JP2013113871A - Communication light detector - Google Patents

Communication light detector Download PDF

Info

Publication number
JP2013113871A
JP2013113871A JP2011257177A JP2011257177A JP2013113871A JP 2013113871 A JP2013113871 A JP 2013113871A JP 2011257177 A JP2011257177 A JP 2011257177A JP 2011257177 A JP2011257177 A JP 2011257177A JP 2013113871 A JP2013113871 A JP 2013113871A
Authority
JP
Japan
Prior art keywords
light
communication
communication light
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011257177A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakatani
佳広 中谷
Hideo Hosoyama
日出男 細山
Toshihiko Ishikawa
俊彦 石川
Masatsugu Kojima
正嗣 小島
Kanako Suzuki
香菜子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Advanced Cable Systems Corp
Original Assignee
Hitachi Cable Ltd
Advanced Cable Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Advanced Cable Systems Corp filed Critical Hitachi Cable Ltd
Priority to JP2011257177A priority Critical patent/JP2013113871A/en
Publication of JP2013113871A publication Critical patent/JP2013113871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a communication light detector capable of extracting a communication light of a desired wave length from the inside of a communication light transmission line and detecting the communication light even when multiple communication lights having different wave lengths are propagating in the communication light transmission line.SOLUTION: The communication light detector comprises: a communication light transmission line where multiple pieces of communication light having different wave lengths propagate; filtering means for transmitting leakage light of a communication light having a desired wave length among pieces of leakage light of the multiple pieces of communication light having different wave lengths leaked from a light leakage part provided on the communication light transmission line while absorbing or reflecting the other pieces of leakage light of the communication lights having wave lengths not desired; and a light detection part for detecting the communication light having the desired wave length from the leakage light transmitted by the filtering means.

Description

本発明は、光伝送路内を伝搬する通信光を検知するための通信光検知器に関する。   The present invention relates to a communication light detector for detecting communication light propagating in an optical transmission line.

通信光検知器が用いられる光通信システム100を図5に示す。   An optical communication system 100 in which a communication light detector is used is shown in FIG.

光通信会社の設備センター14内には、通信光発信/受信装置11が設けられ、この通信光発信/受信装置11は光分岐合流器15が接続されて設けられている。この光分岐合流器15は、通信光発信/受信装置11から送信される通信光(光信号)を分岐して送信または複数のユーザー宅10から送信された通信光(光信号)を合流して通信光発信/受信装置11で受信させるためのものである。   In the equipment center 14 of the optical communication company, a communication light transmission / reception device 11 is provided, and the communication light transmission / reception device 11 is provided with an optical branching / merging device 15 connected thereto. The optical branching / merging unit 15 branches the communication light (optical signal) transmitted from the communication light transmission / reception device 11 and combines or transmits the communication light (optical signal) transmitted from a plurality of user homes 10. This is for receiving by the communication light transmission / reception device 11.

各家庭や事務所などのユーザー宅10内には、光終端装置である通信光受信/発信装置12が設けられる。電柱18の付近には、クロージャー16が取り付けられ、このクロージャー16内には、設備センター14からの通信光を分岐し、各ユーザー宅10からの通信光を合流するための光分岐合流器17が設けられている。また、通信光発信/受信装置11と光分岐合流器17の間、及び、光分岐合流器17と通信光受信/発信装置12の間は、光ファイバ13A、13Bによって接続され、通信光発信/受信装置11と通信光受信/発信装置12とを結ぶ通信光伝送路(光ファイバ13)が形成される。これによって、通信光発信/受信装置11と通信光受信/発信装置12との間で光通信がなされる。そして、この通信光伝送路内を伝搬する光信号を漏洩させるための光漏洩部を光ファイバ13B内に形成し、この光漏洩部からの漏洩光を検知し、通信光伝送路の通信光伝送状態を監視するための光検知部を備えた通信光検知器(図示しない)が設けられている。   A communication light receiving / transmitting device 12, which is an optical terminal device, is provided in a user home 10 such as each home or office. A closure 16 is attached in the vicinity of the utility pole 18, and in this closure 16, an optical branching / merging device 17 for branching the communication light from the facility center 14 and for joining the communication light from each user home 10 is provided. Is provided. Further, the communication light transmission / reception device 11 and the optical branching / merging device 17 and the optical branching / merging device 17 and the communication light reception / transmission device 12 are connected by optical fibers 13A and 13B, respectively. A communication light transmission path (optical fiber 13) that connects the receiving device 11 and the communication light receiving / transmitting device 12 is formed. Thereby, optical communication is performed between the communication light transmission / reception device 11 and the communication light reception / transmission device 12. Then, a light leakage part for leaking an optical signal propagating in the communication light transmission path is formed in the optical fiber 13B, light leaked from the light leakage part is detected, and communication light transmission of the communication light transmission line is performed. A communication light detector (not shown) provided with a light detector for monitoring the state is provided.

この通信光検知器として特許文献1には、スリーブ内の接続部に設けられ、光伝送路の端部同士と接合すると共に、光伝送路のコアを貫通する光検知用溝及びその光検知用溝に充填される屈折率整合剤を有する光検知接合体と、光検知接合体の上方に設けられ、光検知用溝を介して漏れる通信光の漏れ光を検知する光検知部とを備え、光検知用溝は、光検知接合体の長手方向に沿った溝幅が50〜150μmであることを特徴とする通信光検知器が記載されている。   As this communication light detector, Patent Document 1 discloses a light detection groove provided at a connection portion in a sleeve, joined to ends of the light transmission path, and penetrating through the core of the light transmission path, and its light detection. A light detection joined body having a refractive index matching agent filled in the groove, and a light detection unit that is provided above the light detection joined body and detects leakage light of communication light leaking through the light detection groove, A communication light detector is described in which the groove for light detection has a groove width of 50 to 150 μm along the longitudinal direction of the light detection bonded body.

特許文献2には、心線対照すべき光ファイバに現用光よりも長波長の試験光を入射して現用光と試験光との波長を相互に異ならせるとともに当該試験光の伝送状態にて光線路を曲げ、その曲げ箇所からの漏洩試験光を検知して光ファイバの対照を行なうことを特徴とする光線路の心線対照方法が記載されている。   In Patent Document 2, test light having a wavelength longer than that of the working light is incident on the optical fiber to be contrasted with the optical fiber so that the wavelengths of the working light and the testing light are different from each other, and light is transmitted in the transmission state of the test light. A method for contrasting optical fibers is described in which a path is bent and a leakage test light from the bent portion is detected to compare optical fibers.

特開2009−276627号公報JP 2009-276627 A 特許第2803726号公報Japanese Patent No. 2803726

しかしながら、特許文献1に記載の通信光検知器では、設備センター14からユーザー宅10へ送信される通信光(通常、1.5μm波長帯が用いられる)と、ユーザー宅10から設備センター14へ送信される通信光(通常、1.3μm波長帯が用いられる)の両通信光を検知してしまい、どちらか一方の波長を有する通信光のみを検知することはできない。そのため、光ファイバ13の一端がユーザー宅10に接続されていなくても(光ファイバ13Cのように未使用回線であっても)、設備センター14からは通信光が常に送信され続けているため、特許文献1に記載の通信光検知器では常に漏れ光を検知し続けてしまう。よって、特許文献1に記載の通信光検知器では、光ファイバ13の一端がユーザー宅10に接続されていることを示す、ユーザー宅10からの通信光のみを検知することができず、多数本の光ファイバ13の中から未使用回線(光ファイバ13C)を見つけ出すことは困難である。   However, in the communication light detector described in Patent Document 1, communication light transmitted from the equipment center 14 to the user home 10 (usually, a 1.5 μm wavelength band is used) and transmitted from the user home 10 to the equipment center 14. Both communication lights of the communication light to be transmitted (usually the 1.3 μm wavelength band is used) are detected, and only the communication light having one of the wavelengths cannot be detected. Therefore, even if one end of the optical fiber 13 is not connected to the user's home 10 (even if it is an unused line like the optical fiber 13C), the communication light is always transmitted from the equipment center 14, The communication light detector described in Patent Literature 1 always detects leaked light. Therefore, in the communication light detector described in Patent Document 1, it is not possible to detect only communication light from the user home 10 indicating that one end of the optical fiber 13 is connected to the user home 10, and there are many It is difficult to find an unused line (optical fiber 13 </ b> C) from the optical fiber 13.

また、特許文献2に記載のような光ファイバを曲げて漏洩光を発生させる方法では、1.5μm波長帯の通信光の場合は比較的簡単に漏洩させることができるが、1.3μm波長帯の通信光の場合は光ファイバ内への光閉じ込め効果が強く働くため、1.3μm波長帯の通信光を漏洩させることが困難である。従って、特許文献2に記載の心線対照方法であっても、漏洩させたい通信光の波長によっては特許文献1と同様に、多数本の光ファイバ13の中から未使用回線(光ファイバ13C)を見つけ出すことは困難である。
そこで本発明は、上記の課題を解決し、複数の波長の通信光が通信光伝送路内を伝搬している場合であっても、この通信光伝送路内から所望の波長の通信光の漏洩光を取り出して、その通信光の漏洩光を検知することができる通信光検知器を提供することを目的とする。
Moreover, in the method of generating leakage light by bending an optical fiber as described in Patent Document 2, in the case of 1.5 μm wavelength band communication light, it is possible to leak relatively easily, but the 1.3 μm wavelength band. In the case of this communication light, since the optical confinement effect in the optical fiber works strongly, it is difficult to leak communication light in the 1.3 μm wavelength band. Accordingly, even in the method of contrasting the cores described in Patent Document 2, depending on the wavelength of communication light to be leaked, as in Patent Document 1, an unused line (optical fiber 13C) is selected from a large number of optical fibers 13. It is difficult to find out.
Accordingly, the present invention solves the above-described problem, and even when communication light having a plurality of wavelengths propagates in the communication optical transmission line, leakage of the communication light having a desired wavelength from the communication optical transmission line. An object of the present invention is to provide a communication light detector that can extract light and detect leakage light of the communication light.

上記目的を達成するために創案された本発明は、波長の異なる複数の通信光が伝搬される通信光伝送路と該通信光伝送路に設けられた光漏洩部と、前記光漏洩部から漏れる前記波長の異なる複数の通信光の内、所望の波長を有する通信光を透過し、所望外の波長を有する通信光を吸収または反射するフィルタ手段と、前記フィルタ手段によって透過された前記所望の波長を有する通信光を検知する光検知部と、を備えてなる通信光検知器である。   The present invention, which was created to achieve the above object, leaks from a communication light transmission path through which a plurality of communication lights having different wavelengths are propagated, a light leakage section provided in the communication light transmission path, and the light leakage section. Filter means for transmitting communication light having a desired wavelength and absorbing or reflecting communication light having an undesired wavelength among the plurality of communication lights having different wavelengths, and the desired wavelength transmitted by the filter means And a light detector that detects communication light having a communication light detector.

前記光漏洩部は通信用光ファイバのコアを貫通する光検知用溝と該光検知用溝に充填される屈折率整合剤とを有する光検知接合体か、通信用光ファイバの途中に設けられた光コネクタ同士の接合箇所か、通信用光ファイバの途中に設けられた光コネクタ同士の軸を微小ずらして接合した接合箇所か、または、通信用光ファイバの途中に設けられた光コネクタ同士の接合箇所の間に通信用光ファイバとコアの構造・成分が異なった光ファイバを挿入することで形成する接合箇所であっても良い。   The light leakage portion is provided in the middle of the communication optical fiber, or a light detection joined body having a light detection groove penetrating the core of the communication optical fiber and a refractive index matching agent filled in the light detection groove. Between optical connectors or optical connectors provided in the middle of a communication optical fiber, or optical connectors provided in the middle of a communication optical fiber. It may be a joint portion formed by inserting an optical fiber having a different structure / component between the communication optical fiber and the core between the joint portions.

前記フィルタ手段は、孔部付き平板と波長選択フィルタとからなり、前記光漏洩光部から漏れる前記波長の異なる複数の通信光は、前記孔部付き平板の孔部を通って前記波長選択フィルタに入射され、前記孔部付き平板は、前記光漏洩部から漏れる前記波長の異なる複数の通信光の内、前記波長選択フィルタに垂直またはほぼ垂直に入射する垂直入射光を透過させ、前記波長選択フィルタは、前記垂直入射光の内、所望の波長を有する通信光を透過させ、所望外の波長を有する通信光を反射するようにされていても良い。   The filter means includes a flat plate with a hole and a wavelength selection filter, and a plurality of communication lights having different wavelengths leaking from the light leakage light portion pass through the hole of the flat plate with a hole to the wavelength selection filter. The flat plate with a hole transmits incident light that is incident perpendicularly or substantially perpendicularly to the wavelength selection filter among the plurality of communication lights having different wavelengths leaking from the light leakage portion, and the wavelength selection filter May transmit communication light having a desired wavelength among the normal incident light and reflect communication light having an undesired wavelength.

前記孔部付き平板は、その底面及び内壁面に黒色塗料が塗布されているか、または、黒色樹脂によって形成されていても良い。   The flat plate with holes may be coated with black paint on the bottom surface and the inner wall surface, or may be formed of a black resin.

前記通信光伝送路内を伝搬する通信光は、1.3μm波長帯と1.5μm波長帯からなる通信光であり、前記波長フィルタは、1.3μm波長帯を透過し、1.5μm波長帯を反射する特性を有するようにしても良い。   The communication light propagating in the communication optical transmission line is communication light having a 1.3 μm wavelength band and a 1.5 μm wavelength band, and the wavelength filter transmits the 1.3 μm wavelength band, and the 1.5 μm wavelength band. It may have a characteristic of reflecting the light.

本発明によれば、複数の波長の通信光が通信光伝送路内を伝搬している場合であっても、この通信光伝送路内から所望の波長の通信光を取り出して、その通信光を検知することできる。   According to the present invention, even when communication light having a plurality of wavelengths propagates in the communication optical transmission line, the communication light having a desired wavelength is extracted from the communication optical transmission line and the communication light is extracted. It can be detected.

本発明の好適な第1の実施例に係る通信光検知器の使用状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the use condition of the communication light detector which concerns on a suitable 1st Example of this invention. 孔部付き平板の孔部の断面形状と漏れ光との関係を示す図である。It is a figure which shows the relationship between the cross-sectional shape of the hole of a flat plate with a hole, and leakage light. 1.3μm波長帯透過/1.5μm波長帯遮断フィルタの波長特性図である。It is a wavelength characteristic view of a 1.3 μm wavelength band transmission / 1.5 μm wavelength band cutoff filter. 本発明の第2の実施例に係る通信光検知器の使用状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the use condition of the communication light detector which concerns on the 2nd Example of this invention. 通信光検知器が用いられる光通信システムについての説明図である。It is explanatory drawing about the optical communication system in which a communication light detector is used.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の好適な第1の実施例を示す通信光検知器の主要部の縦断面図である。   FIG. 1 is a longitudinal sectional view of a main part of a communication light detector showing a preferred first embodiment of the present invention.

図1に示すように、第1の実施例に係る通信光検知器1は、例えば、光伝送路としての光ファイバの端部同士を突き合わせ接続した光ファイバの接続部において、光伝送路の使用状態を監視して通信光の有無(光通信しているか否か)を検知するものである。   As shown in FIG. 1, the communication light detector 1 according to the first embodiment uses, for example, an optical transmission line at an optical fiber connection part in which end parts of optical fibers as an optical transmission line are connected to each other. The state is monitored to detect the presence or absence of communication light (whether optical communication is being performed).

この通信光検知器1は、光検知接合体2と、その光検知接合体2の両端部がそれぞれ挿入されるスリーブ3a,3bとを備える。光検知接合体2の両端面には、通信光検知器1の使用時に、設備センター14側の光コネクタが備えるフェルール104cとユーザー宅10側の光コネクタが備えるフェルール104yがそれぞれ挿入されて突き合わせ接続される。フェルール104cには設備センター14側の光ファイバ106cが内蔵され、フェルール104yにはユーザー宅10側の光ファイバ106yが内蔵される。   The communication light detector 1 includes a light detection joined body 2 and sleeves 3a and 3b into which both end portions of the light detection joined body 2 are respectively inserted. The ferrule 104c provided in the optical connector on the facility center 14 side and the ferrule 104y provided on the optical connector on the user house 10 side are inserted into the both end faces of the optical detection joined body 2 when the communication light detector 1 is used. Is done. The ferrule 104c incorporates an optical fiber 106c on the facility center 14 side, and the ferrule 104y incorporates an optical fiber 106y on the user home 10 side.

光検知接合体2は、光ファイバ106c,106yのコアの端部(光ファイバの接続部側の端部)同士と突き合わせ接続されるコア部とこのコア部を包囲するクラッド部とからなる光ファイバ4と、この光ファイバ4の周囲に設けられるフェルール部5と、このフェルール部5の一部を除去して断面矩形状に形成され、後述の光検知部9が収納される収納溝6と、この収納溝6の底面の位置に光ファイバ4を切断するように形成される、断面矩形状の光検知用溝7と、この光検知用溝7に充填される屈折率整合剤rとからなり、光検知用溝7の上側に光漏洩部16が形成され、その開口部に光検知部9が位置するように形成されている。なお、この光検知用溝7は、少なくとも光ファイバ4のコア部を貫通するように形成されていれば良い。   The optical detection joined body 2 is an optical fiber composed of a core portion that is abutted and connected to end portions (end portions on the optical fiber connection portion side) of the optical fibers 106c and 106y, and a clad portion that surrounds the core portion. 4, a ferrule part 5 provided around the optical fiber 4, a part of the ferrule part 5 is removed to form a rectangular cross section, and a storage groove 6 in which a light detection part 9 described later is stored, It comprises a light detection groove 7 having a rectangular cross section formed so as to cut the optical fiber 4 at the bottom surface of the storage groove 6 and a refractive index matching agent r filled in the light detection groove 7. The light leaking portion 16 is formed above the light detecting groove 7 and the light detecting portion 9 is formed in the opening. The light detection groove 7 may be formed so as to penetrate at least the core portion of the optical fiber 4.

光検知接合体2は、その長手方向の両端面がそれぞれフェルール104c,104yの端面同士と接合される。この光検知接合体2では、光ファイバ4と、この光ファイバ4に臨む屈折率整合剤rが充填された光検知用溝7とからなる部分が検知側の光伝送路8となる。   The light detection joined body 2 has both end faces in the longitudinal direction joined to the end faces of the ferrules 104c and 104y, respectively. In this optical detection joined body 2, a portion including the optical fiber 4 and the optical detection groove 7 filled with the refractive index matching agent r facing the optical fiber 4 becomes the optical transmission line 8 on the detection side.

光検知接合体2は、光ファイバ4のコア部が各光ファイバ106c,106yのコアと同じ材料で作製され、クラッド部が各光ファイバ106c,106yのクラッドと同じ材料で作製される。光検知接合体2のフェルール部5は、各フェルール104c,104yやスリーブ3a,3bと同じ材料で作製される。なお、光ファイバ4には、各光ファイバ106c,106yと同様の光ファイバを用いてもよいし、光導波路を用いても良い。   In the optical detection joined body 2, the core portion of the optical fiber 4 is made of the same material as the core of each of the optical fibers 106c and 106y, and the clad portion is made of the same material as the cladding of each of the optical fibers 106c and 106y. The ferrule part 5 of the light detection joined body 2 is made of the same material as the ferrules 104c and 104y and the sleeves 3a and 3b. The optical fiber 4 may be an optical fiber similar to the optical fibers 106c and 106y, or an optical waveguide.

光検知接合体2の長手方向の両端面は、通信光検知器1に挿入される各フェルール104c,104yの端面(光ファイバの接続部側の端面)とPC(物理的接触)接続されるため、PC端面となるように研磨される。光検知接合体2の外径は、各フェルール104c,104yの外径と同じである。   Since both end surfaces in the longitudinal direction of the optical detection joined body 2 are connected to the end surfaces (end surfaces on the optical fiber connecting portion side) of the ferrules 104c and 104y inserted into the communication optical detector 1 by PC (physical contact). And polished so as to be the end face of the PC. The outer diameter of the optical detection joined body 2 is the same as the outer diameter of each ferrule 104c, 104y.

光検知用溝7は、光検知接合体2の長手方向に沿った溝幅が50〜150μmである。溝幅が50μm未満では、漏れ光発生率が小さすぎて漏れ光の検知が難しくなったり、受光した漏れ光を電気信号に変換した後に、別に増幅器が必要になって部品点数が増えたりする。また、溝幅が150μmを超えると、漏れ光発生率が大きすぎて通信に支障が生じる。   The groove 7 for light detection has a groove width of 50 to 150 μm along the longitudinal direction of the light detection bonded body 2. If the groove width is less than 50 μm, the leak light generation rate is too small to make it difficult to detect leak light, or after converting the received leak light into an electrical signal, an additional amplifier is required and the number of parts increases. On the other hand, if the groove width exceeds 150 μm, the leakage light generation rate is too large, and communication is hindered.

通信光検知器1に挿入される光伝送路としての各光ファイバ106c,106yには、石英ガラス製のシングルモード光ファイバや、GI(グレーデッドインデックス)型のマルチモード光ファイバが用いられる。各光ファイバ106c,106yとしてシングルモード光ファイバを用いる場合は、1.3μm波長帯あるいは1.5μm波長帯の通信光が使用される。各光ファイバとしてマルチモード光ファイバを用いる場合には、波長が850nm帯、あるいは1310nm帯の通信光が使用される。   For each optical fiber 106c, 106y as an optical transmission line inserted into the communication light detector 1, a single mode optical fiber made of quartz glass or a GI (graded index) type multimode optical fiber is used. When a single mode optical fiber is used as each of the optical fibers 106c and 106y, communication light in the 1.3 μm wavelength band or 1.5 μm wavelength band is used. When a multimode optical fiber is used as each optical fiber, communication light having a wavelength of 850 nm band or 1310 nm band is used.

図1に戻り、光検知用溝7に充填される屈折率整合剤rには、各光ファイバ106c,106yのコアとほぼ同じ屈折率のものを用いる。屈折率整合剤rとしては、液状のものを使用してもよいし、熱硬化性や紫外線(UV)硬化性の樹脂、あるいは接着剤で、硬化後の屈折率が各光ファイバ106c,106yのコアとほぼ同じものを使用してもよい。   Returning to FIG. 1, the refractive index matching agent r filled in the light detection groove 7 has a refractive index substantially the same as that of the cores of the optical fibers 106 c and 106 y. As the refractive index matching agent r, a liquid material may be used, or a thermosetting or ultraviolet (UV) curable resin or an adhesive having a refractive index after curing of each of the optical fibers 106c and 106y. Almost the same as the core may be used.

スリーブ3aは、フェルール104cと光検知接合体2の光軸位置合わせをするためのものであり、スリーブ3bは、フェルール104yと光検知接合体2の光軸位置合わせをするためのものである。   The sleeve 3a is for aligning the optical axis between the ferrule 104c and the light detection assembly 2, and the sleeve 3b is for aligning the optical axis between the ferrule 104y and the light detection assembly 2.

なお、フェルール104cは、設備センター14側の光コネクタプラグ(図示しない)に内蔵され、フェルール104yは、ユーザー宅10側の光コネクタプラグ(図示しない)に内蔵される。これらフェルール104c,104yは、セラミックスあるいは金属で作製され、その端面(光ファイバの接続部側の端面)がPC(物理的接触)端面となるように研磨される。   The ferrule 104c is built in an optical connector plug (not shown) on the equipment center 14 side, and the ferrule 104y is built in an optical connector plug (not shown) on the user house 10 side. These ferrules 104c and 104y are made of ceramics or metal, and are polished so that their end faces (end faces on the optical fiber connecting portion side) become PC (physical contact) end faces.

スリーブ3a,3bは、通信光の少なくとも一部を透過する(あるいは通信光を受光するとこれを散乱する)セラミックス製やガラス製のもの、あるいはスリーブ長手方向(軸方向)に延びるスリットを有するセラミックス製、ガラス製、金属製の割スリーブを用いる。通信光の少なくとも一部を透過するセラミックスとしては、例えば、ジルコニアセラミックスがある。   The sleeves 3a and 3b are made of ceramic or glass that transmits at least part of communication light (or scatters when communication light is received), or made of ceramic having a slit extending in the longitudinal direction (axial direction) of the sleeve. Glass, metal split sleeves are used. Examples of the ceramic that transmits at least a part of the communication light include zirconia ceramics.

通信光検知器1は、光検知接合体2の上方に設けられて光検知用溝7を介して漏れる漏れ光を検知する光検知部9をさらに備える。光検知部9は、漏れ光を受光するためのPD素子91を備えたPD90が、フィルタ手段300(後述の孔部付き平板92と波長選択フィルタ93)と共に、光検知用溝7の上方に対向し、かつスリーブ3a,3bの間に配置されるように、収納溝6に収納されて取り付けられる。そして、PD素子91と光検知用溝7との間に、ドーナツ板形状の孔部付き平板92と、誘電体多層膜からなり、所望の波長を透過させ、それ以外の波長を反射(遮断)する波長選択フィルタ93との順番で、これらが光検知用溝7側から位置するように、PD90の先端部分に取り付けられている。なお、孔付き平板92は光検知器の収納溝6に組み込んでも良い、また、光検知部4は、PD素子91で受光した漏れ光を可視光によって出力する光出力部材(図示しない)と、PD90とが搭載されて光検知回路を構成する回路基板94とを備える。つまり、光検知部9は、PD素子91を備えたPD90と、フィルタ手段300(孔部付き平板92と、波長選択フィルタ93)と、回路基板94とからなる。本実施形態では、PD90として安価なCanパッケージタイプのものを用いた。   The communication light detector 1 further includes a light detection unit 9 that is provided above the light detection bonded body 2 and detects leakage light that leaks through the light detection groove 7. In the light detection unit 9, a PD 90 having a PD element 91 for receiving leaked light is opposed to the upper side of the light detection groove 7 together with a filter means 300 (a plate 92 with a hole and a wavelength selection filter 93 described later). And it is accommodated in the accommodation groove | channel 6 so that it may arrange | position between sleeves 3a and 3b. Then, between the PD element 91 and the light detection groove 7, a donut plate-shaped flat plate 92 with a hole and a dielectric multilayer film are used to transmit a desired wavelength and reflect (block) other wavelengths. The wavelength selection filter 93 is attached to the distal end portion of the PD 90 so that they are positioned from the light detection groove 7 side in order. In addition, the flat plate 92 with a hole may be incorporated in the storage groove 6 of the light detector, and the light detection unit 4 includes a light output member (not shown) that outputs leaked light received by the PD element 91 by visible light, A circuit board 94 on which a PD 90 is mounted and which constitutes a light detection circuit is provided. That is, the light detection unit 9 includes a PD 90 including a PD element 91, a filter unit 300 (a flat plate 92 with a hole and a wavelength selection filter 93), and a circuit board 94. In this embodiment, an inexpensive can package type PD90 is used.

ここで、フィルタ手段300の役割について説明する。   Here, the role of the filter means 300 will be described.

光検知接合体2の光検知用溝7内に入射された通信光は、一部が漏れ光として漏れ、その漏れ光が光ファイバ4のコア部の端面から広がる(散乱する)。孔部付き平板92は、この色々な方向に広がった漏れ光の内、波長選択フィルタ93に垂直に入射しない漏れ光を遮断して、波長選択フィルタ93に垂直に入射する漏れ光を波長選択フィルタ93側に絞って透過させるためのものである。そして、波長選択フィルタ93は、この垂直に入射された漏れ光の内、所望の波長を有する光信号をPD素子91側に透過させ、PD素子91は、この光信号を検知することになる。   A part of the communication light incident in the light detection groove 7 of the light detection joined body 2 leaks as leak light, and the leak light spreads (scatters) from the end face of the core portion of the optical fiber 4. The flat plate 92 with a hole blocks the leakage light that does not enter the wavelength selection filter 93 out of the leakage light that spreads in various directions, and the leakage light that enters the wavelength selection filter 93 perpendicularly. It is for squeezing and transmitting to the 93 side. Then, the wavelength selection filter 93 transmits an optical signal having a desired wavelength among the vertically incident leakage light to the PD element 91 side, and the PD element 91 detects the optical signal.

上記したように、孔部付き平板92を介して波長選択フィルタ93に漏れ光を入射させる理由は、波長選択フィルタ93は誘電体多層膜によって構成されるが、誘電体多層膜は自身に対して光が垂直に入射したときにその波長選択性能が最大限に発揮され、斜めに入射した光に対しては十分な波長選択性能を発揮することができないからで、そのため通信光検知器1が所望の波長を有する光信号を効率良く検知することができなくなる(所望外の波長を有する光信号も検知して信号対雑音比(S/N)が悪くなる)からである。   As described above, the reason why the leakage light is incident on the wavelength selection filter 93 through the flat plate 92 with the hole is that the wavelength selection filter 93 is formed of the dielectric multilayer film, but the dielectric multilayer film is The wavelength selection performance is maximized when light is incident vertically, and sufficient wavelength selection performance cannot be exhibited for obliquely incident light. Therefore, the communication light detector 1 is desired. This is because it is impossible to efficiently detect an optical signal having a wavelength of (that is, an optical signal having an undesired wavelength is also detected and the signal-to-noise ratio (S / N) deteriorates).

これにより、光検知用溝7で発生した漏れ光のうち、PD素子91に垂直方向の成分を有する漏れ光を波長選択フィルタ93に入射させ、この波長選択フィルタ93によって所望の波長を有する光信号をPD素子91側に効率的に透過させることができる(所望外の波長を有する光信号が、PD素子91に到達することを大幅に減らすことができる)ので、信号対雑音比(S/N)を大幅に改善でき、検知性能を向上させることができる。   As a result, out of the leaked light generated in the light detection groove 7, the leaked light having a component in the vertical direction is made incident on the PD element 91, and the optical signal having a desired wavelength is input by the wavelength selective filter 93. Can be efficiently transmitted to the PD element 91 side (an optical signal having an undesired wavelength can be significantly reduced from reaching the PD element 91), so that the signal-to-noise ratio (S / N ) Can be greatly improved, and the detection performance can be improved.

また上記した効果を得るために、孔部付き平板92は、例えば、その厚さは1〜3mmとし、その外径は5mmとし、貫通孔である孔部の内径(孔径)は0.5〜2mmとすることが好ましい。また、孔部付き平板92の底面及び孔部の壁面に黒色塗料を塗布したり孔部付き平板92そのものを黒色樹脂で製作することによって、漏れ光の絞り効果を高めることができる。   Moreover, in order to acquire the above-mentioned effect, the flat plate 92 with a hole part is 1-3 mm in thickness, the outer diameter is 5 mm, for example, and the internal diameter (hole diameter) of the hole part which is a through-hole is 0.5-. 2 mm is preferable. Further, by applying a black paint to the bottom surface of the flat plate 92 with holes and the wall surface of the hole, or manufacturing the flat plate 92 with holes with a black resin, it is possible to enhance the throttling effect of leaking light.

さらに孔部付き平板92の断面形状は図2に示すように種々の形状を採用することができる。孔部付き平板92は、矢印のように入射されてきた漏れ光の内、点線で示す入射角度の大きい漏れ光を遮光(吸収または反射)する。図2(a)のものは、その内面壁92aが始端から終端まで全域に亘って断面垂直状をした孔部付き平板92であり、図2(b)のものは、図2(a)の構造に類似し、内面壁92aの形状は始端及び終端形状が切欠状にして(孔部に面取り加工を施して)製造を容易にした形状の孔部付き平板92であり、図2(c)のものは、内面壁92aの形状は終端側狭小型である孔部付き平板92であり、図2(d)のものは内面壁92aの形状は終端末広がり型である孔部付き平板92である。いずれの孔部付き平板92であっても孔径及び傾斜角度を適宜選択し、斜めに入射される漏れ光を遮光し、垂直方向の遮漏光を通過させるように設定することができる。検出を容易にすることからは、図2(a)あるいは図2(b)に示すものが望ましい。   Further, as the cross-sectional shape of the flat plate 92 with holes, various shapes can be adopted as shown in FIG. The flat plate 92 with a hole shields (absorbs or reflects) leaked light having a large incident angle indicated by a dotted line among the leaked light incident as indicated by arrows. 2 (a) is a flat plate 92 with a hole whose inner wall 92a has a vertical cross section over the entire region from the start to the end. FIG. 2 (b) is the same as FIG. 2 (a). Similar to the structure, the shape of the inner wall 92a is a flat plate 92 with a hole having a shape in which the start and end shapes are notched (by chamfering the hole) to facilitate manufacture, and FIG. In FIG. 2 (d), the shape of the inner wall 92a is a narrow plate 92 with a hole on the end side, and in FIG. 2 (d), the shape of the inner wall 92a is a flat plate 92 with a hole having a terminal end spread type. . In any of the flat plates 92 with holes, the hole diameter and the inclination angle can be selected as appropriate, and can be set so as to block the leaking light incident obliquely and allow the vertical blocking light to pass through. In order to facilitate detection, the one shown in FIG. 2A or 2B is desirable.

また、通信光伝送路中を1.3μm波長帯と1.5μm波長帯の通信光が伝搬しており、この1.3μm波長帯のみを取り出して検知したい場合には、波長選択フィルタ93は、図3に示すような1.3μm波長帯透過/1.5μm波長帯遮断の特性を有することが望ましい。なお、この特性は、自身(フィルタ面)に直角に光を入射した場合に得られるものである。   In addition, when communication light of 1.3 μm wavelength band and 1.5 μm wavelength band propagates in the communication light transmission path, and only this 1.3 μm wavelength band is to be detected and detected, the wavelength selection filter 93 is It is desirable to have the characteristics of 1.3 μm wavelength band transmission / 1.5 μm wavelength band cutoff as shown in FIG. This characteristic is obtained when light is incident at a right angle on itself (filter surface).

図3に示すように、波長選択フィルタ93は1.3μm波長帯の漏れ光をほぼ100%通過させ、1.5μm波長帯の漏れ光をほぼ0%まで遮断できること示している。   As shown in FIG. 3, the wavelength selection filter 93 allows almost 100% of the leaked light in the 1.3 μm wavelength band to pass through and blocks the leaked light in the 1.5 μm wavelength band to almost 0%.

第1の実施形態の作用を説明する。   The operation of the first embodiment will be described.

使用したい通信光伝送路(光ファイバ13)に光検知器1を取り付ける。具体的には、光検知器1の一端側の光コネクタアダプタに、ユーザー宅10側の光コネクタプラグを挿入して固定し、他端側の光コネクタアダプタに、設備センター14側の光コネクタプラグを挿入して固定し、設備センター14側からユーザー宅10側に向かって1.5μm波長帯で通信すると共に、ユーザー宅10側から設備センター14側に向かって1.3μm波長帯で通信し、双方向通信をしているものとする。   The photodetector 1 is attached to the communication optical transmission line (optical fiber 13) to be used. Specifically, the optical connector plug on the user house 10 side is inserted and fixed to the optical connector adapter on one end side of the optical detector 1, and the optical connector plug on the equipment center 14 side is connected to the optical connector adapter on the other end side. Is inserted and fixed, communicates in the 1.5 μm wavelength band from the equipment center 14 side toward the user home 10 side, and communicates in the 1.3 μm wavelength band from the user home 10 side toward the equipment center 14 side, Assume two-way communication.

この場合、図1に示すように、設備センター14側からの通信光は、設備センター14側の光コネクタプラグに内蔵されたフェルール104c内の光ファイバ106cを通り、ユーザー宅10側からの通信光は、ユーザー宅10側の光コネクタプラグに内蔵されたフェルール104y内の光ファイバ106yを通り、両通信光は光検知接合体2の光検知用溝7に達する。両通信光が光検知用溝7内の屈折率整合剤rに入射すると、両通信光の一部が漏れ光として漏れ、その漏れ光が光ファイバ4のコア部の端面から広がる。なお、設備センター14側からの通信光とユーザー宅10側からの通信光の波長は異なっており、本実施例においては、設備センター14側からの通信光は1.5μm波長帯であり、ユーザー宅10側からの通信光は1.3μm波長帯であるので、漏れ光には、1.5μm波長帯と1.3μm波長帯の両通信光が含まれる。   In this case, as shown in FIG. 1, the communication light from the equipment center 14 side passes through the optical fiber 106c in the ferrule 104c built in the optical connector plug on the equipment center 14 side, and the communication light from the user home 10 side. Passes through the optical fiber 106y in the ferrule 104y built in the optical connector plug on the user's home 10 side, and both communication lights reach the light detection groove 7 of the light detection joined body 2. When both communication lights enter the refractive index matching agent r in the light detection groove 7, a part of both communication lights leak as leaked light, and the leaked light spreads from the end face of the core portion of the optical fiber 4. The wavelength of the communication light from the equipment center 14 side and the wavelength of the communication light from the user home 10 side are different. In this embodiment, the communication light from the equipment center 14 side is in the 1.5 μm wavelength band, and the user Since the communication light from the home 10 side is in the 1.3 μm wavelength band, the leakage light includes both communication light in the 1.5 μm wavelength band and the 1.3 μm wavelength band.

この広がった漏れ光は、孔部付き平板92に達する。そして、この漏れ光は、孔部付き平板92の光検知用溝7側の底面及び孔部の壁面によって吸収または反射されることによって絞られるので、漏れ光の一部は、波長選択フィルタ93に達しない。その他の漏れ光(波長選択フィルタ93に垂直またはほぼ垂直に入射する漏れ光)は、孔部付き平板92の孔部を通って波長選択フィルタ93に達する。   The spread leaked light reaches the flat plate 92 with holes. This leaked light is narrowed down by being absorbed or reflected by the bottom surface of the flat plate 92 with holes on the side of the light detection groove 7 and the wall surface of the holes, so that a part of the leaked light enters the wavelength selection filter 93. Not reach. Other leakage light (leakage light incident on the wavelength selection filter 93 perpendicularly or substantially perpendicularly) reaches the wavelength selection filter 93 through the hole of the flat plate 92 with a hole.

本実施形態においては、孔部付き平板92の底面及び孔部の壁面に黒色塗料を塗布した。   In the present embodiment, the black paint is applied to the bottom surface of the flat plate 92 with holes and the wall surfaces of the holes.

波長選択フィルタ93は、誘電体多層膜からなり、1.5μm波長帯の光信号を遮断し、1.3μm波長帯の光信号を透過するように設計されている。   The wavelength selection filter 93 is made of a dielectric multilayer film, and is designed to block an optical signal in the 1.5 μm wavelength band and transmit an optical signal in the 1.3 μm wavelength band.

波長選択フィルタ93に達した漏れ光(垂直入射光)は、この波長選択フィルタ93に垂直またはほぼ垂直に入射することになるので、波長選択フィルタ93の波長選択機能が有効に作用する。よって、波長選択フィルタ93に達した漏れ光は、1.5μm波長帯の光信号は反射(遮断)され、1.3μm波長帯の光信号は透過され、この透過した1.3μm波長帯の光信号は、PD素子91によって検知される。そして、PD素子91は、検知(受光)した光信号を電気信号に変換し、この電気信号が回路基板94を伝送されて光検知部9の光出力部材(例えば、発光ダイオードを用いる)で可視光に変換されて出力される。   The leakage light (vertical incident light) that has reached the wavelength selection filter 93 is incident on the wavelength selection filter 93 vertically or substantially perpendicularly, so that the wavelength selection function of the wavelength selection filter 93 acts effectively. Therefore, the leaked light that reaches the wavelength selection filter 93 is reflected (blocked) by the optical signal in the 1.5 μm wavelength band, the transmitted optical signal in the 1.3 μm wavelength band, and the transmitted light in the 1.3 μm wavelength band. The signal is detected by the PD element 91. The PD element 91 converts the detected (received) optical signal into an electrical signal, which is transmitted through the circuit board 94 and is visible by a light output member (for example, using a light emitting diode) of the light detection unit 9. It is converted into light and output.

すなわち、伝送路中を伝搬する通信光(光信号)の波長が複数であっても、所望の波長を有する光信号のみを取り出すことが可能であり、この光信号が変換されて出力される可視光の有無を作業者が目視することで、この通信光伝送路が使用されているか否かを簡単に確認できる。   In other words, even if there are a plurality of wavelengths of communication light (optical signal) propagating in the transmission path, it is possible to extract only an optical signal having a desired wavelength, and this optical signal is converted and output. The operator can easily confirm whether or not the communication optical transmission line is used by visually checking the presence or absence of light.

したがって、通信光検知器1によれば、フィルタ手段300を用いることで、複数の波長の通信光が通信光伝送路内を伝搬している場合であっても、この通信光伝送路内から所望の波長の通信光を取り出して、その通信光を検知することできる。よって、通信光検知器1が取り付けられた通信光伝送路が使用中の回線(通信光を検知)か未使用の回線(通信光を検知せず)であるか容易に判別することができる。   Therefore, according to the communication light detector 1, by using the filter means 300, even if communication light having a plurality of wavelengths propagates in the communication light transmission line, the communication light detector 1 can receive the desired light from the communication light transmission line. It is possible to take out communication light of a wavelength of and detect the communication light. Therefore, it is possible to easily determine whether the communication light transmission path to which the communication light detector 1 is attached is a used line (detecting communication light) or an unused line (not detecting communication light).

図4に示す第2の実施形態に係る通信光検知器1は、PD素子91が光検知用溝7の真上部分からフェルール104c側(1.3μm波長帯通信光の下流側)に位置するように場所をずらしたものである。   In the communication light detector 1 according to the second embodiment shown in FIG. 4, the PD element 91 is located on the ferrule 104 c side (downstream side of 1.3 μm wavelength band communication light) from the portion directly above the light detection groove 7. The place is shifted.

一般に漏れ光の強度が最高値となる位置は通信光発信側から見て、光検知用溝7からわずかに通信光受信側にシフトすることが知られている。従って、通信光発信/受信装置11から発信される1.5μm波長帯の通信光に対して、通信光受信/発信装置12から発信される1.3μm波長帯の通信光が混在するときは、1.5μm波長帯の通信光の漏れ光は光検知用溝からわずかに通信光受信/発信装置12側にシフトした位置に最大強度の出力が得られ、逆に、通信光受信/発信装置12からの1.3μm波長帯の通信光の漏れ光は光検知用溝7からわずかに通信光発信/受信装置11側にシフトした位置で最大強度の出力が得られる。   In general, it is known that the position at which the intensity of leaked light reaches the maximum value is slightly shifted from the light detection groove 7 to the communication light receiving side as viewed from the communication light transmitting side. Accordingly, when communication light of 1.3 μm wavelength band transmitted from the communication light receiving / transmitting apparatus 12 is mixed with communication light of 1.5 μm wavelength band transmitted from the communication light transmitting / receiving apparatus 11, The leakage light of the communication light in the 1.5 μm wavelength band can be output with the maximum intensity at the position slightly shifted from the light detection groove to the communication light receiving / transmitting device 12 side, and conversely, the communication light receiving / transmitting device 12. The leakage light of the communication light in the 1.3 μm wavelength band from is obtained at the maximum intensity output at a position slightly shifted from the light detection groove 7 toward the communication light transmitting / receiving device 11 side.

このため、ユーザー宅10から発信された1.3μm波長帯の通信光を検出するためには、その漏れ光強度が最大となる位置すなわち光検知用溝7からわずかに設備センター14側にシフトした位置にPD素子91を取り付けることで感度よく検出することが可能となる。この際、1.5μm波長帯の通信光の漏れ光の出力は、1.3μm波長帯の通信光の漏れ光が最大出力となる位置では、光検知用溝7の真上にある場合よりも小さくなる。したがって、PD素子91の取付け位置とフィルタ手段300とを併用することにより、所望の1.3μm波長帯の通信光の漏れ光を感度良く受光して(波長選択フィルタ93に入射する1.5μm波長帯の通信光を減らして)S/Nの向上を図ることが出来る。   For this reason, in order to detect the communication light of the 1.3 μm wavelength band transmitted from the user's home 10, the position where the leakage light intensity is maximum, that is, the light detection groove 7 is slightly shifted to the equipment center 14 side. By attaching the PD element 91 at the position, it becomes possible to detect with high sensitivity. At this time, the output of the leakage light of the communication light in the 1.5 μm wavelength band is larger than the case where the leakage light of the communication light in the 1.3 μm wavelength band is directly above the light detection groove 7 at the position where the maximum output is. Get smaller. Therefore, by using the mounting position of the PD element 91 and the filter means 300 together, the leakage light of the communication light in the desired 1.3 μm wavelength band is received with high sensitivity (1.5 μm wavelength incident on the wavelength selection filter 93). S / N can be improved by reducing the band communication light.

なお、この通信光検知器によってもユーザー宅からの1.3μm波長帯の通信光が検知できないときは、その回線は使用されていないと判別できる。   If the communication light detector cannot detect communication light in the 1.3 μm wavelength band from the user's home, it can be determined that the line is not being used.

なお、本発明は、上記各実施の形態に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

光漏洩部の構成例は特開2009−276627号に記載されているが、例えば、光検知接合体2の長手方向の両端部がそれぞれ光ファイバ106C,106yを内蔵した光コネクタのフェルール104c、104yの端面と接合されるが、この接合部でも通信光が漏洩し、光漏洩部16が形成される。特に光検知接合体2の光ファイバ4の構造パラメータが光ファイバ106c,106yの構造パラメータと異なるときや光検知接合体2の光ファイバ4と光ファイバ106c、106yの光軸が微小ずれていると前記接合部での漏洩光の強度が強くなるので、この光漏洩部からの漏洩光を光検知部9で検知することが出来、光検知用溝7や屈折率整合剤rなどを使用することなく通信光が検知できる。   An example of the configuration of the light leakage portion is described in Japanese Patent Application Laid-Open No. 2009-276627. For example, the ferrules 104c and 104y of the optical connector in which both end portions in the longitudinal direction of the light detection joined body 2 incorporate optical fibers 106C and 106y, respectively. However, the communication light leaks at the joined portion, and the light leaking portion 16 is formed. In particular, when the structural parameters of the optical fiber 4 of the optical sensing joint 2 are different from the structural parameters of the optical fibers 106c and 106y, or when the optical axes of the optical fiber 4 and the optical fibers 106c and 106y of the optical sensing joint 2 are slightly shifted. Since the intensity of the leaked light at the joint becomes strong, the leaked light from the light leaking part can be detected by the light detecting part 9, and the light detecting groove 7 or the refractive index matching agent r is used. Communication light can be detected.

また、波長選択フィルタ93として1.3μm波長帯透過/1.5μm波長帯遮断の特性を有する1種類の波長選択フィルタを用いたが、更に斜め入射光を反射するように1.3μm波長帯透過/1.6μm波長帯遮断の特性を有する波長選択フィルタも組合せて多数の波長透過・遮断特性を備えさせることもできる。すなわちフィルタ手段は、孔部付き平板と複数種類の波長選択フィルタとを併用したものから構成されても、複数種類の波長フィルタの組み合わせのみから構成されても良い。   In addition, as the wavelength selection filter 93, one type of wavelength selection filter having the characteristics of 1.3 μm wavelength band transmission / 1.5 μm wavelength band cut-off is used, but further 1.3 μm wavelength band transmission is performed so as to reflect obliquely incident light. A wavelength selective filter having a /1.6 μm wavelength band cutoff characteristic can also be combined to provide a large number of wavelength transmission / cutoff characteristics. That is, the filter means may be composed of a combination of a flat plate with holes and a plurality of types of wavelength selection filters, or may be composed of only a combination of a plurality of types of wavelength filters.

さらに、フィルタ手段300をPD90に脱着可能に形成しておき、フィルタ手段300を取り付けた状態で通信光伝送路に取り付けて1.3μm波長帯の通信光が無いことを検知した後に、フィルタ手段300を取り外した状態で通信光伝送路に取り付けて1.5μm波長帯の通信光の有無を検知することで、設備センター14側から通信光検知器までの回線の正常または異常(断線)かを確認することができるようになる。   Further, the filter means 300 is formed so as to be detachable from the PD 90, and is attached to the communication optical transmission line with the filter means 300 attached, and after detecting that there is no communication light in the 1.3 μm wavelength band, the filter means 300 It is confirmed whether the line from the equipment center 14 side to the communication light detector is normal or abnormal (disconnected) by detecting the presence or absence of communication light in the 1.5μm wavelength band by attaching it to the communication light transmission line with the cable removed. Will be able to.

また、本発明は、通信光検知器の両端から異なった通信光を伝搬させる場合だけでなく、通信光検知器の片端から異なる波長を有する通信光を同時に伝搬させる場合であっても適用可能である。   The present invention is applicable not only when propagating different communication lights from both ends of the communication light detector, but also when transmitting communication light having different wavelengths from one end of the communication light detector at the same time. is there.

1…通信光検知器、2…光検知接合体、7…光検知用溝、9…光検知部、13…通信光伝送路、92…孔部付き平板、93…波長選択フィルタ、300…フィルタ手段、r…屈折率整合剤。   DESCRIPTION OF SYMBOLS 1 ... Communication light detector, 2 ... Light detection joined body, 7 ... Light detection groove | channel, 9 ... Light detection part, 13 ... Communication light transmission path, 92 ... Flat plate with a hole part, 93 ... Wavelength selection filter, 300 ... Filter Means, r ... refractive index matching agent.

Claims (7)

波長の異なる複数の通信光が伝搬される通信光伝送路と該通信光伝送路に形成された光漏洩部と、前記光漏洩部から漏れる前記波長の異なる複数の通信光の内、所望の波長を有する通信光を透過し、所望外の波長を有する通信光を吸収または反射するフィルタ手段と、
前記フィルタ手段によって透過された前記所望の波長を有する通信光を検知する光検知部と、
を備えてなる通信光検知器。
A communication light transmission path through which a plurality of communication lights having different wavelengths are propagated, a light leakage part formed in the communication light transmission line, and a desired wavelength among the plurality of communication lights having different wavelengths leaking from the light leakage part Filter means for transmitting communication light having a wavelength and absorbing or reflecting communication light having an undesired wavelength;
A light detection unit for detecting communication light having the desired wavelength transmitted by the filter means;
A communication light detector comprising:
光漏洩部は光検知接合体の通信光伝送路のコアを貫通する光検知用溝と該光検知用溝に充填される屈折率整合剤とで構成されることを特徴とする請求項1に記載の通信光検知器。   The light leakage part is composed of a light detection groove that penetrates the core of the communication light transmission path of the light detection bonded body and a refractive index matching agent that is filled in the light detection groove. The communication light detector as described. 光漏洩部は光検知接合体の長手方向の両端部と両端に接合される光コネクタに内蔵した光ファイバとの接合部で構成されることを特徴とする請求項1に記載の通信光検知器。   The communication light detector according to claim 1, wherein the light leakage portion is configured by a joint portion between both ends in the longitudinal direction of the light detection joined body and an optical fiber built in an optical connector joined to both ends. . 光漏洩部は光検知接合体の長手方向の両端部と両端に接合される光コネクタに内蔵した光ファイバとの接合部で構成され、該光検知接合体の内部の光ファイバは通信光伝送路を形成する光ファイバの構造パラメータと異なることを特徴とする請求項1に記載の通信光検知器。   The light leakage part is composed of both ends in the longitudinal direction of the light detection joined body and a joint part between the optical fibers built in the optical connectors joined to both ends, and the optical fiber inside the light detection joined body is a communication optical transmission line. The communication light detector according to claim 1, wherein the communication light detector is different from a structural parameter of an optical fiber forming the optical fiber. 前記フィルタ手段は、孔部付き平板と波長選択フィルタとからなり、
前記光漏洩部から漏れる前記波長の異なる複数の通信光は、前記孔部付き平板の孔部を通って前記波長選択フィルタに入射され、
前記孔部付き平板は、前記光漏洩部から漏れる前記波長の異なる複数の通信光の内、前記波長選択フィルタに垂直またはほぼ垂直に入射する垂直入射光を透過させ、
前記波長選択フィルタは、前記垂直入射光の内、所望の波長を有する通信光を透過させ、所望外の波長を有する通信光を反射することを特徴とする請求項4に記載の通信光検知器。
The filter means comprises a flat plate with a hole and a wavelength selection filter,
The plurality of communication lights having different wavelengths leaking from the light leaking part are incident on the wavelength selection filter through the hole part of the flat plate with the hole part,
The flat plate with a hole transmits vertically incident light incident perpendicularly or substantially perpendicularly to the wavelength selection filter among a plurality of communication lights having different wavelengths leaking from the light leakage portion,
The communication light detector according to claim 4, wherein the wavelength selection filter transmits communication light having a desired wavelength out of the normal incident light and reflects communication light having an undesired wavelength. .
前記孔部付き平板は、その底面及び内壁面に黒色塗料が塗布されているか、または、黒色樹脂によって形成されていることを特徴とする請求項5に記載の通信光検知器。   The communication light detector according to claim 5, wherein the flat plate with a hole has a black paint applied to a bottom surface and an inner wall surface thereof or is formed of a black resin. 前記通信光伝送路内を伝搬する通信光は、1.3μm波長帯と1.5μm波長帯からなる通信光であり、
前記波長選択フィルタは、1.3μm波長帯を透過し、1.5μm波長帯を反射する特性を有することを特徴とする請求項1〜6いずれかに記載の通信光検知器。
The communication light propagating in the communication light transmission path is communication light consisting of a 1.3 μm wavelength band and a 1.5 μm wavelength band,
The communication light detector according to claim 1, wherein the wavelength selection filter has a characteristic of transmitting a 1.3 μm wavelength band and reflecting a 1.5 μm wavelength band.
JP2011257177A 2011-11-25 2011-11-25 Communication light detector Pending JP2013113871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257177A JP2013113871A (en) 2011-11-25 2011-11-25 Communication light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257177A JP2013113871A (en) 2011-11-25 2011-11-25 Communication light detector

Publications (1)

Publication Number Publication Date
JP2013113871A true JP2013113871A (en) 2013-06-10

Family

ID=48709503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257177A Pending JP2013113871A (en) 2011-11-25 2011-11-25 Communication light detector

Country Status (1)

Country Link
JP (1) JP2013113871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918871A (en) * 2015-12-25 2017-07-04 日立金属株式会社 Communication ray visualizes plugboard
KR20190105831A (en) * 2018-03-06 2019-09-18 (주)옵토위즈 Non-powered bidirectional fiber line monitoring apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240415A (en) * 2003-01-14 2004-08-26 Japan Aviation Electronics Industry Ltd Optical fiber tap
JP2005208239A (en) * 2004-01-21 2005-08-04 Fujitsu Access Ltd Optical power monitor device and optical communication module
JP2006202665A (en) * 2005-01-24 2006-08-03 Yokogawa Electric Corp Light source device
JP2009276627A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2009276628A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2011128516A (en) * 2009-12-21 2011-06-30 Nikon Corp Spectral filter optical system and spectral measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240415A (en) * 2003-01-14 2004-08-26 Japan Aviation Electronics Industry Ltd Optical fiber tap
JP2005208239A (en) * 2004-01-21 2005-08-04 Fujitsu Access Ltd Optical power monitor device and optical communication module
JP2006202665A (en) * 2005-01-24 2006-08-03 Yokogawa Electric Corp Light source device
JP2009276627A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2009276628A (en) * 2008-05-15 2009-11-26 Hitachi Cable Ltd Communication light detector
JP2011128516A (en) * 2009-12-21 2011-06-30 Nikon Corp Spectral filter optical system and spectral measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918871A (en) * 2015-12-25 2017-07-04 日立金属株式会社 Communication ray visualizes plugboard
CN106918871B (en) * 2015-12-25 2019-11-29 日立金属株式会社 Communication ray visualizes plugboard
KR20190105831A (en) * 2018-03-06 2019-09-18 (주)옵토위즈 Non-powered bidirectional fiber line monitoring apparatus
KR102052325B1 (en) * 2018-03-06 2019-12-05 (주)옵토위즈 Non-powered bidirectional fiber line monitoring apparatus

Similar Documents

Publication Publication Date Title
JP4927028B2 (en) Communication light detector
US9791347B2 (en) Method and system for non-contact optical-power measurement
JP5063326B2 (en) Communication light detector
JP5199883B2 (en) Apparatus and method for verifying acceptable splice termination connections
JP6534999B2 (en) Optical fiber laser device
CN109073841B (en) Optical connector with photodetector, adapter for optical connector, and system
JP5011179B2 (en) High power optical connector
JP2011013359A (en) Optical connector
EP3556029B1 (en) Optical fiber test apparatus with combined light measurement and fault detection
US20090154870A1 (en) Optical Fiber Sensor Connected To Optical Fiber Communication Line
WO2007089432A1 (en) Installation tool with integrated visual fault indicator for field-installable mechanical splice connector
US20080144015A1 (en) Optical characteristic inspection method, optical characteristic inspection apparatus, and optical characteristic inspection system for optical fiber device
JP4856673B2 (en) Communication light detector
JP2010033039A (en) Method and apparatus for confirming connection of optical connector
JP6723695B2 (en) Optical power monitor device and fiber laser device
JP6684461B2 (en) Optical visualization filter and communication optical visualization device using the same
JP2013113871A (en) Communication light detector
EP3398002B1 (en) Encircled flux compliant test apparatus
JP2011192670A (en) Apparatus and method of monitoring laser diode
JP2013024738A (en) Live-wire detection device
JPWO2009004713A1 (en) Bidirectional optical power monitor and its assembly
US20120127458A1 (en) Multi-function optical measurement device
WO2013191268A1 (en) Optical connector
JP7003580B2 (en) Communication light detector
Yahia et al. Transmission Characteristics of Plastic Optical Fiber Connectors

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407