JP2013113815A - Earthquake motion duration time prediction system - Google Patents

Earthquake motion duration time prediction system Download PDF

Info

Publication number
JP2013113815A
JP2013113815A JP2011263072A JP2011263072A JP2013113815A JP 2013113815 A JP2013113815 A JP 2013113815A JP 2011263072 A JP2011263072 A JP 2011263072A JP 2011263072 A JP2011263072 A JP 2011263072A JP 2013113815 A JP2013113815 A JP 2013113815A
Authority
JP
Japan
Prior art keywords
earthquake
duration
motion
regression equation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011263072A
Other languages
Japanese (ja)
Other versions
JP5760268B2 (en
Inventor
Masaya Kobayashi
真弥 小林
Masami Takagi
政美 高木
Yasuo Uchiyama
泰生 内山
Masaru Yamamoto
山本  優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2011263072A priority Critical patent/JP5760268B2/en
Publication of JP2013113815A publication Critical patent/JP2013113815A/en
Application granted granted Critical
Publication of JP5760268B2 publication Critical patent/JP5760268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake motion duration time prediction system capable of predicting an earthquake motion duration time on an optional location at which earthquake motion observation data is not recorded.SOLUTION: An earthquake motion duration time prediction system 1 includes a storage part 5 for storing the coordinates of a target location and ground conditions of the target location, a regression expression calculation part 41 for preliminarily modeling aging characteristics of waveforms of a plurality of pieces of observation data of actual earthquake motion with an envelope function and representing an earthquake motion duration time by a regression expression calculated with a hypocentral distance and Meteorological Agency magnitude as parameters, a reception part 2 for receiving real-time earthquake information including the earthquake location and Meteorological Agency magnitude, a hypocentral distance calculation part 42 for calculating a hypocentral distance on the basis of the earthquake location of the real-time earthquake information and the stored coordinates of the target location, and a duration time calculation part 44 for substituting the ground conditions of the target location, the hypocentral distance, and the Meteorological Agency magnitude for the stored regression expression, and calculating an earthquake motion duration time.

Description

本発明は、地震動継続時間予測システムに関する。詳しくは、地震動の継続時間を予測する地震動継続時間予測システムに関する。   The present invention relates to a seismic motion duration prediction system. Specifically, the present invention relates to a ground motion duration prediction system that predicts the duration of ground motion.

従来より、地震動の収束は、対象地点に地震計を設置しておき、この地震計で検知した地震動の大きさに基づいて判定することが多い(特許文献1参照)。すなわち、特許文献1では、エレベーターの運転再開制御を行うに当たり、現地に地震計を設置しておき、この地震計により検出された地震動の大きさが設定した閾値よりも小さくなることを条件として、地震動が収束したと判定している。   Conventionally, the convergence of seismic motion is often determined based on the magnitude of seismic motion detected by a seismometer installed at a target point (see Patent Document 1). That is, in Patent Document 1, in order to perform elevator resumption control, a seismometer is installed on the site, and on the condition that the magnitude of seismic motion detected by this seismometer is smaller than a set threshold value, It is determined that the ground motion has converged.

しかしながら、地震計の設置に伴う導入コストに加え、維持管理のランニングコストが必要となるため、対象地点に地震計を設置することは容易ではない。   However, in addition to the introduction costs associated with the installation of seismometers, maintenance management running costs are required, so it is not easy to install seismometers at the target points.

そこで、緊急地震速報などのリアルタイム地震情報を利用して、対象地点における地震動の強さや対象地点の建物の被害予測を行う地震防災システムが開発されている(特許文献2参照)。この防災システムにおいては、地震発生時に、緊急地震速報などのリアルタイム地震情報を利用して地震動の継続時間を算出し、この地震動の継続時間に基づいて当該建物の被害予測を行う。   In view of this, an earthquake disaster prevention system has been developed that uses real-time earthquake information such as emergency earthquake warnings to predict the strength of ground motion at a target location and damage prediction of a building at the target location (see Patent Document 2). In this disaster prevention system, when an earthquake occurs, the duration of the earthquake motion is calculated using real-time earthquake information such as an emergency earthquake bulletin, and the damage of the building is predicted based on the duration of the earthquake motion.

ここで、地震動の継続時間は、以下のようにして求められている。
すなわち、予め、過去に発生した地震について、震源位置、マグニチュード、各受震域の観測データに基づいて、地震動のスペクトルの特性や継続時間に関する傾向を回帰分析などにより求めておく。同じ震源域で発生する地震は、ほぼ同じ地震発生メカニズムで発生するので震源特性が類似するうえに、同じ受震域では、ほぼ同じ地震動特性であることから、震源域および受震域の組合せごとにマグニチュードに応じた地震動スペクトル特性や継続時間のデータベースを構築する。
Here, the duration of earthquake motion is obtained as follows.
That is, for earthquakes that have occurred in the past, a trend regarding the characteristics of the ground motion spectrum and duration is obtained by regression analysis or the like based on the position of the epicenter, the magnitude, and the observation data of each receiving area. Earthquakes that occur in the same seismic region occur with almost the same seismogenic mechanism, so the seismic source characteristics are similar, and the same seismic area has almost the same ground motion characteristics. In addition, a database of seismic motion spectrum characteristics and durations according to magnitude will be constructed.

そして、地震発生時にリアルタイム地震情報(緊急地震速報)を受信すると、この地震の震源域と対象地点の属する受震域との組合せをデータベースから探し出して、該当する組合せの地震動スペクトル特性および地震動継続時間を読み出す。このようにして、地震動の継続時間を求める。   When real-time earthquake information (emergency earthquake warning) is received at the time of the earthquake, the combination of the source area of this earthquake and the receiving area to which the target point belongs is searched from the database, and the ground motion spectrum characteristics and the duration of the ground motion of the corresponding combination are searched. Is read. In this way, the duration of earthquake motion is obtained.

特開2007−178202号公報JP 2007-178202 A 特開2006−343578号公報JP 2006-343578 A

しかしながら、特許文献1に示された手法では、データベースに記憶された特定の震源域と受震域との組合せのみ地震動の継続時間を予測できる。そのため、地震動の観測データが記録されていない地域については、地震動の継続時間を予測できない、という問題があった。   However, with the method disclosed in Patent Document 1, the duration of the earthquake motion can be predicted only for a combination of a specific source region and a seismic region stored in the database. For this reason, there was a problem that the duration of seismic motion could not be predicted in areas where seismic motion observation data was not recorded.

本発明は、地震動の観測データが記録されていない任意の地点について、地震動の継続時間を予測できる地震動継続時間予測システムを提供することを目的とする。   An object of the present invention is to provide an earthquake motion duration prediction system capable of predicting the duration of an earthquake motion at an arbitrary point where the observation data of the earthquake motion is not recorded.

請求項1に記載の地震動継続時間予測システムは、対象地点における地震動の継続時間を予測する地震動継続時間予測システムであって、前記対象地点の座標および前記対象地点の地盤条件を記憶する記憶部と、予め実際の地震動の複数の観測データの波形の経時特性を包絡関数でモデル化して、地震動の継続時間を震源距離および気象庁マグニチュードをパラメータとして求めた回帰式で表して、当該回帰式を前記記憶部に記憶させる回帰式算出部と、震源位置および気象庁マグニチュードを含むリアルタイム地震情報を受信する受信部と、前記リアルタイム地震情報の震源位置および前記記憶した対象地点の座標に基づいて震源距離を算出する震源距離算出部と、前記記憶した回帰式に、前記対象地点の地盤条件、前記震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する継続時間算出部と、を備えることを特徴とする。   The seismic motion duration prediction system according to claim 1 is a seismic motion duration prediction system that predicts the duration of seismic motion at a target point, and a storage unit that stores coordinates of the target point and ground conditions of the target point; The time-dependent characteristics of the waveforms of a plurality of observation data of actual seismic motion are modeled in advance using an envelope function, and the duration of the seismic motion is expressed as a regression equation using the epicenter distance and the JMA magnitude as parameters, and the regression equation is stored in the memory. A regression equation calculation unit to be stored in the unit, a reception unit that receives real-time earthquake information including the epicenter location and the JMA magnitude, and a hypocenter distance based on the source location of the real-time earthquake information and the stored coordinates of the target point In the epicenter distance calculation unit and the stored regression equation, the ground condition of the target point, the epicenter distance, and By substituting Zocho magnitude, characterized in that it comprises a duration calculation unit for calculating the duration of the ground motion, the.

この発明によれば、記憶部により、対象地点の座標および前記対象地点の地盤条件を記憶しておく。また、予め、回帰式算出部により、複数の実際の地震動の波形の経時特性を包絡関数でモデル化し、震源距離および気象庁マグニチュードをパラメータとした回帰式で表して、この回帰式を記憶部に記憶させておく。
そして、受信部によりリアルタイム地震情報を受信すると、震源距離算出部により、リアルタイム地震情報の震源位置および記憶した対象地点の座標に基づいて震源距離を算出する。次に、継続時間算出部により、記憶した回帰式に、対象地点の地盤条件、震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する。
よって、任意の地点について、地震動の継続時間を予測し、避難開始などの防災情報を建物内に報知できる。
According to the present invention, the storage unit stores the coordinates of the target point and the ground conditions of the target point. In addition, the regression equation calculation unit models the time-dependent characteristics of a plurality of actual seismic motion waveforms with an envelope function, and represents the regression equation using the epicenter distance and the Japan Meteorological Agency magnitude as parameters, and stores this regression equation in the storage unit. Let me.
Then, when the real-time earthquake information is received by the receiving unit, the epicenter distance calculation unit calculates the epicenter distance based on the epicenter position of the real-time earthquake information and the stored coordinates of the target point. Next, the duration calculation unit calculates the duration of the earthquake motion by substituting the ground condition of the target point, the epicenter distance, and the Japan Meteorological Agency magnitude into the stored regression equation.
Therefore, it is possible to predict the duration of seismic motion at any point and notify disaster prevention information such as the start of evacuation in the building.

請求項2に記載の地震動継続時間予測システムは、前記回帰式としては、軟質地盤における回帰式と硬質地盤における回帰式とを用いることを特徴とする。   The earthquake motion duration prediction system according to claim 2 is characterized in that, as the regression equation, a regression equation in soft ground and a regression equation in hard ground are used.

この発明によれば、地盤条件を考慮し、回帰式として、軟質地盤における回帰式と硬質地盤における回帰式とを用いたので、地震動継続時間予測システムの予測精度を向上できる。   According to this invention, considering the ground conditions, the regression equation for the soft ground and the regression equation for the hard ground are used as the regression equations, so that the prediction accuracy of the seismic motion duration prediction system can be improved.

本発明によれば、記憶部により、対象地点の座標および前記対象地点の地盤条件を記憶しておく。また、予め、回帰式算出部により、複数の実際の地震動の波形の経時特性を包絡関数でモデル化し、震源距離および気象庁マグニチュードをパラメータとした回帰式で表して、この回帰式を記憶部に記憶させておく。そして、受信部によりリアルタイム地震情報を受信すると、震源距離算出部により、リアルタイム地震情報の震源位置および記憶した対象地点の座標に基づいて震源距離を算出する。次に、継続時間算出部により、記憶した回帰式に、対象地点の地盤条件、震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する。よって、任意の地点について、地震動の継続時間を予測し、避難開始などの防災情報を建物内に報知できる。   According to the present invention, the storage unit stores the coordinates of the target point and the ground condition of the target point. In addition, a regression equation calculation unit models the time-dependent characteristics of a plurality of actual seismic motion waveforms with an envelope function, and represents the regression equation using the epicenter distance and the Japan Meteorological Agency magnitude as parameters, and stores this regression equation in the storage unit. Let me. Then, when the real-time earthquake information is received by the receiving unit, the epicenter distance calculation unit calculates the epicenter distance based on the epicenter position of the real-time earthquake information and the stored coordinates of the target point. Next, the duration calculation unit calculates the duration of the earthquake motion by substituting the ground condition of the target point, the epicenter distance, and the Japan Meteorological Agency magnitude into the stored regression equation. Therefore, it is possible to predict the duration of seismic motion at any point and notify disaster prevention information such as the start of evacuation in the building.

本発明の一実施形態に係る地震動継続時間予測システムのブロック図である。It is a block diagram of the earthquake motion duration prediction system concerning one embodiment of the present invention. 前記実施形態に係る地震動継続時間予測システムの動作のフローチャートである。It is a flowchart of operation | movement of the earthquake motion duration prediction system which concerns on the said embodiment. 関東地方における地震の震央分布を示す図である。It is a figure which shows the epicenter distribution of the earthquake in the Kanto district. 地震動の波形の経時特性の一例を示す図である。It is a figure which shows an example of the time-dependent characteristic of the waveform of an earthquake motion. 軟質地盤における震源距離と継続時間との関係を示す図である。It is a figure which shows the relationship between the epicenter distance and duration in a soft ground. 硬質地盤における震源距離と継続時間との関係を示す図である。It is a figure which shows the relationship between the epicenter distance and duration in a hard ground.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る地震動継続時間予測システム1のブロック図である。
地震動継続時間予測システム1は、緊急地震速報などのリアルタイム地震情報に基づいて対象地点の地震動の継続時間を予測するものであり、受信部2、表示部3、および演算処理部4、および記憶部5を備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a seismic motion duration prediction system 1 according to an embodiment of the present invention.
The seismic motion duration prediction system 1 predicts the duration of seismic motion at a target point based on real-time earthquake information such as emergency earthquake bulletin, and includes a receiving unit 2, a display unit 3, an arithmetic processing unit 4, and a storage unit. 5 is provided.

受信部2は、気象庁から送信されるリアルタイム地震情報を受信するものである。
表示部3は、受信部2で受信した情報や演算処理部4から出力された情報を表示するものであり、例えば、モニタである。
The receiving unit 2 receives real-time earthquake information transmitted from the Japan Meteorological Agency.
The display unit 3 displays information received by the receiving unit 2 and information output from the arithmetic processing unit 4, and is, for example, a monitor.

記憶部5は、種々の情報を記憶するものであり、例えばハードディスクである。この記憶部5は、予め、対象地点の座標(緯度・経度)を記憶するとともに、地表から深度30mまでの平均S波速度VS30を対象地点の地盤条件として記憶している。また、後述の演算処理部4の回帰式算出部41で求めた回帰式を記憶する。 The memory | storage part 5 memorize | stores various information, for example, is a hard disk. The storage unit 5 stores the coordinates (latitude / longitude) of the target point in advance, and stores the average S wave velocity V S30 from the ground surface to a depth of 30 m as the ground condition of the target point. Further, the regression formula obtained by the regression formula calculation unit 41 of the arithmetic processing unit 4 described later is stored.

演算処理部4は、記憶部5に記憶されたプログラムを読み出して、動作制御を行うOS(Operating System)上に展開して実行するものである。
具体的には、演算処理部4は、回帰式算出部41と、震源距離算出部42と、予測震度算出部43と、継続時間算出部44と、を備える。
The arithmetic processing unit 4 reads out a program stored in the storage unit 5 and develops and executes it on an OS (Operating System) that performs operation control.
Specifically, the arithmetic processing unit 4 includes a regression equation calculation unit 41, an epicenter distance calculation unit 42, a predicted seismic intensity calculation unit 43, and a duration calculation unit 44.

回帰式算出部41は、実際の地震動の複数の観測データの波形の経時特性を包絡関数でモデル化し、予測震度算出部43で算出した震源距離および気象庁マグニチュードをパラメータとした回帰式で表し、記憶部5に記憶させておく。   The regression equation calculation unit 41 models the time-dependent characteristics of the waveforms of a plurality of observation data of actual seismic motion with an envelope function, and represents the seismic source distance calculated by the predicted seismic intensity calculation unit 43 and the meteorological agency magnitude as parameters. Stored in the unit 5.

震源距離算出部42は、リアルタイム地震情報を受信すると、リアルタイム地震情報の震源位置および記憶部5に記憶した対象地点の座標に基づいて、震源距離を算出する。
予測震度算出部43は、震度の計算式(例えば、予報業務許可の技術基準について 気象庁地震火山部 2010年3月18日)に、震源距離算出部42で算出した震源距離および気象庁マグニチュードを代入して、対象地点の予測震度を算出する。
When receiving the real-time earthquake information, the epicenter distance calculation unit 42 calculates the epicenter distance based on the epicenter position of the real-time earthquake information and the coordinates of the target point stored in the storage unit 5.
The predicted seismic intensity calculation unit 43 substitutes the seismic source distance and the Japan Meteorological Agency magnitude calculated by the seismic source distance calculation unit 42 into the seismic intensity calculation formula (for example, the technical standards for forecasting work permission, the Meteorological Agency Seismic Volcano Department March 18, 2010). The predicted seismic intensity at the target point is calculated.

継続時間算出部44は、震源位置および気象庁マグニチュードを含むリアルタイム地震情報を受信すると、記憶部5から回帰式を読み出して、この回帰式に、対象地点の地盤条件、震源距離算出部42で算出した震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する。   When the real time earthquake information including the epicenter position and the JMA magnitude is received, the duration calculation unit 44 reads the regression equation from the storage unit 5 and calculates the ground condition of the target point and the epicenter distance calculation unit 42 to the regression equation. Substituting the epicenter distance and the Japan Meteorological Agency magnitude, the duration of the earthquake motion is calculated.

図2は、地震動継続時間予測システム1の地震動の継続時間を算出する動作のフローチャートである。   FIG. 2 is a flowchart of an operation for calculating the duration of the earthquake motion of the earthquake motion duration prediction system 1.

ステップS1では、受信部2により、リアルタイム地震速報を受信する。すなわち、このリアルタイム地震速報により、地震発生時刻t、震源位置(具体的には、緯度、経度、震源深さ)、気象庁マグニチュードMなどの情報を取得する。 In step S <b> 1, the receiver 2 receives real-time earthquake bulletin. That is, information such as the earthquake occurrence time t 0 , the location of the epicenter (specifically, latitude, longitude, seismic source depth), and the Japan Meteorological Agency magnitude M j are acquired from this real-time earthquake early warning.

ステップS2では、震源距離算出部42により、震源から対象地点までの震源距離Xを算出する。
ステップS3では、予測震度算出部43により、震源距離算出部42で算出した震源距離Xおよび気象庁マグニチュードMを震度の計算式に代入して、対象地点の予測震度を算出する。
In step S <b> 2, the epicenter distance calculation unit 42 calculates the epicenter distance X from the epicenter to the target point.
In step S3, the predicted seismic intensity calculation unit 43 calculates the predicted seismic intensity at the target point by substituting the epicenter distance X calculated by the seismic source distance calculation unit 42 and the Japan Meteorological Agency magnitude M j into the seismic intensity calculation formula.

ステップS4では、予測震度算出部43により、対象地点の予測震度が3以上であるか否かを判定する。この判定がYesである場合には、ステップS5に移り、Noである場合には、終了する。   In step S4, the predicted seismic intensity calculation unit 43 determines whether the predicted seismic intensity at the target point is 3 or more. If this determination is Yes, the process moves to step S5, and if it is No, the process ends.

ステップS5では、継続時間算出部44により、気象庁の走時表に基づいて、地震動の主要動が対象地点に到達する時刻tを算出する。 In step S < b > 5, the duration calculation unit 44 calculates a time ta at which the main motion of the earthquake motion reaches the target point based on the travel schedule of the Japan Meteorological Agency.

ステップS6では、継続時間算出部44により、記憶部5から対象地点のVS30を読み出して、この読み出したVS30が400m/s以上であるか否かを判定する。この判定がNoである場合には、対象地点が軟質地盤であるため、ステップS7に移り、Yesである場合には、対象地点が硬質地盤であるため、ステップS8に移る。 In step S < b> 6, the duration calculation unit 44 reads the target point V S30 from the storage unit 5, and determines whether or not the read V S30 is 400 m / s or more. If this determination is No, the target point is soft ground, so the process proceeds to step S7. If Yes, the target point is hard ground, and the process proceeds to step S8.

ステップS7では、継続時間算出部44により、記憶部5から以下の回帰式である(1)式を読み出す。   In step S <b> 7, the duration calculation unit 44 reads out the following regression equation (1) from the storage unit 5.

Figure 2013113815
Figure 2013113815

(1)式において、a、b、c、d、eは、地域や地盤条件によって異なる回帰係数であり、σ、σは回帰式における対数標準偏差である。また、αは回帰式のばらつきを考慮した係数であり、対数標準偏差σ、σに乗じる係数である。
また、記憶部5から軟質地盤についての地盤条件を読み出して、軟質地盤における地震動の継続時間t−tを求める。すなわち、a、b、c、d、e、σ、σを読み出して(1)式に代入する。
In the equation (1), a, b, c, d, and e are regression coefficients that vary depending on the region and ground conditions, and σ 1 and σ 2 are logarithmic standard deviations in the regression equation. Α is a coefficient that takes into account variations in the regression equation, and is a coefficient that is multiplied by the logarithmic standard deviations σ 1 and σ 2 .
Further, from the storage unit 5 reads out the ground conditions for soft ground, determine the duration t d -t a ground motion in soft ground. That is, a, b, c, d, e, σ 1 , and σ 2 are read and substituted into the equation (1).

一方、ステップS8では、継続時間算出部44により、記憶部5から上述の(1)式を読み出すとともに、硬質地盤についての地盤条件を読み出して、硬質地盤における地震動の継続時間t−tを求める。すなわち、a、b、c、d、e、σ、σを読み出して(1)式に代入する。 On the other hand, in step S8, the duration calculation unit 44 reads the above-mentioned equation (1) from the storage unit 5 reads out the ground conditions for hard ground, the duration t d -t a ground motion in the hard soil Ask. That is, a, b, c, d, e, σ 1 , and σ 2 are read and substituted into the equation (1).

ステップS9では、継続時間算出部44により、地震動の主要動が対象地点に到達する時刻tに地震動の継続時間t−tを加えて、地震動の終了時刻tを算出する。
ステップS10では、表示部3により、地震動の終了時刻tを表示する。
In step S9, the duration calculation unit 44, the main movement of the ground motion in addition the duration t d -t a ground motion at time t a to reach the target point, to calculate the end time t d of the ground motion.
In step S10, the display unit 3 to display the end time t d of the ground motion.

以下、関東地域を例に、上述の(1)式を求める手順について説明する。
図3に示す1996年以降に発生した気象庁マグニチュードMが5.0以上の海溝性地震18地震を選定し、これら18地震の2378の観測データを利用した。なお、図3中の丸印は、震央の位置を示す。
まず、各観測データを軟質地盤と硬質地盤とに分類した。すなわち、地表から深度30mまでの平均S波速度VS30を指標として、対象地点の地盤条件を整理した。具体的には、各観測データについてVS30を推定し、VS30が400m/s以上を硬質地盤、400m/s未満を軟質地盤とした。
Hereinafter, the procedure for obtaining the above equation (1) will be described by taking the Kanto region as an example.
As shown in FIG. 3, 18 submarine earthquakes with a magnitude of Mj of 5.0 or more that occurred after 1996 were selected, and 2378 observation data of these 18 earthquakes were used. The circle in FIG. 3 indicates the position of the epicenter.
First, each observation data was classified into soft ground and hard ground. That is, the ground conditions at the target point were arranged using the average S wave velocity V S30 from the ground surface to a depth of 30 m as an index. Specifically, V S30 was estimated for each observation data, and V S30 was 400 m / s or more as hard ground and less than 400 m / s as soft ground.

以下、地震動継続時間は、地表面における地震動の加速度波形をモデル化した包絡曲線について、主要動が開始してから主要動の振幅が1/10程度に収まるまでの時間とする。   Hereinafter, the duration of the ground motion is the time from the start of the main motion until the amplitude of the main motion is reduced to about 1/10 with respect to the envelope curve modeling the acceleration waveform of the ground motion on the ground surface.

そこで、各観測データについて、例えば図4に示すように、地震動の波形の経時特性をJennings型包絡形E(t)でモデル化した。具体的には、地震動の波形を立上がり部、強震部、減衰部に分けて、E(t)を以下の(2)〜(5)式で構成した。   Therefore, for each observation data, for example, as shown in FIG. 4, the temporal characteristics of the waveform of the earthquake motion are modeled by a Jennings-type envelope E (t). Specifically, the waveform of the seismic motion was divided into a rising part, a strong earthquake part, and an attenuation part, and E (t) was configured by the following equations (2) to (5).

Figure 2013113815
Figure 2013113815

ここで、tは立上がり部の開始時刻、tは立上がり部の終了時刻すなわち強震部の開始時刻、tは強震部の終了時刻すなわち減衰部の開始時刻、tは減衰部の終了時刻、AはE(t)における強震部の振幅値である。また、B=ln10/(t−t)である。 Here, t a is the start time of the rising part, t b is the end time of the rising part, that is, the start time of the strong earthquake part, t c is the end time of the strong earthquake part, that is, the start time of the attenuation part, and t d is the end time of the attenuation part. , A is the amplitude value of the strong motion part at E (t). Further, B = ln10 / (t d −t c ).

このようにモデル化した包絡関数を、震源距離Xおよび気象庁マグニチュードMをパラメータとした回帰分析を行って、上述の(1)式を得た。
このときの回帰係数a、b、c、d、e、および対数標準偏差σ、σを以下に示す。
The envelope function thus modeled was subjected to regression analysis using the epicenter distance X and the Japan Meteorological Agency magnitude M j as parameters, and the above-described equation (1) was obtained.
The regression coefficients a, b, c, d, e and logarithmic standard deviations σ 1 and σ 2 at this time are shown below.

Figure 2013113815
Figure 2013113815

図5(a)は、軟質地盤における強震部の継続時間t−tと震源距離Xとの関係を示す図である。図5(b)は、軟質地盤における減衰部の継続時間t−tと震源距離Xとの関係を示す図である。
図6(a)は、硬質地盤における強震部の継続時間t−tと震源距離Xとの関係を示す図である。図6(b)は、硬質地盤における減衰部の継続時間t−tと震源距離Xとの関係を示す図である。
FIG. 5A is a diagram showing the relationship between the duration t c -t b of the strong earthquake part and the epicenter distance X in soft ground. FIG. 5B is a diagram showing the relationship between the duration t d -t c of the attenuation part and the epicenter distance X in the soft ground.
FIG. 6A is a diagram showing the relationship between the duration t c -t b of the strong earthquake part and the epicenter distance X in the hard ground. FIG. 6B is a diagram showing the relationship between the duration t d -t c of the attenuation part and the epicenter distance X in the hard ground.

図5および図6より、強震部の継続時間t−tは、M、Xが大きくなるほど長くなることが判る。また、減衰部の継続時間は、Mにそれほど依存せず、Xが大きくなるほど長くなることが判る。また、強震部の継続時間t−tは、減衰部の継続時間t−tに比べて、ばらつきが大きいことが判る。 From FIG. 5 and FIG. 6, it can be seen that the duration t c -t b of the strong earthquake part becomes longer as M j and X become larger. Further, it can be seen that the duration of the attenuation part does not depend much on M j and becomes longer as X increases. Also, the duration t c -t b of strong motion portion, compared to the duration t d -t c of the damping unit, it can be seen that the variation is large.

本実施形態によれば、以下のような効果がある。
(1)記憶部5により、対象地点の座標および対象地点の地盤条件を記憶しておく。また、予め、回帰式算出部41により、複数の実際の地震動の波形の経時特性を包絡関数でモデル化し、震源距離および気象庁マグニチュードをパラメータとした回帰式で表して、この回帰式を記憶部5に記憶させておく。
そして、受信部2によりリアルタイム地震情報を受信すると、震源距離算出部42により、リアルタイム地震情報の震源位置に基づいて震源距離を算出する。次に、継続時間算出部44により、記憶した回帰式に、対象地点の地盤条件、震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する。
よって、任意の地点について、地震動の継続時間を予測し、避難開始などの防災情報を建物内に報知できる。
According to this embodiment, there are the following effects.
(1) The storage unit 5 stores the coordinates of the target point and the ground conditions of the target point. In addition, the regression equation calculation unit 41 models in advance the time-dependent characteristics of a plurality of actual seismic motion waveforms with an envelope function, and represents the regression equation using the epicenter distance and the JMA magnitude as parameters, and this regression equation is stored in the storage unit 5. Remember me.
Then, when the real-time earthquake information is received by the receiving unit 2, the epicenter distance calculation unit 42 calculates the epicenter distance based on the epicenter position of the real-time earthquake information. Next, the duration calculation unit 44 calculates the duration of the earthquake motion by substituting the ground condition of the target point, the epicenter distance, and the Japan Meteorological Agency magnitude into the stored regression equation.
Therefore, it is possible to predict the duration of seismic motion at any point and notify disaster prevention information such as the start of evacuation in the building.

(2)地盤条件を考慮し、回帰式として、軟質地盤における回帰式と硬質地盤における回帰式とを用いたので、地震動継続時間予測システム1の予測精度を向上できる。   (2) Considering the ground conditions, the regression equation for the soft ground and the regression equation for the hard ground are used as the regression equations, so that the prediction accuracy of the seismic motion duration prediction system 1 can be improved.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…地震動継続時間予測システム
2…受信部
3…表示部
4…演算処理部
5…記憶部
41…回帰式算出部
42…震源距離算出部
43…予測震度算出部
44…継続時間算出部
DESCRIPTION OF SYMBOLS 1 ... Earthquake motion duration prediction system 2 ... Reception part 3 ... Display part 4 ... Arithmetic processing part 5 ... Memory | storage part 41 ... Regression formula calculation part 42 ... Earthquake source distance calculation part 43 ... Prediction seismic intensity calculation part 44 ... Duration calculation part

Claims (2)

対象地点における地震動の継続時間を予測する地震動継続時間予測システムであって、
前記対象地点の座標および前記対象地点の地盤条件を記憶する記憶部と、
予め実際の地震動の複数の観測データの波形の経時特性を包絡関数でモデル化して、地震動の継続時間を震源距離および気象庁マグニチュードをパラメータとして求めた回帰式で表して、当該回帰式を前記記憶部に記憶させる回帰式算出部と、
震源位置および気象庁マグニチュードを含むリアルタイム地震情報を受信する受信部と、
前記リアルタイム地震情報の震源位置および前記記憶した対象地点の座標に基づいて震源距離を算出する震源距離算出部と、
前記記憶した回帰式に、前記対象地点の地盤条件、前記震源距離、および気象庁マグニチュードを代入して、地震動の継続時間を算出する継続時間算出部と、を備えることを特徴とする地震動継続時間予測システム。
A seismic motion duration prediction system that predicts the duration of seismic motion at a target location,
A storage unit for storing coordinates of the target point and ground conditions of the target point;
The time-dependent characteristics of a plurality of observation data of actual seismic motion are modeled with an envelope function in advance, the duration of the seismic motion is expressed as a regression equation using the epicenter distance and the Japan Meteorological Agency magnitude as parameters, and the regression equation is stored in the storage unit A regression equation calculation unit to be stored in
A receiver for receiving real-time earthquake information including the location of the epicenter and the JMA magnitude;
An epicenter distance calculation unit for calculating an epicenter distance based on the epicenter position of the real-time earthquake information and the coordinates of the stored target point;
A seismic motion duration prediction unit comprising a duration calculation unit that calculates the duration of seismic motion by substituting the ground condition of the target point, the epicenter distance, and the Japan Meteorological Agency magnitude into the stored regression equation. system.
前記回帰式としては、軟質地盤における回帰式と硬質地盤における回帰式とを用いることを特徴とする請求項1に記載の地震動継続時間予測システム。   The earthquake motion duration prediction system according to claim 1, wherein a regression equation for soft ground and a regression equation for hard ground are used as the regression equation.
JP2011263072A 2011-11-30 2011-11-30 Earthquake motion duration prediction system Expired - Fee Related JP5760268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011263072A JP5760268B2 (en) 2011-11-30 2011-11-30 Earthquake motion duration prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011263072A JP5760268B2 (en) 2011-11-30 2011-11-30 Earthquake motion duration prediction system

Publications (2)

Publication Number Publication Date
JP2013113815A true JP2013113815A (en) 2013-06-10
JP5760268B2 JP5760268B2 (en) 2015-08-05

Family

ID=48709461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011263072A Expired - Fee Related JP5760268B2 (en) 2011-11-30 2011-11-30 Earthquake motion duration prediction system

Country Status (1)

Country Link
JP (1) JP5760268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200571A (en) * 2014-04-08 2015-11-12 株式会社Nttファシリティーズ Structure verification system, structure verification device, and structure verification program
JP7422103B2 (en) 2021-03-23 2024-01-25 大成建設株式会社 Earthquake waveform estimation method, earthquake motion prediction system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150817A (en) * 2007-12-21 2009-07-09 Tohoku Univ Early earthquake information processing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150817A (en) * 2007-12-21 2009-07-09 Tohoku Univ Early earthquake information processing system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014047557; 鎌田丈史 他: '多点強震観測記録に基づく地震動の継続時間の統計的特性と推定式' 日本建築学会大会学術講演梗概集 B-2, 2003, PP.195-196, 日本建築学会 *
JPN6014047558; 鎌田丈史、他: '東海地域の高密度強震観測ネットに基づく地震動の三要素と地盤特性の関係' 学術講演梗概集. B-2, 構造II, 振動, 原子力プラン , 20010731, P.79,80 *
JPN6014047559; Celine Beauval, et al.: 'Quantification of Frequency-Dependent Lengtheningof Seismic Ground-Motion Duration due to Local Geol' Bulletin of the Seismological Society of America Vol. 93, No. 1, 200302, pp. 371.385 *
JPN6014047560; E. I. Novikova and M. D. Trifunac: 'Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site conditi' Earthquake Engineering & Structural Dynamics Volume 23, Issue 9, 199409, p. 1023-1043 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200571A (en) * 2014-04-08 2015-11-12 株式会社Nttファシリティーズ Structure verification system, structure verification device, and structure verification program
JP7422103B2 (en) 2021-03-23 2024-01-25 大成建設株式会社 Earthquake waveform estimation method, earthquake motion prediction system

Also Published As

Publication number Publication date
JP5760268B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
Bourne et al. A Monte Carlo method for probabilistic hazard assessment of induced seismicity due to conventional natural gas production
KR102027252B1 (en) Methods for differentiation of earthquake signal and prediction of earthquake intensity using randomly generated artificial seismic training data for an arbitrary zone
JP5791680B2 (en) Method and system for predicting earthquake damage in buildings
Hu et al. SHM-based seismic performance assessment of high-rise buildings under long-period ground motion
Meletti et al. Seismic hazard in the Po Plain and the 2012 Emilia earthquakes
JP4506625B2 (en) Earthquake motion prediction system using real-time earthquake information
JP5126143B2 (en) Earthquake motion prediction system
JP5495684B2 (en) Elevator earthquake damage prediction device
JP6291648B2 (en) Method and system for determining the arrival of major earthquake motions
JP4385948B2 (en) Real-time earthquake response waveform estimation method using real-time earthquake information
JP5760268B2 (en) Earthquake motion duration prediction system
JP2003296396A (en) Expected life cycle cost evaluation system of building and recording medium in which expected life cycle cost evaluation program is recorded
JP6609403B2 (en) Structure verification system, structure verification device, structure verification program
JP6642232B2 (en) Earthquake damage estimation system, structure with earthquake damage estimation system, and earthquake damage estimation program
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
JP2020004052A (en) Earthquake analysis device, earthquake analysis system, and earthquake analysis method
JP3131683U (en) Overtopping prediction device
De Matteis et al. Near‐real‐time ground‐motion updating for earthquake shaking prediction
Sgobba et al. An evolutionary stochastic ground-motion model defined by a seismological scenario and local site conditions
Schäfer et al. The seismic hazard of Australia-a venture into an uncertain future
JP6850615B2 (en) Seismic retrofit design support device, seismic retrofit design method, and program
McGuire et al. A Study of Options for Estimating Floor Shaking Levels of Tall Buildings in Earthquake Early Warning
Nguyen et al. Real-Time Landslide Forecasting System: An Application of IoT Technology
Weerasinghe et al. Seismic Response of Sri Lanka using DSHA
JP6286264B2 (en) Structure verification system, structure verification device, structure verification program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5760268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees