の主光線の光軸方向に沿った通過位置の差、dX(mm)とした時に、dX/Dは軸上から周辺部に向かって減少する、ことを特徴とする請求項1に記載の光走査装置。   The optical surface having the largest absolute value of the power in the sub-scanning direction is the sag amount of the surface along the optical axis direction at the passing position of the principal rays A and B separated by the separation amount D in the main scanning section. Of the principal rays A and B, the difference in passing position along the optical axis direction of the other principal ray with respect to the principal ray passing the side closer to the optical axis, dX / mm, is dX / D from the axis. The optical scanning device according to claim 1, wherein the optical scanning device decreases toward a peripheral portion. 有効走査域において、軸上以外でΔθが0となる点が少なくとも1つあることを特徴とする請求項1又は2に記載の光走査装置。   3. The optical scanning device according to claim 1, wherein in the effective scanning area, there is at least one point where Δθ is 0 except on the axis. 前記副走査方向のパワーの絶対値が最も大きい光学面を有する結像光学素子の少なくとも1つの面は、主走査断面内の形状が非球面形状であることを特徴とする請求項1乃至3のいずれか1項に記載の光装置。   The at least one surface of the imaging optical element having an optical surface having the largest absolute value of power in the sub-scanning direction has an aspheric shape in the main scanning section. The optical device according to any one of the above. 前記結像光学系の結像光学素子のうち、前記副走査方向のパワーの絶対値が最も大きい光学面の副走査方向のパワーをφs、前記結像光学系のすべての光学面の副走査方向のパワーを合成した副走査方向のパワーをφtとした時、
Figure 2013114095
を満足することを特徴とする請求項1乃至4のいずれか1項に記載の光走査装置。
Of the imaging optical elements of the imaging optical system, the power in the sub-scanning direction of the optical surface having the largest absolute value of the power in the sub-scanning direction is φs, and the sub-scanning direction of all the optical surfaces of the imaging optical system When the power in the sub-scanning direction combined with the power of φ is φt,
Figure 2013114095
5. The optical scanning device according to claim 1, wherein:
軸上における副走査方向の結像倍率をβs、有効走査域における軸上以外の任意の走査位置での副走査方向の結像倍率をβaとした時、
Figure 2013114095
を満足することを特徴とする請求項1乃至5のいずれか1項に記載の光走査装置。
When the imaging magnification in the sub-scanning direction on the axis is βs, and the imaging magnification in the sub-scanning direction at an arbitrary scanning position other than on the axis in the effective scanning area is βa,
Figure 2013114095
The optical scanning device according to claim 1, wherein:
JP2011261148A 2011-11-30 2011-11-30 Optical scanning device Expired - Fee Related JP5930679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261148A JP5930679B2 (en) 2011-11-30 2011-11-30 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261148A JP5930679B2 (en) 2011-11-30 2011-11-30 Optical scanning device

Publications (3)

Publication Number Publication Date
JP2013114095A true JP2013114095A (en) 2013-06-10
JP2013114095A5 JP2013114095A5 (en) 2015-01-15
JP5930679B2 JP5930679B2 (en) 2016-06-08

Family

ID=48709670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261148A Expired - Fee Related JP5930679B2 (en) 2011-11-30 2011-11-30 Optical scanning device

Country Status (1)

Country Link
JP (1) JP5930679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517637B2 (en) 2014-06-24 2016-12-13 Canon Kabushiki Kaisha Imaging optical element and optical scanning apparatus including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108925A (en) * 1999-10-05 2001-04-20 Ricoh Co Ltd Scanning optical system, optical scanner and image forming device
JP2006313174A (en) * 2005-04-28 2006-11-16 Canon Inc Optical scanner and image forming apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108925A (en) * 1999-10-05 2001-04-20 Ricoh Co Ltd Scanning optical system, optical scanner and image forming device
JP2006313174A (en) * 2005-04-28 2006-11-16 Canon Inc Optical scanner and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517637B2 (en) 2014-06-24 2016-12-13 Canon Kabushiki Kaisha Imaging optical element and optical scanning apparatus including the same

Also Published As

Publication number Publication date
JP5930679B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5489612B2 (en) Scanning optical device and image forming apparatus using the same
JP6047107B2 (en) Optical scanning device and image forming apparatus having the same
JP2008033251A (en) Optical scanner and image forming apparatus
JP2009014953A (en) Optical scanning device and image forming apparatus using the same
JP2010096957A (en) Scanning optical apparatus and image forming apparatus using the same
KR102021173B1 (en) Optical scanning apparatus
US8896893B2 (en) Light scanning apparatus and image forming apparatus using the same
JP5019815B2 (en) Optical scanning apparatus and image forming apparatus
US8791974B2 (en) Optical scanning apparatus and image forming apparatus
JP2004177861A (en) Optical scanning system
JP5930679B2 (en) Optical scanning device
JP2005173221A (en) Optical scanning device and image forming apparatus
JP2007322608A (en) Optical scanner, image forming apparatus, and optical scanning method
JP2007316115A (en) Optical scanner and image forming apparatus using the same
JP6132701B2 (en) Optical scanning device and image forming apparatus using the same
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JP2006064876A (en) Optical scanner and image forming apparatus
JP5050682B2 (en) Optical scanning device
US9035987B2 (en) Image forming apparatus, including a light scanning apparatus that emits a light flux
JP2012145702A (en) Optical scanner and image forming apparatus
JP5939822B2 (en) Optical scanning apparatus and image forming apparatus
JP7373365B2 (en) optical scanning device
JP2002031771A (en) Multiple-beam scanning optical device
JP2008015140A (en) Image forming apparatus
JP2001147388A (en) Multibeam scanning optical system and image-forming device using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R151 Written notification of patent or utility model registration

Ref document number: 5930679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees